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Appendix A Proofs and Calcuclations

A.1 ω-continuity of the T̂P operator

Let D = {d0, d1, d2, . . .} be an ω-chain, that is, d0 ⊆ d1 ⊆ d2 ⊆ . . .. We need to show

that T̂P (
⋃
D) =

⋃
T̂P (D). The left-hand side:

T̂P (
⋃
D) =

⋃
{ρ(
∨
Y ) | Y ∈ Pfin(η(TP (

⋃
D)))} (def. of T̂P )

=
⋃
{ρ(
∨
Y ) | Y ∈ Pfin(η(

⋃
TP (D)))} (TP is ω-cont.)

= {x | ∃Y ∈ Pfin(η(
⋃
TP (D))). x ∈ ρ(

∨
Y )} (def. of

⋃
)

The right-hand side:⋃
T̂P (D) =

⋃
{T̂P (d) | d ∈ D} (image)

=
⋃
{
⋃
{ρ(
∨
Y ) | Y ∈ Pfin(η(TP (d)))} | d ∈ D} (def. of T̂P )

= {x | ∃d ∈ D. ∃Y ∈ Pfin(η(TP (d))). x ∈ ρ(
∨
Y )} (def of

⋃
)

Thus, it is enough to show that ∃d ∈ D. ∃Y ∈ Pfin(η(TP (d))). x ∈ ρ(
∨
Y ) if and only if

∃Y ∈ Pfin(η(
⋃
TP (D))). x ∈ ρ(

∨
Y ). The (⇒) direction is trivial. For the (⇐) direction

pick dN with the lowest n ∈ N such that Y ⊆ η(TP (dn)), which exists, since Y is finite.

A.2 Proof of Theorem 4.2

Let x ≤L y. Since L is generated by ηL(HP ), there exist X ⊆ Y ⊆ HP such that

x =
∨
ηL(X) and y =

∨
ηL(Y ).

TL
P (x) = TL

P (
∨
ηL(X))

= TL
P ([ηL](X)) (def. of [ηL])

= [ηL](T̂P (X)) (assumption)

≤L [ηL](T̂P (Y )) (composition preserves monotonicity)

= TL
P ([ηL](Y )) (assumption)

= TL
P (
∨
ηL(Y )) (def. of [ηL])

= TL
P (y)

A.3 Counter Example for Example 4

([η] ◦ T̂P )
(
{p(0), p(1)}

)
= [η]

(
{p(0), p(1), p(2), p(3)}

)
= t such that t(Q) = if Q = p then 3 else ⊥
6= u such that u(Q) = if Q = p then 2 else ⊥
= [η]

(
{p(2)})

= ([η] ◦ T̂P )
(
{p(1)}

)
= ([η] ◦ T̂P ◦ ρ)(t) such that t(Q) = if Q = p then 1 else ⊥

= ([η] ◦ T̂P ◦ ρ ◦ [η])
(
{p(0), p(1)})

)
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Appendix B Additional Examples

This appendix contains some additional examples that do not fit in the main part of the

paper because of the page limit, but which could be useful in understanding the details

of our semantics for tabling with answer subsumption.

B.1 The Extended Immediate Consequence Operator

This example illustrates why we need to extend the TP operator to include the results

of the lattice operations, that is, why we need the T̂P operator. Consider the lattice

{a, b, c, d}, with a, b ≤ c and c ≤ d, which we use in the following program:

lub(a,b,c). lub(a,c,c). lub(a,d,d).
lub(b,a,c). lub(b,c,c). lub(b,d,d).
lub(c,d,d).
lub(X,X,X).

:- table p(lattice(lub/3)).

p(a).
p(b).
p(d) :- p(c).

The regular immediate consequence gives us lfp(TP ) = {p(a), p(b)}, which means that

ρ(
∨
η(lfp(TP ))) = {p(c)}. The atom p(c) does not follow from the logical inference,

but from the lattice’s join operator. It is included in the overall answer thanks to the

post-processing step, but its logical consequences are not. With the T̂P operator we have

lfp(T̂P ) = {p(a), p(b), p(c), p(d)}, and so ρ(
∨
η(lfp(T̂P ))) = {p(d)}, which is the intended

semantics.

B.2 Circular Dependencies

The following example shows what happens when two predicates are interdependent, but

only one of them is tabled:

:- table even(min).

even(0).
even(X) :- odd(Y), Y is X - 1.
odd(X) :- even(Y), Y is X - 1.

Our semantics interprets this program as the set

ρ(
∨
η(lfp(T̂P ))) = {even(0), odd(1), odd(3), odd(5), odd(7), . . .}.

One other possible candidate would be {even(0), odd(1)}. It is because we treat subsump-

tion as a post-processing step per stratum, which means that inter-dependent predicates

are resolved as if no answers were subsumed. Subsumption affects predicates in the strata

above. For instance, assume we add the following (non-tabled) predicate to the program:

also_odd(X) :- even(Y), Y is X - 1.

It is in a different stratum than even and odd, so its semantics depends on the semantics

of even after the subsumption step. This means that the semantics together with the

also odd predicate is given as:

{even(0), also odd(1), odd(1), odd(3), odd(5), odd(7), . . .}
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Importantly, programs like the one above do not satisfy our correctness condition for

the greedy strategy.

B.3 Example of answer subsumption for arbitrary lattices

Consider the shortest path program, now interpreted in the lattice 〈N ∪ {∞},≤∞〉, the

natural numbers extended with infinity with the canonical order, and abstractions and

representations d·e∞e , b·c∞e , d·e∞p and b·c∞p , where:

dnte∞e = 1 bxc∞e = nt

dde∞p =

{
∞ if d = infty

d otherwise
bdc∞p =

{
d if d ∈ N
infty otherwise

This lattice computes the longest path in the graph, demonstrating that a change in the

interpreting lattice can change the result of the program entirely. Now suppose the edge

e(c,a,nt) is added to the program, creating a cycle. The least fixed-point semantics

lfp(T̂P ) becomes infinite, and ρ(
∨

x∈lfp(T̂P ) η
∞(x)) contains only paths of infinite length,

represented by atoms such as p(a,c,infty). Although such least fixed-points are not

constructively computable in practice, from a theoretical point of view they demonstrate

the essence of this approach quite well.


