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Appendix A
ASPMT(QS) — Online Prototypical Dissemination

A minimal prototypical implementation of ASPMT(QS) is available online publicly from
Docker Hub, a cloud-based registry service for building and shipping applications. The
ASPMT(QS) version 1.0 is published at:

https://hub.docker.com/r/spatialreasoning/aspmtqs/

The following are available via Docker Hub:

1. ASPMT(QS). The core system

2. Paper examples. Minimal working examples from the paper (additional programs
may be added as the review of this paper progresses)

3. README. Short description and installation instructions

General information about the broader context of this project, related tools, and
links to updates / ongoing work etc of declarative spatial reasoning methods are
available at:

http://www.spatial-reasoning.com



Appendix B
Proofs

Table B 1: Polynomial encodings of Allen Interval Algebra (IA) relations between inter-
vals t,s (omitting inverses), where t~,¢" are the real start- and end-points of interval ¢,

respectively, and s—, s+ are the start- and end-points of interval s.

IA Relation Polynomial Encoding
before tt < s~

meets tt =s"

equal tT=s" AtT =sT

overlaps T <sTALT>sTALT <sT
starts tT=s" AtT < st

during t—>s At < st

finishes t=>s AtT =sT

Proof
of Proposition 2.

Each Interval Algebra (IA) relation may be described as a set of equations and
inequalities between interval endpoints (see Figure 1 in (Allen 1983)), which is a
conjunction of polynomial expressions. Let interval ¢ be defined by a start and end
point t~,¢T € R such that t~ < ¢*. Table B 1 presents the polynomial encodings
for Allen relations between two intervals t, s.

Rectangle Algebra (RA) makes use of TA relations in 2 and 3 dimensions (Guesgen
1989) (page 5). Hence, each relation is a conjunction of polynomial expressions. An
axis-aligned block A is defined by three intervals A, A,, A, which represent the
projections of the block onto the orthogonal axes z, y, z respectively. An extract of
relations are presented in Table B2. []

Proof
of Proposition 3.

Each Left-Right (LR) relation (Scivos and Nebel 2004) may be described as a set of
equations and inequalities between three points p, a, b (Bhatt et al. 2011). Table B 3
presents the encodings between point p and segment with end-points a, b. Point p
is projected onto vector v by taking the dot product,

(zpa yp) : (xm yv) = TpTy + Yp Yo~

Thus we can project a point p onto a segment (a, b) with (p — a) - (b — a), and we
can project the second end point of the segment onto itself with (b — a) - (b — a).
These are used to formalise the behind, in between, and in front relations. [
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Table B 2: Extract of polynomial encodings of Rectangle Algebra (RA) relations between
axis-aligned blocks A, B (omitting inverses), where A,, A,, A, are the intervals of the
projection of A onto orthogonal axes z,y, z respectively.

RA Relation Polynomial Encoding
left of A, before B,
below A, before B,
in front A, before B,
meets on left A, meets B,
meets below Ay meets By
meets in front A, meets B,

Table B 3: Polynomial encodings of Left-Right (LR) relations between point p and seg-

ment with end-points a, b.

LR Relation Polynomial Encoding

left of (25 — @a)(yp — Ya) > (¥5 — Ya)(p — Ta)

collinear (my — 2a)(Yp — Ya) = (Y6 — Ya)(Tp — Ta)

right of (mb - Ia)(yp - ya) < (yb - ya)(zp - ‘Tzz)

start Ty = Ta N Yp = Ya

end Tp =Ty ANYp = Yp

coincident (p collinear a,b) AO< (p—a)-(b—a)<(b—a)-(b—a)

in between (p collinear a,b) ANO< (p—a)-(b—a)<(b—a)-(b—a)

behind (p collinear a,b) A0 > (p —a)-(b—a)

in front (p collinear a,b) A(p —a)-(b—a) > (b—a)-(b—a)
Proof

of Proposition 4.

In order to formalise RCC-5 relations using polynomial constraints, we first for-
malise relations of a point being inside, outside or on the boundary of a polygon
(Bhatt et al. 2011) as presented in Table B4.

Each RCC-5 relation may be described by means of relations part of P(a,b) and
overlaps O(a,b). In the domain of convex polygons, P(a,b) is true whenever all
vertices of a are in the interior (inside) or on the boundary of b, and O(a, b) is true if
there exists a point p that is inside both a and b. Table B 5 presents the encodings
and RCC-5 definitions based on the part of and overlaps relations.! Hence, all
RCC-5 relations may be described with polynomials, given a finite upper limit on
the number of vertices a convex polygon can have. []

1 An alternative encoding of overlaps avoids the additional existentially quantified point due to
the hyperplane separation theorem (e.g. see (Schneider 2013) Section 1.3): convex polygons a, b
are discrete from each other if there exists a line [ such that all vertices of a are left or collinear
to I, and all vertices of b are right or collinear with [. It is sufficient to check whether some
edge of a or some edge of b is such a line of separation (Schultz and Bhatt 2015b) to determine
whether a and b are discrete. If a and b are not discrete, then they overlap (i.e. overlaps is the
negation of discrete from).



5

Table B 4: Polynomial encodings of incidence relations between point p and convex poly-

gon R with vertices v1,..., v, (for convenience let v,11 = v1).

Incidence Relation Polynomial Encoding

inside Ny (p left of v;, vi+1)
on boundary Vi, (p coincident v;, ui+1)
Viz

outside 1 (p right of wv;, vl+1)

Table B 5: Polynomial encodings of RCC-5 relations (omitting inverses) between convex

polygon a with vertices vi, ..., v, and convex polygon b.
RCC-5 Relations Polynomial Encoding
part of (P) o ((v,, inside b) V (v; on boundary b))
overlaps (O) Hp((p inside a) A (p inside b))
equal (EQ) (a part of b) A (b part of a)
partially overlaps (PO) (a overlaps b) A —(a part of b) A =(b part of a)
proper part (PP) (a part of b) A —(b part of a)
discrete from (DR) —(a overlaps b)
Proof

of Proposition 5.

CDC relations are obtained by dividing space with 4 lines into 9 regions. Since
halfplanes and their intersections may be described with polynomial expressions,
then each of the 9 regions may be encoded with polynomials. A polygon object is in
one or more of the 9 cardinal regions by the topological overlaps relation between
polygons, which can be encoded with polynomials (i.e. by the existence of a shared
point) (Bhatt et al. 2011). O
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Appendix C 9S: Encodings of RCC Relations within ASPMT(QS)

Example of a subset of the encodings for the topological part of QS, namely, RCC-5
relations in a domain of circles:

Y RCC5 circle,circle

Jrcc eq - ‘‘circles are equal’’

rccEQ(C1,C2)=true <- (x(C1)=X1 & y(C1)=Y1 & r(C1)=R1 & x(C2)=X2 &
y(C2)=Y2 & r(C2)=R2) & (X1=X2 & Y1=Y2 & R1=R2).

rccEQ(C1,C2)=false <- (x(C1)=X1 & y(C1)=Y1 & r(C1)=R1 & x(C2)=X2 &
y(C2)=Y2 & r(C2)=R2) & not (X1=X2 & Y1=Y2 & R1=R2).

Jrcc dr - ‘‘circles are discrete’’

rccDR(C1,C2)=true <- (x(C1)=X1 & y(C1)=Y1 & r(C1)=R1 & x(C2)=X2 &
y(C2)=Y2 & r(C2)=R2) &

(X1-X2)* (X1-X2)+(Y1-Y2)*(Y1-Y2) >= (R1+R2)*(R1+R2).

rccDR(C1,C2)=false <- (x(C1)=X1 & y(C1)=Y1 & r(C1)=R1 & x(C2)=X2 &
y(C2)=Y2 & r(C2)=R2) &
not (X1-X2)*(X1-X2)+(Y1-Y2)*(¥Y1-Y2) >= (R1+R2)*(R1+R2).

Arcc pp - ‘‘one circle is a proper part of another’’
rccPP(C1,C2)=true <- (x(C1)=X1 & y(C1)=Y1 & r(C1)=R1 & x(C2)=X2 &
y(C2)=Y2 & r(C2)=R2) &

( R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) <= (R1-R2)*(R1-R2) ).

rccPP(C1,C2)=false <- (x(C1)=X1 & y(C1)=Y1 & r(C1)=R1 & x(C2)=X2 &
y(C2)=Y2 & r(C2)=R2) &
not ( R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) <= (R1-R2)*(R1-R2) ).

Jrcc ppi - inverse relation of rcc pp
rccPPi(C2,C1)=B <- rccPP(C1,C2)=B.

Jrce po -‘‘circles partially overlap’’

rccP0(C1,C2)=true <- (x(C1)=X1 & y(C1)=Y1 & r(C1)=R1 & x(C2)=X2 &
y(C2)=Y2 & r(C2)=R2) &

( (X1-X2)*(X1-X2)+(Y1-Y2) *(Y1-Y2) > (R1-R2)*(R1-R2) &

(X1-X2) * (X1-X2)+(Y1-Y2) % (Y1-Y2) < (R1+R2)*(R1+R2) ).

rccP0(C1,C2)=false <- (x(C1)=X1 & y(C1)=Y1 & r(C1)=R1 & x(C2)=X2 &
y(C2)=Y2 & r(C2)=R2) &

not ( (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1-R2)*(R1-R2) &

(X1-X2) * (X1-X2)+(Y1-Y2) *(Y1-Y2)

< (R1+R2)*(R1+R2) ).



Appendix D ASPMT(QS) Encodings for Euclid Constructions

The class of ruler and compass problems from Euclid’s Elements (Heath (ed) 1956)
defines constructions of geometric objects using only an idealised ruler and com-
pass: the tools have no markings to measure distances and angles, the compass is
collapsable (and so the radius of one circle cannot be transferred directly to another
point), and the ruler has infinite length.

D.1 Constructing an Equilateral Triangle

Equilateral triangle construction (Proposition 1, Book 1). Given a segment with
endpoints p1, po the task is to construct an equilateral triangle pp, p2, p3. Construct
circle ¢; centred on py, coincident to po. Construct circle ¢s centred on ps, coincident
to p1. Circles ¢y, co intersect at p3. The claim is that p, pe, ps form an equilateral
triangle (Figure D 1).

D3
1 a C2 cr ~.c2
Plo—op2 o O
(a) (b)

Figure D 1: Ruler compass method for constructing an equilateral triangle given
segment pi, pa.

1 :- constants

2 pl :: point;
3 p2 :: point;
4+ p3 :: point;
5 cl :: circle;
6 C2 :: circle.

s <- coincident(pl,p2).
9 <- not center(pl,cl).

10

11

12

13

14

1

2

<- not center(p2,c2).

<- not coincident(pl,c2).
<- not coincident(p2,cl).
<- not coincident(p3,cl).
<- not coincident(p3,c2).

To check consistency, i.e., if the constructed triangle is equilateral,add the following

line to the code:

<- not distanceEQ(pl,p2,pl,p3) | not distanceEQ(pil,p2,p2,p3)

| not distanceEQ(pl,p3,p2,p3).
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To check sufficiency, i.e., if it is possible that the triangle is not equilateral add the
following line instead:

1 <- distanceEQ(pl,p2,pl,p3) & distanceEQ(pl,p2,p2,p3)
2 & distanceEQ(pl,p3,p2,p3).

D.2 Bisecting an Angle

Angle Bisector (Proposition 9, Book 1). Given three distinct points p, p,, pp such
that p,, py are equidistant to p, the task is to bisect the angle formed by the points
(about p). Construct circle ¢ centred on p and coincident with p, and p,. Construct
circles ¢q, ¢y centred on points p,, pp respectively, such that p is coincident with
both circles. Circles c,, ¢, intersect at point p.. The claim is that the segment from
p to p. bisects the angle p,, p, pp (Figure D 2).

Figure D 2: Ruler and compass method for bisecting the angle p,, p, pp.-

1 :- constants

3 P :: point;
4 pa :: point;
5 pb :: point;
6 pcC :: point;
7 C :: circle;
s Cca :: circle;

9 ¢cb :: circle.
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<- coincident (pa,pb).
<- coincident (p,pc).

<- not center(p,c).
<- not center(pa,ca).
<- not center(pb,cb).

<- not coincident(pa,c).
<- not coincident(pb,c).

<- not coincident(p,ca).
<- not coincident(p,cb).

<- not coincident(pc,ca).
<- not coincident(pc,cb).

To check consistency, i.e., if it is possible that angles p.,p,p, and p¢,p,py are
equal (equivalently, p., p, p, and p., p, py are congruent), add the following line to
the input program:

<- not distanceEQ(p,pa,p,pb) | not distanceEQ(pa,pc,pb,pc).

To check sufficiency, i.e., if it is possible that angles p., p, p, and p., p, py are not
equal add the following lines instead:

<- car=Xcar & cbr=Xcbr & Xcar'!'=Xcbr.

<- distanceEQ(p,pa,p,pb) & distanceEQ(pa,pc,pb,pc).

D.3 Compass Equivalence Theorem

This theorem establishes that the collapsable property of the idealised compass can
in fact be overcome; i.e. a circle’s radius can indeed be “copied” to another centre
point using only an idealised ruler and compass.

Compass Equivalence Theorem (Proposition 2, Book 1). Given circle ¢, centred
at point p, and a distinct point p;, the task is to construct circle ¢, centred on
pp with the same radius as c¢,. Construct circle ¢; centred on p, coincident with
pp. Construct circle ¢o centred on pp coincident with p,. Circles ¢y, cp intersect at
point p.. Construct circle ¢z centred on p. such that: a point py exists with (1) py
coincident to both ¢, and ¢z, and (2) p, lies on the segment pg, p3. Construct point
pe such that: (1) p. is coincident to both ¢, and ¢z, and (2) pp lies on the segment
Pe, p3. Finally, construct circle ¢, centred on p; coincident with p.. The claim is
that the radius of ¢, equals the radius of ¢, (Figure D 3).
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Figure D 3: Ruler and compass method for compass equivalence theorem, trans-
ferring the radius of ¢, to construct a new circle ¢, centred on p, with the same

radius.

:- constants

pa point;

pb point;

pc point;

pd point;

pe point;

ca circle;

cb circle;

cl circle;

c2 circle;

c3 circle.

<- coincident (pa,pb).

<- not center(pa,ca).

<- not center(pa,cl).

<- not center(pb,cb).

<- not center(pb,c2).

<- not center(pc,c3).

<- not coincident(pa,c2).
<- not coincident(pb,cl).
<- not coincident(pc,cl).
<- not coincident(pc,c2).
<- not inside_seg(pa,pc,pd).
<- not inside_seg(pb,pc,pe).
<- not coincident(pd,ca).
<- not coincident(pe,cb).
<- not coincident(pd,c3).
<- not coincident(pe,c3).

(b)
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To check consistency, i.e., if the constructed circles have the same radius add the
following line to the input program:

1 <- not car=cbr.

To check sufficiency, i.e., if it is possible that the circles have various radius, add
the following lines instead:

1 Jtry to satisfy car!=cbr
2 <- car=cbr.
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Appendix E RCC Composition with ASPMT(QS)

ASPMT(QS) is able to compute composition tables for qualitative calculi, e.g., for
Region Connection Calculus. To check what may be a relation between circles ¢;
and c3, while ¢ partially overlaps ¢y and c¢s is a proper part of c3 use the following
input program:

:- constants

cl :: circle;
c2 :: circle;
c3 :: circle.

<- not rccP0(ci1,c2).
<- not rccPP(c2,c3).

In order to check if it is possible that ¢; partially overlaps c3 add the following line:

<- not rccP0(c1,c3).

In order to check if it is possible that c¢; is a proper part of c¢3 add the following
line instead:

<- not rccPP(c1,c3).

Both of the above programs are satisfiable. However, if we state that there is any
other relation between ¢; and c3, then the program will be unsatisfied. For example,
try to add a constraint that ¢; is equal to ¢z in order to obtain inconsistency:

<- not rccEQ(c1,c3).
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Appendix F Encodings for Ramification Problem Examples

13

The ramification problem examples should be run with flag “—p”, i.e., with explicit
encodings of spatial relations in the input file:

aspmtqs -p "input file"

The Growth scenario:

:- sorts
step; astep;
point; circle.

:- objects

0..1 step;
0..0 astep;
a,b,c circle.
:- constants

x(circle,step)
y(circle,step)
r(circle,step)
rccEQ(circle,circle,step)
rccDC(circle,circle,step)
rccEC(circle,circle,step)
rccPP(circle,circle,step)
grow(circle,astep)

:- variables
Cc, C1, C2

B------ Growing
{grow(C,AS)=false}.

{x(C,AS+1)=X} <- x(C,AS)=X.
{y(C,AS+1)=X} <- y(C,AS)=X.
{r(C,AS+1)=X} <- r(C,AS)=X.

real[0..100];
real[0..100];
real[0..100];
boolean;
boolean;
boolean;
boolean;
boolean.

circle;
step;
astep.

{r(C,AS+1)=X} <- grow(C,AS)=true.

<- grow(C,AS)=true & r(C,AS)=R1 & r(C,AS+1)=R2 & R2<=Rl1.
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{x(C,0)=X}.
{y(C,0)=X}.
{r(C,0)=X}.
rccPP(a,b,0)=true.
rccEC(b,c,0)=true.

grow(a,0)=true.

Jmmmmmm e - Goal state ------ccmm -
rccEQ(a,b,1)=true.

Jrce eq
rccEQ(C1,C2,8)=true <- (x(C1,S)=X1 & y(C1,8)=Y1 & r(C1,S)=R1

& x(C2,8)=X2 & y(C2,8)=Y2 & r(C2,S)=R2) & (X1=X2 & Y1=Y2 & R1=R2).

rccEQ(C1,C2,8)=false <- (x(C1,8)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
& x(C2,8)=X2 & y(C2,S)=Y2 & r(C2,5)=R2)
& not (X1=X2 & Y1=Y2 & R1=R2).

Arce pp
rccPP(C1,C2,8)=true <- (x(C1,S)=X1 & y(C1,3)=Y1 & r(C1,S)=R1
& x(C2,3)=X2 & y(C2,8)=Y2 & r(C2,3)=R2) &

( R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) <= (R1-R2)*(R1-R2) ).

rccPP(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
& x(C2,8)=X2 & y(C2,8)=Y2 & r(C2,S)=R2)

& not (R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) <= (R1-R2)*(R1-R2)).

Jrce ec

rccEC(C1,C2,S)=true <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
& x(C2,8)=X2 & y(C2,8)=Y2 & r(C2,3)=R2) &

(X1-X2) * (X1-X2)+(Y1-Y2)*(Y1-Y2) = (R1+R2)*(R1+R2).

rccEC(C1,C2,8)=false <- (x(C1,S)=X1 & y(C1,S8)=Y1 & r(C1,S)=R1
& x(C2,5)=X2 & y(C2,8)=Y2 & r(C2,S)=R2) &
not (X1-X2)*(X1-X2)+(Y1-Y2)*(¥Y1-Y2) = (R1+R2)*(R1+R2).

Jrce dc

rceDC(C1,C2,8)=true <- (x(C1,S)=X1 & y(C1,8)=Y1 & r(C1,S)=R1
& x(C2,8)=X2 & y(C2,8)=Y2 & r(C2,S)=R2)

& (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1+R2)*(R1+R2).

rccDC(C1,C2,8)=false <- (x(C1,8)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
& x(C2,8)=X2 & y(C2,8)=Y2 & r(C2,3)=R2) &
not (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1+R2)*(R1+R2).
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Encoding for the Motion example:

;- sorts
step; astep;
point; circle.

:- objects

0..1 step;

0..0 astep;

a,b,c circle.

:- constants

x(circle,step) real[0..100];
y(circle,step) real[0..100];
r(circle,step) real[0..100];
rccDC(circle,circle,step) :: boolean;
rccEC(circle,circle,step) :: Dboolean;
rccTPP(circle,circle,step) :: boolean;
rccNTPP(circle,circle,step) :: boolean;

move (circle,astep) boolean.

:- variables

c, C1, C2 circle;

S step;

AS astep.

A----=- Moving

{move(C,AS)=false}.

{x(C,AS+1)=X} <- x(C,AS)=X.
{y(C,AS+1)=X} <- y(C,AS)=X.
{r(C,AS+1)=X} <- r(C,AS)=X.

{x(C,AS+1)=X} <- move(C,AS)=true.
{y(C,AS+1)=X} <- move(C,AS)=true.

<- move(C,AS)=true & x(C,AS)=X1 & y(C,AS)=Y1 & x(C,AS+1)=X2

& y(C,AS+1)=Y2 & X1=X2 & Y1=Y2.

15



36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

y(a,0)=0.

x(c,0)=10.

y(c,0)=0.

{x(C,0)=X}.

{y(C,0)=X}.

{r(C,0)=X}.

rccNTPP(a,b,0)=true.

rccEC(b,c,0)=true.

move(a,0)=true.

x(a,1)=1.

y(a,1)=0.

Jmmmmmm e - Goal state ------c-mm o
rccTPP(a,b,1)=true.

rccEC(a,c,1)=false.

rccDC(a,c,1)=false.

Arcec ec

rccEC(C1,C2,8)=true <- (x(C1,S)=X1 & y(C1,8)=Y1 & r(C1,S)=R1
& x(C2,8)=X2 & y(C2,S)=Y2 & r(C2,S5)=R2)

& (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) = (R1+R2)*(R1+R2).

rccEC(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
& x(C2,8)=X2 & y(C2,8)=Y2 & r(C2,S)=R2)

& not (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) = (R1+R2)*(R1+R2).

Jrce dc

rceDC(C1,C2,S)=true <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
& x(C2,8)=X2 & y(C2,8)=Y2 & r(C2,5)=R2)

& (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1+R2)*(R1+R2).

rccDC(C1,C2,S8)=false <- (x(C1,8)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
& x(C2,8)=X2 & y(C2,8)=Y2 & r(C2,3)=R2)

& not (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1+R2)*(R1+R2).

Arce tpp

rccTPP(C1,C2,8)=true <- (x(C1,S)=X1 & y(C1,3)=Y1 & r(C1,3)=R1
& x(C2,8)=X2 & y(C2,8)=Y2 & r(C2,3)=R2)

& ( R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) = (R1-R2)*(R1-R2)).

rccTPP(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,8)=Y1 & r(C1,8)=R1
& x(C2,8)=X2 & y(C2,8)=Y2 & r(C2,5)=R2)

& not ( R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) = (R1-R2)*(R1-R2)).
Arce nitpp

rccNTPP(C1,C2,8)=true <- (x(C1,S)=X1 & y(C1,8)=Y1 & r(C1,8)=R1
& x(C2,8)=X2 & y(C2,8)=Y2 & r(C2,S)=R2)

& ( R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) < (R1-R2)*(R1-R2) ).

rccNTPP(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
& x(C2,38)=X2 & y(CQ,S)=Y2 & r(C2,S)=R2)

& not ( R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) < (R1-R2)*(R1-R2) ).
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Appendix G Encodings for Geometric Reasoning and the Frame

Problem
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The frame problem examples should be run with flag “—p”, i.e., with explicit encod-
ings of spatial relations in the input file:

aspmtqs -p "input file"
The Attachment I scenario:
:- sorts

step; astep;

point; circle.

:- objects

o ol :: step;
0..0 :: astep;
car,trailer,garage :: circle.
:- constants

x(circle,step)
y(circle,step)
r(circle,step)
rccPP(circle,circle,step)
rccEC(circle,circle,step)
rceDC(circle,circle,step)
move (circle,astep)
attach(circle,circle,astep)
attached(circle,circle,step)

:- variables
C, C1, C2

S

AS

B

N Actions

real[0..100];
real[0..100];
real[0..100];
boolean;
boolean;
boolean;
boolean;
boolean;
boolean.

circle;
step;
astep;
boolean.

/ move and attach are external actions

{move(C,AS)=B}.
{attach(C1,C2,AS)=B}.

/ cannot attach and move in same step
<- attach(C1,C2,AS)=true & move(C1l,AS)=true.
<- attach(C1,C2,AS)=true & move(C2,AS)=true.
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A----- Attaching

/4 only car can attach trailer
attach(C1,C2,AS)=false <- Cl!=car | C2!=trailer.
/A nothing can attach itself
attach(C1,C2,AS)=false <- C1=C2.

/# objects can attach only when are rccEC

<- attach(C1,C2,S)=true & rccEC(C1,C2,S)=false.

/4 nothing ts attached with itself
attached(C1,C2,S)=false <- C1=C2.

% attached is symmetric

<- attached(C1,C2,S)=B & not attached(C2,C1,S)=B.
/ attachement don’t change
{attached(C1,C2,AS+1)=B} <- attached(C1,C2,AS)=B.
% attach makes objects attached
attached(C1,C2,AS+1)=true <- attached(C1,C2,AS)=false
& attach(C1,C2,AS)=true.

/ cannot attach already attached objects

<- attach(C1,C2,S)=true & attached(C1,C2,S)=true.
4 attached objects are rccEC

<- attached(C1,C2,S)=true & rccEC(C1,C2,S)=false.

4 garage and tratiler cannot move

move (C,AS)=false <- C=garage | C=trailer.

{x(C,S+1)=X} <- x(C,S8)=X.

{y(C,8+1)=X} <- y(C,S)=X.

{r(C,s+1)=X} <- r(C,S)=X.

{x(C,S8+1)=X} <- move(C,S)=true.

{y(C,S+1)=X} <- move(C,S)=true.

{x(C2,8+1)=X} <- attached(C1,C2,S)=true & move(C1l,S)=true.
{y(C2,5+1)=X} <- attached(C1,C2,S)=true & move(Cl,S)=true.
A-=-=-- Geometry

<- r(C,8)=X & X<=0.

/ car must be rccPP or rccDC with garage

<- rccPP(car,garage,S)=false & rccDC(car,garage,S)=false.
/4 trailer must be rccPP or rccDC with garage

<- rccPP(trailer,garage,S)=false & rccDC(trailer,garage,S)=false.

{x(C,0)=X}.

{y(C,0)=X}.

{r(C,0)=X}.

x(car,0)=0.

y(car,0)=0.

x(garage,0)=10.
y(garage,0)=10.
{attached(C1,C2,0)=false}.
attached(car,trailer,0)=true.
attached(trailer,car,0)=true.
rccDC(car,garage,0)=true.
rccDC(trailer,garage,0)=true.
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Hommmmm oo Goal state --------—--—~—~—~-~~~~—
rccPP(car,garage,1)=true.

Arce pp

rccPP(C1,C2,S)=true <- (x(C1,3)=X1 & y(C1,8)=Y1 & r(C1,S)=R1

& x(C2,8)=X2 & y(C2,8)=Y2 & r(C2,3)=R2)

& ( R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) <= (R1-R2)*(R1-R2) ).

rccPP(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
& x(C2,5)=X2 & y(C2,S)=Y2 & r(C2,S8)=R2)
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& not (R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) <= (R1-R2)*(R1-R2)).

Jrce ec

rccEC(C1,C2,8)=true <- (x(C1,S8)=X1 & y(C1,8)=Y1 & r(C1,S)=R1
& x(C2,8)=X2 & y(C2,8)=Y2 & r(C2,S)=R2)

& (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) = (R1+R2)*(R1+R2).

rccEC(C1,C2,8)=false <- (x(C1,8)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
& x(C2,38)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
& not (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) = (R1+R2)*(R1+R2).

Jrce dc

rceDC(C1,C2,S8)=true <- (x(C1,38)=X1 & y(C1,8)=Y1 & r(C1,S)=R1
& x(C2,8)=X2 & y(C2,8)=Y2 & r(C2,S)=R2)

& (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1+R2)*(R1+R2).

rceDC(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
& x(C2,8)=X2 & y(C2,8)=Y2 & r(C2,S)=R2)
& not (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1+R2)*(R1+R2).

The Attachment II scenario:
.- sorts

step; astep;

point; circle.

:- objects
0..2 1 step;
0..1 ::  astep;

car,trailer,garage :: «circle.
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9 :- constants

10 x(circle,step) :: real[0..100];
1 y(circle,step) :: real[0..100];
12 r(circle,step) :: real[0..100];
13 rccPP(circle,circle,step) :: Dboolean;

14 rccEC(circle,circle,step) :: Dboolean;

15 rccDC(circle,circle,step) :: Dboolean;

16 move(circle,astep) :: Dboolean;

17 disattach(circle,circle,astep) :: Dboolean;

18 attached(circle,circle,step) :: boolean.

19

20 - variables

21 C, C1, C2 :: circle;

22 S :: step;

23 AS :: astep;

24 B :: boolean.

25

26 f------ Actions

27/ move and attach/disattach are external actions

2s  {move(C,AS)=B}.

20 {disattach(C1,C2,AS)=B}.

30

a1/ cannot disattach and move in same step

32 <- disattach(C1,C2,AS)=true & move(C1,AS)=true.

33 <- disattach(C1,C2,AS)=true & move(C2,AS)=true.

34

35 f----- Attaching/Disattaching and Attach

s /4 only car can attach/disattach trailer

37 disattach(C1,C2,AS)=false <- Cl!=car | C2!=trailer.

ss J mothing can attach/disattach ttself

39 disattach(C1,C2,AS)=false <- C1=C2.

40

a1/ mothing is attached with itself

42 attached(C1,C2,S)=false <- C1=C2.

43 /[ attached ts symmetric

112 <- attached(C1,C2,S)=B & not attached(C2,C1,S)=B.
45/ attachement don’t change

16 {attached(C1,C2,AS+1)=B} <- attached(C1,C2,AS)=B.
47/ disattach makes objects not attached

48 attached(C1,C2,AS+1)=false <- attached(C1,C2,AS)=true
49 & disattach(C1,C2,AS)=true.

s0 attached(C2,C1,AS+1)=false <- attached(C1,C2,AS)=true
51 & disattach(C1,C2,AS)=true.

s2 4 cannot disattach not attached objects

53 <- disattach(C1,C2,AS)=true & attached(C1,C2,AS)=false.
sa /J attached objects are rccEC

55 <- attached(C1,C2,S)=true & rccEC(C1,C2,S)=false.
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% garage and trailer cannot move
move(C,AS)=false <- C=garage | C=trailer.

{x(C,8+1)=X} <- x(C,S)=X.
{y(C,S+1)=X} <- y(C,8)=X.
{r(C,s+1)=X} <- r(C,S)=X.

AN

{x(C,S+1)=X} <- move(C,S)=true.
{y(C,S+1)=X} <- move(C,S)=true.

{x(C2,8+1)=X} <- attached(C1,C2,S)=true & move(C1l,S)=true.
{y(C2,5+1)=X} <- attached(C1,C2,S)=true & move(Cl,S)=true.

A----- Geometry
<- r(C,8)=X & X<=0.

4 car must be rccPP or rccDC with garage
<- rccPP(car,garage,S)=false & rccDC(car,garage,S)=false.
4 trailer must be rccPP or rccDC with garage

<- rccPP(trailer,garage,S)=false & rccDC(trailer,garage,S)=false.

{x(C,0)=X}.
{y(C,0)=X}.
{r(C,0)=X}.
r(car,0)=1.
x(car,0)=10.
y(car,0)=10.
r(trailer,0)=1.
x(trailer,0)=10.
y(trailer,0)=12.
r(garage,0)=9.
x(garage,0)=1.
y(garage,0)=1.
disattach(car,trailer,0)=false.

{attached(C1,C2,0)=false}.
attached(car,trailer,0)=true.
attached(trailer,car,0)=true.

rccDC(car,garage,0)=true.

rccDC(trailer,garage,0)=true.

Jmmmmmm e Geal SUEHE —=s=sss==ccc—c—occ=sc—cccoooooo==
rccPP(car,garage,2)=true.

rccPP(trailer,garage,2)=true.

21
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Arcc pp
rccPP(C1,C2,S)=true <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
& x(C2,8)=X2 & y(C2,8)=Y2 & r(C2,3)=R2)

& ( R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) <= (R1-R2)*(R1-R2) ).

rccPP(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
& x(C2,5)=X2 & y(C2,S)=Y2 & r(C2,S8)=R2)

& not (R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) <= (R1-R2)*(R1-R2)).

lrce ec

rccEC(C1,C2,8)=true <- (x(C1,S8)=X1 & y(C1,8)=Y1 & r(C1,S)=R1
& x(C2,8)=X2 & y(C2,8)=Y2 & r(C2,S)=R2)

& (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) = (R1+R2)*(R1+R2).

rccEC(C1,C2,8)=false <- (x(C1,8)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
& x(C2,8)=X2 & y(C2,S)=Y2 & r(C2,5)=R2)
& not (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) = (R1+R2)*(R1+R2).

Arcc dc

rccDC(C1,C2,8)=true <- (x(C1,S)=X1 & y(C1,3)=Y1 & r(C1,S)=R1
& x(C2,8)=X2 & y(C2,S)=Y2 & r(C2,S5)=R2)

& (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1+R2)*(R1+R2).

rceDC(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
& x(C2,3)=X2 & y(C2,8)=Y2 & r(C2,S)=R2)
& not (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1+R2)*(R1+R2).
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Appendix H Optimisations for Spatial Reasoning in ASPMT(QS)

While computational performance is not our focus here, we describe our future work
in integrating spatial optimisations that greatly expand the horizon of problems that
can be solved by ASPMT(QS).

The computational complexity of solving general systems of polynomial constraints
is highly prohibitive. Specifically, the complexity of Quantifier Elimination by Cylin-
drical Algebraic Decomposition (Collins 1975) is double exponential in the number
of variables in the polynomial constraints, O(22") (Arnon et al. 1984). Thus, even
small spatial problems become intractable in practice without utilising more ef-
ficient polynomial constraint encodings that exploit the structural properties of
qualitative spatial domains.

In (Schultz and Bhatt 2015b) we present one powerful optimisation referred to as
spatial symmetry pruning. The concept is as follows: certain qualitative relations are
preserved by certain transformations (on the embedding space). For example, the
topological connectivity of a configuration of spheres is not altered if the spheres are
translated to some other position as illustrated in Figure H1 (or rotated, reflected,
uniformly scaled).

A

(a) initial configura-

tion (b) translation (c) rotation

\|/ |

N

(d) uniform scaling (e) reflection

Figure H1: Topological relations between four spheres maintained after various
affine transformations.

We can exploit such properties by spatial symmetry pruning. Transformations that
preserve the qualitative relationships in a given scenario can be “traded” for degrees
of freedom of the objects in the problem. The effect is eliminating real quantifiers
from the polynomial constraints without loss of generality. Given the drastic com-
putational complexity of solving polynomial constraints, eliminating even a few
variables from the underlying polynomial constraints greatly increases both run-
time performance, and the range of problems that can be solved in a practical
amount of time.

Moreover, spatial problems can often be decomposed into sub-problems that can
be solved independently. Spatial symmetry pruning can be reapplied within each
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sub-problem, see (Schultz and Bhatt 2015b) Section 3.5 for further details. Thus,
we are building knowledge about space and spatial properties of objects into the
spatial solver at a declarative level, in a modular, extensible, systematic manner,
that has a significant impact on performance.

For example, consider the equilateral triangle construction problem in D.1. Without
any symmetry pruning, the solving time for the sufficiency task is rather long,
approximately 40 seconds (on a MacBook Pro Intel Core i7). The relations used
in the problem are incidence and distance between points and circles, which are
preserved by translation, rotation, reflection, and uniform scaling. By consulting the
available pruning cases for this selection of transformations (see Table 2, (Schultz
and Bhatt 2015b)), we determine that the position of two points can be replaced
by any real value without loss of generality; that is, we eliminate four quantified
variables from the problem (2,,, Up, » Tps» Yps )-

The performance gain is drastic: the problem now takes approximately 0.1 seconds
to solve, i.e. two orders of magnitude faster. Note that, as this is a sufficiency task,
the correct solution is unsatisfiable.

In this example we have manually employed the optimisation pruning case from
(Schultz and Bhatt 2015b). One key topic of our future work is automatically ap-
plying such optimisations within ASPMT(QS).
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pl
p2
p3
cl
c2

25

constants
:: point;
: point;
:: point;
circle;
circle.

coincident (pl,p2).
not center(pl,cl).
not center(p2,c2).
not coincident(pl,c2).
not coincident(p2,cl).
not coincident(p3,cl).
not coincident(p3,c2).

distanceEQ(pl,p2,pl,p3) & distanceEQ(pl,p2,p2,p3)

& distanceEQ(p1l,p3,p2,p3).

A% employ an optimisation pruning case from
A% (Schultz and Bhatt 2015b) by fizxing the position
A% of two points without loss of gemerality:

plx=0.

ply=0.
p2x=10.

p2y=0.



