
1

Online appendix for the paper

Non-Monotonic Spatial Reasoning

with Answer Set Programming Modulo Theories

published in Theory and Practice of Logic Programming

Przemysław Andrzej Wałęga, Carl Schultz, Mehul Bhatt
Spatial Reasoning. www.spatial-reasoning.com

The DesignSpace Group, Germany. www.design-space.org

Universities of: Warsaw (Poland), Münster (Germany), Bremen (Germany)

submitted November 2 2015; revised April 11 2016; accepted June 2 2016

APPENDICES A–H

A. Obtaining ASPMT(QS) – Online Prototypical Dissemination

B. Proofs

C. QS: Encodings of RCC Relations within ASPMT(QS)

D. ASPMT(QS) Encodings for Euclid Constructions

E. RCC Composition with ASPMT(QS)

F. Encodings for Ramification Problem Examples

G. Encodings for Geometric Reasoning and the Frame Problem

H. Optimisations for Spatial Reasoning in ASPMT(QS)

2

Appendix A
ASPMT(QS) – Online Prototypical Dissemination

A minimal prototypical implementation of ASPMT(QS) is available online publicly from
Docker Hub, a cloud-based registry service for building and shipping applications. The
ASPMT(QS) version 1.0 is published at:

https://hub.docker.com/r/spatialreasoning/aspmtqs/

The following are available via Docker Hub:

1. ASPMT(QS). The core system

2. Paper examples. Minimal working examples from the paper (additional programs
may be added as the review of this paper progresses)

3. README. Short description and installation instructions

General information about the broader context of this project, related tools, and
links to updates / ongoing work etc of declarative spatial reasoning methods are
available at:

http://www.spatial-reasoning.com

3

Appendix B
Proofs

Table B 1: Polynomial encodings of Allen Interval Algebra (IA) relations between inter-
vals t , s (omitting inverses), where t

�, t+ are the real start- and end-points of interval t ,
respectively, and s�, s+ are the start- and end-points of interval s.

IA Relation Polynomial Encoding

before t

+ < s

�

meets t

+ = s

�

equal t

� = s

� ^ t

+ = s

+

overlaps t

� < s

� ^ t

+ > s

� ^ t

+ < s

+

starts t

� = s

� ^ t

+ < s

+

during t

� > s

� ^ t

+ < s

+

finishes t

� > s

� ^ t

+ = s

+

Proof

of Proposition 2.
Each Interval Algebra (IA) relation may be described as a set of equations and
inequalities between interval endpoints (see Figure 1 in (Allen 1983)), which is a
conjunction of polynomial expressions. Let interval t be defined by a start and end
point t�, t+ 2 R such that t� < t+. Table B 1 presents the polynomial encodings
for Allen relations between two intervals t , s.
Rectangle Algebra (RA) makes use of IA relations in 2 and 3 dimensions (Guesgen
1989) (page 5). Hence, each relation is a conjunction of polynomial expressions. An
axis-aligned block A is defined by three intervals A

x

,A
y

,A
z

which represent the
projections of the block onto the orthogonal axes x , y , z respectively. An extract of
relations are presented in Table B 2.

Proof

of Proposition 3.
Each Left-Right (LR) relation (Scivos and Nebel 2004) may be described as a set of
equations and inequalities between three points p, a, b (Bhatt et al. 2011). Table B 3
presents the encodings between point p and segment with end-points a, b. Point p
is projected onto vector v by taking the dot product,

(x
p

, y
p

) · (x
v

, y
v

) = x
p

x
v

+ y
p

y
v

·

Thus we can project a point p onto a segment (a, b) with (p � a) · (b � a), and we
can project the second end point of the segment onto itself with (b � a) · (b � a).
These are used to formalise the behind, in between, and in front relations.

4

Table B 2: Extract of polynomial encodings of Rectangle Algebra (RA) relations between
axis-aligned blocks A,B (omitting inverses), where A

x

,A
y

,A
z

are the intervals of the
projection of A onto orthogonal axes x , y , z respectively.

RA Relation Polynomial Encoding

left of A

x

before B

x

below A

y

before B

y

in front A

z

before B

z

meets on left A

x

meets B

x

meets below A

y

meets B

y

meets in front A

z

meets B

z

Table B 3: Polynomial encodings of Left-Right (LR) relations between point p and seg-
ment with end-points a, b.

LR Relation Polynomial Encoding

left of (x
b

� x

a

)(y
p

� y

a

) > (y
b

� y

a

)(x
p

� x

a

)
collinear (x

b

� x

a

)(y
p

� y

a

) = (y
b

� y

a

)(x
p

� x

a

)
right of (x

b

� x

a

)(y
p

� y

a

) < (y
b

� y

a

)(x
p

� x

a

)
start x

p

= x

a

^ y

p

= y

a

end x

p

= x

b

^ y

p

= y

b

coincident (p collinear a, b) ^ 0  (p � a) · (b � a)  (b � a) · (b � a)
in between (p collinear a, b) ^ 0 < (p � a) · (b � a) < (b � a) · (b � a)
behind (p collinear a, b) ^ 0 > (p � a) · (b � a)
in front (p collinear a, b) ^ (p � a) · (b � a) > (b � a) · (b � a)

Proof

of Proposition 4.
In order to formalise RCC–5 relations using polynomial constraints, we first for-
malise relations of a point being inside, outside or on the boundary of a polygon
(Bhatt et al. 2011) as presented in Table B 4.
Each RCC–5 relation may be described by means of relations part of P(a, b) and
overlaps O(a, b). In the domain of convex polygons, P(a, b) is true whenever all
vertices of a are in the interior (inside) or on the boundary of b, and O(a, b) is true if
there exists a point p that is inside both a and b. Table B 5 presents the encodings
and RCC–5 definitions based on the part of and overlaps relations.1 Hence, all
RCC–5 relations may be described with polynomials, given a finite upper limit on
the number of vertices a convex polygon can have.

1 An alternative encoding of overlaps avoids the additional existentially quantified point due to
the hyperplane separation theorem (e.g. see (Schneider 2013) Section 1.3): convex polygons a, b
are discrete from each other if there exists a line l such that all vertices of a are left or collinear

to l , and all vertices of b are right or collinear with l . It is sufficient to check whether some
edge of a or some edge of b is such a line of separation (Schultz and Bhatt 2015b) to determine
whether a and b are discrete. If a and b are not discrete, then they overlap (i.e. overlaps is the
negation of discrete from).

5

Table B 4: Polynomial encodings of incidence relations between point p and convex poly-
gon R with vertices v1, . . . , vn (for convenience let v

n+1 = v1).

Incidence Relation Polynomial Encoding

inside
V

n

i=1

⇣
p left of v

i

, v
i+1

⌘

on boundary
W

n

i=1

⇣
p coincident v

i

, v
i+1

⌘

outside
W

n

i=1

⇣
p right of v

i

, v
i+1

⌘

Table B 5: Polynomial encodings of RCC–5 relations (omitting inverses) between convex
polygon a with vertices v1, . . . , vn and convex polygon b.

RCC–5 Relations Polynomial Encoding

part of (P)
V

n

i=1

⇣
(v

i

inside b) _ (v
i

on boundary b)
⌘

overlaps (O) 9p
⇣
(p inside a) ^ (p inside b)

⌘

equal (EQ) (a part of b) ^ (b part of a)
partially overlaps (PO) (a overlaps b) ^ ¬(a part of b) ^ ¬(b part of a)
proper part (PP) (a part of b) ^ ¬(b part of a)
discrete from (DR) ¬(a overlaps b)

Proof

of Proposition 5.
CDC relations are obtained by dividing space with 4 lines into 9 regions. Since
halfplanes and their intersections may be described with polynomial expressions,
then each of the 9 regions may be encoded with polynomials. A polygon object is in
one or more of the 9 cardinal regions by the topological overlaps relation between
polygons, which can be encoded with polynomials (i.e. by the existence of a shared
point) (Bhatt et al. 2011).

6

Appendix C QS: Encodings of RCC Relations within ASPMT(QS)

Example of a subset of the encodings for the topological part of QS, namely, RCC-5
relations in a domain of circles:

1 %----------RCC5 circle,circle

2 %rcc eq - ‘‘circles are equal’’

3 rccEQ(C1,C2)=true <- (x(C1)=X1 & y(C1)=Y1 & r(C1)=R1 & x(C2)=X2 &
4 y(C2)=Y2 & r(C2)=R2) & (X1=X2 & Y1=Y2 & R1=R2).
5

6 rccEQ(C1,C2)=false <- (x(C1)=X1 & y(C1)=Y1 & r(C1)=R1 & x(C2)=X2 &
7 y(C2)=Y2 & r(C2)=R2) & not (X1=X2 & Y1=Y2 & R1=R2).
8

9 %rcc dr - ‘‘circles are discrete’’

10 rccDR(C1,C2)=true <- (x(C1)=X1 & y(C1)=Y1 & r(C1)=R1 & x(C2)=X2 &
11 y(C2)=Y2 & r(C2)=R2) &
12 (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) >= (R1+R2)*(R1+R2).
13

14 rccDR(C1,C2)=false <- (x(C1)=X1 & y(C1)=Y1 & r(C1)=R1 & x(C2)=X2 &
15 y(C2)=Y2 & r(C2)=R2) &
16 not (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) >= (R1+R2)*(R1+R2).
17

18 %rcc pp - ‘‘one circle is a proper part of another’’

19 rccPP(C1,C2)=true <- (x(C1)=X1 & y(C1)=Y1 & r(C1)=R1 & x(C2)=X2 &
20 y(C2)=Y2 & r(C2)=R2) &
21 (R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) <= (R1-R2)*(R1-R2)).
22

23 rccPP(C1,C2)=false <- (x(C1)=X1 & y(C1)=Y1 & r(C1)=R1 & x(C2)=X2 &
24 y(C2)=Y2 & r(C2)=R2) &
25 not (R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) <= (R1-R2)*(R1-R2)).
26

27 %rcc ppi - inverse relation of rcc pp

28 rccPPi(C2,C1)=B <- rccPP(C1,C2)=B.
29

30 %rcc po -‘‘circles partially overlap’’

31 rccPO(C1,C2)=true <- (x(C1)=X1 & y(C1)=Y1 & r(C1)=R1 & x(C2)=X2 &
32 y(C2)=Y2 & r(C2)=R2) &
33 ((X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1-R2)*(R1-R2) &
34 (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) < (R1+R2)*(R1+R2)).
35

36 rccPO(C1,C2)=false <- (x(C1)=X1 & y(C1)=Y1 & r(C1)=R1 & x(C2)=X2 &
37 y(C2)=Y2 & r(C2)=R2) &
38 not ((X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1-R2)*(R1-R2) &
39 (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2)
40 < (R1+R2)*(R1+R2)).

7

Appendix D ASPMT(QS) Encodings for Euclid Constructions

The class of ruler and compass problems from Euclid’s Elements (Heath (ed) 1956)
defines constructions of geometric objects using only an idealised ruler and com-
pass: the tools have no markings to measure distances and angles, the compass is
collapsable (and so the radius of one circle cannot be transferred directly to another
point), and the ruler has infinite length.

D.1 Constructing an Equilateral Triangle

Equilateral triangle construction (Proposition 1, Book 1). Given a segment with
endpoints p1, p2 the task is to construct an equilateral triangle p1, p2, p3. Construct
circle c1 centred on p1, coincident to p2. Construct circle c2 centred on p2, coincident
to p1. Circles c1, c2 intersect at p3. The claim is that p1, p2, p3 form an equilateral
triangle (Figure D 1).

p1 p2

p3
c1 c2

p1 p2

p3
c1 c2

p1 p2

(a)

p1 p2

p3
c1 c2

p1 p2

p3
c1 c2

p1 p2

(b)

p1 p2

p3
c1 c2

p1 p2

p3
c1 c2

p1 p2

(c)

Figure D 1: Ruler compass method for constructing an equilateral triangle given
segment p1, p2.

1 :- constants
2 p1 :: point;
3 p2 :: point;
4 p3 :: point;
5 c1 :: circle;
6 c2 :: circle.
7

8 <- coincident(p1,p2).
9 <- not center(p1,c1).

10 <- not center(p2,c2).
11 <- not coincident(p1,c2).
12 <- not coincident(p2,c1).
13 <- not coincident(p3,c1).
14 <- not coincident(p3,c2).

To check consistency, i.e., if the constructed triangle is equilateral,add the following
line to the code:

1 <- not distanceEQ(p1,p2,p1,p3) | not distanceEQ(p1,p2,p2,p3)
2 | not distanceEQ(p1,p3,p2,p3).

8

To check sufficiency, i.e., if it is possible that the triangle is not equilateral add the
following line instead:

1 <- distanceEQ(p1,p2,p1,p3) & distanceEQ(p1,p2,p2,p3)
2 & distanceEQ(p1,p3,p2,p3).

D.2 Bisecting an Angle

Angle Bisector (Proposition 9, Book 1). Given three distinct points p, p
a

, p
b

such
that p

a

, p
b

are equidistant to p, the task is to bisect the angle formed by the points
(about p). Construct circle c centred on p and coincident with p

a

and p
b

. Construct
circles c

a

, c
b

centred on points p
a

, p
b

respectively, such that p is coincident with
both circles. Circles c

a

, c
b

intersect at point p
c

. The claim is that the segment from
p to p

c

bisects the angle p
a

, p, p
b

(Figure D 2).

p pb

pac

ca

cb

pc

p

c

(a)

p pb

pac

cb

ca

pc

p

c pa

pb

c

ca

cbpb

pa

(b)

p pb

pac

cb

ca

pc

p

c pa

pb

c

ca

cbpb

pa

p

(c)

Figure D 2: Ruler and compass method for bisecting the angle p
a

, p, p
b

.

1 :- constants
2

3 p :: point;
4 pa :: point;
5 pb :: point;
6 pc :: point;
7 c :: circle;
8 ca :: circle;
9 cb :: circle.

9

10 <- coincident(pa,pb).
11 <- coincident(p,pc).
12

13

14

15 <- not center(p,c).
16 <- not center(pa,ca).
17 <- not center(pb,cb).
18

19 <- not coincident(pa,c).
20 <- not coincident(pb,c).
21

22 <- not coincident(p,ca).
23 <- not coincident(p,cb).
24

25 <- not coincident(pc,ca).
26 <- not coincident(pc,cb).

To check consistency, i.e., if it is possible that angles p
c

, p, p
a

and p
c

, p, p
b

are
equal (equivalently, p

c

, p, p
a

and p
c

, p, p
b

are congruent), add the following line to
the input program:

1 <- not distanceEQ(p,pa,p,pb) | not distanceEQ(pa,pc,pb,pc).

To check sufficiency, i.e., if it is possible that angles p
c

, p, p
a

and p
c

, p, p
b

are not
equal add the following lines instead:

1 <- car=Xcar & cbr=Xcbr & Xcar!=Xcbr.
2 <- distanceEQ(p,pa,p,pb) & distanceEQ(pa,pc,pb,pc).

D.3 Compass Equivalence Theorem

This theorem establishes that the collapsable property of the idealised compass can
in fact be overcome; i.e. a circle’s radius can indeed be “copied” to another centre
point using only an idealised ruler and compass.
Compass Equivalence Theorem (Proposition 2, Book 1). Given circle c

a

centred
at point p

a

and a distinct point p
b

, the task is to construct circle c
b

centred on
p
b

with the same radius as c
a

. Construct circle c1 centred on p
a

coincident with
p
b

. Construct circle c2 centred on p
b

coincident with p
a

. Circles c1, c2 intersect at
point p

c

. Construct circle c3 centred on p
c

such that: a point p
d

exists with (1) p
d

coincident to both c
a

and c3, and (2) p
a

lies on the segment p
d

, p3. Construct point
p
e

such that: (1) p
e

is coincident to both c
b

and c3, and (2) p
b

lies on the segment
p
e

, p3. Finally, construct circle c
b

centred on p
b

coincident with p
e

. The claim is
that the radius of c

a

equals the radius of c
b

(Figure D 3).

10

ca

pe

cbpa
pb

pc
c3

pd

c1

c2

ca
pa

pb

pc
c3

pd

c1

c2

ca
pa

pb

(a)

ca

pe

cbpa
pb

pc
c3

pd

c1

c2

ca
pa

pb

pc
c3

pd

c1

c2

ca
pa

pb

(b)

ca

pe

cbpa
pb

pc
c3

pd

c1

c2

ca
pa

pb

pc
c3

pd

c1

c2

ca
pa

pb

(c)

Figure D 3: Ruler and compass method for compass equivalence theorem, trans-
ferring the radius of c

a

to construct a new circle c
b

centred on p
b

with the same
radius.

1 :- constants
2 pa :: point;
3 pb :: point;
4 pc :: point;
5 pd :: point;
6 pe :: point;
7 ca :: circle;
8 cb :: circle;
9 c1 :: circle;

10 c2 :: circle;
11 c3 :: circle.
12

13 <- coincident(pa,pb).
14

15 <- not center(pa,ca).
16 <- not center(pa,c1).
17 <- not center(pb,cb).
18 <- not center(pb,c2).
19 <- not center(pc,c3).
20

21 <- not coincident(pa,c2).
22 <- not coincident(pb,c1).
23 <- not coincident(pc,c1).
24 <- not coincident(pc,c2).
25

26 <- not inside_seg(pa,pc,pd).
27 <- not inside_seg(pb,pc,pe).
28

29 <- not coincident(pd,ca).
30 <- not coincident(pe,cb).
31 <- not coincident(pd,c3).
32 <- not coincident(pe,c3).

11

To check consistency, i.e., if the constructed circles have the same radius add the
following line to the input program:

1 <- not car=cbr.

To check sufficiency, i.e., if it is possible that the circles have various radius, add
the following lines instead:

1 %try to satisfy car!=cbr

2 <- car=cbr.

12

Appendix E RCC Composition with ASPMT(QS)

ASPMT(QS) is able to compute composition tables for qualitative calculi, e.g., for
Region Connection Calculus. To check what may be a relation between circles c1
and c3, while c1 partially overlaps c2 and c2 is a proper part of c3 use the following
input program:

1 :- constants
2

3 c1 :: circle;
4 c2 :: circle;
5 c3 :: circle.
6

7 <- not rccPO(c1,c2).
8 <- not rccPP(c2,c3).

In order to check if it is possible that c1 partially overlaps c3 add the following line:
1 <- not rccPO(c1,c3).

In order to check if it is possible that c1 is a proper part of c3 add the following
line instead:

1 <- not rccPP(c1,c3).

Both of the above programs are satisfiable. However, if we state that there is any
other relation between c1 and c3, then the program will be unsatisfied. For example,
try to add a constraint that c1 is equal to c3 in order to obtain inconsistency:

1 <- not rccEQ(c1,c3).

13

Appendix F Encodings for Ramification Problem Examples

The ramification problem examples should be run with flag “–p”, i.e., with explicit
encodings of spatial relations in the input file:
aspmtqs -p "input file"
The Growth scenario:

1 :- sorts
2 step; astep;
3 point; circle.
4

5 :- objects
6 0..1 :: step;
7 0..0 :: astep;
8 a,b,c :: circle.
9

10 :- constants
11 x(circle,step) :: real[0..100];
12 y(circle,step) :: real[0..100];
13 r(circle,step) :: real[0..100];
14 rccEQ(circle,circle,step) :: boolean;
15 rccDC(circle,circle,step) :: boolean;
16 rccEC(circle,circle,step) :: boolean;
17 rccPP(circle,circle,step) :: boolean;
18 grow(circle,astep) :: boolean.
19

20 :- variables
21 C, C1, C2 :: circle;
22 S :: step;
23 AS :: astep.
24

25 %------Growing

26 {grow(C,AS)=false}.
27

28 {x(C,AS+1)=X} <- x(C,AS)=X.
29 {y(C,AS+1)=X} <- y(C,AS)=X.
30 {r(C,AS+1)=X} <- r(C,AS)=X.
31

32 {r(C,AS+1)=X} <- grow(C,AS)=true.
33 <- grow(C,AS)=true & r(C,AS)=R1 & r(C,AS+1)=R2 & R2<=R1.

14

34 %------------Initial state-------------------------------

35 {x(C,0)=X}.
36 {y(C,0)=X}.
37 {r(C,0)=X}.
38 rccPP(a,b,0)=true.
39 rccEC(b,c,0)=true.
40

41 grow(a,0)=true.
42

43 %-------------Goal state ---------------------------------

44 rccEQ(a,b,1)=true.
45

46 %rcc eq

47 rccEQ(C1,C2,S)=true <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
48 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2) & (X1=X2 & Y1=Y2 & R1=R2).
49

50 rccEQ(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
51 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
52 & not (X1=X2 & Y1=Y2 & R1=R2).
53

54 %rcc pp

55 rccPP(C1,C2,S)=true <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
56 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2) &
57 (R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) <= (R1-R2)*(R1-R2)).
58

59 rccPP(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
60 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
61 & not (R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) <= (R1-R2)*(R1-R2)).
62

63 %rcc ec

64 rccEC(C1,C2,S)=true <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
65 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2) &
66 (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) = (R1+R2)*(R1+R2).
67

68 rccEC(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
69 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2) &
70 not (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) = (R1+R2)*(R1+R2).
71

72 %rcc dc

73 rccDC(C1,C2,S)=true <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
74 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
75 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1+R2)*(R1+R2).
76

77 rccDC(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
78 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2) &
79 not (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1+R2)*(R1+R2).

15

Encoding for the Motion example:
1 :- sorts
2 step; astep;
3 point; circle.
4

5 :- objects
6 0..1 :: step;
7 0..0 :: astep;
8 a,b,c :: circle.
9

10 :- constants
11 x(circle,step) :: real[0..100];
12 y(circle,step) :: real[0..100];
13 r(circle,step) :: real[0..100];
14 rccDC(circle,circle,step) :: boolean;
15 rccEC(circle,circle,step) :: boolean;
16 rccTPP(circle,circle,step) :: boolean;
17 rccNTPP(circle,circle,step) :: boolean;
18 move(circle,astep) :: boolean.
19

20 :- variables
21 C, C1, C2 :: circle;
22 S :: step;
23 AS :: astep.
24

25 %------Moving

26 {move(C,AS)=false}.
27

28 {x(C,AS+1)=X} <- x(C,AS)=X.
29 {y(C,AS+1)=X} <- y(C,AS)=X.
30 {r(C,AS+1)=X} <- r(C,AS)=X.
31

32 {x(C,AS+1)=X} <- move(C,AS)=true.
33 {y(C,AS+1)=X} <- move(C,AS)=true.
34 <- move(C,AS)=true & x(C,AS)=X1 & y(C,AS)=Y1 & x(C,AS+1)=X2
35 & y(C,AS+1)=Y2 & X1=X2 & Y1=Y2.

16

36 %------------Initial state-------------------------------

37 x(a,0)=0.
38 y(a,0)=0.
39 x(c,0)=10.
40 y(c,0)=0.
41 {x(C,0)=X}.
42 {y(C,0)=X}.
43 {r(C,0)=X}.
44 rccNTPP(a,b,0)=true.
45 rccEC(b,c,0)=true.
46 move(a,0)=true.
47 x(a,1)=1.
48 y(a,1)=0.
49 %-------------Goal state ---------------------------------

50 rccTPP(a,b,1)=true.
51 rccEC(a,c,1)=false.
52 rccDC(a,c,1)=false.
53 %rcc ec

54 rccEC(C1,C2,S)=true <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
55 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
56 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) = (R1+R2)*(R1+R2).
57

58 rccEC(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
59 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
60 & not (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) = (R1+R2)*(R1+R2).
61 %rcc dc

62 rccDC(C1,C2,S)=true <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
63 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
64 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1+R2)*(R1+R2).
65

66 rccDC(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
67 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
68 & not (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1+R2)*(R1+R2).
69 %rcc tpp

70 rccTPP(C1,C2,S)=true <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
71 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
72 & (R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) = (R1-R2)*(R1-R2)).
73

74 rccTPP(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
75 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
76 & not (R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) = (R1-R2)*(R1-R2)).
77 %rcc ntpp

78 rccNTPP(C1,C2,S)=true <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
79 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
80 & (R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) < (R1-R2)*(R1-R2)).
81

82 rccNTPP(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
83 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
84 & not (R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) < (R1-R2)*(R1-R2)).

17

Appendix G Encodings for Geometric Reasoning and the Frame
Problem

The frame problem examples should be run with flag “–p”, i.e., with explicit encod-
ings of spatial relations in the input file:
aspmtqs -p "input file"
The Attachment I scenario:

1 :- sorts
2 step; astep;
3 point; circle.
4

5 :- objects
6 0..1 :: step;
7 0..0 :: astep;
8 car,trailer,garage :: circle.
9

10 :- constants
11 x(circle,step) :: real[0..100];
12 y(circle,step) :: real[0..100];
13 r(circle,step) :: real[0..100];
14 rccPP(circle,circle,step) :: boolean;
15 rccEC(circle,circle,step) :: boolean;
16 rccDC(circle,circle,step) :: boolean;
17 move(circle,astep) :: boolean;
18 attach(circle,circle,astep) :: boolean;
19 attached(circle,circle,step) :: boolean.
20

21 :- variables
22 C, C1, C2 :: circle;
23 S :: step;
24 AS :: astep;
25 B :: boolean.
26

27 %------Actions

28 % move and attach are external actions

29 {move(C,AS)=B}.
30 {attach(C1,C2,AS)=B}.
31 % cannot attach and move in same step

32 <- attach(C1,C2,AS)=true & move(C1,AS)=true.
33 <- attach(C1,C2,AS)=true & move(C2,AS)=true.

18

34 %-----Attaching

35 % only car can attach trailer

36 attach(C1,C2,AS)=false <- C1!=car | C2!=trailer.
37 % nothing can attach itself

38 attach(C1,C2,AS)=false <- C1=C2.
39 % objects can attach only when are rccEC

40 <- attach(C1,C2,S)=true & rccEC(C1,C2,S)=false.
41 % nothing is attached with itself

42 attached(C1,C2,S)=false <- C1=C2.
43 % attached is symmetric

44 <- attached(C1,C2,S)=B & not attached(C2,C1,S)=B.
45 % attachement don’t change

46 {attached(C1,C2,AS+1)=B} <- attached(C1,C2,AS)=B.
47 % attach makes objects attached

48 attached(C1,C2,AS+1)=true <- attached(C1,C2,AS)=false
49 & attach(C1,C2,AS)=true.
50 % cannot attach already attached objects

51 <- attach(C1,C2,S)=true & attached(C1,C2,S)=true.
52 % attached objects are rccEC

53 <- attached(C1,C2,S)=true & rccEC(C1,C2,S)=false.
54 %-----Moving

55 % garage and trailer cannot move

56 move(C,AS)=false <- C=garage | C=trailer.
57 {x(C,S+1)=X} <- x(C,S)=X.
58 {y(C,S+1)=X} <- y(C,S)=X.
59 {r(C,S+1)=X} <- r(C,S)=X.
60 {x(C,S+1)=X} <- move(C,S)=true.
61 {y(C,S+1)=X} <- move(C,S)=true.
62 {x(C2,S+1)=X} <- attached(C1,C2,S)=true & move(C1,S)=true.
63 {y(C2,S+1)=X} <- attached(C1,C2,S)=true & move(C1,S)=true.
64 %-----Geometry

65 <- r(C,S)=X & X<=0.
66 % car must be rccPP or rccDC with garage

67 <- rccPP(car,garage,S)=false & rccDC(car,garage,S)=false.
68 % trailer must be rccPP or rccDC with garage

69 <- rccPP(trailer,garage,S)=false & rccDC(trailer,garage,S)=false.
70 %------------Initial state-------------------------------

71 {x(C,0)=X}.
72 {y(C,0)=X}.
73 {r(C,0)=X}.
74 x(car,0)=0.
75 y(car,0)=0.
76 x(garage,0)=10.
77 y(garage,0)=10.
78 {attached(C1,C2,0)=false}.
79 attached(car,trailer,0)=true.
80 attached(trailer,car,0)=true.
81 rccDC(car,garage,0)=true.
82 rccDC(trailer,garage,0)=true.

19

84 %-------------Goal state ---------------------------------

85 rccPP(car,garage,1)=true.
86

87 %rcc pp

88 rccPP(C1,C2,S)=true <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
89 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
90 & (R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) <= (R1-R2)*(R1-R2)).
91

92 rccPP(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
93 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
94 & not (R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) <= (R1-R2)*(R1-R2)).
95

96 %rcc ec

97 rccEC(C1,C2,S)=true <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
98 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
99 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) = (R1+R2)*(R1+R2).

100

101 rccEC(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
102 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
103 & not (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) = (R1+R2)*(R1+R2).
104

105 %rcc dc

106 rccDC(C1,C2,S)=true <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
107 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
108 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1+R2)*(R1+R2).
109

110 rccDC(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
111 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
112 & not (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1+R2)*(R1+R2).

The Attachment II scenario:
1 :- sorts
2 step; astep;
3 point; circle.
4

5 :- objects
6 0..2 :: step;
7 0..1 :: astep;
8 car,trailer,garage :: circle.

20

9 :- constants
10 x(circle,step) :: real[0..100];
11 y(circle,step) :: real[0..100];
12 r(circle,step) :: real[0..100];
13 rccPP(circle,circle,step) :: boolean;
14 rccEC(circle,circle,step) :: boolean;
15 rccDC(circle,circle,step) :: boolean;
16 move(circle,astep) :: boolean;
17 disattach(circle,circle,astep) :: boolean;
18 attached(circle,circle,step) :: boolean.
19

20 :- variables
21 C, C1, C2 :: circle;
22 S :: step;
23 AS :: astep;
24 B :: boolean.
25

26 %------Actions

27 % move and attach/disattach are external actions

28 {move(C,AS)=B}.
29 {disattach(C1,C2,AS)=B}.
30

31 % cannot disattach and move in same step

32 <- disattach(C1,C2,AS)=true & move(C1,AS)=true.
33 <- disattach(C1,C2,AS)=true & move(C2,AS)=true.
34

35 %-----Attaching/Disattaching and Attach

36 % only car can attach/disattach trailer

37 disattach(C1,C2,AS)=false <- C1!=car | C2!=trailer.
38 % nothing can attach/disattach itself

39 disattach(C1,C2,AS)=false <- C1=C2.
40

41 % nothing is attached with itself

42 attached(C1,C2,S)=false <- C1=C2.
43 % attached is symmetric

44 <- attached(C1,C2,S)=B & not attached(C2,C1,S)=B.
45 % attachement don’t change

46 {attached(C1,C2,AS+1)=B} <- attached(C1,C2,AS)=B.
47 % disattach makes objects not attached

48 attached(C1,C2,AS+1)=false <- attached(C1,C2,AS)=true
49 & disattach(C1,C2,AS)=true.
50 attached(C2,C1,AS+1)=false <- attached(C1,C2,AS)=true
51 & disattach(C1,C2,AS)=true.
52 % cannot disattach not attached objects

53 <- disattach(C1,C2,AS)=true & attached(C1,C2,AS)=false.
54 % attached objects are rccEC

55 <- attached(C1,C2,S)=true & rccEC(C1,C2,S)=false.

21

56 %-----Moving

57 % garage and trailer cannot move

58 move(C,AS)=false <- C=garage | C=trailer.
59

60 {x(C,S+1)=X} <- x(C,S)=X.
61 {y(C,S+1)=X} <- y(C,S)=X.
62 {r(C,S+1)=X} <- r(C,S)=X.
63

64 {x(C,S+1)=X} <- move(C,S)=true.
65 {y(C,S+1)=X} <- move(C,S)=true.
66

67 {x(C2,S+1)=X} <- attached(C1,C2,S)=true & move(C1,S)=true.
68 {y(C2,S+1)=X} <- attached(C1,C2,S)=true & move(C1,S)=true.
69

70 %-----Geometry

71 <- r(C,S)=X & X<=0.
72

73 % car must be rccPP or rccDC with garage

74 <- rccPP(car,garage,S)=false & rccDC(car,garage,S)=false.
75 % trailer must be rccPP or rccDC with garage

76 <- rccPP(trailer,garage,S)=false & rccDC(trailer,garage,S)=false.
77 %------------Initial state-------------------------------

78 {x(C,0)=X}.
79 {y(C,0)=X}.
80 {r(C,0)=X}.
81 r(car,0)=1.
82 x(car,0)=10.
83 y(car,0)=10.
84 r(trailer,0)=1.
85 x(trailer,0)=10.
86 y(trailer,0)=12.
87 r(garage,0)=9.
88 x(garage,0)=1.
89 y(garage,0)=1.
90 disattach(car,trailer,0)=false.
91

92 {attached(C1,C2,0)=false}.
93 attached(car,trailer,0)=true.
94 attached(trailer,car,0)=true.
95

96 rccDC(car,garage,0)=true.
97 rccDC(trailer,garage,0)=true.
98 %-------------Goal state ---------------------------------

99 rccPP(car,garage,2)=true.
100

101 rccPP(trailer,garage,2)=true.

22

102 %rcc pp

103 rccPP(C1,C2,S)=true <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
104 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
105 & (R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) <= (R1-R2)*(R1-R2)).
106

107 rccPP(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
108 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
109 & not (R1<R2 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) <= (R1-R2)*(R1-R2)).
110

111 %rcc ec

112 rccEC(C1,C2,S)=true <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
113 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
114 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) = (R1+R2)*(R1+R2).
115

116 rccEC(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
117 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
118 & not (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) = (R1+R2)*(R1+R2).
119

120 %rcc dc

121 rccDC(C1,C2,S)=true <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
122 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
123 & (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1+R2)*(R1+R2).
124

125 rccDC(C1,C2,S)=false <- (x(C1,S)=X1 & y(C1,S)=Y1 & r(C1,S)=R1
126 & x(C2,S)=X2 & y(C2,S)=Y2 & r(C2,S)=R2)
127 & not (X1-X2)*(X1-X2)+(Y1-Y2)*(Y1-Y2) > (R1+R2)*(R1+R2).

23

Appendix H Optimisations for Spatial Reasoning in ASPMT(QS)

While computational performance is not our focus here, we describe our future work
in integrating spatial optimisations that greatly expand the horizon of problems that
can be solved by ASPMT(QS).
The computational complexity of solving general systems of polynomial constraints
is highly prohibitive. Specifically, the complexity of Quantifier Elimination by Cylin-
drical Algebraic Decomposition (Collins 1975) is double exponential in the number
of variables in the polynomial constraints, O(22

n

) (Arnon et al. 1984). Thus, even
small spatial problems become intractable in practice without utilising more ef-
ficient polynomial constraint encodings that exploit the structural properties of
qualitative spatial domains.
In (Schultz and Bhatt 2015b) we present one powerful optimisation referred to as
spatial symmetry pruning. The concept is as follows: certain qualitative relations are
preserved by certain transformations (on the embedding space). For example, the
topological connectivity of a configuration of spheres is not altered if the spheres are
translated to some other position as illustrated in Figure H 1 (or rotated, reflected,
uniformly scaled).

(a) initial configura-
tion (b) translation (c) rotation

(d) uniform scaling (e) reflection

Figure H 1: Topological relations between four spheres maintained after various
affine transformations.
We can exploit such properties by spatial symmetry pruning. Transformations that
preserve the qualitative relationships in a given scenario can be “traded” for degrees
of freedom of the objects in the problem. The effect is eliminating real quantifiers
from the polynomial constraints without loss of generality. Given the drastic com-
putational complexity of solving polynomial constraints, eliminating even a few
variables from the underlying polynomial constraints greatly increases both run-
time performance, and the range of problems that can be solved in a practical
amount of time.
Moreover, spatial problems can often be decomposed into sub-problems that can
be solved independently. Spatial symmetry pruning can be reapplied within each

24

sub-problem, see (Schultz and Bhatt 2015b) Section 3.5 for further details. Thus,
we are building knowledge about space and spatial properties of objects into the
spatial solver at a declarative level, in a modular, extensible, systematic manner,
that has a significant impact on performance.
For example, consider the equilateral triangle construction problem in D.1. Without
any symmetry pruning, the solving time for the sufficiency task is rather long,
approximately 40 seconds (on a MacBook Pro Intel Core i7). The relations used
in the problem are incidence and distance between points and circles, which are
preserved by translation, rotation, reflection, and uniform scaling. By consulting the
available pruning cases for this selection of transformations (see Table 2, (Schultz
and Bhatt 2015b)), we determine that the position of two points can be replaced
by any real value without loss of generality; that is, we eliminate four quantified
variables from the problem (x

p1 , yp1 , xp2 , yp2).
The performance gain is drastic: the problem now takes approximately 0.1 seconds
to solve, i.e. two orders of magnitude faster. Note that, as this is a sufficiency task,
the correct solution is unsatisfiable.
In this example we have manually employed the optimisation pruning case from
(Schultz and Bhatt 2015b). One key topic of our future work is automatically ap-
plying such optimisations within ASPMT(QS).

25

1 :- constants
2 p1 :: point;
3 p2 :: point;
4 p3 :: point;
5 c1 :: circle;
6 c2 :: circle.
7

8 <- coincident(p1,p2).
9 <- not center(p1,c1).

10 <- not center(p2,c2).
11 <- not coincident(p1,c2).
12 <- not coincident(p2,c1).
13 <- not coincident(p3,c1).
14 <- not coincident(p3,c2).
15

16 <- distanceEQ(p1,p2,p1,p3) & distanceEQ(p1,p2,p2,p3)
17 & distanceEQ(p1,p3,p2,p3).
18

19 %% employ an optimisation pruning case from

20 %% (Schultz and Bhatt 2015b) by fixing the position

21 %% of two points without loss of generality:

22

23 p1x=0.
24 p1y=0.
25 p2x=10.
26 p2y=0.

