
Efficient Algebraic Effect Handlers for Prolog 15

Appendix A Detailed Optimisation Example Walk-Through

This appendix elaborates the optimisation example of Section 3.3 in more depth.

We start from the following program:

:- effect c/1.

ab.

ab :- c(a), c(b), ab.

query(Lin) :-

handle ab with

(c(X) -> Lin1=[X|Lmid], continue(Lmid,Lout1))

finally (Lin1 = Lout1)

for (Lin1=Lin,Lout1=[]).

Step 1 We abstract the goal handle ab with ... into a new predicate ab0/2. This

new predicate takes two arguments: one for every parameter in the handler’s for

clause. The original call is replaced by a call to the new predicate, supplying the

actual parameters of the handler as actual arguments.

query(Lin) :- ab0(Lin,[]).

The predicate ab0/2 is a copy of ab/0’s definition, with the handler wrapped

around each clause’s body.

ab0(Lin,Lout) :-

handle true with

(c(X) -> Lin1=[X|Lmid], continue(Lmid,Lout1))

finally (Lin1 = Lout1)

for (Lin1=Lin,Lout1=Lout).

ab0(Lin,Lout) :-

handle (c(a), c(b), ab) with

(c(X) -> Lin1=[X|Lmid], continue(Lmid,Lout1))

finally (Lin1 = Lout1)

for (Lin1=Lin,Lout1=Lout).

Step 2 The optimiser now applies rewrite rules to the two clauses. In the first clause,

Rule (O-Drop) can be applied because the effect system provides the information

that the goal true has no effects. Hence, we drop the operation clause:

ab0(Lin,Lout) :-

handle true with

finally (Lin1 = Lout1)

for (Lin1=Lin,Lout1=Lout).

Step 3 The handler currently handles no operations3. The optimizer proceeds with

applying (O-Triv):

3 This syntax is only allowed during the compilation process.

16 A. H. Saleh and T. Schrijvers

ab0(Lin,Lout) :-

true,

Lin1 = Lout1 ,

Lin1 = Lin,

Lout1 = Lout.

Step 4 By partially evaluating true and the remaining unifications, the first clause

is simplified to:

ab0(L,L).

Step 5 In the second clause the handler’s goal starts with the c/1 operation. The

optimiser applies (O-Op) to the handler, producing the following code:

ab0(Lin,Lout) :-

Lin1 = [a|Lmid],

Lin1 = Lin,

Lout1 = Lout,

handle (c(b), ab) with

(c(X1) -> Lin11=[X1|Lmid1], continue(Lmid1,Lout11))

finally (Lin11 = Lout11)

for (Lin11=Lmid,Lout11=Lout1).

All the variables in the new handler goal are fresh variables. Observe that the actual

arguments in the newly generated for clause are taken from the continue call of

the previous handler. This is to ensure the correct state threading of the handler,

and to keep the correct semantics of the program.

Step 6 The optimiser re-applies (O-Op) for c(b), generating the following code:

ab0(Lin,Lout) :-

Lin1 = [a|Lmid],

Lin1 = Lin,

Lout1 = Lout,

Lin11 = [b|Lmid1],

Lin11 = Lmid,

Lout11 = Lout1,

handle (ab) with

(c(X2) -> Lin12=[X1|Lmid2], continue(Lmid2,Lout12))

finally (Lin12 = Lout12)

for (Lin12=Lmid1,Lout12=Lout11).

Step 7 The remaining handler goal is now a variant of the original one, which was

already abstracted into ab0/2. Therefore, we can replace it with ab0/2.

ab0(Lin,Lout) :-

Lin1 = [a|Lmid],

Efficient Algebraic Effect Handlers for Prolog 17

Lin1 = Lin,

Lout1 = Lout,

Lin11 = [b|Lmid1],

Lin11 = Lmid,

Lout11 = Lout1,

ab0(Lmid1,Lout11).

Step 8 The clause now consists of several unifications followed by a tail-recursive

call. Partially evaluating the unifications leads to the final optimised code:

ab0([a,b|Lmid1],Lout) :-

ab0(Lmid1,Lout).

Appendix B State-DCG Handler Example in Detail

This appendix shows the result of optimizing a program that consists of two han-

dlers. We first show the elaboration into delimited control. Then, we show how

the original program can be optimised by means of the rewrite rules and partial

evaluation.

We use the following program, which was used to generate the results of the

first benchmarks in Table 2. As described in Section 4, there are two handlers: one

handles the implicit state operations and the other handles the DCG operations.

abinc.

abinc :- c(a), c(b), get_state(St), St1 is St+1, put_state(St1), abinc.

state_phrase_handler(Sin,Sout,Lin,Lout) :-

handle

(handle abinc

with

(get_state(Q) -> Q = Sin1, continue(Sin1,Sout1)

; put_state(NS) -> continue(NS,Sout1)

)

finally

Sout1 = Sin1

for

(Sin1 = Sin, Sout1 = Sout)

)

with

(c(X) -> Lin1 = [X|Lmid], continue(Lmid,Lout1))

finally

Lin1 = Lout1

for

(Lin1=Lin, Lout1=Lout).

The inner handler’s goal is abinc, which consumes two elements, a and b, by using

18 A. H. Saleh and T. Schrijvers

the operation c/1 and then increments the state using the operations get state/1

and put state/1.

?- state_phase_handler(0,Sout,[a,b,a,b,a,b],Lout).

Sout = 0

Lout = [a,b,a,b,a,b];

Sout = 1

Lout = [a,b,a,b];

Sout = 2

Lout = [a,b];

Sout = 3

Lout = [].

The immediate elaboration into delimited control yields:

state_phrase_handler(A, B, C, D) :-

handler_0(handler_1(abinc,A,B), C, D).

handler_1(A, B, C) :-

reset(A, D, E),

(D == 0 ->

C = B

; E = get_state(F) ->

F = B,

handler_1(D, B, C)

; E = put_state(G) ->

handler_1(D, G, C)

; shift(E),

handler_1(D, B, C)

).

handler_0(A, B, C) :-

reset(A, D, E),

(D == 0 ->

B = C

; E = c(F) ->

B = [F|G],

handler_0(D, G, C)

; shift(E),

handler_0(D, B, C)

).

The predicates handler 0/3 and handler 1/3 correspond to the elaborated DCG

and state handlers respectively. They follow the semantics described in Section 2.3.

Using the rewrite rules first, yields the following elaborated program instead:

state_phrase_handler(A, B, C, D) :-

handler_2(abinc, A, B, C, D).

handler_2(A, B, C, D, E) :-

Efficient Algebraic Effect Handlers for Prolog 19

reset(A, F, G),

(F == 0 ->

C = B,

D = E

; G = get_state(H) ->

H = B,

handler_2(F, B, C, D, E)

; G = put_state(I) ->

handler_2(F, I, C, D, E)

; G = c(J) ->

D = [J|K],

handler_2(F, B, C, K, E)

; shift(G),

handler_2(F, B, C, D, E)

).

The two handlers have been merged into one, with the corresponding performance

improvement.

When partial evaluation is enabled as well, the optimisation goes one step further

and yields the following final program:

state_phrase_handler(A, B, C, D) :-

abinc0(A, B, C, D).

abinc0(A, A, B, B).

abinc0(A, B, [a,b|C], D) :-

E is A+1,

abinc0(E, B, C, D).

Partial evluation has pushed the handlers into the definition of abcinc/0 where

the rewrite rules have been able to replace the operations by the corresponding

handler clauses. As a consequence, the handlers are eliminated and no delimited

control primitives are generated.

Appendix C Soundness of Rule (O-Disj)

This appendix proves the soundness of the (O-Disj) rewrite rule. Our proof relies on

the elaboration of the handler syntax into delimited control and the corresponding

semantics for delimited control given by Schrijvers et al. (2013). This semantics is

expressed in terms of a Prolog meta-interpreter that we show in Figure C 1.

We start from the left-hand side of the rewrite rule and turn it into the right-hand

side by means of a number of equivalence preserving transformations.

handle (G1;G2) with

op→ G;

finally Gf

for Gs.

(C1)

20 A. H. Saleh and T. Schrijvers

eval(G) :- eval(G,Signal),
(Signal = shift(Term,Cont) ->

fail
; true).

eval(shift(Term),Signal) :- !,Signal = shift(Term,true).

eval(reset(G,Cont,Term),Signal) :- !, eval(G,Signal1),
(Signal1 = ok -> Cont = 0, Term = 0
; Signal1 = shift(Term,Cont)),
Signal = ok.

eval((G1,G2),Signal) :- !, eval(G1,Signal1),
(Signal1 = ok -> eval(G2,Signal)
; Signal1 = shift(Term,Cont),

Signal = shift(Term,(Cont,G2))).

eval((G1;G2),Signal) :- !, (eval(G1,Signal)
; eval(G2,Signal)).

eval((C->G1;G2),Signal) :- !, (eval(C,Signal1) ->
(Signal1 = ok -> eval(G1,Signal)
; fail
)

; eval(G2,Signal)).

eval(Goal,Signal) :- built_in_predicate(Goal), !, call(Goal), Signal = ok.

eval(Goal,Signal) :- clause(Goal,Body), eval(Body,Signal).

Fig. C 1: Delimited Control Meta-Interpreter

The elaboration of this handler goal into delimited control yields the following

auxiliary predicate:

h(Goal,P1,..,Pn) :-

reset(Goal,Cont,Term),

(Term == 0 -> Gf

; Term = op → G

; shift(Signal), h(Cont,P1,...,Pn)

).

Here the variables Pi are the formal parameters of Gs. The goal itself is then by

definition equivalent to

h((G1;G2),A1,...,An) (C2)

where the Ai are the actual parameters of Gs.

This is equivalent to evaluation the goal in the meta-interpreter:

eval(h((G1;G2),A1,...,An)) (C3)

We can now unfold the eval/1 call and subsequently unfold the resulting call to

the auxiliary predicate eval/2 which selects the last clause. After also evaluating

Efficient Algebraic Effect Handlers for Prolog 21

the call to clause/2 to unfold h/n + 1 we get:

eval((reset((G1;G2),Cont,Term),

(Term == 0 -> Gf

; Term = op → G

; shift(Signal), h(Cont,P1,...,Pn)

)

)

, Signal

),

(Signal = shift(Term,Cont) -> fail ; true)

(C4)

For the sake of space, we refer to the if-then-else block after the reset/3 call as

<Switches>. We can thus abbreviate the above as:

eval((reset((G1;G2),Cont,Term), <Switches>)

, Signal

),

(Signal = shift(Term,Cont) -> fail ; true)

(C5)

Unfolding eval/2 using the appropriate clause for conjunction, yields:

eval(reset((G1;G2),Cont,Term), Signal1),

(Signal1 = ok -> eval(<Switches>, Signal)

; Signal1 = shift(Term,Cont) -> Signal = shift(Term,(Cont,<Switches>))

),

(Signal = shift(Term,Cont) -> fail ; true)

(C6)

Now we unfold the first call to eval/2 using the clause for reset/3:

eval((G1;G2), Signal2),

(Signal2 = ok -> Cont = 0, Term = 0

; Signal2 = shift(Term,Cont)

),

Signal1 = ok,

(Signal1 = ok -> eval(<Switches>, Signal)

; Signal1 = shift(Term,Cont) -> Signal = shift(Term,(Cont,<Switches>))

),

(Signal = shift(Term,Cont) -> fail ; true)

(C7)

Again, we unfold the first call to eval/2 using the clause for disjunction:

(eval(G1, Signal2) ; eval(G2, Signal2)),

(Signal2 = ok -> Cont = 0, Term = 0

; Signal2 = shift(Term,Cont)

),

Signal1 = ok,

(Signal1 = ok -> eval(<Switches>, Signal)

; Signal1 = shift(Term,Cont) -> Signal = shift(Term,(Cont,<Switches>))

),

(Signal = shift(Term,Cont) -> fail ; true)

(C8)

22 A. H. Saleh and T. Schrijvers

We now distribute what comes after the first disjunction into both branches.

(

eval(G1, Signal2),

(Signal2 = ok -> Cont = 0, Term = 0

; Signal2 = shift(Term,Cont)

),

Signal1 = ok,

(Signal1 = ok -> eval(<Switches>, Signal)

; Signal1 = shift(Term,Cont) -> Signal = shift(Term,(Cont,<Switches>))

),

(Signal = shift(Term,Cont) -> fail ; true)

;

eval(G2, Signal2),

(Signal2 = ok -> Cont = 0, Term = 0

; Signal2 = shift(Term,Cont)

),

Signal1 = ok,

(Signal1 = ok -> eval(<Switches>, Signal)

; Signal1 = shift(Term,Cont) -> Signal = shift(Term,(Cont,<Switches>))

),

(Signal = shift(Term,Cont) -> fail ; true)

)

(C9)

At this point we change gear and start folding again. First we fold the reset/2

clause of eval/2 twice, once in each branch.

(

eval(reset(G1,Term,Cont),Signal1),

(Signal1 = ok -> eval(<Switches>, Signal)

; Signal1 = shift(Term,Cont) -> Signal = shift(Term,(Cont,<Switches>))

),

(Signal = shift(Term,Cont) -> fail ; true)

;

eval(reset(G2,Term,Cont),Signal1),

(Signal1 = ok -> eval(<Switches>, Signal)

; Signal1 = shift(Term,Cont) -> Signal = shift(Term,(Cont,<Switches>))

),

(Signal = shift(Term,Cont) -> fail ; true)

)

(C10)

Efficient Algebraic Effect Handlers for Prolog 23

Then we fold the conjunction clause of eval/2 in each branch.

(

eval((reset(G1,Term,Cont),<Switches>),Signal),

(Signal = shift(Term,Cont) -> fail ; true)

;

eval((reset(G2,Term,Cont),<Switches>),Signal),

(Signal = shift(Term,Cont) -> fail ; true)

)

(C11)

Subsequently, we fold eval/1 twice.

(

eval((reset(G1,Term,Cont),<Switches>))

;

eval((reset(G2,Term,Cont),<Switches>))

)

(C12)

Now we can drop the meta-interpretation layer again.

(

(reset(G1,Term,Cont),<Switches>)

;

(reset(G2,Term,Cont),<Switches>)

)

(C13)

Then we fold h/n + 1 twice.

(h(G1,A1,...,An); h(G2,A1,...,An)) (C14)

Finally, we invert the elaboration to obtain the right-hand side of the rewrite

rule.

handle G1 with

op→ G;

finally(Gf)

for(Gs)

;

handle G2 with

op→ G;

finally(Gf)

for(Gs)

(C15)

