
1

Online appendix for the paper

ASP for Minimal Entailment

in a Rational Extension of SROEL

published in Theory and Practice of Logic Programming

Laura Giordano and Daniele Theseider Dupré
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Appendix A Proofs of Theorems 1 and 2

Theorem 1 (Small Rank)

Let K=(TBox,RBox,ABox) be a normalized SROEL(⊓,×)RT knowledge base. Given any model

M = (∆,<, ·I) of K, there exists a model M ′ = (∆,<′, ·I
′
) of K (over the extended language)

such that, for all x ∈ ∆′: (i) kM ′(x)≤maxK; (ii) for all C ∈ NC, x ∈CI′ iff x ∈CI; and (iii) for all

C ∈CK , x ∈ (T(C))I′ iff x ∈ (T(C))I .

Proof

We define the model M ′ over the domain ∆ by letting ·I
′
= ·I , while changing the rank of the

elements in ∆. What is preserved from M is the relative order of the ranks of the typical C

elements, for C ∈ CK . Remember that, from the definition of the rank of a concept in a model,

kM (C) is equal to the rank of all the typical C’s in M (which must have all the same rank). Let

us partition the set CK according to the ranks of the concepts in M :

H0 = {C ∈CK | there is no D ∈CK with kM (D)< kM (C)}

Hi = {C ∈CK−(H0∪ . . .∪Hi−1) | there is no D∈CK−(H0∪ . . .∪Hi−1) with kM (D)< kM (C)}

As the set CK is finite and its cardinality is maxK , there is some minimum n < maxK , such that

Hn+1 = /0.

We define the relation <′ by setting the rank of all the domain elements in M ′ between 0 and

n+1. In particular, we want to let the rank of all the typical C elements to be i, if C ∈ Hi. For all

x ∈ ∆:

- if kM (x)≤ kM (C) for some C ∈ H0, then let kM ′(x) = 0;

- if kM (B)< kM (x)≤ kM (C) for some B ∈ Hi−1 and C ∈Hi (0 < i≤ n), then let kM ′(x) = i;

- if kM (B)< kM (x) for some B ∈ Hn, then let kM ′(x) = n+ 1.

In particular, we let the rank of all the typical C elements to be i, if C∈Hi. In fact, if x∈ (T(C))I

then kM (x) = kM (C). In case C ∈Hi, then kM ′(x) = i.

Changing the ranks as above cannot make a domain element, which is a typical C (for some

C ∈CK), become a nontypical C element. In fact, if x ∈ (T(C))I , then for all y such that kM (y)<

kM (x), y 6∈C. Suppose a typical C element x gets the rank i in M ′ (as C ∈ Hi). Some y can get

in M ′ the same rank as x if kM (B) < kM (y) ≤ kM (C), for some B ∈ Hi−1. However, even if

the rank of y becomes i, x remains a typical C element. Also, it is not the case that a nontypical

C element z (for C ∈ CK) can become a typical C element. In fact, one such z must have a rank
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kM (z) greater than the rank of any typical C element x, i.e., kM (x) < kM (z). If x gets rank i in

M ′, since C ∈ Hi, then (by definition of M ′) z gets a rank higher then i. Of course, this is not

true for the concepts C 6∈ CK . However, we can include as well in the set CK all the concepts C

such that T(C) might occur in a query.

Theorem 2 Let K be a knowledge base satisfying the following conditions:

(i) a canonical model of K exists;

(ii) the ranking KM of each canonical model M of K is the same as the one determined

by the Rational Closure construction;

and let Q be an inclusion T(C)⊑D (where C and D are non-extended concepts). Then, K |=Tmin

T(C)⊑ D iff K |=min T(C)⊑ D.

Proof

(If) By contraposition. Suppose that K 6|=Tmin Q, i.e. there is a T-minimal model M of K which

falsifies Q. Let us consider any minimal canonical model M ′ of K (there is one by (i)). M ′ must

give the same ranks as M to the concepts C ∈ TK,Q. First it is not the case that M ′ ≺T M ,

otherwise M would not be a T-minimal model. Also, it is not the case that there is a concept

C ∈ TK,Q such that kM (C) < kM ′(C) = rank(C), as the rank of a concept in any model of K

cannot be lower than rank(C), the rank of C in the Rational Closure1 (this property holds for

SROEL(⊓,×)RT as it holds for ALC +TR (Giordano et al. 2015) and for SHIQRT (Giordano

et al. 2014)). If there is a concept C ∈ TK,Q such that kM ′(C) < kM (C) = rank(C), then as we

have excluded that M ′≺T M , there must be a concept C′ ∈TK,Q such that kM (C′)< kM ′(C′) =

rank(C′), (i.e., the two models M and M ′ must be incomparable wrt.≺T). But we have already

seen that it not possible that the rank of C′ in a model is lower than the rank of C′ in the rational

closure. Thus, the minimal canonical model M ′ assigns to the concepts in TK,Q the same rank

as M .

We have to show that M ′ falsifies the query Q. Let Q be T(C)⊑D. As M falsifies T(C)⊑D,

there is an element x∈∆ such that x∈ (T (C))I (x is a typical C element in M ) and x 6∈DI . Hence,

x ∈ (C⊓¬D)I . Let kM (x) = i (and hence kM (C) = i). As M ′ is a canonical model, M ′ must

contain a domain element y ∈ (C⊓¬D)I′ . Clearly, kM ′(C∧¬D)≥ kM ′(C). If kM ′(C∧¬D) = i,

then y ∈ T(C)I′ (as C has the same rank i in M and in M ′), and M ′ falsifies Q. We show that

assuming that kM ′(C ∧¬D) = j > i, leads to a contradiction. By hypothesis (ii) M ′ assigns

to concepts the same rank as the rational closure, hence rank(C∧¬D) = j > i in the rational

closure. This contradicts the fact that kM (C∧¬D) = i, as the rank of a concept in a model of K

cannot be lower than the rank of that concept in the Rational Closure.

(Only If) By contraposition. Let M is a minimal canonical model of K falsifying Q. We want

to show that there is a T-minimal model M ′ falsifying Q. We can show that M is itself a

T-minimal model of K (falsifying Q). Clearly, M is a T-complete model of K. If M were non-

minimal wrt. ≺T, there would be a model M ′ ≺T M . In this case, there would be a C ∈ TK,Q

such that kM ′(C)< kM (C). This is not possible, due to the property that the rank of a concept C

in a model of K cannot be lower than rank(C), the rank of the concept C in the Rational Closure.

As, from hypothesis (ii), kM (C) = rank(C), it is not the case that kM ′(C)< kM (C).

1 Observe that, the rank of a concept C can be determined in the rational closure construction for a KB in
SROEL(⊓,×)RT, by iteratively verifying exceptionality of the concept C with respect to a set of inclusions Ei accord-
ing to the iterative construction in (Giordano et al. 2015): C is exceptional wrt. Ei iff Ei |=sroelrt T(⊤)⊓C⊑⊥. For a
concept C∧¬D, where C and D are non extended concepts, C∧¬D is exceptional wrt. Ei iff Ei |=sroelrt T(⊤)⊓C⊑D.
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Appendix B Proof of Theorem 3: Lower Bound for T-minimal entailment

In this section we show that the problem of deciding instance checking under the T-minimal

model semantics is a ΠP
2 -hard problem for SROEL(⊓,×)RT knowledge bases. To show this, we

provide a reduction of the minimal entailment problem of positive disjunctive logic programs,

which has been proved to be a ΠP
2 -hard problem by Eiter and Gottlob in (Eiter and Gottlob 1995).

A similar reduction has been used to prove ΠP
2 -hardness of entailment for Circumscribed Left

Local EL⊥ knowledge bases in (Bonatti et al. 2011).

Let PV = {p1, . . . , pn} be a set of propositional variables. A clause is formula l1 ∨ . . .∨ lh,

where each literal l j is either a propositional variable pi or its negation¬pi. A positive disjunctive

logic program (PDLP) is a set of clauses S = {γ1, . . . ,γm}, where each γ j contains at least one

positive literal. A truth valuation for S is a set I ⊆ PV , containing the propositional variables

which are true. A truth valuation is a model of S if it satisfies all clauses in S. For a literal l, we

write S |=min l if and only if every minimal model (with respect to subset inclusion) of S satisfies

l. The minimal-entailment problem can be then defined as follows: given a PDLP S and a literal l,

determine whether S |=min l. In the following we sketch the reduction of the minimal-entailment

problem for a PDLP S to the instance checking problem under T-minimal entailment, from a

knowledge base K constructed from S.

We define a KB K = (TBox,RBox,ABox) in SROEL(⊓,×)RT as follows. We introduce a con-

cept name Ph ∈NC for each variable ph ∈ PV (h= 1, . . . ,n). Also, we introduce in NC an auxiliary

concept H, a concept name DS associated with the set of clauses S, and a concept name D j asso-

ciated with each clause γ j in S ( j = 1, . . . ,m). We let a∈ NI be an individual name, and we define

K as follows:

RBox = /0,

ABox = {Ph(a),h = 1, . . . ,n}∪{T(H)(a),DS(a)},

and TBox contains the following inclusions (where C
j
i and C

j
i are concepts associated with each

literal l
j
i occurring in γ j = l

j
1 ∨ . . .∨ l

j
k , as defined below):

(1) T(⊤)⊓H ⊑⊥

(2) {a}⊓C
j
i ⊑ D j for all γ j = l

j
1 ∨ . . .∨ l

j

k in S

(3) {a}⊓D j⊓C
j
1⊓ . . .⊓C

j
k ⊑⊥ for all γ j = l

j
1 ∨ . . .∨ l

j
k in S

(4) {a}⊓D1⊓ . . .⊓Dm ⊑ DS

(5) {a}⊓DS ⊑ D1⊓ . . .⊓Dm

for each h = 1, . . . ,n, j = 1, . . . ,m, and where C
j
i is defined as follows:

C
j
i =

{

T(Ph) if l
j
i = ph

∃U.(T(⊤)⊓Ph) if l
j
i = ¬ph

C
j
i =

{

∃U.(T(⊤)⊓Ph) if l
j
i = ph

T(Ph) if l
j
i = ¬ph

where U is the universal role. Let us consider any model M= 〈∆,<, ·I〉 of K. Observe that, all

the T(⊤) elements are all ¬H elements. Hence, aI (being a typical H) must have rank greater

then 0, and it will have rank 1 in all T-minimal models. The T-minimal models of K satisfying

DS(a) are intended to correspond to the (propositional) minimal interpretations J satisfying S.

Roughly speaking, the concepts Ph such that aI ∈ (T(Ph))
I in M correspond to the variables ph

in the minimal interpretation J satisfying S. In any T-minimal model of K, either Ph has rank 0
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(and a is not a typical Ph), or Ph has rank 1 (and a is a typical Ph). Clearly, by T-minimality, a

model of K in which the ranking of a set of Ph’s is 0, is preferred to the models in which the

ranking of some of those Ph’s is higher (i.e. 1). This captures the subset inclusion minimality in

the interpretations of the positive disjunctive logic program S. Inclusions (2)-(5) bind the truth

values of the Ph(a) to the truth values of the clauses in S and of their conjunction. The assertion

DS(a) in ABox is required to select only those interpretations satisfying the set S of disjunctions.

Observe also that any T-minimal model must contain al least a Ph element, for each h = 1, . . . ,n,

as Ph is a consistent concept.

In any minimal canonical model M of K satisfying DS(a):

either aI ∈ (T(Ph))
I or aI ∈ (∃U.(T(⊤)⊓T(Ph)))

I

Hence, for aI the two concepts in the definition of C
j
i are disjoint and complementary, and C

j
i is

actually the concept representing the complement of C
j
i . Given a set S of clauses and a literal L,

the following holds:

Proposition 4

Given a set S of clauses and a literal L,

S |=min L if and only if K |=Tmin CL(a)

where CL is the concept associated with L, i.e., CL = T(ph) if L = ph, and CL = ∃U.(T(⊤)⊓Ph)

if L = ¬ph.

From the reduction above and the fact that minimal entailment for PDLP is ΠP
2 -hard (Eiter and

Gottlob 1995), it follows that minimal entailment under T-minimal model semantics is ΠP
2 -hard,

i.e. Theorem 3 holds.

Appendix C Calculus for instance checking in SROEL(⊓,×)

We report the calculus for SROEL(⊓,×) instance checking from (Krötzsch 2010a) used in sec-

tion 5 and, with a small variant, in section 4. The representation of a knowledge base (input

translation) is as follows, where, to keep a DL-like notation, we do not follow the ASP conven-

tion where variable names start with uppercase; in particular, A, B C, and R, S, T , are intended as

ASP constants corresponding to the same class/role names in K:

a ∈ NI 7→ nom(a)

C ∈ NC 7→ cls(C)

R ∈ NR 7→ rol(R)

C(a) 7→ subClass(a,C)

R(a,b) 7→ supEx(a,R,b,b)

⊤⊑ C 7→ top(C)

A⊑⊥ 7→ bot(A)

{a} ⊑ C 7→ subClass(a,C)

A⊑ {c} 7→ subClass(A,c)

A⊑ C 7→ subClass(A,C)

A⊓B⊑ C 7→ subConj(A,B,C)

∃R.Self ⊑ C 7→ subSelf (R,C)

A⊑ ∃R.Self 7→ supSelf (A,R)
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∃R.A⊑ C 7→ subEx(R,A,C)

A⊑ ∃R.B 7→ supEx(A,R,B,auxi)

R⊑ T 7→ subRole(R,T)

R◦ S⊑ T 7→ subRChain(R,S,T)

R⊑ C×D 7→ supProd(R,C,D)

A×B⊑ R 7→ subProd(A,B,R)

R⊓S⊑ T 7→ subRConj(R,S,T)

In the translation of A⊑ ∃R.B, auxi is a new constant, different for each axiom of this form.

The inference rules (included in ΠIR in section 4) are the following2:

(1) inst(x,x)← nom(x)

(2) self (x,v)← nom(x), triple(x,v,x)

(3) inst(x,z)← top(z), inst(x,z′)

(4) ⊥← bot(z), inst(u,z)

(5) inst(x,z)← subClass(y,z), inst(x,y)

(6) inst(x,z)← subConj(y1,y2,z), inst(x,y1), inst(x,y2)

(7) inst(x,z)← subEx(v,y,z), triple(x,v,x′), inst(x′,y)

(8) inst(x,z)← subEx(v,y,z),self (x,v), inst(x,y)

(9) triple(x,v,x′)← supEx(y,v,z,x′), inst(x,y)

(10) inst(x′,z)← supEx(y,v,z,x′), inst(x,y)

(11) inst(x,z)← subSelf (v,z),self (x,v)

(12) self (x,v)← supSelf (y,v), inst(x,y)

(13) triple(x,w,x′)← subRole(v,w), triple(x,v,x′)

(14) self (x,w)← subRole(v,w),self (x,v)

(15) triple(x,w,x′′)← subRChain(u,v,w), triple(x,u,x′), triple(x′,v,x′′)

(16) triple(x,w,x′)← subRChain(u,v,w),self (x,u), triple(x,v,x′)

(17) triple(x,w,x′)← subRChain(u,v,w), triple(x,u,x′),self (x′,v)

(18) triple(x,w,x)← subRChain(u,v,w),self (x,u),self (x,v)

(19) triple(x,w,x′)← subRConj(v1,v2,w), triple(x,v1,x′), triple(x,v2,x′)

(20) self (x,w)← subRConj(v1,v2,w),self (x,v1),self (x,v2)

(21) triple(x,w,x′)← subProd(y1,y2,w), inst(x,y1), inst(x′,y2)

(22) self (x,w)← subProd(y1,y2,w), inst(x,y1), inst(x,y2)

(23) inst(x,z1)← supProd(v,z1,z2), triple(x,v,x′)

(24) inst(x,z1)← supProd(v,z1,z2),self (x,v)

(25) inst(x′,z2)← supProd(v,z1,z2), triple(x,v,x′)

(26) inst(x,z2)← supProd(v,z1,z2),self (x,v)

(27) inst(y,z)← inst(x,y),nom(y), inst(x,z)

(28) inst(x,z)← inst(x,y),nom(y), inst(y,z)

(29) triple(z,u,y)← inst(x,y),nom(y), triple(z,u,x)

The version of the calculus in (Krötzsch 2010a), used in Section 5, contains the rule:

(4b) inst(x,y)← bot(z), inst(u,z), inst(x,z′),cls(y)

instead of rule (4) above.

2 Here, u,v,x,y,z,w, possibly with suffixes, are ASP variables.
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Appendix D Proofs for Section 4

D.1 Proof of Proposition 2

Proposition 2. Given a normalized knowledge base K and a query Q, if there is an answer set S

of the ASP program Π(K)∪{−πQ}, then there is a model M = (∆,<, ·I) of K such that Q is not

satisfied in M .

The proof is similar to the one for Lemma 3 in (Krötzsch 2010b), which proves the completeness

of the materialization calculus for SROEL(⊓,×) by contraposition, building a model of the KB

from the minimal Herbrand model of the Datalog encoding. Here, given the answer set S of the

program Π(K)∪{−πQ} we build the model M falsifying Q exploiting the information in S.

In particular, we construct the domain of M from the set Const including all the name con-

stants c ∈ NI as well as all the auxiliary constants occurring in the ASP program Π(KB,Q),

defining an equivalence relation over constants and using equivalence classes to define domain

elements. For readability, we write auxA⊑∃R.C and auxC, respectively, for the constants associated

with inclusions A ⊑ ∃R.C and with the typicality concepts T(C). Observe that the answer set S

contains all the details about the definition of the ranking of the domain elements that can be

used to build the model M .

First, let us define a relation ≈ between the constants in Const:

Definition 7

Let≈ be the reflexive, symmetric and transitive closure of the relation {(c,d) | inst(c,d) ∈ S, for

c ∈Const and d ∈ NI}.

It can be proved that:

Lemma 1

Given a constant c such that c≈ a for a∈NI , if inst(c,A) (triple(c,R,d), triple(d,R,c),self (c,R),

rank(c,k)) is in S, then inst(a,A) (triple(a,R,d), triple(d,R,a),self (a,R),rank(a,k)) is in S.

The proof is similar to the proof of Lemma 2 in (Krötzsch 2010b). For the predicate rank, the

proof exploits rule (46). The vice-versa of Lemma 1 only holds for some of the predicates,

namely:

Lemma 2

Given a constant c such that c≈ a for a∈ NI , if inst(a,A) (triple(a,R,d), rank(a,k)) is in S, then

inst(c,A) (triple(c,R,d), rank(c,k)) is in S.

Now, let [c] = {d | d ≈ c} denote the equivalence class of c; we define the domain ∆ of the

interpretation M as follows: ∆ = {[c] | c ∈ NI}∪{w
A⊑∃R.C
1 ,wA⊑∃R.C

2 | inst(auxA⊑∃R.C,e) ∈ S for

some e and there is no d ∈ NI such that auxA⊑∃R.C ≈ d} ∪{z1
C,z

2
C | inst(auxC,e) ∈ S for some e

and there is no d ∈ NI such that auxC ≈ d}. Two copies of auxiliary constants are introduced, as

in (Krötzsch 2010b), to handle Self statements.

For each element e ∈ ∆, we define a projection ι(e) to Const as follows:

- ι([c]) = c;

- ι(wA⊑∃R.C
i ) = auxA⊑∃R.C, i=1,2;

- ι(zi
C) = auxC, i = 1,2;

We define the interpretation of individual constants, concepts and roles over ∆ as follows:

- for all c ∈ NI , cI = [c];

- for all d ∈ ∆, d ∈ AI iff inst(ι(d),A) ∈ S;
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- for all d,e ∈ ∆, (d,e) ∈ RI iff (triple(ι(d),R, ι(e)) ∈ S and d 6= e)

or (self (ι(d),R) ∈ S and d = e).

We define the rank of the domain elements in ∆ in agreement with the extension of the rank

predicate in S:

- for all d ∈ ∆, kM (d) = h, iff rank(ι(d),h) ∈ S.

In particular, zC has rank h if rank(auxC,h)∈ S and wA⊑∃R.C has rank h if rank (auxA⊑∃R.C
,h)∈ S.

The rank function kM ([c]) is well defined. In fact, there is exactly one h such that rank(ι(d),h)∈

S for each ι(d) (rules (36) and (37)). It is easy to see by Lemma 1 and Lemma 2 that, when

auxC ≈ a (a∈NI), i.e., aucC ∈ [a], we have kM ([a]) = h iff rank(auxC,h)∈ S. As a consequence,

all the concepts C such that T(C) occurs in K (or in Q) have that same rank in M and in S.

To conclude the proof of Proposition 2 it suffices to prove that M is a model of KB, i.e. it

satisfies all the axioms in KB. The proof is as in (Krötzsch 2010b) (see Lemma 2), except that

we have to consider the additional axioms A⊑ T(B) and T(B)⊑C.

For A⊑ T(B) in KB, we have supTyp(A,B) ∈ S. Let us assume that d ∈ AI . We want to prove

that d ∈ (T(B))I . By construction inst(ι(d),A) ∈ S. By rule (30), typ(ι(d),B) ∈ S. By rule (47),

inst(ι(d),B) ∈ S, i.e., d ∈ BI . Let rank(ι(d),h) ∈ S, i.e. kM (d) = h.

To show that d is a typical B, we have to show that, for all the domain elements e with rank

j < h, e 6∈BI . Given that typ(ι(d),B) and rank(ι(d),h) are in S, from rule (49), box neg(h,B)∈ S.

From the repeated application of rule (41), box neg( j,B)∈ S, for all j < h. Hence, from rule (42),

for all e ∈ ∆ such that rank(ι(e), j) ∈ S (i.e., kM (e) = j < h) −inst(ι(e),B) ∈ S and therefore,

inst(ι(e),B) 6∈ S. Thus, for all e ∈ ∆ such that kM (e) = j < h, e 6∈ BI . So, d ∈ (T(B))I .

For T(B)⊑C in KB, we have subTyp(B,C)∈ S. Let d ∈ (T(B))I . We have to prove that d ∈AI .

Assume that kM (d) = h, i.e., rank(ι(d),h) ∈ S. As d ∈ (T(B))I , d ∈ BI and, for all e ∈ ∆ such

that kM (e) = j < h, e 6∈ BI (and hence, by construction, inst(ι(e),B) 6∈ S). From d ∈ BI , by the

definition of M , inst(ι(d),B) ∈ S.

Consider also the rank of auxB. Let rank(auxB, j) ∈ S. By rule (51) it must be that inst(auxB,B)

is in S. Either j = h or j 6= h. If j = h, then from rank(auxB,h) ∈ S, we conclude by rule (50)

that box neg(h,B) ∈ S, and, given that inst(ι(d),B) and rank(ι(d),h) are in S, by rule (48),

typ(ι(d),B) ∈ S. Thus, by rule (31), inst(ι(d),C) ∈ S.

We can exclude the case j 6= h, as both the hypothesis j < h and the hypothesis j > h lead to a

contradiction. For j < h: the fact that inst(auxB,B) ∈ S contradicts the fact that, for all e∈ ∆ such

that kM (e) = j < h, inst(ι(e),B) 6∈ S. For j > h: from rank(auxB, j) ∈ S, we can conclude by (50)

that box neg( j,B) ∈ S, which would imply, by (41) and (42), that ¬inst(ι(d),B) ∈ S (from the

fact that rank(ι(d),h) ∈ S and h < j). Again a contradiction.

Hence, M is a model of KB. For Q = C(a), from the hypothesis −inst(a,C) ∈ S, hence

inst(a,C) 6∈ S and, by construction, aI 6∈CI in M . For Q=T(C)(a), from the hypothesis−typ(a,

C) ∈ S, hence typ(a,C) 6∈ S. If inst(a,C) 6∈ S then, by construction of M , aI 6∈ CI and, clearly,

aI 6∈ (T(C))I . Instead, if inst(a,C) ∈ S, as typ(a,C) 6∈ S, it must be that, for rank(a,h) and

rank(auxC, j) in S, h 6= j (otherwise, by rules (48) and (50), would conclude typ(a,C) ∈ S).

Also, it can be seen that the hypothesis h < j leads to a contradiction. Hence, h > j and, by

construction, kM (a)> kM (C) = j, so that aI 6∈ (T(C))I .

This completes the proof of Proposition 2.

D.2 Proof of Proposition 3

Proposition 3. For a SROEL(⊓,×)RT knowledge base K in normal form and a query Q, if M =
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(∆,<, ·I) is a model of K falsifying a query Q, then there exists an answer set S of the ASP

program Π(K)∪{−πQ}.

Proof

Let Q be a query C(a) (respectively, T(C)(a)). We show that such an answer set S can be con-

structed from the model M such that inst(a,C) ∈ S (respectively, typ(a,C) ∈ S). Without loss

of generality, we can assume that M has no more than maxK + 1 different rank values (from 0

to maxK) and that the rank values have been made contiguous, according to Theorem 1. In the

ASP program we let the upper bound n to be equal to maxK and, in the following, we let hmax

be the maximum rank of domain elements in M (observe that hmax ≤ maxK). We exploit M

to construct the answer set S by assigning the ranks to the constants in NI and to the auxiliary

constants auxA⊑∃R.C and auxC according to the ranks of the elements in M .

Let S0 contain the following facts:

0. nom(c) for c ∈ NI ; auxsupex(c) for c = auxA⊑∃R.C ; auxtc(auxB ,B) for all T(B) in K or Q;

1. ind(c) for all c ∈ NI and for all c auxiliary constants;

2. rank(c,h), if kM (cI) = h, for each c ∈ NI ;

3. rank(auxB ,h), if there exists x ∈ (T(B))I and kM (x) = h;

4. rank(auxB ,hmax) if BI = /0;

5. rank(auxA⊑∃R.C ,h) if AI 6= /0 and h = min{kM (x) | x ∈ (C⊓∃R−.A))I};
6. rank(auxA⊑∃R.C ,hmax) if AI = /0;

7. inst(auxB,B) ∈ S, if BI 6= /0, for B ∈ NC and T(B) occurring in K; otherwise, let −inst(auxB,B) ∈ S.

8. −inst(a,C) ∈ S, if Q =C(a);
9. −typ(a,C) ∈ S, if Q = T(C)(a);
10. L ∈ S, for any L ∈ ΠK , where L is the ASP literal representing a rule in K (according to the input

translation in Section 4 (Part 1) and in Appendix C).

11. upperbound(maxK ), poss rank(0), . . . , poss rank(maxK),some at(0), . . . ,some at(hmax)

The rank of c ∈ NI is equal to the rank of cI in M . The rank of auxB is equal to the rank of any

typical B element in M , if any (as all the typical B elements have the same rank in M ). auxA⊑∃R.C

is given the rank hmax, when AI = /0, otherwise it is given a minimal rank of the elements in the

(C⊓∃R−.A)I concept interpretation3. Also, by item 5, auxB is set to be an instance of concept B

if and only if B has some instance in M .

As in the proof of soundness of the materialization calculus in (Krötzsch 2010b) (see Lemma

2), we assign a concept expression κ(c) to each constant occurring in the ASP program Π(K)∪

{−πQ}:

- if c ∈ NI , then κ(c) = {c};
- if c = auxA⊑∃R.C , then κ(c) =C⊓∃R−.A;

- if c = auxB, then κ(c) = T(B).

We say that a set of literals S is satisfied in the model M , if the following conditions hold:

- for B ∈ NC, if inst(c,B) ∈ S, then M |= κ(c)⊑ B and κ(c)I 6= /0

- for d ∈ NI , if inst(c,d) ∈ S, then M |= κ(c)⊑ {d} and κ(c)I 6= /0

- for B ∈ NC, if typ(c,B) ∈ S, then M |= κ(c)⊑ T(B) and κ(c)I 6= /0

- for R ∈ NR, if triple(c,R,d) ∈ S, then M |= κ(c)⊑ ∃R.κ(d) and κ(c)I 6= /0

- for R ∈ NR, if self (c,R) ∈ S, then M |= κ(c)⊑ ∃R.Sel f and κ(c)I 6= /0

3 Notice that, although inverse roles are not in the language of SROEL(⊓,×)RT, at the semantic level the set of domain
elements in (C⊓∃R−.A)I is well defined, according to the usual semantics of inverse roles (Horrocks et al. 2000), i.e.,
(∃R−.A)I = {x ∈ ∆ | exists y ∈ AI such that (y,x) ∈ RI}.
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- if rank(c,h) ∈ S and κ(c)I 6= /0, then kM (κ(c)) = h

- if box neg(h,A)∈ S then, for all x ∈ ∆ such that kM (x) = h, x ∈ (✷¬A)I

- if −box neg(h,A) ∈ S then, for all x ∈ ∆ s.t. kM (x) = h, x 6∈ (✷¬A)I

- for B ∈ NC, if −inst(c,B) ∈ S and κ(c)I 6= /0, then M 6|= κ(c)⊑ B

- for B ∈ NC, if −typ(c,B) ∈ S and κ(c)I 6= /0, then M 6|= κ(c)⊑ T(B)

- for B ∈ NC, if bot(B) ∈ S, then M |= B⊑⊥

- for B ∈ NC, if top(B) ∈ S, then M |=⊤⊑ B

Notice that, from the previous conditions it is not the case that bot(B) and inst(a,B) are both

in S, for some B ∈ NC, otherwise, we would have (from inst(a,B) ∈ S) M |= κ(a) ⊑ B with

κ(a)I 6= /0 and (from bot(B) ∈ S) that M |= B⊑⊥.

Let us consider the portion P0 the ASP program Π(K)∪{−πQ} containing ΠK , plus the rules

(32)-(39), the rules (52), (53) and the fact −πQ. Once a unique rank is assigned to each constant

c in NI and to auxiliary constants, and the rank values are all contiguous and start from 0 (as

required by rules (38) and (39)), and in particular the rank of the typical B elements (if any) have

been fixed (as in M ) by introducing rank(auxB,h) in S, for some h, and inst(auxB,B) if BI 6= /0,

the set S0 satisfies the ASP rules in P0 and is supported, that is, S0 is an answer set of the program

P0.

All the other rules in the program do not involve default negation and their application uniquely

determines an answer set, if it exists. So if there is an answer set of the ASP program Π(K)∪

{−πQ} it can be obtained by repeatedly applying the rules in P1 containing all the rules ΠIR (Part

2) and the rules (40)-(51), (54) in ΠT (Part 3).

We can show that the application of the rule of the program preserves the property that S

is satisfied in the model M . Starting from S0, which is an answer set of the portion P0 of the

program we show that the iterative application of the remaining ASP rules (those in P1) gives a

new set S of literals that is satisfied in M .

The proof can be done by induction on the number of applications of the rules used to add a

given literal in S.

Let S be the set of literals obtained after the exhaustive application of all the rules in P1 starting

from S0. S is satisfied by the model M of KB. Hence, S cannot contain complementary literals

such as inst(b,A) and −inst(b,A), otherwise S would not be satisfied in M . Also, inst(a,C) and

bot(C) cannot be in S for any a and C. Therefore, S is a consistent set of literals, and satisfies all

the rules in P1 as well as in P0. Moreover, any literal in S is supported in S because it either belongs

to S0 (and is supported in P0), or it is derived from S0 by a sequence of rule applications. Hence,

S is an answer set of Π(K)∪{−πQ}. By construction, −inst(a,C) ∈ S (resp., −typ(a,C) ∈ S).

Appendix E Proofs for Section 5

Proposition 5

Given a normalized knowledge base K and a query Q, if there is a model M = (∆,<, ·I) of K

which is T-minimal wrt K,Q and falsifies Q, then there is an answer set S of the ASP program

Π(K), which is T-minimal wrt K,Q and such that πQ 6∈ S; and vice-versa.

Proof

Let M = (∆,<, ·I) of K which is T-minimal wrt K,Q and falsifies Q. By Proposition 3, there

exists an answer set S of the ASP program Π(K)∪{−πQ}. As M is T-complete, by construction,
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S is also T-complete. Also, by construction, the ranks of the concepts C ∈ TK,Q are the same in

M as in S (i.e., kM (C) = h < ∞ iff rank(auxC,h), inst(auxC,C) ∈ S). We have to show that S

is T-minimal wrt K,Q. Suppose, by absurdum, that S is not T-minimal. Hence, there is a T-

complete answer set S′ of Π(K) such that S′ �T S. By Proposition 2, from S′ we can build a

model M ′ of K such that the ranks of the concepts C ∈TK,Q are the same in M ′ as in S′ (see the

construction in Appendix D, Section D.1). By construction, M ′ is also T-complete. Hence, there

is a T-complete model M ′ of K such that M ′ �T M , which contradicts the hypothesis that M

is T-minimal.

Vice-versa, let S be an answer set of the ASP program Π(K), which is T-minimal wrt K,Q and

such that inst(a,C) 6∈ S. By Proposition 2, from S we can build a model M of K such that the

ranks of the concepts C ∈TK,Q are the same in M as in S. By construction M is T-complete (as

S is T-complete). We have to show that M is a T-minimal model of K. Suppose by absurdum that

M is not T-minimal. Then, there is another T-complete model M ′ of K such that M ′�T M . By

Proposition 3, there exists an answer set S′ of the ASP program Π(K)∪{−πQ}. By construction,

S′ is T-complete and assigns to the concepts C∈TK,Q the same ranks as M ′ (see the construction

in Appendix D, Section D.2). Hence, it must be that S′ �T S, which contradicts the hypothesis

that S is T-minimal.

Proposition 6

The problem of deciding the existence of a T minimal answer set of Π(K) falsifying πQ is in ΣP
2 .

Proof

This problem can be solved by nondeterministically guessing a set S of literals of polynomial

size in the size of K and then verifying that:

(1) S is an answer set of Π(K);

(2) S is T-complete wrt K, Q;

(3) πQ 6∈ S;

(4) S is T-minimal wrt K, Q among the T-complete answer sets of Π(K).

Verification of (1), (2) and (3) requires polynomial time in the size of K. In particular, for

(1) the Gelfond and Lifschitz’ transform of Π(K) wrt S, Π(K)S (which has polynomial size and

does not contain default negation), can be computed in polynomial time as well as its logical

consequences. For (2), T-completeness can be verified by checking if inst(auxC,C) is in S, for

all the auxC ∈ AuxK,Q such that satisfiable(C) holds (using the definition of predicate satisfiable

in Section 5 based on the polynomial encoding of K in (Giordano and Theseider Dupré 2016)).

(4) can be checked by calling an NP oracle which verifies that S is T-minimal among the T-

complete answer sets of K. In fact, the verification that S is not a T-minimal answer set of K

can be done by an NP algorithm which nondeterministically generates a set of literals S′ (of

polynomial size in the size of K) such that S′ �T S (S′ �T S can be checked in polynomial time).

Hence, the problem of deciding existence of T minimal answer set of Π(K) falsifying πQ is in

NPNP.

References

BONATTI, P. A., FAELLA, M., AND SAURO, L. 2011. Defeasible inclusions in low-complexity dls. J.

Artif. Intell. Res. (JAIR) 42, 719–764.

EITER, T. AND GOTTLOB, G. 1995. On the computational cost of disjunctive logic programming: Propo-

sitional case. Annals of Mathematics and Artificial Intelligence 15, 3-4, 289–323.



Online appendix 11

GIORDANO, L., GLIOZZI, V., OLIVETTI, N., AND POZZATO, G. L. 2014. Rational Closure in SHIQ. In

DL2014. CEUR Workshop Proceedings, vol. 1193. 1–13.

GIORDANO, L., GLIOZZI, V., OLIVETTI, N., AND POZZATO, G. L. 2015. Semantic characterization of

rational closure: From propositional logic to description logics. Artif. Intell. 226, 1–33.
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