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Appendix A Heuristics Development Example

In order to exemplify the usage of the infrastructure we report here the solution of the well-known
Pigeonhole problem, whose ASP encoding is reported in Figure A 1. Albeit for this toy problem
the solution is trivial, modern ASP solvers fail to recognize efficiently when an instance admits
no solutions. It is easy to see that when the number of pigeons exceeds the number of holes, no
solution can be found. Otherwise, a solution can be easily obtained by associating the i-th pigeon
with the i-th hole.

A heuristic strategy based on this observation can be implemented using PYTHON as reported
in Figure A 2. First, we initialize the global data structures var, H, and P for storing the associ-
ation of atom names to a numeric identifier created by GRINGO, the set of holes, and the set of
pigeons, respectively. The method addedVarName is called whenever a new variable v named
name is added inside WASP. Here, we store the association between the variable identifier v and
its name name and vice-versa. Moreover, we check whether the variable represents a pigeon or a
hole by checking the name. If this is the case the ASP constant representing the pigeon or hole
is added P or H, respectively.

After the parsing of the input program, the method onFinishedParsing is invoked. This
method is allowed to return a list of variable that must be frozen, i.e. variables that must not be
removed during the simplification step. In our example, all variables are frozen.

Later on, WASP searches for an answer set. During the computation, the method choiceVars
is invoked whenever a choice is needed (ONCHOICEREQUIRED( )). This method may return:

• A literal representing the next choice (command #CHOOSE(`)).
• A list of literals representing the next choices (command #CHOOSE(`) repeated for all

literals in the list).
• Special values representing other commands. In particular, [4, 0] is used to stop the

computation returning INCONSISTENT (command #ADDCONSTRAINT(← ∼⊥)).

In our example, the method choiceVars first checks whether the holes are sufficient to host all
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pigeons. If this is not the case it returns [4,0]. Otherwise, it returns a list of choices where the
atoms inHole(i,i) (i ∈ [1, . . . , |P|]) will be set to true.

Finally, the method onChoiceContradictory (event ONINCOCHOICE(`)) is invoked when-
ever a previous choice lead to an inconsistency. In our case, this method performs no operation
since none of the choices can be contradictory.

Appendix B Additional Plots

In this section, we present additional cactus plots comparing all off-the-shelf ASP solvers consid-
ered in our experiments with our best heuristic variant for each problem. In particular, Figures B 1
and B 2 report on the performance of the solvers on PUP instances employing encoding ENC1
and ENC2, respectively. Concerning ENC1, we observe that CLASP with 10 threads and CLASP-
FOLIO obtained similar performance solving 25 instances. All other systems solve 22 instances.
Similar considerations hold also for ENC2, where the best versions are CLASP with 10 threads
and CLASP with portfolio also solve 25 instances each. Looking at the VBS lines, we observe
that all solvers behave similarly solving basically the same set of instances. However, in case of
ENC1, VBS was able to solve one instance more than using ENC2 (2-doublev-120.dl). This
is due to optimizations, like symmetry breaking rules, towards the grid and triple-like instances
included in ENC2. On one hand, VBS with ENC2 required far less time to find solutions for
grids and triples. On the other hand, due to these optimizations the performance on instances
of the double and double-variant types was slightly lower than using ENC1. As a result, CLASP

portfolio was able to solve one instance more, thus improving the overall performance of VBS.
More detailed results can be found on the companion website http://yarrick13.github.
io/hwasp/.

Concerning CCP, the performance of the solvers is reported in Figure B 3. Here, all considered
solvers solve at most 5 instances.

As a general comment we observe that multi-threaded versions exploiting 10 times more
hardware resources and several heuristics are slightly better than single-threaded alternatives.
Nonetheless, our heuristic variants are faster than all other alternatives.
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# Input:
# * a set of pigeons P={1,...,n}, defined by means of the predicate pigeon
# * a set of holes H={1,...,m}, defined by means of the predicate hole
pigeon(1) ← hole(1) ←

...
...

pigeon(n) ← hole(m) ←

# Guess an assignment
inHole(p,h) ← not outHole(p,h) ∀p ∈ P, ∀h ∈ H
outHole(p,h) ← not inHole(p,h) ∀p ∈ P, ∀h ∈ H

# A hole contains at most one pigeon
← inHole(pi,h), inHole(p j,h) ∀pi, p j ∈ P | i 6= j, ∀h ∈ H

# A pigeon is assigned to at most one hole
← inHole(p,hi), inHole(p,h j) ∀hi,h j ∈ H | i 6= j, ∀p ∈ P

# A pigeon must be in some hole
inSomeHole(p) ← inHole(p,h) ∀p ∈ P, ∀h ∈ H
← not inSomeHole(p) ∀p ∈ P

Fig. A 1. ASP encoding of Pigeonhole.

# global data structures
var = {1: ’false’, ’false’: 1}
P = [] # list of all pigeon-constants
H = [] # list of all hole-constants

def addedVarName(v, name):
#invoked when WASP parses the atom table of the gringo numeric format
global var, H, P
var.update({v: name, name: v})
if name.startswith("pigeon"):

P.append(name[7:-1])
if name.startswith("hole"):

H.append(name[5:-1])

def onFinishedParsing():
# disable simplifications of variables
return [v for v in var.keys() if isinstance(v, int)]

def choiceVars(): #event onChoiceRequired, invoked when a choice is needed
global var, H, P
if len(P) > len(H):

return [4, 0] # force incoherence
# assign pigeon i to hole i
return [var["inHole(%s,%s)" % (i, i)] for i in range(1, len(P))]

def onChoiceContradictory(choice): #event onIncoChoice
pass # no choice can be contradictory

Fig. A 2. Pigeonhole heuristic in PYTHON.
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Fig. B 1. Comparison of all solvers on PUP instances (ENC1)
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Fig. B 2. Comparison of all solvers on PUP instances (ENC2)
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Fig. B 3. Comparison of all solvers on CCP instances


