
1

Online appendix for the paper

Iterative Learning of Answer Set Programs from
Context Dependent Examples

published in Theory and Practice of Logic Programming

Mark Law, Alessandra Russo∗ , Krysia Broda

Department of Computing, Imperial College London, SW7 2AZ

(e-mail: {mark.law09, a.russo, k.broda}@imperial.ac.uk)

submitted 22 April 2016; revised 8 July 2016; accepted 22 July 2016

Appendix A Proofs

In this section, we give the proofs of the theorems in the main paper. First, we prove

the preliminary lemma (Lemma 1). Really, this is a corollary of the splitting set

theorem (Lifschitz and Turner 1994). eU (P ,X) is the partial evaluation of P with

respect to X (over the atoms in U), which is described in (Lifschitz and Turner

1994).

Lemma 1

For any program P (consisting of normal rules, choice rules and constraints) and

any set of pairs S = {〈C1, a1〉, . . . , 〈Cn , an〉} such that none of the atoms ai appear

in P (or in any of the C ’s) and each ai atom is unique: AS (P ∪{1{a1, . . . , an}1.}∪
{append(Ci , ai)|〈Ci , ai〉 ∈ S}) = {A ∪ {ai}|A ∈ AS (P ∪ Ci), 〈Ci , ai〉 ∈ S}

Proof

The answer sets of {1{a1, . . . , an}1.} are {a1}, . . . , {an}, hence by the splitting set

theorem (using U = {a1, . . . , an} as a splitting set):

AS (P ∪ {1{a1, . . . , an}1.} ∪ {append(Ci , ai)|〈Ci , ai〉 ∈ S})

=

{
A′ ∪ {aj}

∣∣∣∣ aj ∈ {a1, . . . , an}
A′ ∈ AS (eU (P ∪ {append(Ci , ai) | 〈Ci , ai〉 ∈ A}, {aj}))

}
= {A ∪ {ai}|A ∈ AS (P ∪ Ci), 〈Ci , ai〉 ∈ S}.

Theorem 2

The complexity of deciding whether an ILPcontext
LOAS task is satisfiable is ΣP

2 -complete.

∗ This research is partially funded by the EPSRC project EP/K033522/1 “Privacy Dynamics”.

2

Proof

Deciding satisfiability for ILPLOAS is ΣP
2 -complete ((Law et al. 2015a)). It is

therefore sufficient to show that there is a polynomial mapping from ILPLOAS

to ILPcontext
LOAS and a polynomial mapping from ILPcontext

LOAS to ILPLOAS . The former

is trivial (any ILPLOAS task can be mapped to the same task in ILPcontext
LOAS with

empty contexts). The latter follows from theorem 1.

Theorem 3

ILASP2i terminates for any well defined ILPcontext
LOAS task.

Proof

Assume that the task T = 〈B ,SM ,E 〉 is well defined. This means that T1 =

TLOAS (T) is a well defined ILPLOAS task (every possible hypothesis has a finite

grounding when combined with the background knowledge of T1). Note that this

also means that T2 = TLOAS (〈B ,SM ,Relevant〉) is well defined in each iteration as

the size of the grounding of the background knowledge of T2 combined with each

hypothesis will be smaller than or equal to the size of the background in T1 (the

background knowledge of T2 is almost a subset of the background in T1, other than

the extra choice rule, which is smaller).

The soundness of ILASP2 (Law et al. 2015a) can be used to show that H will

always cover every example in Relevant ; hence, at each step re must be an ex-

ample which is in E but not in Relevant . As there are a finite number of ex-

amples in E , this means there can only be a finite number of iterations; hence,

it remains to show that each iteration terminates. This is the case because, as

TLOAS (〈B ,SM ,Relevant〉) is well defined, the call to ILASP2 terminates ((Law

et al. 2015a)) and findRelevantExample terminates (Appendix B).

Theorem 4

ILASP2i is sound for any well defined ILPcontext
LOAS task, and returns an optimal

solution if one exists.

Proof

If the ILASP2i algorithm returns a hypothesis then the while loop must terminate.

For this to happen findRelevantExample must return nil. This means that H must

cover every example in E . Hence ILASP2i is sound. As the algorithm terminates

(see Theorem 3), the only way for a solution not to be returned is when ILASP2

returns nil. Since ILASP2 is complete (Law et al. 2015a), this is only possible when

〈B ,SM ,Relevant〉 is unsatisfiable. But if 〈B ,SM ,Relevant〉 is unsatisfiable then so

is 〈B ,SM ,E 〉.
It remains to show that when a solution is returned, it is an optimal solution. Any

solution H returned must be an optimal solution of 〈B ,SM ,Relevant〉, (as ILASP2

returns an optimal solution). As it must also be a solution of 〈B ,SM ,E 〉, it must be

an optimal solution (any shorter solution would be a solution of 〈B ,SM ,Relevant〉,
contradicting that H is an optimal solution for 〈B ,SM ,Relevant〉).

3

Appendix B findRelevantExamples

In this section, we describe (and prove the correctness of) the findRelevantExamples

method which was omitted from the main paper. The method uses a meta encoding

in ASP. Given a learning task and a hypothesis from the hypothesis space, this meta

encoding is used to compute the set of examples that are covered and the set that are

not covered. The meta encoding is formalised in definition 4, but we first introduce

some notation in order to simplify the main definition. Some definitions are similar

to those used in the ILASP2 meta representation (Law et al. 2015a).

Definition 1

For any ASP program P and predicate name pred, reify(P , pred) denotes the pro-

gram constructed by replacing every atom a ∈ P ′ (where P ′ is P with the weak

constraints removed) by pred(a). We use the same notation for sets of literals/par-

tial interpretations, so for a set S : reify(S , pred) = {pred(atom) : atom ∈ S}.

Definition 2 formalises the way we represent weak constraints in our meta encod-

ing. We use this representation to check whether ordering examples are covered.

We use as1 and as2 to represent the atoms in two answer sets (as1 and as2 occur

elsewhere in our encoding). The w atoms are then used to capture the penalties

paid by each answer set at each level.

Definition 2

For any ASP program P , we write weak(P) to mean the program constructed

from the weak constraints in P , translating each weak constraint :∼ b1, . . . , bm,

not bm+1, . . . , not bn.[lev@wt, t1, . . . , tk] to the rules:
w(wt, lev, terms(t1, . . . , tk), as1):- as1(b1), . . . , as1(bm),

not as1(bm+1), . . . , not as1(bn).

w(wt, lev, terms(t1, . . . , tk), as2):- as2(b1), . . . , as2(bm),

not as2(bm+1), . . . , not as2(bn).

We now introduce a simplified version of the ASP program fragment which is

used by ILASP2 to check whether one answer set dominates another. This is used

in determining whether an ordering example is covered by a hypothesis. This makes

use of the w atoms which are generated by the w rules in definition 2, and captures

the definition of dominates given in Section 2.

Definition 3

dominates is the program:
dom lv(L):- lv(L), #sum{w(W, L, A, as1) = W, w(W, L, A, as2) = −W} < 0.

non dom lv(L):- lv(L), #sum{w(W, L, A, as2) = W, w(W, L, A, as1) = −W} < 0.

non bef(L):- lv(L), lv(L2), L < L2, non dom lv(L2).

dominated:- dom lv(L), not non bef(L).

In (Law et al. 2015a), multiple instances of dominates were included in the same

meta encoding, and hence the program was slightly more complicated in order to

track the different instances. The main structure of the program is the same how-

ever, and hence the same results apply. The result we need for this paper is proven

(for the more general program) in (Law et al. 2015b) and is given by Lemma 2.

4

Lemma 2

Let I1 and I2 be interpretations, P be an ASP program and L be the set of levels

used in the weak constraints in P . The unique answer set of dominates ∪ {lv(l). |
l ∈ L} ∪ weak(P) ∪ reify(I1, as1) ∪ reify(I1, as2) contains the atom dominated if

and only if I1 dominates I2 wrt the weak constraints in P .

Definition 4 captures the meta encoding we use in findRelevantExamples. This

encoding is made of 6 components. R1 captures the background knowledge and

hypothesis – by reifying B ∪ H , the as1 and as2 atoms represent two answer sets

A1 and A2, and the dominates program (together with weak(B∪H) and the priority

levels) checks whether A1 dominates A2. The programs R2 to R5 are used to check

whether each type of example is covered. These programs make use of the predicate

test on of arity 2 and the test predicate of arity 1. The meaning of test(exid)

is that the example ex should be tested. There is a choice rule in R6 to say that

each example should be tested. For the positive and negative examples, this means

that they should be tested on as1 (meaning to check whether it is possible that an

answer set of B ∪ H extends this example). For an ordering example 〈ex1, ex2〉 it

is slightly more involved: ex1 should be tested on as1 and ex2 should be tested on

as2 (and the ordering should be checked).

Definition 4

Let T be the ILPcontext
LOAS task 〈B ,SM , 〈E+,E−,Ob ,Oc〉〉 and H be a hypothesis such

that H ⊆ SM . Let L be the set of all priority levels in B ∪ H R(T ,H) is the ASP

programR1(B∪H)∪R2(E+)∪R3(E−)∪R4(Ob)∪R5(Oc)∪R6(E+∪E−,Ob∪Oc),

where the individual components are as follows:

• R1(B ∪H) = reify(B ∪H , as1)∪ reify(B ∪H , as2)∪weak(B ∪H)∪{lv(l). |
l ∈ L} ∪ dominates

• R2(E+) =

cov(as1):- test on(exid, as1),

as1(einc1), . . . , as1(eincm),

not as1(eexc1), . . . , not as1(eexcn)

cov(as2):- test on(exid, as2),

as2(einc1), . . . , as2(eincm),

not as2(eexc1), . . . , not as2(eexcn)

:- not cov(as1), test on(exid, as1).

:- not cov(as2), test on(exid, as2).

append(reify(C , as1), test on(exid, as1))

append(reify(C , as2), test on(exid, as2))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ex ∈ E+,

ex = 〈e,C 〉,
e = 〈{ei1, . . . , eim}, {ee1, . . . , een}〉

• R3(E−) =

violated:- test on(exid, as1),

as1(einc1), . . . , as1(eincm),

not as1(eexc1), . . . , not as1(eexcn).

append(reify(C , as1), test on(exid, as1))

:- not violated, test on(exid, as1).

∣∣∣∣∣∣∣∣∣∣
ex ∈ E−,

ex = 〈e,C 〉,
e = 〈{ei1, . . . , eim}, {ee1, . . . , een}〉

• R4(Ob) =

{
:- test(oid), not dominated.

∣∣ o ∈ Ob
}

• R5(Oc) =
{

:- test(oid), dominated.
∣∣ o ∈ Oc

}
• R6({ex1, . . . exm}, {o1, . . . on}) =

{
1{test(ex1), . . . , test(exm), test(o1), . . . , test(on)}1.

}

5

∪
{

test on(exi, as1):- test(exi).
∣∣ exi ∈ {ex1, . . . , exm}

}
∪
{

test on(ex1, as1):- test(oi).

test on(ex2, as2):- test(oi).

∣∣∣∣ oi ∈ {o1, . . . , on}
oi = 〈ex1, ex2〉

}

Theorem 5
Let T be any ILPcontext

LOAS task and H be any subset of the hypothesis space.

1. ∀ex ∈ E+, ∃A ∈ AS (R(T ,H)) st test(exid) ∈ A iff H covers ex .
2. ∀ex ∈ E−, ∃A ∈ AS (R(T ,H)) st test(exid) ∈ A iff H does not cover

ex .
3. ∀o ∈ Ob , ∃A ∈ AS (R(T ,H)) st test(oid) ∈ A iff H bravely respects

o.
4. ∀o ∈ Oc , ∃A ∈ AS (R(T ,H)) st test(oid) ∈ A iff H does not cautiously

respect o.

Proof
1. Let ex = 〈e,C 〉 be a CDPI in E+ st e = 〈{ei1, . . . eim}, {ee1, . . . , een}〉.

H covers ex ⇔ ∃A ∈ AS (B ∪H ∪ C) st A extends e

⇔ ∃A ∈ AS (reify(B ∪H ∪ C , as1)) st A extends reify(e, as1)

⇔ reify(B ∪H ∪C , as1)∪

cov(as1):- as1(e1), . . . , as1(em),

not as1(e1), . . . , not as1(en).

:- not cov(as1).

is satisfiable (we refer to this program as P1 later in the proof).

⇔ reify(B ∪H , as1) ∪ append(reify(C , as1), test on(exid, as1))

∪

cov(as1):- test on(exid, as1),

as1(e1), . . . , as1(em),

not as1(e1), . . . , not as1(en).

:- not cov(as1), test on(exid, as1).

∪R6(E+∪E−,Ob∪Oc)

has an answer set which contains test(exid) (we refer to this program as

P2). This follows from the splitting set theorem, using the atoms in R6(E+ ∪
E−,Ob ∪ Oc) as a splitting set – {test(exid), test on(exid, as1)} is an an-

swer set of the bottom program, leading to P1 as the partially evaluated top

program

⇔ R(T ,H) has an answer set which contains test(exid). Again, this is by

the splitting set theorem, using the atoms in R6(E+ ∪ E−,Ob ∪ Oc) as a

splitting set, as P2 ⊆ R(T ,H) and each of the extra rules in R(T ,H) which

are not in P2 contain a test on or test atom in the body that is not in

the answer set {test(exid), test on(exid, as1)} and hence they are removed

from the partially evaluated top program.
2. Let ex = 〈e,C 〉 be a CDPI in E− st e = 〈{ei1, . . . eim}, {ee1, . . . , een}〉.

H does not cover ex ⇔ ∃A ∈ AS (B ∪H ∪ C) st A extends e

⇔ ∃A ∈ AS (reify(B ∪H ∪ C , as1)) st A extends reify(e, as1)

⇔ reify(B ∪H ∪C , as1)∪

violated:- as1(e1), . . . , as1(em),

not as1(e1), . . . , not as1(en).

:- not violated.

 is sat-

isfiable (we refer to this program as P3 later in the proof)

6

⇔ reify(B ∪H , as1) ∪ append(reify(C , as1), test on(exid, as1))

∪

violated:- test on(exid, as1),

as1(e1), . . . , as1(em),

not as1(e1), . . . , not as1(en).

:- not violated, test on(exid, as1).

∪R6(E+∪E−,Ob∪

Oc)

has an answer set which contains test(exid) (we refer to this program

as P4). This follows by the splitting set theorem, using the atoms in

R6(E+∪E−,Ob∪Oc) as a splitting set, {test(exid), test on(exid, as1)}
is an answer set of the bottom program, leading to P3 as the partially eval-

uated top program.

⇔ R(T ,H) has an answer set which contains test(exid). Again, this is

by the splitting set theorem, using the atoms in R6(E+∪E−,Ob ∪Oc) as

a splitting set, as P4 ⊆ R(T ,H) and each of the extra rules in R(T ,H)

which are not in P4 contain a test on or test atom in the body that is

not in the answer set {test(exid), test on(exid, as1)} and hence they are

removed from the partially evaluated top program.

3. Let o = 〈ex1, ex2〉 be a CDOE in Ob st ex1 = 〈e1,C1〉, ex2 = 〈e2,C2〉, e1 =

〈{e1i1, . . . , e1im}, {e1e1, . . . , e1en}〉 and e2 = 〈{e2i1, . . . , e2ij}, {e2e1, . . . , e2ek}〉.
H bravely respects o ⇔ ∃A1 ∈ AS (B ∪ H ∪ C1),∃A2 ∈ AS (B ∪ H ∪ C2) st

A1 extends e1, A2 extends e2 and A1 ≺B∪H A2

⇔ ∃A1 ∈ AS (reify(B ∪ H ∪ C1, as1)),∃A2 ∈ AS (reify(B ∪ H ∪ C2, as2))

st A1 extends reify(e1, as1), A2 extends reify(e2, as2) and dominated is

in the unique answer set of A1 ∪ A2 ∪ weak(B ∪ H) ∪ {lv(l). | l ∈ L} ∪
dominates (by Lemma 2)

⇔ reify(B∪H ∪C1, as1)∪reify(B∪H ∪C2, as2)∪weak(B∪H)∪{lv(l). |
l ∈ L} ∪ dominates)

∪

cov(as1):- as1(e1i1), . . . , as1(e1im),

not as1(e1e1), . . . , not as1(e1en).

:- not cov(as1).

cov(as2):- as2(e2i1), . . . , as2(e2ij),

not as2(e2e1), . . . , not as2(e2ek).

:- not cov(as2).

:- not dominated.

is satisfiable (we

refer to this program as P5 later in the proof)

⇔ reify(B∪H ∪C1, as1)∪reify(B∪H ∪C2, as2)∪weak(B∪H)∪{lv(l). |
l ∈ L} ∪ dominates)

∪

cov(as1):- test on(ex1id, as2), as1(e1i1), . . . , as1(e1im),

not as1(e1e1), . . . , not as1(e1en).

:- not test on(ex1id, as1), cov(as1).

cov(as2):- test on(ex2id, as2), as2(e2i1), . . . , as2(e2ij),

not as2(e2e1), . . . , not as2(e2ek).

:- test on(ex2id, as2), not cov(as2).

:- test(oid), not dominated.

∪R6(E+ ∪ E−,Ob ∪Oc)

7

has an answer set which contains test(oid) (we refer to this program

as P6). This follows by the splitting set theorem, using the atoms in

R6(E+∪E−,Ob ∪Oc) as a splitting set, {test(oid), test on(ex1id, as1),

test on(ex2id, as2)} is an answer set of the bottom program, leading to

P5 as the partially evaluated top program

⇔ R(T ,H) has an answer set which contains test(oid). Again, this is by

the splitting set theorem, using the atoms in R6(E+ ∪E−,Ob ∪Oc) as a

splitting set, as P6 ⊆ R6(T ,H) and each of the extra rules which are in

R6(T ,H) but not in P6 contain a test on or test atom which is not in

the answer set {test(oid), test on(ex1id, as1), test on(ex2id, as2)} and

hence they are removed from the partially evaluated top program

4. Let o = 〈ex1, ex2〉 be a CDOE in Oc st ex1 = 〈e1,C1〉, ex2 = 〈e2,C2〉, e1 =

〈{e1i1, . . . , e1im}, {e1e1, . . . , e1en}〉 and e2 = 〈{e2i1, . . . , e2ij}, {e2e1, . . . , e2ek}〉
H does not cautiously respect o ⇔ ∃A1 ∈ AS (B ∪ H ∪ C1),∃A2 ∈ AS (B ∪
H ∪ C2) st A1 extends e1, A2 extends e2 and A1 6≺B∪H A2

⇔ ∃A1 ∈ AS (reify(B ∪ H ∪ C1, as1)),∃A2 ∈ AS (reify(B ∪ H ∪ C2, as2))

st A1 extends reify(e1, as1), A2 extends reify(e2, as2) and dominated is

not in the unique answer set of A1 ∪ A2 ∪ weak(B ∪ H) ∪ {lv(l). | l ∈
L} ∪ dominates (by Lemma 2)

⇔ reify(B∪H ∪C1, as1)∪reify(B∪H ∪C2, as2)∪weak(B∪H)∪{lv(l). |
l ∈ L} ∪ dominates)

∪

cov(as1):- as1(e1i1), . . . , as1(e1im),

not as1(e1e1), . . . , not as1(e1en).

:- not cov(as1).

cov(as2):- as2(e2i1), . . . , as2(e2ij),

not as2(e2e1), . . . , not as2(e2ek).

:- not cov(as2).

:- dominated.

is satisfiable (we

refer to this program as P7 later in the proof)

⇔ reify(B∪H ∪C1, as1)∪reify(B∪H ∪C2, as2)∪weak(B∪H)∪{lv(l). |
l ∈ L} ∪ dominates)

∪

cov(as1):- test on(ex1id, as2), as1(e1i1), . . . , as1(e1im),

not as1(e1e1), . . . , not as1(e1en).

:- not test on(ex1id, as1), cov(as1).

cov(as2):- test on(ex2id, as2), as2(e2i1), . . . , as2(e2ij),

not as2(e2e1), . . . , not as2(e2ek).

:- test on(ex2id, as2), not cov(as2).

:- test(oid), dominated.

∪R6(E+ ∪ E−,Ob ∪Oc)

has an answer set which contains the atom test(oid) (we refer to this pro-

gram as P8). This follows from the splitting set theorem, using the atoms in

R6(E+∪E−,Ob∪Oc) as a splitting set, {test(oid), test on(ex1id, as1), test on(ex2id, as2)}
is an answer set of the bottom program, leading to P7 as the partially eval-

uated top program

⇔ R(T ,H) has an answer set which contains test(oid). Again, this is by

8

the splitting set theorem, using the atoms in R6(E+ ∪E−,Ob ∪Oc) as a

splitting set, as P8 ⊆ R6(T ,H) and each of the extra rules which are in

R6(T ,H) but not in P8 contain a test on or test atom which is not in

the answer set {test(oid), test on(ex1id, as1), test on(ex2id, as2)} and

hence they are removed from the partially evaluated top program.

findRelevantExamples(T ,H) works by constructing R(T ,H) and computing its

answer sets. For each example ex , whether of not ex is covered by T can be com-

puted from the answer sets, using the results in Theorem 5. The first example which

is not covered is returned. If no such example is found, nil is returned. The correct-

ness of findRelevantExamples follows directly from Theorem 5. If the task T is well

defined then R(T ,H) will ground finitely (and have a finite number of answer sets),

and therefore solving R(T ,H) for answer sets will terminate in a finite time; hence

as there are a finite number of examples, findRelevantExamples will terminate in a

finite time.

References

Law, M., Russo, A., and Broda, K. 2015a. Learning weak constraints in answer set
programming. Theory and Practice of Logic Programming 15, 4-5, 511–525.

Law, M., Russo, A., and Broda, K. 2015b. Proof of the soundness and completeness
of ILASP2. https://www.doc.ic.ac.uk/~ml1909/Proofs_for_ILASP2.pdf.

Lifschitz, V. and Turner, H. 1994. Splitting a logic program. In ICLP. Vol. 94. 23–37.

