
Under consideration for publication in Theory and Practice of Logic Programming 1

Supplementary materials for the article

Query Answering in Resource-Based
Answer Set Semantics

published in Theory and Practice of Logic Programming

Stefania Costantini
DISIM, Università di L’Aquila

(e-mail: stefania.costantini@univaq.it)

Andrea Formisano
DMI, Università di Perugia — GNCS-INdAM

(e-mail: formis@dmi.unipg.it)

submitted May 2016; revised July 2016; accepted August 2016

This appendix contains background material concerning ASP (App. A), Resource-based
ASP (App. B), and XSB-resolution (App. C). (All notions have been borrowed from the
cited literature). Appendix D contains the proofs of the results in Section 3 of the paper.

A Background on ASP

We refer to the standard definitions concerning propositional general logic programs, as
reported, for instance, in (Apt and Bol 1994; Lloyd 1993; Gelfond and Lifschitz 1988). We
will sometimes re-elaborate definitions and terminology (without substantial change), in a
way which is functional to the discussion.

In the answer set semantics (originally named “stable model semantics”), an answer set
program Π (or simply “program”) is a finite collection of rules of the form H← L1, . . . ,Ln.

where H is an atom, n > 0 and each literal Li is either an atom Ai or its default negation
notAi. The left-hand side and the right-hand side of rules are called head and body, respec-
tively. A rule can be rephrased as H ← A1, . . . ,Am,notAm+1, . . . ,notAn. where A1, . . . ,Am

can be called positive body and notAm+1, . . . ,notAn can be called negative body. (Observe
that an answer set program can be seen as a Datalog program with negation —cf., (Lloyd
1993; Apt and Bol 1994) for definitions about logic programming and Datalog.) A rule
with empty body (n = 0) is called a unit rule, or fact. A rule with empty head, of the form
← L1, . . . ,Ln., is a constraint, and it states that the literals L1, . . . ,Ln cannot be simulta-
neously true. A positive program is a logic program including no negative literals and no
constraints.

For every atom A occurring in a rule of program Π either as positive literal A or in a
negative literal notA, we say that A occurs in Π. Therefore, as Π is by definition finite it is
possible to determine the set SΠ composed of all the atoms occurring in Π.

In the rest of the paper, whenever it is clear from the context, by “a (logic) program Π”
we mean an answer set program (ASP program) Π. As it is customary in the ASP literature,

we will implicitly refer to the ground version of Π, which is obtained by replacing in all
possible ways the variables occurring in Π with the constants occurring in Π itself, and is
thus composed of ground atoms, i.e., atoms which contain no variables. We do not consider
“classical negation” (cf., (Gelfond and Lifschitz 1991)), nor we consider double negation
notnotA. We do not refer (at the moment) to the various useful programming constructs
defined and added over time to the basic ASP paradigm.

A program may have several answer sets, or may have no answer set (while in many se-
mantics for logic programming a program admits exactly one “model”, however defined).
Whenever a program has no answer sets, we will say that the program is inconsistent. Cor-
respondingly, checking for consistency means checking for the existence of answer sets.

Consistency of answer set programs is related, as it is well-known, to the occurrence of
negative cycles, (or negative “loops”) i.e. cycles through negation, and to their connections
to other parts of the program (cf., e.g., (Costantini 2006)).

To clarify this matter, some preliminary definitions are in order.

Definition A.1 (Dependency Graph)
For a ground logic program Π, the dependency graph GΠ is a finite directed graph whose
vertices are the atoms occurring in Π (both in positive and negative literals). There is a
positive (resp. negative) edge from vertex R to vertex R′ iff there is a rule ρ in Π with R
as its head where R′ occurs positively (resp. negatively) in its body, i.e. there is a positive
edge if R′ occurs as a positive literal in the body of ρ , and a negative edge if R′ occurs in a
negative literal notR′ in the body of ρ . We say that:

• R depends on R′ if there is a path in GΠ from R to R′;
• R depends positively on R′ if there is a path in GΠ from R to R′ containing only

positive edges;
• R depends negatively on R′ if there is a path in GΠ from R to R′ containing at least

one negative edge.
• there is an acyclic dependency of R on R′ if there is an acyclic path in GΠ from R to

R′; such a dependency is even if the path comprises an even number of edges, is odd
otherwise.

In this context we assume that R depends on itself only if there exist a non-empty path in
GΠ from R to itself. (Note that empty paths are excluded, otherwise each R would always
depend -positively- upon itself by definition).

By saying that atom A depends (positively or negatively) upon atom B, we implicitly refer
to the above definition.

Definition A.2 (Cycles)
A cycle in program Π corresponds to a circuit occurring in GΠ. We say that:

• a positive cycle is a cycle including only positive edges;
• a negative cycle is a cycle including at least one negative edge;
• given a negative cycle C, we say that C is odd (or that C is an odd cycle) if C includes

an odd number of negative edges;
• given a positive cycle C, we say that C is even (or that C is an even cycle) if C

includes an even number of negative edges;

2

When referring to positive/negative even/odd cycles we implicitly refer to the above defi-
nition.

Below is the formal specification of the answer set semantics, elaborated from (Gelfond
and Lifschitz 1988). Preliminarily, we remind the reader that the least Herbrand model
of a positive logic program Π can be computed by means of its immediate consequence
operator TΠ, that can be defined as follows (the original definition is due to Van Emden
and Kowalski). We then introduce the definition of reduct, the Γ operator and finally the
definition of answer set. Given a positive program Π and a set of atoms I, let

TΠ(I) =
{

A : there exists a rule A← A1, . . . ,Am in Π where {A1, . . . ,Am} ⊆ I
}

The TΠ operator always has a unique least fixpoint, that for finite propositional programs
is computable in a finite number of steps.

The following definition of (GL-)reduct is due to Gelfond and Lifschitz.

Definition A.3
Let I be a set of atoms and Π a program. The reduct of Π modulo I is a new program,
denoted as ΠI , obtained from Π by: 1. removing from Π all rules which contain a negative
literal notA such that A ∈ I; and by 2. removing all negative literals from the remaining
rules.

Notice that for each negative literal notA which is removed at step 2, it holds that A 6∈ I:
otherwise, the rule where it occurs would have been removed at step 1. We can see that ΠI

is a positive logic program. Answer sets are defined as follows, via the GL-operator Γ.

Definition A.4 (The GL-Operator Γ)
Let I be a set of atoms and Π a program. We denote with ΓΠ(I) the least Herbrand model
of ΠI .

Definition A.5
Let I be a set of atoms and Π a program. I is an answer set of Π if and only if ΓΠ(I) = I.

Answer sets form an anti-chain with respect to set inclusion. The answer set semantics
extends the well-founded semantics (wfs), formally introduced in (Van Gelder et al. 1991)
and then further discussed and characterized (cf. (Apt and Bol 1994) for a survey), that
provides a unique three-valued model. The well-founded model w f sΠ = 〈W+,W−〉 of
program Π is specified by making explicit the set of true and false atoms, all the other
atoms implicitly assuming the truth value “undefined”. Intuitively, according to the wfs:

• The set W+ is the set of atoms which can be derived top-down, say, like in Prolog,
without incurring in cycles.

• The set W− is the set of atoms which cannot be derived either because they are not
the head of any rule, or because every possible derivation incurs in a positive cycle,
or because every possible derivation incurs in some atom which in turn cannot be
derived.
• The undefined atoms are those atoms which cannot be derived because every possi-

ble derivation incurs in a negative cycle.

Some of the classical models of Π (interpreted in the obvious way as a classical first-
order theory, i.e. where the comma stands for conjunction and the symbol ← stands for
implication) can be answer sets, according to some conditions introduced in what follows.

3

Definition A.6
Given a non-empty set of atoms I and a rule ρ of the form A ←
A1, . . . ,An,notB1, . . . ,notBm, we say that ρ is supported in I iff {A1, . . . ,An} ⊆ I
and {B1, . . . ,Bm}∩ I = /0.

Definition A.7
Given a program Π and a non-empty set of atoms I, we say that I is supported w.r.t. Π (or
for short Π-supported) iff ∀A ∈ I, A is the head of a rule ρ in Π which is supported in I.

Answer sets of Π, if any exists, are supported minimal classical models of the program.
They however enjoy a stricter property, that we introduce below (cf., Proposition A.2).

Definition A.8
Given a program Π and a set of atoms I, an atom A ∈ I is consistently supported w.r.t. Π

and I iff there exists a set S of rules of Π such that the following conditions hold (where
we say that A is consistently supported via S):

1. every rule in S is supported in I;
2. exactly one rule in S has conclusion A;
3. A does not occur in the positive body of any rule in S;
4. every atom B occurring in the positive body of some rule in S is in turn con-

sistently supported w.r.t. Π and I via a set of rules S′ ⊆ S.

Note that A cannot occur in the negative body of any rule in S either, since all such rules
are supported in I. S is called a consistent support set for A (w.r.t. Π and I). Moreover, by
condition (ii), different support sets for A may exist, each one including a different rule
with head A.

Definition A.9
Given a program Π and a set of atoms I, we say that I is a consistently supported set of
atoms (w.r.t. Π) iff ∀A ∈ I, A is consistently supported w.r.t. Π and I. We say that I is a
maximal consistently supported set of atoms (MCS, for short) iff there does not exist I′ ⊃ I
such that I′ is consistently supported w.r.t. Π. We say, for short, that I is an MCS for Π.

Observe that an MCS can be empty only if it is unique, i.e, only if no non-empty consis-
tently supported set of atoms exists. In both the answer set and the well-founded semantics
atoms involved/defined exclusively in positive cycles are assigned truth value false. How-
ever, the answer set semantics tries to assign a truth value to atoms involved in negative
cycles, which are undefined under the well-founded semantics (precisely, it succeeds in do-
ing so if the given program Π is consistent). Therefore, for every answer set M, W+ ⊆M.
It is easy to see that:

Proposition A.1
Given the well-founded model 〈W+,W−〉 of program Π, W+ is a consistently supported
set of atoms.

Notice that W+ is not in general an MCS, as the following proposition holds:

4

Proposition A.2
Any answer set M of program Π is an MCS for Π.

However, maximal consistently supported sets of atoms are not necessarily answer sets.
We introduce some useful properties of answer set semantics from (Dix 1995).

Definition A.10
The sets of atoms a single atom A depends upon, directly or indirectly, positively or nega-
tively, is defined as dependencies of (A) = {B : A depends on B}.

Definition A.11
Given a program Π and an atom A, rel rul(Π;A) is the set of relevant rules of Π with
respect to A, i.e. the set of rules that contain an atom B ∈ ({A}∪ dependencies of (A)) in
their heads.

The notions introduced by Def. A.10 and A.11 for an atom A can be plainly generalized
to sets of atoms. Notice that, given an atom (or a set of atoms) X , rel rul(Π;X) is a sub-
program of Π. An ASP program can be seen as divided into components, some of them
involving cyclic dependencies.

Definition A.12
An answer set program Π is cyclic if for every atom A occurring in the head of some rule ρ

in Π, it holds that A ∈ dependencies of (A). In particular, Π is negatively (resp., positively)
cyclic if some (resp., none) of these dependencies is negative. A program Π in which there
is no head A such that A ∈ dependencies of (A) is called acyclic.

A cyclic program is not simply a program including some cycle: rather, it is a program
where every atom is involved in some cycle. It is easy to see the following.

• An acyclic program has a unique (possibly empty) answer set, coinciding with the
set W+ of true atoms of its well-founded model. Acyclic programs coincide with
stratified programs in a well-known terminology (Apt and Bol 1994). We prefer to
call them ’acyclic’ as the notion of strata is irrelevant in the present context.

• A positively cyclic program has a unique empty answer set, coinciding with the set
W+ of true atoms of its well-founded model.
• Negatively cyclic programs have no answer sets and have an empty well-founded

model, in the sense that all atoms occurring in such a program are undefined under
the well-founded semantics.

In the following, unless explicitly specified by a “cyclic program” (or program compo-
nent) we intend a negatively cyclic program (or program component, i.e. a subprogram
of a larger program). By Definition A.12, there exist programs that are neither cyclic nor
acyclic, though involving cyclic and/or acyclic fragments as subprograms, where such frag-
ments can be either independent of or related to each other.

Definition A.13
A subprogram Πs of a given program Π is self-contained (w.r.t. Π) if the set X of atoms
occurring (either positively or negatively) in Πs is such that rel rul(Π;X)⊆Πs.

Notice that a subprogram Πs = Π is self-contained by definition.

5

Definition A.14
Given two subprograms Πs1 ,Πs2 of a program Π, Πs2 is on top of Πs1 if the set X2 of atoms
occurring in the head of some rule in Πs2 is such that rel rul(Π;X2) ⊆ Πs2 ∪Πs1 , and the
set X1 of atoms occurring (either positively or negatively) only in the body of rules of Πs2

is such that rel rul(Π;X1)⊆Πs1 .1

Notice that, by Definition A.14, if Πs2 is on top of Πs1 , then X1 is a splitting set for Π in
the sense of (Lifschitz and Turner 1994).

Definition A.15
A program obtained as the union of a set of cyclic or acyclic programs, none of which is
on top of another one, is called a jigsaw program.

Thus any program/component, either acyclic or cyclic or jigsaw, can possibly but not
necessarily be self-contained. An entire program is self-contained, but not necessarily jig-
saw. We introduce a useful terminology for jigsaw programs which are self-contained.

Definition A.16
Let Π be a program and Πs a jigsaw subprogram of Π. Then, Πs is standalone (w.r.t. Π) if
it is self-contained (w.r.t. Π).

In case we refer to a standalone program Πs without mentioning the including pro-
gram Π, we intend Π to be identifiable from the context.

The following property states that a program can be divided into subprograms where a
standalone one can be understood as the bottom layer, which is at the basis of a “tower”
where each level is a jigsaw subprogram standing on top of lower levels.

Proposition A.3
A non-empty answer set program Π can be seen as divided into a sequence of components,
or layers, C1, . . . ,Cn, n ≥ 1 where: C1, which is called the bottom of Π, is a standalone
program; each component Ci, for i > 1, is a jigsaw program which is on top of Ci−1∪·· ·∪
C1.

In fact, the bottom layer (that may coincide with the entire program) necessarily exists as
the program is finite, and so does any upper layer. The advantage of such a decomposition
is that, by the Splitting Theorem introduced in (Lifschitz and Turner 1994), the computation
of answer sets of Π can be divided into subsequent phases.

Proposition A.4
Consider a non-empty ASP program Π, divided according to Proposition A.3 into compo-
nents C1, . . . ,Cn, n≥ 1. An answer set S of Π (if any exists) can be computed incrementally
as follows:

step 0. Set i = 1.
step 1. Compute an answer set Si of component Ci (for i = 1, this accounts to computing an

answer set of the standalone bottom component).

1 This notion was introduced in (Costantini 1995; Lifschitz and Turner 1994).

6

step 2. Simplify program Ci+1 by: (i) deleting all rules in which have notB in their body, for
some B ∈ Si; (ii) deleting (from the body of the remaining rules) every literal notF
where F does not occur in the head of rules of Ci+1 and F 6∈ Si, and every atom E
with E ∈ Si. (Notice that, due to the simplification, Ci+1 becomes standalone.)

step 3. If i < n set i = i+1 and go to step 1, else set S = S1∪·· ·∪Sn.

All answer sets of Π can be generated via backtracking (from any possible answer set of
C1, combined with any possible answer set of simplified C2, etc.). If no (other) answer set
of Π exists, then at some stage step 1 will fail. An incremental computation of answer sets
has also been adopted in (Gebser et al. 2009).

B Background on Resource-Based Answer Set Semantics

The following formulation of resource-based answer set semantics is obtained by introduc-
ing some modifications to the original definition of the answer set semantics. Some prelim-
inary elaboration is needed. Following Proposition A.3, a nonempty answer set program
Π (that below we call simply “program”) can be seen as divided into a sequence of com-
ponents, and, based upon such a decomposition, as stated in Proposition A.4, the answer
sets of a program can be computed incrementally in a bottom-up fashion. Resource-based
answer sets can be computed in a similar way. Therefore, we start by defining the notion
of resource-based answer sets of standalone programs.

The semantic variation that we propose implies slight modifications in the definition
of the TΠ and the Γ operator, aimed at forbidding the derivation of atoms that necessarily
depend upon their own negation. The modified reduct, in particular, keeps track of negative
literals which the “traditional” reduct would remove.

Definition B.1
Let I be a set of atoms and let Π be a program. The modified reduct of Π modulo I is a new
program, denoted as Π̂I , obtained from Π by removing from Π all rules which contain a
negative premise notA such that A ∈ I.

For simplicity, let us consider each rule of a program as reordered by grouping its positive
and its negative literals, as follows:

A← A1, . . . ,Am, notB1, . . . ,notBn

Moreover, let us define a guarded atom to be any expression of the form A||G where A is an
atom and G = {notC1, . . . ,notC`} is a possibly empty collection of `≥ 0 negative literals.
We say that A is guarded by the Cis, or that G is a guard for A.

We define a modified TΠ which derives only those facts that do not depend (neither di-
rectly nor indirectly) on their own negation. The modified TΠ operates on sets of guarded
atoms. For each inferred guarded atom A||G, the set G records the negative literals A de-
pends on.

Definition B.2 (Modified TΠ)
Given a propositional program Π, let
TΠ(I) =

{
A||G1∪·· ·∪Gr ∪{notB1, . . . ,notBn} : there exists a rule

A← A1, . . . ,Ar,notB1, . . . ,notBn in Π such that

{A1||G1, . . . ,Ar||Gr} ⊆ I and notA 6∈ {notB1, . . . ,notBn}∪G1∪·· ·∪Gr

}
.

7

For each n≥ 0, let T n
Π

be the set of guarded atoms defined as follows:

T 0
Π

= {A|| /0 : there exists unit rule A← in Π}
T n+1

Π
= TΠ(T n

Π
)

The least contradiction-free Herbrand set of Π is the following set of atoms:

T̂Π =
{

A : A||G ∈ T i
Π for some i≥ 0

}
.

Notice that the least contradiction-free Herbrand set of a (modified reduct of a) program,
does not necessarily coincide with the full least Herbrand model of the “traditional” reduct,
as its construction excludes from the result those atoms that are guarded by their own
negation. We can finally define a modified version of the Γ operator.

Definition B.3 (Operator Γ̂)
Let I be a set of atoms and Π a program. Let Π̂I be the modified reduct of Π modulo I, and
J be its least contradiction-free Herbrand set. We define Γ̂Π(I) = J.

It is easy to see that given a program Π and two sets I1, I2 of atoms, if I1 ⊆ I2 then
Γ̂Π(I1)⊇ Γ̂Π(I2). Indeed, the larger I2 leads to a potentially smaller modified reduct, since
it may causes the removal of more rules.

For technical reasons, we need to consider potentially supported sets of atoms.

Definition B.4
Let Π be a program, and let I be a set of atoms. I is Π-based iff for any A ∈ I there exists
rule ρ in Π with head A.

It can be shown (see, (Costantini and Formisano 2015)) that, given a standalone program
Π and a non-empty Π-based set I of atoms, and given M = Γ̂Π(I), if M ⊆ I then M is a
consistently supported set of atoms for Π. Consequently, we have that M is an MCS (cf.,
Definition A.9) for Π iff there exists I such that M ⊆ I, and there is no proper subset I1 of I
such that Γ̂Π(I1)⊆ I1. We now define resource-based answer sets of a standalone program.

Definition B.5
Let Π be a standalone program, and let I be a Π-based set of atoms. M = Γ̂Π(I) is a
resource-based answer set of Π iff M is an MCS for Π.

It is easy to see that any answer set of a standalone program Π is a resource-based
answer set of Π and, if Π is acyclic, the unique answer set of Π is the unique resource-
based answer set of Π. These are consequences of the fact that consistent ASP programs
are non-contradictory, and the modified TΠ, in absence of contradictions (i.e. in absence of
atoms necessarily depending upon their own negations), operates exactly like TΠ. In case
of acyclic programs, the unique answer set I is also the unique MCS as the computation
of the modified reduct does not cancel any rule, and the modified TΠ can thus draw the
maximum set of conclusions, coinciding with I itself.

Being an MCS, a resource-based answer set can be empty only if it is the unique
resource-based answer set.

Below we provide the definition of resource-based answer sets of a generic program Π.

8

Definition B.6
Consider a non-empty ASP program Π, divided according to Proposition A.3 into com-
ponents C1, . . . ,Cn, n ≥ 1. A resource-based answer set S of Π is defined as M1∪ ·· ·∪Mn

where M1 is a resource-based answer set of C1, and each Mi, 1 < i≤ n, is a resource-based
answer set of standalone component C′i , obtained by simplifying Ci w.r.t. M1∪ ·· ·∪Mi−1,
where the simplification consists in: (i) deleting all rules in Ci which have notB in their
body, B ∈ M1 ∪ ·· · ∪Mi−1; (ii) deleting (from the body of remaining rules) every literal
notD where D does not occur in the head of rules of Ci and D 6∈ M1 ∪ ·· · ∪Mi−1, and
also every atom D with D ∈M1 ∪ ·· · ∪Mi−1. (Notice that, due to the simplification, C′i is
standalone.)

Definition B.6 brings evident analogies to the procedure for answer set computation
specified in Proposition A.4. This program decomposition is under some aspects reminis-
cent of the one adopted in (Gebser et al. 2009). However, in general, resource-based answer
sets are not models in the classical sense: rather, they are Π-supported sets of atoms which
are the wider subsets of some classical model that fulfills non-contradictory support. We
can prove, in fact, this result:

Theorem B.1
A set of atoms I is a resource-based answer set of Π iff it is an MCS for Π.

Resource-based answer sets still form (like answer sets) an anti-chain w.r.t. set inclusion,
and answer sets (if any) are among the resource-based answer sets. Clearly, resource-based
answer sets semantics still extends the well-founded semantics. Differently from answer
sets, a (possibly empty) resource-based answer set always exists.

It can be observed that complexity remains the same as for ASP. In fact:

Proposition B.1
Given a program Π, the problem of deciding whether there exists a set of atoms I which is
a resource-based answer set of Π is NP-complete.

C XSB-resolution in a Nutshell

Below we briefly illustrate the basic notions of XSB-resolution. An ample literature exists
for XSB-resolution, from the seminal work in (Chen and Warren 1993) to the most recent
work in (Swift and Warren 2012) where many useful references can also be found. XSB
resolution is fully implemented, and information and downloads can be find on the XSB
web site, xsb.sourceforge.net/index.html.

XSB-resolution adopts tabling, that will be useful for our new procedure. Tabled logic
programming was first formalized in the early 1980’s, and several formalisms and systems
have been based both on tabled resolution and on magic sets, which can also be seen as
a form of tabled logic programming (c.f. (Swift and Warren 2012) for references). In the
Datalog context, tabling simply means that whenever atom S is established to be true or
false, it is recorded in a table. Thus, when subsequent calls are made to S, the evaluation
ensures that the answer to S refers to the record rather than being re-derived using pro-
gram rules. Seen abstractly, the table represents the given state of a computation: in this
case, subgoals called and their answers so far derived. One powerful feature of tabling is

9

its ability to maintain other global elements of a computation in the “table”, such as in-
formation about whether one subgoal depends on another, and whether the dependency is
through negation. By maintaining this global information, tabling is useful for evaluating
logic programs under the well-founded semantics. Tabling allows Datalog programs with
negation to terminate with polynomial data complexity under the well-founded semantics.

An abridged specification of the basic concepts underlying XSB-resolution is provided
below for the reader’s convenience. We refer the reader to the references for a proper un-
derstanding. We provide explanations tailored to ground (answer set) programs, where a
number of issues are much simpler than the general case (non-ground programs and, par-
ticularly, programs with function symbols). For definitions about procedural semantics of
logic programs we again refer to (Lloyd 1993; Apt and Bol 1994), and in particular we
assume that the reader is to some extent acquainted with the SLD-resolution (Linear res-
olution with Selection function for Definite programs) and SLDNF-resolution (for logic
programs with Negation-as-Failure) proof procedures, which form the computational basis
for Prolog systems. Briefly, a ground negative literal succeeds under SLDNF-resolution if
its positive counterpart finitely fails, and vice versa it fails if its positive counterpart suc-
ceeds. SLDNF-resolution has the advantage of goal-oriented computation and has provided
an effective computational basis for logic programming, but it cannot be used as inference
procedure for programs including either positive or negative cycles.

XSB-resolution stems from SLS-resolution (Przymusinski 1989; Ross 1992), which is
correct and complete w.r.t. the well-founded semantics, via the ability to detect both pos-
itive cycles, which make involved atoms false w.r.t. the wfs, and negative cycles, which
make the involved atoms undefined. Later, solutions with “memoing” (or “tabling”) have
been investigated, among which (for positive programs) OLDT-resolution (Tamaki and
Sato 1986), which maintains a table of calls and their corresponding answers: thus, later oc-
currences of the same calls can be resolved using answers instead of program rules. An ef-
fective variant of SLS with memoing and simple methods for loop detection is XOLDTNF-
resolution (Chen and Warren 1993), which builds upon OLDT. SLG-resolution (Chen and
Warren 1996) is a refinement of XOLDTNF-resolution, and is actually the basis of imple-
mented XSB-resolution. In SLG, many software engineering aspects and implementation
issues are taken into account. In this context, as we still do not treat practical implemen-
tation issues it is sufficient to introduce basic concepts related to SLS and XOLDTNF-
resolution.

As done before, let us consider each rule of a program as reordered by grouping its
positive and its negative literals, as follows: A← A1, . . . ,Am, notB1, . . . ,notBn. Moreover,
let be given a goal of the form← L1, . . . ,Lk., where the Lis are literals, let us consider a
positivistic computation rule, which is a computation rule that selects all positive literals
before any negative ones. These assumptions were originally required by SLS and have
been dropped later, but they are useful to simplify the illustration.

The basic building block of SLS-resolution is the SLP-tree, which deals with goals of the
form← Q, that form the root of the tree. For each positive subgoal which is encountered,
its SLP sub-tree is built basically as done in SLD-resolution. Leaves of the tree can be:

• dead leaves, i.e. nodes with no children because either there is no program rule to

10

apply to the selected atom A, or because A was already selected in an ancestor node
(situation which correspond to a positive cycle); in both case the node is failed;

• active leaves, which are either empty (successful node) or contain only negative
subgoals.

More precisely, the Global tree T for goal← Q is built as follows.

• Its root node is the SLP-tree for the original goal.
• Internal tree nodes are SLP-trees for intermediate positive sub-goals.
• Negation nodes are created in correspondence of negative subgoals occurring in non-

empty active leaves.

The management of negation node works as follows: the negation node corresponding
to subgoal notA is developed into the SLP-tree for A, unless in case such a node already
exists in the tree (negative cycles detection). Then: if some child of a negation node J is a
successful tree node, then J is failed; if every child of a negation node J is either a failed
node or a dead leaf, then J is successful.

Any node that can be proved successful or failed is well-determined, and any node which
is not well-determined is undetermined. A successful branch of T is a branch that ends at a
successful leaf and corresponds to success of the original goal. A goal which leads via any
branch to an undetermined node is undetermined. Otherwise, the goal is failed.

It has been proved that a successful goal is composed of literals which are true w.r.t. the
wfs, a failed goal includes some literal which is false w.r.t. the wfs, and an undetermined
goal includes some literal which is undefined.

XOLDTNF-resolution augments SLS-resolution with tabling and with a simple direct
way for negative cycles detection. In the following, given a program Π, let T (Π) be the
data structure used by the proof procedure for tabling purposes, i.e. the table associated
with the program (or simply “program table”). The improvements of XOLDTNF over SLS
are mainly the following.

• The Global tree is split into several trees, one for each call, whose root is an atom A.
As soon as the call leads to a result, the “answer”, i.e. the truth value of A, is recorded
in the table. Only true or undefined answers are explicitly recorded. Whenever A
should occur in a non-root node, it can be resolved only by the answer that has been
computed and recorded in T (Π) or that can be computed later. This avoids positive
loops. An atom whose associated tree has in the end no answer leaf has truth value
false because either no applicable program rule exists, or a positive cycle has been
encountered.

• For detecting negative cycles the method introduced in the paper is adopted (cf.,
Definition 3.1).

For Datalog programs, XOLDTNF-resolution is, like SLS-resolution, correct and com-
plete w.r.t. the wfs. Consequently, so are SLG- and XSB-resolution.

D Proofs from the paper

This section contains the proofs of the main Theorems and some preliminary results.

11

Lemma D.1
Let Π be an acyclic program. RAS-XSB-resolution is correct and complete w.r.t. such a
program.

Proof
An acyclic program is stratified and thus admits a two-valued well-founded model (i.e.
no atom is undefined) where W+ coincides with the unique (resource-based) answer set.
XSB-resolution is correct and complete w.r.t. such a program. Thus, any literal occurring
in Π either definitely succeeds by case 1 of RAS-XSB-resolution or definitely fails by
case 2.b of RAS-XSB resolution. Since such cases just resort to plain XSB-resolution, this
concludes the proof.

Lemma D.2
Let Π be a cyclic program. RAS-XSB-resolution is correct and complete w.r.t. such a
program.

Proof
Let M be a resource-based answer set of Π. We prove that, for every A ∈M, query ?−A
succeeds under RAS-XSB-resolution. M (which is a maximal consistently supported set of
atoms (MCS)) can be obtained by applying the modified immediate consequence operator)
to some Π-based set of atoms I. From the application of the modified TΠI we can trace
back a set of program rules from which A can be proved via RAS-XSB-resolution (cases 1
and 3 of Definition of Success and failure in RAS-XSB-resolution). Notice first that T 0

ΠI = /0
as a cyclic program includes no fact. (Recall that, by definition, a program is cyclic if each
of its heads depends directly or indirectly on itself.) However, ΠI necessarily contains
some rule with body including negative literals only, thus leading to a nonempty T 1

ΠI and
determining a final non-empty result of repeated application of TΠI . For some i ≥ 1 there
will be A||G ∈ T i

ΠI (for a guard G). This means that there exists a rule ρ in ΠI which is
applicable, i.e. A does not occur in its body, and notA does not occur in the guard. Let
B1, . . . ,Bn,notC1, . . . ,notCm, n,m ≥ 0 be the body of ρ . Since M is an MCS ρ will be
supported in M, i.e. it will hold that Bi ∈M, i≤ n and C j 6∈M, j ≤ m.

Let us consider the notC js. It cannot be C j ∈ I, otherwise, by definition of the modified
reduct, rule ρ would have been canceled. Moreover, the Cis are not derived by the modified
TΠI so allowing for the derivation of A. Being the program cyclic, one of the following must
be the case for this to happen.

• C j is not derived by the modified TΠI (which differs from the standard one only
concerning guarded atoms) because it depends positively upon itself and so it is
false in every resource-based answer set and in the well-founded semantics. In this
case notC j succeeds by case 3.b of RAS-XSB-resolution: in fact C j fails by case 2.b
since XSB-resolution is correct and complete w.r.t. the well-founded semantics.

• C j is not derived by the modified TΠI because it depends negatively upon itself and
at some point the derivation incurs in a guard including notC j. In this case, notC j

succeeds either by case 3.c or by case 3.d of RAS-XSB-resolution.

For each of the Bis we can iterate the same reasoning as for A. As noted before, being

12

the program cyclic there are no unit rules, but for M to be nonempty there will exist some
rule in Π without positive conditions which is supported in M. Therefore, a RAS-XSB-
derivation is always finite. This concludes this part of the proof.

Let us now assume that ?−A succeeds by RAS-XSB-resolution. We prove that there
exists resource-based answer set M such that A∈M. We have to recall that a resource-based
answer set M is obtained as M = Γ̂Π(I) where M ⊆ I for some set of atoms I, and that M is
an MCS for Π. Let us refer to the Definition of Success and failure in RAS-XSB-resolution
in the paper. Since the program is cyclic, then A succeeds via case 1.b, i.e. there exists a rule
ρ in Π (where A does not occur in the body), of the form A← B1, . . . ,Bn,notC1, . . . ,notCm

(for n,m ≥ 0), where all the Bis and all the notC js succeed via RAS-XSB-resolution. We
have to prove that there exists a resource-based answer set M, which is an MCS for Π,
where this rule is supported, i.e. it holds that Bi ∈ M for all i ≤ n and C j 6∈ M for all
j ≤ m. From the definition of resource-based answer set, M must be obtained from a set
of atoms I, where we must assume to select an I such that A ∈ I, {B1, . . . ,Bn} ⊆ I and
{C1, . . . ,Cm}∩ I = /0. So, the modified reduct will cancel all rules in Π with notA in their
body, while keeping ρ . Thus, we have now to prove that ρ allows the modified TΠI to add
A to M. To this extent, we must consider both the negative and the positive conditions of
ρ . Considering the negative conditions, for each the notC js we can observe that, being Π

cyclic, one of the following must be the case.

• notC j succeeds via either case 3.c or 3.d. It can be one of the following.

- All rules with head C j have been canceled by the modified reduct, and so the
modified TΠI cannot derive C j.

- There are rules with head C j which have not been canceled by the modified
reduct, and might thus allow the modified TΠI to derive C j. Since however Π

is cyclic, the application of such a rule will be prevented by the occurrence of
notC j in the guard.

• notC j succeeds via case 3.b: in this case, being the program cyclic, C j depends in
every possible way positively upon itself. Thus, C j cannot be derived by the modi-
fied TΠI which, apart from guards, works similarly to the standard immediate conse-
quence operator.

For each of the Bis we can iterate the same reasoning as done for A, and this concludes
the proof.

Lemma D.3
Let Π be a standalone program. RAS-XSB-resolution is correct and complete w.r.t. such a
program.

Proof
The result follows from Lemma D.1 and Lemma D.2 as a standalone program is in general
a jigsaw program including both cyclic and acyclic components.

Proof of Theorem 3.1

13

As a premise, we remind the reader that, according to Definition B.6, for every resource-
based answer set M of Π we have M = M1∪ . . .∪Mn, where C1∪ . . .∪Cn are the compo-
nents of Π and every Mi is a resource-based answer set of the version of Ci obtained via the
simplification specified in the same definition. For every A ∈M, there exists i, 1 ≤ i ≤ n,
such that A ∈Mi.

Let M be a resource-based answer set of Π. We prove that, for every A ∈M, query ?−A
succeeds under RAS-XSB-resolution. The proof will be by induction.

Induction base. Since C1 is standalone, then by Lemma D.3 RAS-XSB-resolution is correct
and complete w.r.t. M1 and C1.

Induction step. Assume that RAS-XSB-resolution is correct w.r.t. subprogram C1 ∪ . . .∪
Ci, i ≤ n, and its resource-based answer set M1 ∪ . . .∪Mi. We prove that this also holds
for subprogram C1 ∪ . . .∪Ci+1 and its resource-based answer set M1 ∪ . . .∪Mi+1. After
the simplification specified in Definition B.6, which accounts to annotating in T (Π) the
results of the RAS-XSB derivations of the atoms in Mi+1, we have that Ci+1 becomes
standalone, with resource-based answer set Mi+1. Then, for A ∈Mi+1 we can perform the
same reasoning as for A ∈M1, and this concludes the proof.

Proof of Theorem 3.2
Given any query ?−A, the set of rules used in the derivation of A constitutes a subprogram
ΠA of Π. Therefore, by correctness and completeness of RAS-XSB-resolution there exists
some resource-based answer set MA of ΠA such that, after the end of the derivation, we
have A∈T (Π) ⇐⇒ A∈MA and notA∈T (Π) ⇐⇒ A 6∈MA By Modularity of resource-
based answer set semantics, there exists some resource-based answer set M of Π such that
MA ⊆M and therefore A ∈M. So, let us assume that ?−A1 succeeds (if in fact it fails, then
by correctness and completeness of RAS-XSB-resolution there exist no resource-based
answer set of Π including A1, and by definition of RAS-XSB-resolution the table is left
unchanged). For subsequent query ?−A2 one of the following is the case.

• The query succeeds, and the set of rules used in the derivation of A2 has no inter-
section with the set of rules used in the derivation of A1. Therefore, by Modularity
of resource-based answer set semantics we have that MA1 ∩MA2 = /0 and there exists
resource-based answer set M of Π such that (MA1 ∪MA2)⊆M.

• The query succeeds, and the set of rules used in the derivation of A2 has intersection
with the set of rules used in the derivation of A1. So, some literal in the proof will suc-
ceed by cases 1.a and 3.a of RAS-XSB-resolution, i.e, by table look-up. Therefore,
by Modularity of resource-based answer set semantics we have that MA1 ∩MA2 6= /0
and there exists resource-based answer set M of Π such that (MA1 ∪MA2)⊆M.

• The query fails, and the set of rules attempted in the derivation of A2 has no intersec-
tion with the set of rules used in the derivation of A1. Therefore, we have that simply
there not exists resource-based answer set M such that A2 ∈M.

• The query fails, and the set of rules used in the derivation of A2 has intersection
with the set of rules used in the derivation of A1. So, either some positive literal in
the proof will fail by case 1.a of RAS-XSB-resolution or some negative literal in the
proof will fail as its positive counterpart succeeds by case 1.a of RAS-XSB-resolution

14

i.e, in both cases, by table look-up. So, success of A2 is incompatible with the current
state of the table, i.e. with success of A1. Therefore, by Modularity of resource-based
answer set semantics and by correctness and completeness of RAS-XSB-resolution
we have that there not exists resource-based answer set M such that A1 ∈ M and
A2 ∈M and MA1 ⊆M.

The same reasoning can be iterated for subsequent queries, and this concludes the proof.

References

APT, K. R. AND BOL, R. N. 1994. Logic programming and negation: A survey. J. Log. Prog. 19/20,
9–71.

CHEN, W. AND WARREN, D. S. 1993. A goal-oriented approach to computing the well-founded
semantics. J. Log. Prog. 17, 2/3&4, 279–300.

CHEN, W. AND WARREN, D. S. 1996. Tabled evaluation with delaying for general logic programs.
J. ACM 43, 1, 20–74.

COSTANTINI, S. 1995. Contributions to the stable model semantics of logic programs with negation.
Theoretical Computer Science 149, 2, 231–255.

COSTANTINI, S. 2006. On the existence of stable models of non-stratified logic programs.
TPLP 6, 1-2, 169–212.

COSTANTINI, S. AND FORMISANO, A. 2015. Negation as a resource: a novel view on answer set
semantics. Fundam. Inform. 140, 3-4, 279–305.

DIX, J. 1995. A classification theory of semantics of normal logic programs I-II. Fundam. In-
form. 22, 3, 227–255 and 257–288.

GEBSER, M., GHARIB, M., MERCER, R. E., AND SCHAUB, T. 2009. Monotonic answer set pro-
gramming. J. Log. Comput. 19, 4, 539–564.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In
Proc. of the 5th Intl. Conf. and Symposium on Logic Programming, R. Kowalski and K. Bowen,
Eds. MIT Press, Seattle, USA, 1070–1080.

GELFOND, M. AND LIFSCHITZ, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385.

LIFSCHITZ, V. AND TURNER, H. 1994. Splitting a logic program. In Proc. of ICLP’94, Intl.
Conference on Logic Programming. MIT Press, Santa Marherita Ligure, Italy, 23–37.

LLOYD, J. W. 1993. Foundations of Logic Programming, 2nd ed. Springer, New York, USA.
PRZYMUSINSKI, T. C. 1989. Every logic program has a natural stratification and an iterated least

fixed point model. In Proc. of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems, A. Silberschatz, Ed. ACM Press, Philadelphia, USA, 11–21.

ROSS, K. A. 1992. A procedural semantics for well-founded negation in logic programs. J. Log.
Prog. 13, 1, 1–22.

SWIFT, T. AND WARREN, D. S. 2012. XSB: Extending prolog with tabled logic programming.
TPLP 12, 1-2, 157–187.

TAMAKI, H. AND SATO, T. 1986. OLD resolution with tabulation. In Proc. ICLP 1986, E. Y.
Shapiro, Ed. LNCS, vol. 225. Springer, London, UK, 84–98.

VAN GELDER, A., ROSS, K. A., AND SCHLIPF, J. S. 1991. The well-founded semantics for general
logic programs. J. ACM 38, 3, 620–650.

15

