
Consistency and Trust in Peer Data Exchange Systems 1

ONLINE APPENDIX
for the paper

Consistency and Trust in Peer Data Exchange
Systems

published in Theory and Practice of Logic Programming

LEOPOLDO BERTOSSI

Carleton University, School of Computer Science, Ottawa,
Canada.

bertossi@scs.carleton.ca

LORETO BRAVO

Universidad del Desarrollo, Facultad de Ingenieŕıa,
Santiago, Chile.
bravo@udd.cl

Appendix A Discussion

A.1 On cycles and their assumptions

In this section, unless stated otherwise, we refer to the special semantics introduced

in Section 4.

We have assumed that G(P) is acyclic. However, the peers, not being aware of

being in a cycle in G(P), could attempt to do data exchange as described above.

In order to detect an infinite loop, for a query Q posed by a peer P, a unique

identifier id(P,Q) can be created and kept in all the queries that have origin in Q.

If an identifier comes back to a peer, it will realize that it is in a cycle and act

accordingly.

The assumption of acyclicity of the accessibility graph is quite cautious, in the

sense that it excludes cases where a reasonable semantics could still be given and

the logic programs would work correctly. This is because the cycles in G(P) are not

necessarily relevant.

Example 1

Consider S(P1) = {R1(·),S 1(·)}, S(P2) = {R2(·), S 2(·)}, Σ(P1, P2) = {∀x (R2(x)

→ R1(x))}, Σ(P2, P1) = {∀x (S 1(x)→ S 2(x))}, Trust = {(P1, less, P2), (P2, less,

P1)}. If a query is posed to P1, it will request from P2 the PCAs to query R2(x),

but not those to query S 2(x). Peer P2 can realize it does not need data from P1

and will simply return D(P2)� {R2} to P1, who will run its solution program and

2 L. Bertossi, L. Bravo

answer the original query. Even though there is a cycle in G(P), there is no infinite

loop in the query answering process. 2

As we mentioned before, if there are ref-cycles in Σ(P), the stable models of the

solution program for P may correspond to a strict superset of the solutions. This

is shown in the next example. In such a case, post-processing that deletes models

corresponding to non-minimal “solutions” is necessary.

Example 2

Consider D(P1) = {R1(a, b)}, D(P2) = {R2(a, c)}, Σ(P1, P2) = {∀x∀z (R1(x , z) →
∃y R2(x , y)), ∀x∀z (R2(x , z)→∃y R1(x , y)}, which is ref-cyclic; Σ(P2) = Σ(P1, P1) =

∅; and (P1, same, P2) ∈ Trust. Here, P1 has only one solution, namely {R1(a, b)}.
However, Π(P1) has two models. The most relevant part of the program consists

of the facts R1(a, b), R2(a, c), and the following rules:

R1 (x , y , f) ∨ R2 (x , null, t) ← R1 (x , y , t?), not aux1(x), x 6= null

aux1(x) ← R2(x , null), notR2 (x , null, f)

aux1(x) ← R2(x , y , t?), notR2 (x , y , f), x 6= null, y 6= null

R2 (x , y , f) ∨ R1 (x , null, t) ← R2 (x , y , t?), not aux2(x), x 6= null

aux2(x) ← R1(x , null), notR1 (x , null, f)

aux2(x) ← R1(x , y , t?), notR1 (x , y , f), x 6= null, y 6= null

The two models correspond to the neighborhood “solutions” {R1(a, b),R2(a, c)}
and ∅, producing in their turn, the instances {R1(a, b)} and ∅, resp., for P1. Only

the former is a solution instance. The second model is the result of cycles through

weak negation (not). The cycle creates the self justification of facts as follows: (i) If

we choose R2 (a, c, f) to be true, then by the second and third rules above, aux1(a)

is false. (ii) Then, the first rule can be satisfied, by making R1 (a, b, f) true. (iii) By

the fifth and sixth rules, aux2(a) is false. (iv) This justifies making R2 (a, b, f) true,

thus, closing the cycle. Notice, that in the whole justification the changes where

not determined by inconsistencies. 2

There are also cases with an acyclic G(P), but with ref-cycles in the DECs, where

the logic programming counterpart of the semantics is correct due to the role of the

trust relationships.

Example 3

(example 2 continued) If we replace (P1, same, P2) ∈ Trust by (P1, less, P2) ∈
Trust, the relevant part of Π(P1) now is: R1(a, b), R2(a, c), plus

R1 (x , y , f) ← R1 (x , y , t?), not aux1(x), x 6= null ·
aux1(x) ← R2(x , null), notR2 (x , null, f) ·
aux1(x) ← R2(x , y , t?), notR2 (x , y , f), x 6= null, y 6= null ·

R1 (x , null, t) ← R2 (x , y , t?), not aux2(x), x 6= null ·
aux2(x) ← R1(x , null), notR1 (x , null, f) ·
aux2(x) ← R1(x , y , t?), notR1 (x , y , f), x 6= null, y 6= null·

Consistency and Trust in Peer Data Exchange Systems 3

Since P1 trusts more peer P2 than itself, it will modify only its own data. This

program computes exactly the solutions for peer P1, i.e. {R1(a, b)}, even though

the DECs exhibit ref-cycles. 2

It becomes clear that it is possible to find more relaxed conditions, both on the

accessibility graph and ref-cycles, under which a sensible semantics for solutions

and semantically corresponding logic programs can be given. Also, for cyclic ac-

cessibility graphs, super peers (Yang and Garcia-Molina 2003) could be used, to

detect cycles and prune certain DECs, making the graph acyclic if necessary; and

then our semantics could be applied.

A.2 Query sensitive query answering

Our definition of the solution semantics and the peer consistent answers might

suggest that, in order to answer a particular query Q, a peer P has to import the

full intersection of the solutions of each of its neighbors, which in their turn have

to do the same, etc. If we do this, most likely most of the data imported by P will

be irrelevant for the query at hand, and is not needed.

It is possible to design query answering methodologies that are more sensitive to

the query at hand, in the sense that only the relevant data is transitively imported

into P before answering Q. A full treatment of this subject is beyond the scope of

this paper. However, we can give some indications as to how to proceed.

In (Caniupan and Bertossi 2010), the dependency graph of database predicates

with respect to a set of ICs was introduced and used to capture the notion of

possibly transitive relevance of a predicate for another, which is useful in consistent

query answering. Here we can use similar graphs for each peer in relationship with

its neighbors through a set of DECs, also taking into account the local ICs. These

graphs would give us a better upper bound on what to import from other peers (as

opposed to bringing the full intersection of solutions).

More precisely, if a query Q to P contains S(P)-predicates P1, . . . ,Pn , with rele-

vant S(Q)-predicates Q1
1 , . . . ,Q

1
m1
, . . . ,Qn

1 , . . . ,Q
n
mn

, resp., at a neighbor Q, then P

will request from Q the PCAs to each of the constant-free, atomic queries Q i
j (x̄).

The corresponding sets of answers will form the (most likely smaller) instance pro-

vided by Q to P, who will prune its repair program by keeping only the relevant

rules, i.e. those that are related to Q, the Pi and the Q i
j . This idea can be illustrated

by means of an example.

Example 4

Consider a schema P = 〈P,S,Σ, T rust〉 with P = {P1, P2, P3}, S = {S(P1),S(P2),

S(P3)}, S(P1) = {R1(·, ·), S 1(·, ·), T 1(·, ·)}, S(P2) = {R2(·, ·), S 2(·, ·),T 2(·, ·)},
S(P3) = {R3(·, ·),S 3(·, ·)}, Trust = {(P1, less, P2), (P2, same, P3)}. Let D be an

arbitrary instance for the PDES.

The sets of DECs are: Σ(P1, P1) = {∀x∀y(R1(x , y) ∧ S 1(x , y) → false)},
Σ(P1, P2) = {∀x∀y(R2(x , y) → R1(x , y)), ∀x∀y(S 2(x , y) → S 1(x , y))}, and Σ(P2,

P3) = {∀x∀y(R2(x , y) ∧ R3(x , y)→ false)}.
If P1 is posed the query Q1(x) : ∃yR1(x , y), then the relevant predicates in

4 L. Bertossi, L. Bravo

S(P1) are R1,S 1 (due to the DEC in Σ(P1)). Then, through the DECs also, it

follows that the predicates that are relevant to P1 are R2,S 2 at P2. So, P1 poses

to P2 the queries R2(x , y),S 2(x , y). The only relevant predicate at P3 is S 3. So, P2

will pose to P3 the query S 3(x , y).

In this case, P3 will return D(P3) � {R3} to P2, which, due to the UDEC in

Σ(P2, P3), will subtract it from D(P2) � {R2}, because (
⋂
Sol(P2,D)) � {R2} =

(D(P2)� {R2} r D(P3)� {R3}). Peer P2 will send this difference to P1 as it is the

answer to query R2(x , y). Peer P2 will also return to P1 the entire D(P2)�{S 2} as

its answer to the query S 2(x , y).

Finally, P1 will answer the original query with a solution program containing as

facts the tuples in D(P1)�{R1},D(P1)�{S 1},D(P2)�{S 2}, ((D(P2)�{R2})r(D(P3)�
{R3})). The last set, as an extension for R2 in the program. 2

The methodology sketched in this example will be certainly more efficient than

computing and shipping the full intersection of a peer’s solutions. It is natural to

expect that additional optimizations can be developed.

A particularly appealing, but provably less general, approach to peer-consistent

query answering is first-order query rewriting, which we illustrate by means of an

example.

Example 5

Consider an instance D = {D(P1),D(P2),D(P3)} for the schema P = 〈P,S,Σ,
T rust〉 with P = {P1, P2, P3}, S = {S(P1),S(P2), S(P3)}, S(Pi) = {Ri(·, ·)},
Trust = {(P1, less, P2), (P1, same, P3)}, D(P1) = {R1(a, b), R1(s, t)}, D(P2) =

{R2(c, d), R2(a, e)}, D(P3) = {R3(a, f), R3(s, u)} and the DECs:

Σ(P1, P2) = {∀x∀y(R2(x , y)→ R1(x , y))};
Σ(P1, P3) = {∀x∀y∀z (R1(x , y) ∧ R3(x , z) → y = z)}·

We are interested in P1’s solutions. Since P2, P3 are sink peers in the graph G(P),

we have the extended instance D = {R1(a, b),R1(s, t),R2(c, d), R2(a, e), R3(a, f),

R3(s, u)}, from which we have to obtain the solutions for P1.

The solutions for P1 are obtained by first repairing D with respect to Σ(P1, P2),

obtaining D1 = {R1(a, b),R1(s, t), R1(c, d),R1(a, e), R2(c, d),R2(a, e), R3(a, f),

R3(s, u)}. We have only one repair at this stage, which now has to be repaired in

its turn with respect to Σ(P1, P3) (but keeping the relationship between P1 and P2

satisfied). There are two sets of tuples violating Σ(P1, P3) in D1: {R1(s, t),R3(s, u)}
and {R1(a, b),R1(a, e), R3(a, f)}. The first violation can be repaired by deleting

any, but only one, of the two tuples. The second one, by deleting tuple R3(a, f)

only (otherwise we would violate the relationship between P1 and P2).

As a consequence, we obtain two neighborhood solutions: D ′ = {R1(a, b),R1(s, t),

R1(c, d), R1(a, e),R2(c, d),R2(a, e)}, and D ′′ = {R1(a, b),R1(c, d),R1(a, e),

R2(c, d),R2(a, e), R3(s, u)}. The solutions for P1 are: D(P1)′ = {R1(a, b),R1(s, t),

R1(c, d), R1(a, e)} and D(P1)′′ = {R1(a, b), R1(c, d), R1(a, e)}.
If the query Q : R1(x , y) is posed to P1, the PCAs are 〈a, b〉, 〈c, d〉, 〈a, e〉, because

those are R1-tuples found in in the intersection of P1’s solutions.

Now, let us try an alternative method for peer consistently answering the same

Consistency and Trust in Peer Data Exchange Systems 5

query. We first rewrite the query using the DEC in Σ(P1, P2), obtaining Q′ :

R1(x , y)∨R2(x , y), with the effect of bringing P2’s data into P1. Next, considering

Σ(P1, P3), this query is rewritten as

Q′′ : [R1(x , y) ∧ ∀z1((R3(x , z1) ∧ ¬∃z2R2(x , z2)) → z1 = y)] ∨ R2(x , y)· (A1)

To answer this query, P1 first issues a query to P2 to retrieve the tuples in R2, since

they will be essentially in R1 in all the solutions, due to Σ(P1, P2). Next, a query is

issued to P3 to leave aside from the answers those tuples of R1 that have the same

first but not the same second argument in R3. This filtering is performed as long

as there is no tuple in R2 that “protects” the tuple in R1. For example, the tuple

R1(a, b) is protected by R2(a, e) because, as R1(a, e) belongs to all the solutions,

the only way to repair a violation with respect to Σ(P1, P3) is by deleting the tuple

from R3. In this case, the R1-tuple will be in the answer.

We can see that answering query (A1) amounts to issuing from P1 queries to P2,

P3 about the contents of their relations, R2 and R3, resp., which are answered by

the latter by classical query evaluation over their local instances. After those data

have been gathered by P1, it proceeds to evaluate (A1), which contains an implicit

repair process.

Now, the answers to (A1) are 〈a, b〉, 〈c, d〉, 〈a, e〉, precisely the PCAs we obtained

above, considering all the explicit solutions for P1. 2

The FO rewriting methodology we just illustrated is bound to have limited appli-

cability. If this was a general mechanism, PCAs to conjunctive queries could be

obtained in polynomial time in data, i.e. in the size of the union of the instances

of a peer and those of its neighbors (or the local intersections of their solutions).

However, Corollary 5.2 tells us that the complexity is higher than this (if P 6= NP).

A.3 A semantics based on arbitrary data elements

The purpose of this section is twofold. First, we will present an alternative special

semantics that fits into the general semantic framework of Section 3. Second, we will

show that this general semantics (and also the one in Section 4) can handle data

mappings that are more complex that those usually considered in the related work

on peer data exchange. All this will be done on the basis of an extended example.

Consider a PDES P = 〈P,S,Σ, T rust〉 with P = {P1, P2}, S = {S(P1),S(P2)},
S(P1) = {R1(·, ·), T 1(·, ·)}, S(P2) = {T 2(·, ·), S 2(·, ·)}, Trust = {(P1, less, P2)},
and Σ(P1, P2) consists of the following DEC:

∀x∀y∀z (R1(x , y) ∧ T 2(z , y) → ∃w(T 1(x ,w) ∧ S 2(z ,w)))· (A2)

This DEC, which falls within our general syntactic class of DECs, mixes tables of

the two peers on each side of the implication. This kind of mapping is more general

than those typically considered in virtual data integration (Lenzerini 2002) or data

exchange (Kolaitis 2005).25

25 Cf. (Bertossi and Bravo 2004b) for some connections between PDESs and virtual data integra-
tion under the local-as-view approach. Also (De Giacomo et al. 2007), for relationships between
PDESs, virtual data integration, and data exchange.

6 L. Bertossi, L. Bravo

If (A2) is not satisfied by the data in P1 and P2, which happens when the join in

the antecedent is satisfied, but not the one in the consequent, then solutions for P1

have to be found, keeping P2’s data fixed in the process, due to the trust relation-

ship. Now, in this section we will depart from the solution semantics introduced in

Section 4, by restoring consistency with respect to (A2) through the introduction

of arbitrary elements of the data domain U .26 Those elements become witnesses

for the existentially quantified variables in the DECs. That is, these values come

from the data domain, and are not replaced by null or by labeled nulls as in data

exchange (Kolaitis 2005). Since we have alternative choices for them, we may obtain

different solutions for a peer. However, by definition of solution, they have to stay

as close as possible to the original instance. In this case, the general comparison

relation �D between neighborhood instances of Section 3 is given by: D1 �∆
D D2

iff ∆(D ,D1) ⊆ ∆(D ,D2).

We will specify the solutions for this example directly in (or using) logic programs.

We will also show the most relevant part of the program Π−(P1). Since we have to

restore consistency with respect to (A2), the main rules are (A3)-(A6) below.

R1 (x , y , f) ← R1 (x , y , t?),T 2(z , y), not aux1(x , z), not aux2(z) · (A3)

aux1(x , z) ← T 1 (x ,w , t?),S 2(z ,w) · (A4)

aux2(z) ← S 2(z ,w)· (A5)

That is, R1(x , y) is deleted if it participates in a violation of (A2) (what is captured

by the first three literals in the body of (A3) plus rule (A4)), and there is no way

to restore consistency by inserting a tuple into T 1, because there is no possible

matching tuple in S 2 for the possibly new tuple in T 1 (what is captured by the last

literal in the body of (A3) plus rule (A5)). In case there is such a tuple in S 2, we

can either delete a tuple from R1 or insert a tuple into T 1:

R1 (x , y , f) ∨ T 1 (x ,w , t) ← R1 (x , y , t?), T 2(z , y), not aux1(x , z),

S 2(z ,w), choice((x , z),w)· (A6)

That is, in case of a violation of (A2), when there is tuple of the form S 2(a, t)

in S 2 for the combination of values 〈d , a〉, then the choice operator (Giannotti

et al. 1991) non-deterministically chooses a unique value for t , so that the tuple

T 1(d , t) is inserted into T 1 as an alternative to deleting R1(d ,m) from R1. The

choice predicate can be eliminated and replaced by another predicate that can be

specified by means of extra but standard rules (Giannotti et al. 1991).

If, instead, we had Trust = {(P1, same, P2)}, P2’s relations would also be flexible

when searching for solution instances. In this case, the program becomes more

involved in terms of presentation (but not conceptually), in the sense that more

relations can be updated, and corresponding repair rules have to be added.

Notice that in this example, the values that are chosen as witnesses for the

existential quantifier in the DEC are taken from the active domain of the database,

26 This U could be a finite superset of the union of the active domains involved or infinite. The
latter case is also covered by our semantics. The logic programming semantics is also perfectly
defined in this case.

Consistency and Trust in Peer Data Exchange Systems 7

namely from the set of values for the second attribute of relation S 2. In other cases,

for example with a DEC of the form ∀x∀y(T 2(x , y) → ∃zR1(x , z)), we have to

consider arbitrary values from an underlying domain dom when inserting tuples into

R1. In this case, dom requires a specification as a finite predicate in the program.

Some of the ideas presented above (such as the insertion of elements from the

active domain and the use of the choice operator) have been fully developed and

applied by the authors (Bertossi and Bravo 2004a; Bravo and Bertossi 2003; Bravo

and Bertossi 2005) to inconsistency management in virtual data integration systems

under the local-as-view approach (Lenzerini 2002).

A.4 Data transport and semantics

The data distributed across different peers has to be appropriately gathered to build

solution instances for a peer, and different semantics may emerge as candidates,

depending on the granularity of the data sent between peers. In the context of

the general semantic framework introduced in Section 3, we developed a particular

semantics in Section 4, according to which a peer Q passes back to a neighbor P,

who is building its solutions, this is (part of) its certain data. This is the one that

holds in all of Q’s solutions.

In (Bravo 2007, chapter 7) also two other alternative semantics are fully developed

and compared, in particular establishing some conditions under which they coincide

or differ. Those other semantics assume that more detailed information, such as

mappings and trust relationships, can be sent between peers. We briefly describe

them.

1. Send all. The first one assumes that data, DECs and trust relations can be

sent between peers. So, we can think that we have a possibly large database in-

stance that has to be virtually repaired in order to satisfy all the relevant DECs

(obtained from the accessibility graph) and at the same time accommodating the

trust relationships. In this case, the DECs are treated as traditional ICs on the

integrated instance. This semantics is similar to the repair semantics for consis-

tent query answering. Preferences imposed on repairs can be used to capture the

trust relationships. In this case, it is not necessary to require the acyclicity of the

accessibility graph.

2. Send solutions. The second one assumes that only solutions can be send between

neighboring peers. In this case, a peer P requests the solutions of the neighbors in

order to calculate its own solutions. Here, the database consists of the data at P

plus all the solutions of P’s neighbors; and the constraints are the DECs between

P and its neighbors. As in Section 3, this is a recursive definition, and assumes an

acyclic accessibility graph.

We think that the semantics we developed in Section 3, which could be called

“send cores”, is more natural (a peer passes over what it is certain about), and also

simplifies reasoning at the local level, i.e. at each peer’s site, because at most one

instance peer neighbor has to be considered.

8 L. Bertossi, L. Bravo

Now, under our official semantics, if we want to use local solution programs, each

neighbor of a peer P has to run its program, and then send the (relevant part of

the) intersection of the stable models to P, who runs its local solution program.

This means that different programs have to be fed externally.

At least under the “send solutions” and “send cores” semantics (which assumes

an acyclic peer graph), we could imagine having a single program that does all

this output/input concatenation, internally. Actually, it is possible to build a single

program for a peer, say Πman(P), that acts as a combination of solution programs as

given in Section 6. For each peer Q that is accessible from P, the program locally runs

a solution program, produces Q’s solutions (its stable models), or the intersection

thereof; and, without leaving Πman(P), passes them to its preceding neighbors Q’,

who uses them to locally compute its own solutions by means of its own, local

solution program, etc., until reaching P. Such a program Πman(P) can be a manifold

program (Faber and Woltran 2011).

Actually, within a manifold program (MP), a program can pass certain or possible

query answers as an input to another program. Conceptually, MPs offer a nice

logical solution, by means of a single program, to this form of program combination

that, otherwise, would require external intervention (the efficient implementation

of MPs is still an open problem).

A.5 On trust

We introduced trust relationships in the process of peer data exchange already in

(Bertossi and Bravo 2004b); and here we have further developed this idea, in a

general semantic framework. However, the notion of trust we have in this work is

still rather simple. Actually, it can be represented as an annotated binary relation

between peers. It would be interesting to impose a more sophisticated and rich

model of trust on top of the DECs-bases network of peers. Our concern is not

about computing or updating trust in a P2P overlay network (Xiong and Liu 2004;

Jøsang et al. 2006), but about logical specifications of trust. We envision a logic-

based model of trust that can be integrated with/into the DECs. Such a model

could express some higher level properties, e.g. symmetry or transitivity of trust

relationships. A logic-based representation of trust could allow us to infer non-

explicit trust relationships whenever necessary.

Trust modeling is an active and important area of research nowadays, most no-

tably in the context of the semantic web. See (Sabater and Sierra 2005; Artz and

Gil 2007) for surveys. The integration of trust models, including related notions,

like reputation, provenance, etc., into peer data exchange is still an open area of re-

search. This is specially the case for logic-based models of trust (Herzig et al. 2008).

See (Hien Nguyen et al. 2008) and references therein for probabilistic approaches.

In Definition 6.1, the trust relationships between peers were implicitly and rigidly

captured in the specifications of solutions by means of the disjunctive heads of

the repair rules. Although this is a simpler way of presenting things, it has some

drawbacks: (a) The approach is not modular in the sense that trust is built-in into

the rules; (b) Changes in trust relationships requires changing heads of repair rules;

Consistency and Trust in Peer Data Exchange Systems 9

and (c) In case no solution exists due to the rigid and conflicting trust relationships,

no alternative, but possibly less desirable solution can be obtained as a stable model

of the solution program.

One way of addressing these issues is through the use of preference programs,

which are answer set programs that express different forms of preference, which

essentially amounts to preferring and keeping only certain stable models of the

program. For example, in a disjunctive rule of the form A ∨ B ← Body, one could

prefer to make A true instead of B . If this is possible, only that stable model would

be chosen. However, if that is not possible (due to the other rules and facts in

the program), making B true is still good enough. More complex preferences could

also be captured. Preferences can be explicitly and declaratively expressed, and the

resulting programs can be compiled into usual answer set programs with their usual

stable model semantics (cf. (Brewka 2004) and references therein).

Here we briefly outline how weak program constraints (Buccafurri et al. 2000;

Leone et al. 2006) declaratively capture the kind of preferences that address our

needs. (Cf. (Brewka 2004) for connections between preferences in logic programs

and weak constraints.).

Example 6

Consider Example 6.2, where (P1, less, P2) ∈ Trust is captured by the non-disjunctive

repair rule

R1 (x , y , t)← R2 (x , y , t?),R1 (x , y , f?), x 6= null, y 6= null·

The same effect, and more, could be obtained by uniformly using disjunctive rules

followed by appropriate weak constraints. In this case,

R1 (x , y , t) ∨ R2 (x , y , f) ← R2 (x , y , t?),R1 (x , y , f?), x 6= null, y 6= null ·
⇐ R2 (x , y , f)· (A7)

Here, the weak constraint (A7) expresses a preference for the stable models of the

program that minimize the number of violations of the condition expressed its body,

in this case, that, when restoring the satisfaction of the DEC ∀x∀y(R2(x , y) →
R1(x , y)), the tuple R2(x , y) is not deleted. These weak constraints are used by a

peer P to ensure that, if possible, the tuples in the peers that it trusts more than

itself are not modified. 2

If the original solution program has solutions, then the new program would have

the same solutions. However, the latter could have solutions when the former does

not. This would make the semantics of the system more flexible with respect to

unsatisfiable trust requirements. It is also clear that the weak constraints could be

easily derived from the trust relationships and the DECs. The solution program

with weak constraints can be run in the DLV system (Leone et al. 2006) to obtain

the solutions and peer consistent answers of a peer.

Notice that the new repair programs, except for the weak program constraints,

are now of the same kind as those for specifying repairs of single databases with

respect to local ICs (Bravo and Bertossi 2006). Actually, if in the new program the

10 L. Bertossi, L. Bravo

weak program constraints are replaced by (hard) program constraints, e.g. (A7) by

← R2 (x , y , f), the solutions coincide with those of the programs in Definition 6.1.

We should mention that in (Arenas et al. 2003), weak constraints were used, as

a part of a repair program, to specify the preference for cardinality repairs, i.e.

repairs that minimize the number of tuples that are inserted or deleted to restore

consistency, as opposed to minimality (with respect to subset-inclusion) of sets of

inserted/deleted tuples.

Appendix B Proofs of Results

Proof of Proposition 3.1:

Let D0 be an empty instance for the schema S(N (P)). By being empty, D0 satis-

fies
⋃
Q∈N (P) Σ(P, Q) (condition (i) for a neighborhood solution). Also, since all the

trust relationships are of the “same” kind, condition (ii) on neighborhood solutions

is satisfied by D0. Then, either D0 is a neighborhood solution, or there exists a

neighborhood solution D ′′ such that D ′′ �D̄ D0. 2

Proof of Corollary 3.1:

All we need is notice that the possibly inconsistent sink peers in the accessibility

graph always have local repairs under the kind of DECS considered (ICs in that

case). A solution for a peer P can then be obtained by recursively propagating back

neighborhood solutions (that always exist by Proposition 3.1) for peers along the

paths that contain P. 2

Proof of Proposition 5.1:

Membership of coNP is established by directly appealing to Definition 3.1 of neigh-

borhood solution. In fact, given neighborhood instance J , after having checked (in

polynomial time) if J ⊆ r -Chasenull(D̄ ,Σ−(P)), a non-deterministic algorithm to

test that J is not a neighborhood solution for P and the neighborhood instance D̄

checks if one of the following holds:

1. J 6|= Σ(P).

2. J � {R} 6= D̄ � {R}, for some Q ∈ N (P) and predicate R ∈ S(Q) with

(P, less, Q) ∈ Trust.
3. There is an instance J ′ for S(N (P)) (the non-deterministic choice) that sat-

isfies conditions (i) and (ii) of Definition 3.1, but J ′ <Σ(P)

D̄
J .

These conditions are the basis for a non-deterministic algorithm: First conditions

1. and 2. can be checked deterministically in polynomial time. If they are passed by

J (i.e. the answer is negative), then an instance J ′ with size polynomially bounded

by the size of J is guessed. Next, conditions 1.-2. are checked for J ′, and 3., for the

pair (J , J ′). The three tests can be performed in polynomial time in |J | + |D̄ |. If

the answer to any of the tests is yes, J is not a neighborhood solution.

Hardness can be proved by reduction of satisfiability of propositional formulas

in CNF, which is coNP -complete. The reduction is a modification of that used in

Consistency and Trust in Peer Data Exchange Systems 11

Theorem 4.4 of (Chomicki and Marcinkowski 2005) to prove that repairs obtained

through deletions are coNP -complete. In our case we have to deal with trust rela-

tionships and the possible insertion of tuples with null. Actually, in our proof the

former will be used to exclude the latter.

We now show that the satisfiability of a propositional formula ϕ : ϕ1 ∧ ϕ2 ∧
. . . ϕm in CNF (i.e. the ϕi are clauses) can be reduced to checking if a particular

neighborhood instance is a neighborhood solution for a given peer.

Consider the fixed PDES schema (it does not depend on ϕ): P = 〈P,S,Σ, T rust〉,
with P = {P1, P2}, S = {S (P1),S (P2)}, S (P1) = {R1(·, ·, ·, ·)}, S (P2) = {R2(·, ·, ·, ·)},
Trust = {(P1, same, P1), (P1, less, P2)}, and Σ = {Σ(P1, P1),Σ(P1, P2)}, with:

Σ(P1, P1) = {∀x1y1y2z1z2w1w2(R1(x1, y1, z1,w1) ∧ R1(x1, y2, z2,w2)→ y1 = y2),

∀x1y1z1w1(R1(x1, y1, z1,w1)→ ∃x2y2z2R1(x2, y2, z2, z1))}.
Σ(P1, P2) = {∀xyzw(R1(x , y , z ,w)→ R2(x , y , z ,w))}.

Now, consider a propositional formula ϕ as above, on which the instances for the

peer system will depend. Let Dϕ = {D(P1),D(P2)} be the instance for P, with:

D(P1) = {R1(pj , 0, ϕi , ϕi+1) | pj occurs negatively in ϕi} ∪
{R1(pj , 1, ϕi , ϕi+1) | pj occurs positively in ϕi} ·

D(P2) = {R2(a, b, c, d) | R1(a, b, c, d) ∈ D(P1)}·
(The addition i +1 is meant to be modulo the number m of clauses in φ.) Notice that

tables R1 and R2 for peers P1 and P2, respectively, have the same rows. Intuitively,

the UDEC in Σ(P1, P1) ensures that, for every proposition in the first attribute of

R1, the truth assignment, if any, is unique; whereas the RDEC in it, ensures that

there are assignments that make all clauses in the formula true.

We now show that the neighborhood instance D̄ , with the empty relation for R1

plus the original contents of D(P2), is the neighborhood solution for P1 with initial

neighborhood instance D(P1)∪D(P2) if and only if ϕ is not satisfiable. In this case,

D̄ would be obtained through the deletion of all tuples from R1 in D(P1). Notice

that due to the trust relations and the DEC in Σ(P1, P2), only tuple deletions from

peer P1’s instance are admissible updates.

To prove that D̄ being a neighborhood solution for P1 implies that ϕ is not sat-

isfiable, assume by contradiction that ϕ is satisfiable. Then, there is an assignment

σ that makes ϕ true.

The instance D̄ ′ := {R1(p, 0, ϕi , ϕi+1) ∈ D(P1) | σ(p) = 0} ∪ {R1(p, 1, ϕi , ϕi+1) ∈
D(P1) | σ(p) = 1} ∪ D(P2) is a subinstance of D(P1) ∪ D(P2), D̄ ′� S(P1) 6= ∅,
satisfies the DECs, and does not modify the more trusted relations, i.e. D̄ ′�S(P2) =

D(P2). Thus, D̄ cannot be a neighborhood solution since D̄ ′ <Σ(P1)

D(P1)∪D(P2)
D̄ .

Now we show that if ϕ is not satisfiable, then D̄ is a neighborhood solution for

P1 when starting with neighborhood instance D(P1) ∪ D(P2). Assume by contra-

diction that D̄ is not a neighborhood solution. Since D̄ satisfies all the DECs and

respects the trust relationships, D̄ cannot be a neighborhood solution only if there

is a neighborhood instance D̄ ′, such that: D̄ ′ |= Σ(P1); D̄ ′� S (P2) = D(P2), and

D̄ ′ <Σ(P1)

D(P1)∪D(P2)
D̄ . Since D̄ ′ can be obtained only through tuple deletions, it holds:

12 L. Bertossi, L. Bravo

D̄ $ D ′ ⊆ D(P1) ∪ D(P2). Thus, there is at least one tuple R1(t̄) ∈ (D̄ ′ ∩ D(P1)).

Due to the UDEC in Σ(P1, P2), we conclude that, for every i ∈ [1,m], there exists

a p and v with R1(p, v , ϕi , ϕi+1) ∈ (D ′ ∩D(P1)). Using these tuples we can define

the following assignment σ′:

σ′(p) =

{
1 if R1(p, 1, ϕi , ϕi+1) ∈ D ′ with i ∈ [1,m]

0 if R1(p, 0, ϕi , ϕi+1) ∈ D ′ with i ∈ [1,m]

The assignment is well defined, because the functional dependency in Σ(P1, P1)

ensures that only one value exists for each proposition. By construction, σ′ is an

assignment that satisfies ϕ. We have reached a contradiction, which completes the

proof. 2

Proof of Proposition 5.2:

First we prove membership of ΠP
2 . An atom R(t̄) ∈ localCore(P, D̄) if for every

D ′ ∈ NS(P, D̄), D ′ |= R(t̄). Thus, a non-deterministic algorithm that checks if

R(t̄) 6∈ localCore(P, D̄) guesses an instance J of S(N (P)), next checks if it is a

neighborhood solution for P and D̄ , and finally, if R(t̄) 6∈ J . By Proposition 5.1,

the first of these two tests is in coNP ; and the second one is in polynomial time.

Thus, the problem is in ΠP
2 .

Hardness holds by a reduction from satisfiability of a quantified propositional

formulas (QBF) β of the form ∀p1 · · · ∀pk∃q1 · · · ∃qlψ, where ψ is a quantifier-free

propositional formula in CNF, i.e. of the form ψ1 ∧ . . . ∧ ψm , where the ψi are

clauses. This problem is ΠP
2 -complete (Schaefer and Umans 2008; Papadimitriou

1994). (The reduction is adapted from that for Theorem 4.7 in (Chomicki and

Marcinkowski 2005).)

We construct a PDES schema (independent from β) P0 = 〈P0,S0,Σ0, T rust0〉,
with P0 = {P1, P2}, S0 = {S(P1),S(P1)}, S(P1) = {R(·, ·, ·),T (·)}, S(P2) =

{Clause(·), V ar(·)}, Trust0 = {(P1, less, P2)}, and the DECs Σ0 = {Σ(P1, P2),

Σ(P1, P1)} with:

Σ(P1, P2) = {∀x (Clause(x)→ ∃yzR(y , z , x)),

∀x (V ar(x)→ R(x , 1, a) ∨ R(x , 0, a))},
Σ(P1, P1) = {∀xy1y2z1z2(R(x , y1, z1) ∧ R(x , y2, z2))→ y1 = y2,

∀xyzw(R(x , y , z) ∧ T (w)→ w 6= sat ∨ IsNotNull(x) ∨ IsNotNull(y))} ·

Now, given a QBF β, we construct an instance D̄β for the neighborhood schema

S(N (P1)) around P1, such that: T (sat) ∈ localCore(P1, D̄β) iff β is true.

Now, for β = ∀p1 · · · ∀pk∃q1 · · · ∃ql(ψ1 ∧ . . . ∧ ψm), D̄β := Dβ(P1) ∪Dβ(P2), with:

Dβ(P1) := {R(varj , 1, ψi) | varj occurs positively in ψi} ∪
{R(varj , 0, ψi) | varj occurs negatively in ψi} ∪
{V ar(pi) | pi is universally quantified in ψ} ∪ {T (sat)} ·

Dβ(P2) := {Clause(ψ1), . . . , Clause(ψm)}·
Intuitively, relation R(x , y , z) is used to provide a truth value y to variable x in

conjunct z . This truth value will be unique across ψ due to the integrity constraints

Consistency and Trust in Peer Data Exchange Systems 13

Fig. B 1. Instances for a peer system

on R contained in Σ(P1, P1). The first DEC in Σ(P1, P2) ensures that, for every

clause ψi , there is, if possible, a literal which is true in it. If it is not possible

(the formula is not true), it inserts a tuple of the form R(null, null, ψi). The second

DEC ensures that all possible assignments for the universally quantifies variables are

tested in different solutions. It uses a constant, a, which is different from all ψi . The

first IC in Σ(P1, P1) enforces that, in each solution, each propositional variable takes

a unique value. Finally, the second IC in Σ(P1, P1) ensures that if R(null, null, ψi)

is true, then predicate T (sat) should not be part of the neighborhood solution. In

this way, formula β is true if and only of T (sat) ∈ localCore(P1, D̄β). To conclude

the proof, we illustrate the reduction with the following example.

Example 7

Consider the QBF ∀p1∃q1∃q2(ψ1 ∧ ψ2 ∧ ψ3), with ψ1 : (p1 ∨ q1), ψ2 : (p1 ∨ ¬q2),

and ψ3 : q2. Instance D̄β is the union of the instances in Figure B 1.

On this basis, the neighborhood solutions for P1 and D̄β are:

D1 ={R(p1, 1, a),R(p1, 1, ψ1),R(q1, 1, ψ1),R(p1, 1, ψ2),R(q2, 1, ψ3),T (sat)}∪D(P2),

D2 ={R(p1, 0, a),R(q1, 1, ψ1),R(q2, 1, ψ3),R(null, null, ψ2)} ∪D(P2), and

D3 ={R(p1, 0, a),R(q1, 1, ψ1),R(q2, 0, ψ2),R(null, null, ψ3)} ∪D(P2).

Since T (sat) 6∈ localCore(P1, D̄β) := (D1 ∩D2 ∩D3)�S(P1), the QBF formula is

false.

2

Proof of Corollary 5.2:

Membership is established with a test similar to that in the proof of Proposition

5.2. Hardness follows from Proposition 5.2, because it is about a particular kind of

conjunctive queries, namely atomic of the form Q(x̄) : R(x̄), where R is a predicate

for a peer P. The peer consistent answers to this query are exactly the c̄s, such that

R(c̄) is in the local core of P. 2

Proof of Proposition 5.3:

The existence and uniqueness is straightforward since there are no local restrictions

(existence), and there is no non-determinism involved (uniqueness). The unique so-

lution for a peer P can be computed by means of Algorithm ImportSolution shown in

Figure B 2. It recursively computes the solutions for all the peers that are accessible

from P. The base case occurs when a peer Q has no DECs (line 4). In that case,

14 L. Bertossi, L. Bravo

1 Algorithm: ImportSolution

2 Input: An instance D for a PDES schema P = 〈P,S,Σ, T rust〉 and a peer P ∈ P
3 Output: The unique solution of P

4 if P has no outgoing edges then return D(P);
5 else
6 foreach Q ∈ N ◦(P) do
7 Sol(Q,D)← ImportSolution(P, Q);
8 D ′ ← D(P) ∪

⋃
Q∈N◦(P) Sol(Q,D);

9 NS ← minimal model of Datalog import program I(P,D ′) ;
10 return NS�S(P);

Fig. B 2. Computing the solution for a peer in the import case

its unique solution is its own database D(Q). Otherwise (lines 5-10), the algorithm

recursively requests the solutions of its neighbors (lines 6-7) and uses them to con-

struct instance D ′ (line 8). Then, the unique neighborhood solution for the peer

consists of the minimal model of I(P,D ′) (line 9). By restricting P’s neighborhood

solution to P’s schema we get P’s solution (line 10). 2

Proof of Proposition 6.1:

We will prove this result for the case where the central peer trusts its neighbors

as much as itself, which is more general in some sense than that where it trusts

neighbors’ data more, because more alternatives for repairs come up, using the full

power of disjunctive programs. Below D is P’s neighborhood instance for which

neighborhood solutions are specified by means of the program in Definition 6.1. C
is the set of constraints, i.e. UDECs and RDECs, for the neighborhood.

Given the trust assumptions, the program takes a special form, as follows. For

exchange constraints in C of the forms:

(a) Universal constraint (UDEC):

∀x̄ (

m∧

i=1

Pi(x̄i) −→
n∨

j=1

Qj (ȳj) ∨ ϕ)· (B1)

(b) Referential constraint: (RDEC)

∀x̄ (P(x̄) −→ ∃ȳ Q(x̄ ′, ȳ)) · 27 (B2)

the neighborhood solution program Π(P,D) becomes:

1. dom(c) for every c ∈ Adom(D) r {null}.
2. The fact P(ā) for every atom P(ā) ∈ D.

3. For every UDEC ψ of the form (B1), the rule:∨n
i=1 Pi (x̄i , f) ∨

∨m
j=1 Qj (ȳj , t) ←−

∧n
i=1 Pi (x̄i , t

?),
∧m

j=1 Qj (ȳj , f
?),∧

xl∈RelV (ψ) dom(xl), ϕ̄·
where RelV (ψ) is the set of relevant attributes for ψ, x̄ =

⋃n
i=1 xi , and ϕ̄ is a

conjunction of built-ins that is equivalent to the negation of ϕ.

4. For every RDEC ψ of the form (B2), the rules:28

28 Literal dom(x̄) denotes the conjunction of the atoms dom(xj) for xj ∈ x̄ .

Consistency and Trust in Peer Data Exchange Systems 15

P (x̄ , f) ∨Q (x̄ ′, null, t)← P (x̄ , t?), not auxψ(x̄ ′), dom(x̄ ′)·
And for every yi ∈ ȳ :

auxψ(x̄ ′)← Q (x̄ ′, ȳ , t?), not Q (x̄ ′, ȳ , f), dom(x̄ ′), dom(yi).

auxψ(x̄ ′)← Q(x̄ ′, null), not Q (x̄ ′, null, f), dom(x̄ ′).
5. For every predicate P ∈ S(N (P)), the rules:

P (x̄ , t?)← P(x̄) · P (x̄ , t?)← P (x̄ , t)·
P (x̄ , f?)← P(x̄ , f) · P (x̄ , f?)← dom(x̄), not P(x̄)·

6. For every predicate P ∈ S(N (P)), the interpretation rules:

P (x̄ , t??) ← P (x̄ , t) · P (x̄ , t??) ← P(x̄), not P (x̄ , f)·
7. For every predicate P ∈ S(N (P)), the coherence constraints:

← P (x̄ , t), P (x̄ , f)·
The claim is: IfM is a stable model of Π(P,D), then DM is a neighborhood solution

repair of D. Furthermore, the neighborhood solutions obtained in this way are all

the neighborhood solutions of D. We recall that for a stable model of Π(P,D),

DM = {P(ā) | P ∈ S(N (P)) and P (ā, t??) ∈ M }· (B3)

The proof follows directly from Propositions 1 and 2 below, which require in their

turn some lemmas and intermediate definitions. 2

In the following, for a disjunctive program Π and a set of ground atoms M , ΠM

is the positive ground program obtained by the Gelfond-Lifschitz transformation

(Gelfond and Lifschitz 1991):

ΠM = {H ← B | H ← B , notA1, . . . , notAm ∈ ground(Π), and A1, . . .Am /∈ M }·

Lemma 1

Given an instance D and a RDEC-acyclic set of UDECs and RDECs, if M is a

stable model of Π(P,D), then exactly one of the following cases holds:

1. P(ā), P (ā, t?) and P (ā, t??) belong to M , and no other P (ā, v), for v an

annotation, belongs to M .

2. P(ā), P (ā, t?) and P (ā, f) belong to M , and no other P (ā, v), for v an

annotation, belongs to M .

3. P(ā) 6∈ M , and P (ā, t), P (ā, t?), P (ā, t??) belong to M , and no other

P (ā, v), for v an annotation, belongs to M .

4. P(ā) 6∈ M , and no P (ā, v), for v an annotation, belongs to M .

Proof: For an atom P(ā), there are two possibilities:

(a) P(ā) ∈ M . Then, from rule 5., P (ā, t?) ∈ M . Two cases are possible now:

P (ā, f) 6∈ M or P (ā, f) ∈ M . In the first case, since M is minimal, P (ā, t) 6∈
M and P (ā, t??) ∈ M . In the second case, due to rule 7., P (ā, t) 6∈ M . These

cases cover the first two in the statement of the lemma.

(b) P(ā) 6∈ M . Two cases are possible now: P (ā, t) ∈ M or P (ā, t) 6∈ M . In

the first one, it also holds P (ā, t??), P (ā, t?) ∈ M , by rules 5. and 6.; and

P (ā, f) 6∈ M by rule 7. In the second case, P (ā, t?) 6∈ M (because M is

minimal), P (ā, f) 6∈ M (because P (ā, t?) 6∈ M , and M is minimal). These

cases cover the last two in the statement of the lemma.

16 L. Bertossi, L. Bravo

2

From two database instances we can define a structure.

Definition 1

For two database instances D1 and D2 over the same schema and domain and a

set of constraints C, M ?
C (D1, D2) is the Herbrand structure 〈U , IP , IB〉, where U

is the underlying domain,29 and IP , IB are the interpretations for the database

predicates (extended with annotation arguments), and the built-ins, respectively.

IP is inductively defined as follows:

1. If P(ā) ∈ D1 and P(ā) ∈ D2, then P(ā), P (ā, t?) and P (ā, t??) ∈ IP .

2. If P(ā) ∈ D1 and P(ā) 6∈ D2, then P(ā), P (ā, t?) and P (ā, f) ∈ IP .

3. If P(ā) 6∈ D1 and P(ā) 6∈ D2, then P (ā, v) 6∈ IP for every annotation v .

4. If P(ā) 6∈ D1 and P(ā) ∈ D2, then P (ā, t), P (ā, t?) and P (ā, t??) ∈ IP .

5. For every RDEC ψ ∈ C of the form ∀x̄ (P(x̄)→ ∃ȳQ(x̄ ′, ȳ)): If P (ā, t??) ∈ IP
and Q (ā ′, b̄, t??) ∈ IP , with ā 6= null and at least one b ∈ b̄, b 6= null, then

auxψ(ā ′) ∈ IP .

The interpretation IB is defined as expected: if Q is a built-in, then Q(ā) ∈ IB iff

Q(ā) is true in classical logic, and Q(ā) 6∈ IB iff Q(ā) is false. 2

Notice that the database instance associated to M ?
C (D1,D2) through (B3) corre-

sponds exactly to D2, i.e. DM?
C (D1,D2) = D2.

Lemma 2

Given an instance D and a set C of UDECs and RDECs, if D ′ |=
N
C, then there is

a model M of the program Π(P,D)M with DM = D ′. Actually, M ?
C (D ,D ′) is such

a model.

Proof: Since DM?
C (D,D′) = D ′, we only need to show that M ?

C (D ,D ′) satisfies all

the rules of Π(P,D)M
?
C (D,D′). First, by construction, it is clear that rules 2., 5. and

6. are satisfied by M ?
C (D ,D ′).

For every UDEC in C, the program has the rule in 3. If its body is satisfied,

then the atoms Pi (āi , t
?) ∈ M ?

C (D ,D ′) and Qi (b̄i , f) ∈ M ?
C (D ,D ′) or Qi(b̄i) 6∈

M ?
C (D ,D ′). Also, since the constraint is satisfied, at least one of the Pi(āi) is not

in D ′ or one of the Qi(b̄i) is in D ′. By construction of M ?
C (D ,D ′), at least one

of Pi (āi , f) or Qi (b̄i , t) is in M ?
C (D ,D ′). Therefore, the head of the rule is also

satisfied.

For every RDEC in C, there are the rules 4. By construction of M ?
C (D ,D ′), for

every ψ ∈ C, those that define auxψ(x̄) are satisfied.

If the body of the first rule in 4 is true in M ?
C (D ,D ′), it means that the con-

straint is not satisfied in the initial instance or at some point along the repair pro-

cess. Since the constraint is satisfied by D ′, the satisfaction is restored by adding

Q (x̄ , null) or by deleting P(x̄). This implies that Q (x̄ , null, t) ∈ M ?
C (D ,D ′) or

P (x̄ , f) ∈ M ?
C (D ,D ′). As a consequence, the first (or second) rule is satisfied. Then,

29 In this case it can be restricted to the active domain of the neighborhood instance D (or the
union of the active domains of D1,D2) plus the constant null.

Consistency and Trust in Peer Data Exchange Systems 17

by construction of M ?
C (D ,D ′), P (ā, f) ∈ M ?

C (D ,D ′), and the head of the rule is

satisfied. 2

The next lemma shows that if M is a minimal model of the program Π(P,D)M ,

then DM satisfies the constraints.

Lemma 3

Given a database D and a set of constraints C, if M is a stable model of the program

Π(P,D), then DM |=N
C.

Proof: We want to show that DM |=N
ψ, for every constraint ψ ∈ C. There are

two cases to consider:

A. IC ψ is a UDEC. Since M is a model of Π(P,D)M , M satisfies rules 3. of

Π(P,D). Then, at least one of the following cases holds:

(a) Pi (ā, f) ∈ M . Then, Pi(ā, t??) /∈ M and P(ā) 6∈ DM (by Lemma 1).

Hence, Pi(ā) /∈ DM . Since the analysis was done for an arbitrary value

ā, DM |=N

∧n
i=1 Pi(x̄i)→

∨m
j=1 Qj (ȳj) ∨ ϕ holds.

(b) Qj (ā, t) ∈ M . It is symmetric to the previous one.

(c) It is not true that M |=N ϕ̄. Then M |=N ϕ. Hence, ϕ is true, and

DM |=N

∧n
i=1 Pi(x̄i)→

∨m
j=1 Qj (ȳj) ∨ ϕ holds.

(d) Pi (ā, t?) /∈ M . Given that M is minimal, just the last item in Lemma 1

holds. This means Pi(ā, t
??) /∈ M , Pi(ā) 6∈ DM and Pi(ā) /∈ DM . Since

the analysis was done for an arbitrary value ā, DM |=N

∧n
i=1 Pi(x̄i) →∨m

j=1 Qj (ȳj) ∨ ϕ holds.

(e) Qj (ā, f) /∈ M or Qj (ā) ∈ M . Given that M is minimal, just the first

item in Lemma 1 holds. Then, Qj (ā, t??) ∈ M , Qj (ā) ∈ DM and

DM |=N
Qj (ā). Since the analysis was done for an arbitrary value ā,

DM |=N

∧n
i=1 Pi(x̄i)→

∨m
j=1 Qj (ȳj) ∨ ϕ holds.

B. Formula ψ is a RDEC. Since M is a model of Π(P,D)M , M satisfies rules 4.

of Π(P,D). Then, at least one of the following cases holds:

(a) P (ā, f) ∈ M . Then, Pi (ā, t??) /∈ M and P(ā) 6∈ DM (by Lemma 1).

Hence, Pi (ā) /∈ DM . Since the analysis was done for an arbitrary value

ā, DM |=N
(P(x̄)→ Q(x̄ ′, y)) holds.

(b) Q (ā ′, null, t) ∈ M . It is symmetric to the previous one.

(c) P (ā, t?) /∈ M . Given that M is minimal, just the last item in Lemma

1 holds. This means P (ā, t??) /∈ M , P(ā) 6∈ DM and P(ā) /∈ DM .

Since the analysis was done for an arbitrary value ā, DM |=N
(P(x̄) →

Q(x̄ ′, y)) holds.

(d) auxψ(ā ′) ∈ M . This means that P (ā, t?) ∈ M and there exists b̄ 6= null

with Q (ā ′, b̄, t?) ∈ M , Q (ā, f) 6∈ M , and then, that P(ā) ∈ DM and

Q(ā, b̄) ∈ DM . Then, the constraint is satisfied.

2

Lemma 4

Let D and D ′ be instances over the same schema and domain. If M is a minimal

18 L. Bertossi, L. Bravo

model of Π(P,D)M
?
C (D,D′) with M $ M ?

C (D ,D ′), then there exists M ′ that is a

minimal model of Π(P,D)M
′

with DM ′ <D D ′.

Proof: Since M is a minimal model of Π(P,D)M
?
C (D,D′), P(ā) ∈ M iff P(ā) ∈ D .

By definition of M ?
C (D ,D ′) and M $ M ?

C (D ,D ′), the only two ways that both

models can differ is that, for some P(ā) ∈ D , P (ā, f) ∈ M ?
C (D ,D ′) and nei-

ther P(ā) nor P (ā, f) belong to M , or for some P(ā) 6∈ D , {P (ā, t), P(ā, t?),

P (ā, t??)} ⊆ M ?
C (D ,D ′) and none of P(ā), P (ā, t), P(ā, t?), P (ā, t??) belong to

M . Now, we can use the interpretation rules over M to construct M ′ that is a

minimal model of Π(P,D)M
′
, as follows:

1. If P(ā) ∈ M and P (ā, f) 6∈ M , then P(ā),P (ā, t?) and P (ā, t??) ∈ M ′.
2. If P(ā) ∈ M and P (ā, f) ∈ M , then P(ā),P (ā, t?) and P (ā, f) ∈ M ′.
3. If P(ā) 6∈ M and P (ā, t) 6∈ M , then nothing is added to M ′.
4. If P(ā) 6∈ M and P (ā, t) ∈ M , then P (ā, t), P (ā, t?) and P (ā, t??) ∈ M ′.
It is clear that M ′ satisfies the coherence constraints, and is a minimal model of

Π(P,D)M
′
.

It just rests to prove that DM ′ <D D ′. First, we prove that DM ′ ≤D D ′. Let us

suppose P(ā) ∈ ∆(D ,DM ′). Then, either P(ā) ∈ D and P(ā) 6∈ DM ′ or P(ā) 6∈ D

and P(ā) ∈ DM ′ . In the first case, P(ā), P (ā, t?) and P (ā, f) belong to M ′. These

atoms are also in M and, given the only two ways in which M and M ?
C (D ,D ′) can

differ, they are also in M ?
C (D ,D ′). Hence, P(ā) ∈ ∆(D ,D ′). In the second case,

P (ā, t) and P (ā, t?) belong to M ′. These atoms are also in M and, given the only

two ways in which M and M ?
C (D ,D ′) can differ, they are also in M ?

C (D ,D ′). Hence,

P(ā) ∈ ∆(D ,D ′).
We now prove that DM ′ <D D ′. We know that, for some fact P(ā), P (ā, t) ∈

M ?
C (D ,D ′) and P (ā, t) 6∈ M , or P (ā, f) ∈ M ?

C (D ,D ′) and P (ā, f) 6∈ M . If P (ā, f)

is in M ?
C (D ,D ′) and not in M , then, P(ā) ∈ ∆(D ,D ′), but P(ā) 6∈ ∆(D ,DM ′).

Alternatively, if P (ā, t) and P (ā, t?) belong to M ?
C (D ,D ′) but not to M , then

P(ā) ∈ ∆(D ,D ′), but P(ā) 6∈ ∆(D ,DM ′). Therefore, DM ′ <D D ′. 2

Proposition 1

Given a neighborhood instance D and a set C of UDECs and RDECs, if D ′ is a

neighborhood solution for D with respect to C, then there is a stable model M of

the program Π(P,D)M with DM = D ′. Furthermore, the model M corresponds to

M ?
C (D ,D ′).

Proof: By Lemma 2, M ?
C (D ,D ′) is a model of Π(P,D)M

?
C (D,D′). We now show

that it is minimal. Assume, by contradiction, that there exists a model M of

Π(P,D)M
?
C (D,D′) with M $ M ?

C (D ,D ′). We can assume, without loss of gener-

ality, that M is a minimal model. Since M $ M ?
C (D ,D ′), the model M contains

the atom P(ā) iff P(ā) ∈ D .

By Lemma 4, there exists model M ′ such that DM ′ <D D′ and M ′ is a mini-

mal model of Π(P,D)M
′
. By Lemma 3, DM ′ |=N

C. This contradicts that D ′ is a

neighborhood solution. 2

Proposition 2

Consistency and Trust in Peer Data Exchange Systems 19

If M is a stable model of Π(P,D), then DM is a neighborhood solution for D with

respect to C.

Proof: From Lemma 3, it holds DM |=N C. We have to prove that it is ≤D -

minimal. Let us suppose there is a neighborhood solution D ′ (that satisfies C)
with D ′ <D DM . From Proposition 1, M ?

C (D ,D ′) is a stable model of Π(P,D) and

DM?
C (D,D′) = D ′ (we denote it simple with M ? in the rest of the proof).

If D ′ <D DM , there is an atom P(ā) ∈ ∆(D ,DM), with P(ā) /∈ ∆(D ,D ′), or

there is an atom P(ā, b̄) ∈ ∆(D ,DM), with ā ′, b̄ 6= null, and an atom P(ā, null) ∈
∆(D ,D ′). We analyze both cases:

1. P(ā) ∈ ∆(D ,DM) and P(ā) 6∈ ∆(D ,D ′):
Since P(ā) ∈ ∆(D ,DM), P (ā, t) or P (ā, f) belong to M . By Lemma 1, there

are two cases:

(a) P(ā), P (ā, t?) and P (ā, f) belong to M , and no other P (ā, v), for v

an annotation, belongs to M . P(ā), P (ā, t?) and P (ā, t??) belong to

M ?, and, for any other annotation v , P (ā, v) /∈ M ?.

(b) P (ā, t), P (ā, t?) and P (ā, t??) belong to M , and no other P (ā, v),

for v an annotation, belongs to M . No P (ā, v), for v an annotation,

belongs to M ?.

If an atom belongs to a model M1, e.g. P (ā, f), and there is another model M2

in which it is not present, then there must be in M2 an atom annotated with

t or f in order to satisfy the rule that was satisfied in M1 by P (ā, f). This

implies that M ? has an atom annotated with t or f that does not belong to

M . This implies that there is an atom that belongs to ∆(D ,D ′) and that does

not belong to ∆(D ,DM). We have reached a contradiction, because ∆(D ,D ′)
is a proper subset of ∆(D ,DM).

2. P(ā, b̄) ∈ ∆(D ,DM) and P(ā, null) ∈ ∆(D ,D ′):
If P(ā, b̄) /∈ M , then P (ā, b̄, t) ∈ M , P(ā, null) /∈ M , P (ā, null, t) /∈ M .

Since P(ā, null) ∈ ∆(D ,D ′) and P(ā, null) /∈ M , P (ā, null, t) ∈ M ?.

Since P (ā, null, t) ∈ M ?, there must be a rule representing a RDEC in

Π(D, C) such that P (ā, null, t) is the only true atom in the head. For that rule

to be also satisfied by M , there must be another atom in the head of that rule

that is true in M but not in M ?. This means that there is a P(b̄) ∈ ∆(D ,DM)

and P(b̄) 6∈ ∆(D ,D ′), which brings us back to case 1. above. Again we obtain

a contradiction.

Therefore, it is not possible to have D ′ <D DM ; and DM is a neighborhood solution

for D . 2

References

Brewka, G. 2004. Complex Preferences for Answer Set Optimization. In Proc. Inter-
national conference on Principles of Knowledge Representation and Reasoning. AAAI
Press, 213–223.

Buccafurri, F., Leone, N., and Rullo, P. 2000. Enhancing Disjunctive Datalog by
Constraints. IEEE Transactions on Knowledge and Data Engineering 12, 5, 845–860.

20 L. Bertossi, L. Bravo

Chomicki, J. and Marcinkowski, J. 2005. Minimal-Change Integrity Maintenance using
Tuple Deletions. Information and Computation 197, 1-2, 90–121.

De Giacomo, G., Lembo, D., Lenzerini, and Rosati, R. 2007. On Reconciling Data
Exchange, Data Integration, and Peer Data Management. In Proc. ACM Symposium
on Principles of Database Systems. ACM Press, 133–142.

Faber, W. and Woltran, S. 2011. Manifold Answer-Set Programs and Their Applica-
tions. In Gelfond Festschrift, M. Balduccini and T. C. Son, Eds. Springer LNAI 6565,
44–63.

Giannotti, F., Pedreschi, D., Sacca, D., and Zaniolo, C. 1991. Non-Determinism
in Deductive Databases. In Proc. International Conference on Deductive and Object-
Oriented Databases. Springer, LNCS 566, 129–146.

Herzig, A., Lorini, E., Hubner, J., Ben-Naim, J., Castelfranchi, C., Demolombe,
R., Longin, D., and Vercouter, L. 2008. Prolegomena for a Logic of Trust and
Reputation. In Proc. Third International Workshop on Normative Multiagent Systems.
143–157.

Hien Nguyen, G., Chatalic, P., and Rousset, M.-C. 2008. A Probabilistic Trust
Model for Semantic Peer-to-Peer Systems. In Proc. European Conference on Artificial
Intelligence. IOS Press, 881–882.

Schaefer, M. and Umans, Ch. 2008. Completeness in the Polynomial-Time Hierarchy:
A Compendium. SIGACT News.

Xiong, L. and Liu, L. 2004. PeerTrust: Supporting Reputation-Based Trust for Peer-
to-Peer Electronic Communities. IEEE Transactions of Knowledge and Data Engineer-
ing 16, 7, 843–857.

Yang, B. and Garcia-Molina, H. 2003. Designing a Super-Peer Network. In Proc.
International Conference on Data Engineering. IEEE Computer Society, 49.

