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Appendix A. Auxiliary figures

Associativity

t + (u+w) = (t+u) + w
t ∗ (u∗w) = (t ∗u) ∗ w

Commutativity

t + u = u + t
t ∗ u = u ∗ t

Absorption

t = t + (t ∗u)
t = t ∗ (t+u)

Distributive

t + (u∗w) = (t+u) ∗ (t+w)
t ∗ (u+w) = (t ∗u) + (t ∗w)

Identity

t = t + 0
t = t ∗ 1

Idempotency

t = t + t
t = t ∗ t

Annihilator

1 = 1 + t
0 = 0 ∗ t

Fig. A 1. Sum and product satisfy the properties of a completely distributive lattice.

Appendix B. Proofs of Theorems and Implicit Results

In the following, by abuse of notation, for every function f : VLb −→ VLb, we will also denote
by f a function over the set of interpretations such that f (I)(A) = f (I(A)) for every atom A ∈ At.
We have organized the proofs into different subsections.

Appendix B.1. Proofs of Propositions 1 to 3

Proposition 1
Negation ‘∼’ is anti-monotonic. That is t ≤ u holds if and only if ∼t ≥ ∼u for any given two
causal terms t and u. �

Proof . By definition t ≤ u iff t ∗u = t. Furthermore, by De Morgan laws,∼(t ∗u) =∼t+∼u and,
thus, ∼(t ∗u) = ∼t iff ∼t +∼u = ∼t. Finally, just note that ∼t +∼u = ∼t iff ∼t ≥ ∼u. Hence,
t ≤ u holds iff ∼t ≥∼u. �
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Proposition 2
The map t 7→ ∼∼t is a closure. That is, it is monotonic, idempotent and it holds that t ≤∼∼t for
any given causal term t. �

Proof . To show that t 7→∼∼t is monotonic just note that t 7→∼t is antimonotonic (Proposition 1)
and then t ≤ u iff ∼t ≥ ∼u iff ∼∼t ≤ ∼∼u. Furthermore, ∼∼(∼∼t) = ∼(∼∼∼t) = ∼∼t, that
is, t 7→ ∼∼t is idempotent. Finally, note that, by definition, t ≤∼∼t iff t ∗∼∼t = t and

t ∗∼∼t = t ∗∼∼t + 0 (identity)

= t ∗∼∼t + t ∗∼t (pseudo-complement)

= (t ∗∼∼t + t)∗ (t ∗∼∼t +∼t) (distributivity)

= (t + t) ∗ (∼∼t + t) ∗ (t +∼t) ∗ (∼∼t +∼t) (distributivity)

= t ∗ (∼∼t + t) ∗ (t +∼t) ∗ (∼∼t +∼t) (idempotency)

= t ∗ (t +∼t) ∗ (∼∼t + t) ∗ 1 (w. excluded middle)

= t ∗ (t +∼t) ∗ (∼∼t + t) (identity)

= t ∗ (∼∼t + t) (absorption)

= t (absorption)

Hence, t 7→ ∼∼t is a closure. �

Proposition 3
Given any term t, it can be rewritten as an equivalent term u in negation and disjuntive normal
forms. �

Proof . This is a trivial proof by structural induction using the DeMorgan laws and negation of
application axiom. Furthermore, using the axiom ∼∼∼t = t no more than two nested negations
are required. Furthermore, it is easy to see that by applying distributivity of “·” and “∗” over
“+,” every term can be equivalently represented as a term “+” is not in the scope of any other
operation. Moreover, applying distributivity of “·” over “∗” every such term can be represented
as one in every application subterm is elementary. �

Lemma B.1
Let t be a join irreducible causal value. Then, either t ∗∼∼u = 0 or t ∗∼∼u is join irreducible
for every causal value u ∈ VLb. �

Proof . Suppose that t ∗u is not join irreducible and let W ⊆ VLb a set of causal values such that
w 6= t ∗∼∼u for every w ∈W and t ∗∼∼u = ∑w∈W w. Since t ∗∼∼u = ∑w∈W w, it follows that
w ≤ t ∗∼∼u for every w ∈W and, since w 6= t ∗∼∼u, it follows that w < t ∗∼∼u for every
w ∈W . Furthermore, t ∗∼∼u+ t ∗∼u = t ∗ (∼∼u+∼u) = t.

Since t is join irreducible, it follows that either t = t ∗∼∼u or t = t ∗∼u. If t = t ∗∼u, then
t ∗∼∼u = (t ∗∼u)∗∼∼u = 0. Otherwise, t = t ∗∼∼u and t is join irreducible by hypothesis. �
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Lemma B.2
Let t be a term. Then λ p(∼t) = ¬λ p(t). �

Proof . We proceed by structural induction assuming that t is in negated normal form. In case that
t = a is elementary, it follows that λ p(∼a) = ¬a = ¬λ p(a). In case that t =∼a with a elemen-
tary, λ p(∼t) = λ p(∼∼a) and λ p(∼∼a) = a = ¬¬a = ¬λ p(∼a) = λ p(t). In case that t =∼∼a,
with a elementary, λ p(∼t) = λ p(∼∼∼a) and

λ
p(∼∼∼a) = λ

p(∼a) = ¬a = ¬λ
p(∼∼a) = ¬λ

p(t)

In case that t = u+ v. Then

λ
p(∼t) = λ

p(∼u∗∼v) = λ
p(∼u)∧λ

p(∼v)

By induction hypothesis λ p(∼u) = ¬λ p(u) and λ p(∼v) = ¬λ p(v) and, therefore, it holds that
λ p(∼t) = ¬λ p(u)∧¬λ p(v). Thus, ¬λ p(t) = ¬(λ p(u)∨λ p(v)) = ¬λ p(u)∧¬λ p(v) = λ p(∼t).

In case that t = u⊗ v with ⊗ ∈ {∗, ·}. Then λ p(∼t) = λ p(∼u+∼v) = λ p(∼u)∨λ p(∼v) and
by induction hypothesis λ p(∼u) = ¬λ p(u) and λ p(∼v) = ¬λ p(v). Consequently it holds that
λ p(∼t) = ¬λ p(t). �

Lemma B.3
Let t be a term and φ a provenance term. If φ ≤ λ p(t), then λ p(∼t)≤¬φ and if λ p(t)≤ φ , then
¬φ ≤ λ p(∼t). �

Proof . If φ ≤ λ p(t), then φ = λ p(t) ∗ φ and then ¬φ = ¬λ p(t)+¬φ and, by Lemma B.2, it
follows that ¬φ = λ p(∼t) +¬φ . Hence λ p(∼t) ≤ ¬φ . Furthermore if λ p(t) ≤ φ , then φ =

λ p(t)+φ and then ¬φ = ¬λ p(t) ∗¬φ and, by Lemma B.2, it follows that ¬φ = λ p(∼t) ∗¬φ .
Hence ¬φ ≤ λ p(∼t). �

Appendix B.2. Proof of Theorem 1

The proof of Theorem 1 will relay on the definition of the following direct consequence operator

T̃P(Ĩ)(H) def= ∑
{ (

Ĩ(B1)∗ . . .∗ Ĩ(Bn)
)
· ri | (ri : H← B1, . . . ,Bn) ∈ P

}
for any CG interpretation Ĩ and atom H ∈ At. Note that the definition of this direct consequence
operator T̃P is analogous to the TP operator, but the domain and image of T̃P are the set of CG
interpretations while the domain and image of TP are the set of ECJ interpretations.

Theorem 11 (Theorem 2 from Cabalar et al. 2014a)
Let P be a (possibly infinite) positive logic program with n causal rules. Then, (i) lfp(T̃P) is the
least model of P, and (ii) lfp(T̃P) = T̃P ↑ω (0) = T̃P ↑n (0). �

Proof of Theorem 1. Assume that every term occurring in P is NNF and let Q be the program
obtained by renaming in P each occurrence of ∼l as l′ and each occurrence of ∼∼l as l′′ with l′

and l′′ new symbols. Note that this renaming implies that ∼l and ∼∼l are treated as completely
independent symbols from l and, thus, all equalities among terms derived from program Q are
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also satisfied by P, although the converse does not hold. Note also that, since ∼ does not occur
in Q, this is also a CG program. From Theorem 11, lfp(T̃Q) = T̃Q ↑ω (0) is the least model of Q.
By renaming back l′ and l′′ as ∼l and ∼∼l in T̃Q ↑k (0) we obtain TP ↑k (0) for any k. Hence,
lfp(TP) = TP ↑ω (0) is the least model of P. Statement (ii) is proved in the same manner. �

Appendix B.3. Proof of Proposition 4

Lemma B.4
Let P1 and P2 be two programs and let U1 and U2 be two interpretations such that P1 ⊇ P2 and
U1 ≤U2. Let also I1 and I2 be the least models of PU1

1 and PU2
2 , respectively. Then I1 ≥ I2. �

Proof . First, for any rule ri and pair of interpretations J1 and J2 such that J1 ≥ J2,

J1(body+(rU1
i )) ≥ J2(body+(rU2

i ))

Furthermore, since U1 ≤U2, by Proposition 1, it follows

U1(body−(rU1
i )) ≥ U2(body−(rU2

i ))

and, since by Definition 5 J j(body−(rU1
i )) def= U j(body−(rU1

i )), it follows that

J1(body−(rU1
i )) ≥ J2(body−(rU2

i ))

Hence, we obtain that J1(body(rU1
i ))≥ J2(body(rU2

i )).

Since P1 ⊇ P2, it follows that every rule ri ∈ P2 is in P1 as well. Thus, T
P

U1
1
(J1)(H)≥ T

P
U2
2
(J2)(H)

for every atom H. Furthermore, since

T
P

U1
1
↑0 (0)(H) = T

P
U2
2
↑0 (0)(H) = 0

it follows T
P

U1
1
↑i (0)(H) ≥ T

P
U2
2
↑i (0)(H) for all 0≤ i. Finally,

T
P

Uj
j
↑ω (0)(H) def= ∑

i≤ω

T
P

Uj
j
↑i (0)(H) = 0

and hence T
P

U1
1
↑ω (0)(H) ≥ T

P
U2
2
↑ω (0)(H). By Theorem 1, these are respectively the least

models of PU1
1 and PU2

2 . That is I1 ≥ I2. �

Proposition 4
ΓP operator is anti-monotonic and operator Γ2

P is monotonic. That is, ΓP(U1) ≥ ΓP(U2) and
Γ2

P(U1)≤ Γ2
P(U2) for any pair of interpretations U1 and U2 such that U1 ≤U2. �

Proof . Since U1 ≤U2, by Lemma B.4, it follows I1 ≥ I2 with I1 and I2 being respectively the
least models of PU1 and PU2 . Then, ΓP(U1) = I1 and ΓP(U2) = I2 and, thus, ΓP(U1) ≥ ΓP(U2).
Since ΓP is anti-monotonic it follows that Γ2

P is monotonic. �

Appendix B.4. Proof of Theorem 2

The proof of Theorem 2 will rely on the relation between ECJ justifications and non-hypothetical
WnP justifications established by Theorem 9 and it can be found below the proof of that theorem
in page 13.
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Appendix B.5. Proof of Theorem 3

Definition 17
A term t ∈ VLb is join irreducible iff t = ∑u∈U u implies that u = t for some u ∈U and it is join
prime iff t ≤ ∑u∈U u implies that u≤ t for some u ∈U . �

Proposition 5
The following results hold:

1. A term is join irreducible iff is join prime.
2. If Lb is finite, then every term t can be represented as a unique finite sum of pairwise

incomparable join irreducible terms. �

Proof . The first result directly follows from Theorem 1 in (Balbes and Dwinger 1975, page 65).
Furthermore, from Theorem 2 in (Balbes and Dwinger 1975, page 66), in every distributive lattice
satisfying the descending chain condition, any element can be represented as a unique finite sum
of pairwise incomparable join irreducible elements and it is clear that every finite lattice satisfies
the descending chain condition. �

Lemma B.5
Let P be a positive program over a signature 〈At,Lb〉 where Lb is a finite set of labels and Q be
the result of removing all rules labelled by some label l ∈ Lb. Let I and J be two interpretations
such that J such that ρ∼l(I)≥ J. Then, ρ∼l(ΓP(I))≤ ΓQ(J). �

Proof . By definition ΓP(I) and ΓQ(J) are the least models of programs PI and QJ , respectively.
Furthermore, from Theorem 1, the least model of any program P is the least fixpoint of the
TP operator, that is, ΓX (Y ) = TXY ↑ω (0) with X ∈ {P,Q} and XY ∈ {PI ,PJ}. Then, the proof
follows by induction assuming that u ≤ TQJ ↑β (0)(H) implies ρ∼l(u) ≤ TQI ↑β (0)(H) for any
join irreducible u, atom H and every ordinal β < α .

Note that TQJ ↑0 (0)(H) = 0 = ρ∼l(0) = TPI ↑0 (0)(A) for any atom H and, thus, the statement
holds vacuous.

If α is a successor ordinal, since u≤ TPI ↑α (0)(H), there is a rule in P of the form (4) such that

u ≤ (uB1 ∗ . . .∗uBm ∗uC1 ∗ . . .∗uCn) · ri

where uB j ≤ TPI ↑α−1 (0)(B j) and uC j ≤∼I(C j) for each positive literal B j and each negative
literal not C j in the body of rule ri. Then,

1. By induction hypothesis, it follows that ρ∼l(uB j)≤ TQJ ↑α−1 (0)(B j), and
2. from ρ∼l(I(H))≥ J(H), it follows that uC j ≤∼I(C j) implies ρ∼l(uC j)≤∼J(C j).

Furthermore, if ri 6= l, then ri ∈ Q and, thus,

ρ∼l(u) ≤ (ρ∼l(uB1)∗ . . .∗ρ∼l(uBm)∗ρ∼l(uC1)∗ . . .∗ρ∼l(uCn)) · ri ≤ TQJ ↑α (0)(H)

If otherwise ri = l, then ρ∼l(u) = 0≤ TQJ ↑α (0)(H).
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In case that α is a limit ordinal, u ≤ TPI ↑α (0) iff u ≤ TPI ↑β (0) for some β < α and any join
irreducible u. Hence, by induction hypothesis, it follows that ρ∼l(u) ≤ TQJ ↑β (0) ≤ TQJ ↑α (0)
and, thus, ρ∼l(TPI ↑α (0))≤ TQJ ↑α (0). �

Proof of Theorem 3. In the sake of simplicity, we just write ρ instead of ρ∼ri . Note that, by
definition, for any atom H, it follows that WX (H) = LX (H) with X ∈ {P,Q}. The proof follows
by induction in the number of steps of the Γ2 operator assuming as induction hypothesis that
Γ2

Q ↑β (0) ≤ ρ(Γ2
P ↑β (0)) for every β < α . Note that Γ2

Q ↑0 (0)(H) = 0≤ ρ(Γ2
P ↑0 (0))(H) and,

thus, the statement trivially holds for α = 0 .

In case that α is a successor ordinal, by induction hypothesis, it follows that

Γ
2
Q ↑α−1 (0) ≤ ρ(Γ2

P ↑α−1 (0))

and, from Lemma B.5, it follows that

ΓQ(Γ
2
Q ↑α−1 (0)) ≥ ρ(ΓP(Γ

2
P ↑α−1 (0)))

Γ
2
Q(Γ

2
Q ↑α−1 (0)(H))) ≤ ρ(Γ2

P(Γ
2
P ↑α−1 (0)))

That is, Γ2
Q ↑α (0) ≤ ρ(Γ2

P ↑α (0).

Finally, in case that α is a limit ordinal, every join irreducible u satisfies u ≤ Γ2
Q ↑α (0) =

∑β<α Γ2
Q ↑β (0) iff u ≤ Γ2

Q ↑β (0) for some β < α and, thus, by induction hypothesis ρ(u) ≤
Γ2

P ↑β (0)≤ Γ2
P ↑α (0). Consequently, Γ2

Q ↑∞ (0)≤ ρ(Γ2
P ↑∞ (0) and WQ(A)≤ ρ(WP(A) for any

atom A. �

Appendix B.6. Proof of Theorem 5

By Γ̃P(Ĩ) we denote the least model of a program PĨ . Note that the relation between Γ̃P and ΓP is
similar to the relation between T̃P and TP: the Γ̃P operator is a function in the set of CG interpre-
tations while ΓP is a function in the set of ECJ interpretations. Note also that the evaluation of
negated literals with respect to CG and ECJ interpretations and, thus, the reducts PĨ and PI may
be different even if Ĩ(A) = I(A) for every atom A.

Lemma B.6
Let P be a labelled logic program, Ĩ and J be respectively an CG and a ECJ interpretation such
that Ĩ ≥ λ c(J). Then Γ̃P(Ĩ)≤ λ c(ΓP(J)). �

Proof . By definition Γ̃P(Ĩ) and ΓP(J) are respectively the least model of the programs PĨ and PJ .
Furthermore, from Theorem 1 the least model of any program P is the least fixpoint of the TP

operator, that is, Γ̃P(Ĩ) = T̃PĨ ↑ω (0) and ΓP(J) = TPJ ↑ω (0). In case that α = 0, it follows that
T̃PĨ ↑0 (0)(H) = 0 ≤ λ c(TPJ ↑0 (0))(H) for every atom H. We assume as induction hypothesis
that T̃PĨ ↑β (0)≤ λ c(TPJ ↑β (0)) for all β < α .

In case that α is a successor ordinal, E ≤ T̃PĨ ↑α (0)(H) = T̃PĨ (T̃PĨ ↑α−1 (0))(H) if and only if
there is a rule RI in PĨ of the form

ri : H← B1, . . . ,Bm,
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which is the reduct of a rule R of the form (4) in P and that satisfies E ≤ (EB1 ∗ . . .∗EBm) · ri with
each EB j ≤ T̃PĨ ↑α−1 (0)(B j) and Ĩ(C j) = 0 for all B j and C j in body(R). Hence there is a rule in
PJ of the form

ri : H← B1, . . . ,Bm, J(notC1), . . . , J(notCn)

and, by induction hypothesis, EB j ≤ λ c
(
TPJ ↑α−1 (0)(B j)

)
for all B j. Furthermore, by definition(

TPJ ↑α−1 (0)(B1)∗ . . .∗TPJ ↑α−1 (0)(Bm)∗ J(notC1)∗ . . .∗ J(notCm)
)
· ri ≤ TPJ ↑α (0)(H)

From the fact that Ĩ(C j) = 0 and the lemma’s hypothesis Ĩ ≥ λ c(J), it follows that 0≥ λ c(J(C j))

and, thus, 1≤ λ c(∼J(C j)) = λ c(J(notC j)). Hence,

λ
c((TPJ ↑α−1 (0)(B1)∗ . . .∗TPJ ↑α−1 (0)(Bm)∗ J(notC1)∗ . . .∗ J(notCm)) · ri

)
=

= λ
c((TPJ ↑α−1 (0)(B1)∗ . . .∗TPJ ↑α−1 (0)(Bm)

)
∗λ

c(J(notC1)
)
∗ . . .∗λ

c(J(notCm)
))
· ri

= λ
c((TPJ ↑α−1 (0)(B1)∗ . . .∗TPJ ↑α−1 (0)(Bm)

)
∗1∗ . . .∗1

)
· ri

= λ
c((TPJ ↑α−1 (0)(B1)∗ . . .∗TPJ ↑α−1 (0)(Bm)

))
· ri

and, thus,

λ
c((TPJ ↑α−1 (0)(B1)∗ . . .∗TPJ ↑α−1 (0)(Bm)

))
· ri ≤ λ

c(TPJ ↑α (0)(H)
)

Since EB j ≤ λ c
(
TPJ ↑α−1 (0)(B j)

)
for all B j, it follows that

E ≤ (EB1 ∗ . . .∗EBm) · ri ≤ λ
c(TPJ ↑α (0))(H)

Finally, in case that α is a limit ordinal, it follows from Theorem 1 that α = ω . Furthermore,
since Ĩ is a CG interpretation, it follows that PĨ is a CG program and, thus, E ≤ TPĨ ↑ω (0) iff
E ≤ TPĨ ↑n (0) for some n < ω (see Cabalar et al. 2014a). Hence, by induction hypothesis, it
follows that E ≤ TPJ ↑n (0)≤ TPJ ↑ω (0). �

Lemma B.7
Let P be a labelled logic program over a signature 〈At,Lb〉 where Lb is a finite set of labels, Ĩ and
J respectively be a CG and a ECJ interpretation such that Ĩ ≤ λ c(J). Then Γ̃P(Ĩ)≥ λ c(ΓP(J)). �

Proof . Since Lb is finite, it follows that VLb is also finite. Furthermore, since VLb is a finite
distributive lattice, every element t ∈ VLb can be represented as a unique sum of join irreducible
elements (Proposition 5).

Assume as induction hypothesis that u≤ TPJ ↑β (0)(H) implies λ c(u)≤ T̃PĨ ↑β (0)(H) for every
join irreducible u, atom H ∈ At and ordinal β < α .

In case that α is a successor ordinal. For any join irreducible justification u≤ TPJ ↑α (0)(H) there
is a rule RJ in PJ of the form (6) and there are join irreducible terms uB j ≤ TPJ ↑α−1 (0)(B j) and
uC j ≤∼J(C j) for all B j and C j such that

u ≤ (uB1 ∗ . . .∗uBm ∗uC1 ∗ . . .∗uCn) · ri

If uC j contains an oddly negated label for some C j, then λ c(uC j) = 0 and it consequently follows
that λ c(u) = 0 ≤ T̃PĨ ↑α (0)(H). Thus, we assume that uC j only contains evenly negated labels
for any C j. Note that, since uC j ≤ ∼J(C j), then uC j cannot contain any non-negated label, that
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is, all occurrences of labels in uC j are strictly evenly negated and, thus, every term u′C j
≤ J(C j)

must contain some oddly negated label. Hence, Ĩ(C j)≤ λ c(J(C j)) = 0 for any C j and there is a
rule RĨ in QĨ of the form

ri : H← B1, . . . ,Bm

By induction hypothesis, uB j ≤ TPJ ↑α−1 (0)(B j) implies λ c(uB j) ≤ T̃PĨ ↑α−1 (0)(B j) and, con-
sequently, λ c(u)≤ T̃PĨ ↑α (0)(H).

Since TPJ ↑α (0)(H) = ∑u∈UH u where every u ∈UH is join irreducible and every u ∈UH satisfies
u≤ TPJ ↑α (0)(H), it follows that λ c(u)≤ T̃PĨ ↑α (0)(H) and, thus, ∑u∈UH λ c(u)≤ T̃PĨ ↑α (0)(H).
Note that, by definition, λ c(∑u∈UH u) = ∑u∈UH λ c(u) and, thus,

λ
c(TPJ ↑α (0)(H)) = λ

c( ∑
u∈UH

u) ≤ T̃PĨ ↑α (0)(H)

In case that α is a limit ordinal, it follows u ≤ TPJ ↑α (0)(H) iff u ≤ TPJ ↑β (0)(H) for some
β < ω and, by induction hypothesis, it follows that λ c(u)≤ T̃PĨ ↑β (0)(H)≤ T̃PĨ ↑α (0)(H) and,
thus, T̃PĨ ↑α (0)≥ λ c(TPJ ↑α (0)).

Finally, by definition Γ̃P(Ĩ) and ΓP(J) are respectively the least models of PĨ and PJ and, from
Theorem 11, these are precisely T̃PĨ ↑ω (0) and TPJ ↑ω (0). Hence, T̃PĨ ↑ω (0) ≥ λ c(TPJ ↑ω (0))
implies Γ̃P(Ĩ)≥ λ c(ΓP(J)). �

Proposition 6
Given a program P over a signature 〈At,Lb〉 where Lb is a finite set of labels, any ECJ interpre-
tation I satisfies Γ̃P(λ

c(I)) = λ c(ΓP(I))). �

Proof of Proposition 6. Let Ĩ be a CG interpretation such that I(H) = Ĩ(H) for every atom H.
Then, it follows that Ĩ = λ c(I). Hence, from Lemmas B.6 and B.7, it respectively follows that
Γ̃P(Ĩ)≤ λ c(ΓP(I)) and Γ̃P(Ĩ)≥ λ c(ΓP(I)). Then, Γ̃P(Ĩ) = Γ̃P(λ

c(I)) = λ c(ΓP(I)). �

Proof of Theorem 5. According to (Cabalar et al. 2014a), a CG interpretation Ĩ is a CG stable
model of P iff Ĩ is the least model of the program PĨ . Then, the CG stable models are just the
fixpoints of the Γ̃P operator.

Let Ĩ be a CG stable model according to (Cabalar et al. 2014a), let I be a ECJ interpretation
such that I(H) = Ĩ(H) for every atom H ∈ At and let J def= Γ2

P ↑∞ (I) be the least fixpoint of Γ2
P

iterating from I. Since I(H) = Ĩ(H) for every atom H ∈ At, it follows that Ĩ = λ c(I) and, by
definition of CG stable model, it follows that Ĩ = Γ̃P(Ĩ). Thus, from Proposition 6, it follows that
Ĩ = λ c(ΓP(I)). Applying Γ̃P to both sides of this equality, we obtain that Γ̃P(Ĩ) = Γ̃P(λ

c(ΓP(I))).
From Proposition 6 again, it follows that Γ̃P(λ

c(ΓP(I)))= λ c(ΓP(ΓP(I)))= λ c(Γ2
P(I)) and, thus,

Γ̃P(Ĩ) = λ c(Γ2
P(I)). Furthermore, since Ĩ = Γ̃P(Ĩ), it follows that Ĩ = λ c(Γ2

P(I)). Inductively
applying this argument, it follows that Ĩ = λ c(Γ2

P ↑α (I)) for any successor ordinal α . Moreover,
for a limit ordinal α ,

λ
c(

Γ
2
P ↑α (I)

)
= λ

c
(

∑
β<α

Γ
2
P ↑β (I)

)
= ∑

β<α

λ
c(

Γ
2
P ↑β (I)

)
= Ĩ

Then, since we have defined J = Γ2
P ↑∞ (I), it follows that Ĩ = λ c(J) = λ c(I) and, since we also

have that Ĩ = λ c(ΓP(I)), we obtain that λ c(I) = λ c(ΓP(I)).
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The other way around. Let I be a fixpoint of Γ2
P such that λ c(I) = λ c(ΓP(I)) and let Ĩ def= λ c(I).

In the same way as above, it follows that Γ̃P(Ĩ) = λ c(ΓP(I)) = λ c(I) = Ĩ. That is, Γ̃P(Ĩ) = Ĩ and
so that Ĩ is a causal stable model of P according to (Cabalar et al. 2014a). �

Appendix B.7. Proof of Theorem 6

Proof of Theorem 6 . Let Ĩ be a causal stable model of P and I be the correspondent fixpoint of
Γ2

P with Ĩ = λ c(I). Since E is a enabled justification of A, i.e. E ≤WP(A), then E ≤ LP(A) with
LP the least fixpoint of Γ2

P. Since, I is a fixpoint of Γ2
P, if follows that E ≤ LP(A) ≤ I(A) and,

thus, λ c(E) ≤ λ c(I(A)) = Ĩ(A). Then G def= graph(λ c(E)) is, by definition, a causal explanation
of the atom A.

Appendix B.8. Proof of Theorem 7

The proof of Theorem 7 will need the following definition.

Definition 18
Given a program P, a WnP interpretation is a mapping I : At −→ BLb assigning a Boolean for-
mula to each atom. The evaluation of a negated literal not A with respect to a WnP interpretation
is given by I(not A) = ¬I(A). An interpretation I is a WnP model of rule like (4) iff

I(B1)∗ . . .∗I(Bm)∗I(notC1)∗ . . .∗I(notCn)∗ ri ≤ I(H)

The operator GP(I) maps a WnP interpretation I to the least model of the program PI. �

Note that the only differences in the model evaluation between ECJ and WnP comes from the
valuation of negative literals and the use of ‘∗’ instead of ‘·’ for keeping track of rule application.
Besides, we will also use the following facts whose proof is addressed in an appendix.

Definition 19
Given a positive program P, we define a direct consequence operator TP such that

TP(I)(H) def= ∑
{
I(B1)∗ . . .∗I(Bn)∗ ri | (ri : H← B1, . . . ,Bn) ∈ P

}
for any WnP interpretation I and atom H ∈ At. �

Definition 20 (From Damásio et al. 2013)
Given a program P, its why-not program is given by P def= P∪P′ here P′ contains a labelled fact
of the form

¬not(A) : A

for each atom A∈ At not occurring in P as a fact. The why-not provenance information under the
well-founded semantics is defined as follows: WhyP(H) = [TP(H)]; WhyP(H) = [¬TUP(H)];
and WhyP(undef A) = [¬TP(H)∧TUQ(H)] where TP and TUP =GP(TP) be the least and
greates fixpoints of G2

P , respectively. �
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Lemma B.8
Let P be a labelled logic program over a signature 〈At,Lb〉 where Lb is a finite set of labels
and let I and I be respectively a ECJ and a WnP interpretation such that λ p(I) ≥ I. Then,
λ p(ΓP(I))≤GP(I).

Proof . By definition ΓP(I) and GP(I) are the least model of the programs PI and PI, respec-
tively. Furthermore, the least model of programs PI and PI are the least fixpoint of the TPI and
TPJ operators, that is, ΓP(I) = TPI ↑ω (0) and GP(J) = TPI ↑ω (⊥).

In case that α = 0, it follows that λ p(TPI ↑0 (0)(H)) = TPI ↑0 (⊥)(H) = 0 for every atom H.
We assume as induction hypothesis that λ p(TPI ↑β (0))≤ TPI ↑β (⊥) for all β < α .

In case that α is a successor ordinal. Assume that u≤ TPI ↑α−1 (0)(H) for some join irreducible u
and atom H. Then there is a rule ri ∈ P of the form (4) and

u ≤ (uB1 ∗ . . .∗uB1 ∗uC1 ∗ . . .∗uC1) · ri

where uB j ≤ TPI ↑α−1 (0)(B j) and uC j ≤∼I(C j). Hence, by induction hypothesis, it follows that
λ p(uB j) ≤ TPI ↑α−1 (⊥)(B j) and, since uC j ≤∼I(C j), it also follows that λ p(uC j)≤ ¬I(C j)

for all C j. Consequently, we have that λ p(u)≤ TPI ↑α (⊥)(H).

In case that α is a limit ordinal, u ≤ TPI ↑α (0) iff u ≤ TPI ↑β (0) for some β < α and all join
irreducible u. Hence, by induction hypothesis, it follows that λ p(u)≤ TPJ ↑β (0)≤ TPJ ↑α (0)
and, thus, λ p(TPI ↑α (0))≤ TPJ ↑α (⊥). �

Lemma B.9
Let P be a labelled logic program over a signature 〈At,Lb〉 where Lb is a finite set of labels
and let I and I be respectively a ECJ and a WnP interpretation such that λ p(I) ≤ I. Therefore,
λ p(ΓP(I))≥GP(I). �

Proof . The proof is similar to the proof of Lemma B.8 and we just show the case in which α is
a successor ordinal.

Assume that u≤ TPI ↑α (⊥)(H) for some join irreducible u and atom H. Hence, there is some
rule ri ∈ P of the form (4) and

u ≤ uB1 ∗ . . .∗uBm ∗uC1 ∗ . . .∗uCn ∗ ri

where uB j ≤ TPI ↑α−1 (⊥)(B j) for each B j and uC j ≤ ¬I(C j) for each C j. By induction hy-
pothesis, uB j ≤ λ p(TPI ↑α−1 (0))(B j) for all B j. Furthermore, since λ p(I) ≤ I it follows, from
Lemma B.3, that λ p(∼I)≥ ¬I and, since uC j ≤ ¬I(C j), it also follows that uC j ≤ λ p(∼I(C j)).
Hence,

λ (u) ≤ (λ p(uB1)∗ . . .∗λ
p(uB1)∗λ

p(uC1)∗ . . .∗λ
p(uC1))∗ ri ≤ λ

p(TPI ↑α (0)(H))

Thus, TPI ↑α (⊥)(B j)≤ λ p(TPI ↑α (0)(B j)). �

Note that the image of λ p is a boolean algebra and the set of causal values corresponding to
negated terms { ∼t

∣∣ t ∈ VLb } are also a boolean algebra. Consequently, we define a function
λ q(t) =∼∼t which is analogous to λ p but whose image is in VLb.
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Lemma B.10
Let P be a labelled logic program and let I be an ECJ interpretation. Then, ΓP(I) = ΓP(λ q(I))
and λ p(t) = λ p(λ q(t)). �

Proof . For ΓP(I) = ΓP(λ q(I)). Since λ q(t) =∼∼t and ∼∼∼t =∼t, it follows that λ q(∼I) =
∼∼∼I = ∼I and, thus, PI =Pλ q(I). Since by definition ΓP(I) and ΓP(λ q(I)) are respectively
the least models of programs PI and Pλ q(I) it is clear that ΓP(I) = ΓP(λ q(I)).

For λ p(t) = λ p(λ q(t)), just note λ p(λ q(t)) = λ p(∼∼t) = ¬¬λ p(t) = λ p(t). �

Proposition 7
Let P be a program over a signature 〈At,Lb〉 where Lb is a finite set of labels. Then, any causal
interpretation I satisfies:

(i). GP(λ p(I)) = λ p(ΓP(I)),
(ii). ΓP(λ q(I)) = ΓP(I) and

(iii). λ p(t) = λ p(λ q(t)). �

Proof . (i) From Lemmas B.8 and B.9, it respectively follows that λ p(ΓP(I)) ≤ GP(λ p(I))
and that λ p(ΓP(I)) ≥ GP(λ p(I)). Then, GP(λ

p(I)) = λ p(ΓP(I)). (ii) and (iii) follow from
Lemma B.10. �

Proof of Theorem 7. Note that WhyP(A) = TP(A) and that, by λ p definition, it follows that
λ p(0) = 0 and thus, from Proposition 7 (i), it follows that GP(⊥) =GP(λ p(0)) = λ p(ΓP(0))
and

GP(⊥) = GP(λ p(0)) = λ
p(ΓP(0)) = λ

p(λ q(ΓP(0)))

Hence, from Proposition 7, it follows that

G2
P(⊥) = GP(GP(⊥)) = GP(λ p(λ q(ΓP(0))))

= λ
p(ΓP(λ q(ΓP(0)))) = λ

p(ΓP(ΓP(0))) = λ
p(Γ2

P(0))

Inductively applying this reasoning it follows that G2
P ↑∞ (0)= λ p(Γ2

P ↑∞ (0)) which, by Knaster-
Tarski theorem are the least fixpoints of the operators, that is, TP = λ p(LP) and, consequently,
WhyP(A) = TP(A) = λ p(LP(A)) = λ p(WP(A)) =WhyP(A). Similarly, by definition, it fol-
lows that WhyP(not A) = ¬TUP(A) where TUP is the greatest fixpoint of the operator G2

P .
Thus,

WhyP(not A) = ¬GP(TP) = λ
p(∼ΓP(LP)) = λ

p(∼UP(A)) = λ
p(WP(not A))

Finally, WhyP(undef A) = ¬TP(A)∗TUP(A) and, thus

WhyP(undef A) = λ
p(∼LP(A))∗λ

p(∼∼UP(A))

= λ
p(∼LP(A)∗∼∼UP(A))

= λ
p(∼WP(A)∗∼WP(not A)) = λ

p(WP(undef A))

and, thus, WhyP(undef A) = λ p(WP(undef A)) =WhyP(not A). �
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Appendix B.9. Proof of Theorem 8

Lemma B.11
Let P be a labelled logic program over a signature 〈At,Lb〉 where Lb is a finite set of labels and
no rule is a labelled by not(A) nor ∼∼not(A). Let Q be the result of removing all rules labelled
by ∼not(A) for some atom A. Let I and J be two interpretations such that J = ρnot(A)(I). Then,
ΓQ(J) = ρnot(A)(ΓP(I)). �

Proof . In the sake of simplicity, we just write ρ instead of ρnot(A). By definition ΓP(I) and ΓQ(J)
are respectively the least model of PI and QJ . The proof follows then by induction on the steps
of the TP operator assuming that ρ(TPI ↑β (0)) = TQJ ↑β (0) for all β < α .

Note that, TX ↑0 (0)(H) = 0 for any program X and atom H and, thus, the statement trivially
holds.

In case that α is a successor ordinal. Let u ∈ VLb be a join irreducible causal value such that
u≤ TPI ↑α (0)(H). Then, there is a rule in P of the form (4) such that

u ≤ (uB1 ∗ . . .∗uBm ∗uC1 ∗ . . .∗uCn) · ri

where uB j ≤ TPI ↑α−1 (0)(B j) and uC j ≤∼I(C j) for each positive literal B j and each negative
literal notC j in the body of rule ri.

If ri =∼not(A), then ρ(u) = 0≤ TQ ↑α−1 (0)(H). Otherwise,

1. By induction hypothesis, it follows that ρ(uB j)≤ TQ ↑α−1 (0)(B j), and
2. from J(H) = ρ(I(H)) and uC j ≤∼I(C j), it follows that ρ(uC j)≤∼J(C j).

Furthermore, no rule in the program P is labelled with not(A) nor ∼∼not(A) and, thus, ri 6=
not(A) and ri 6=∼∼not(A). Hence, ρ(u)≤ TQ ↑α−1 (0)(H).

The other way around is similar. Since u≤ TQJ ↑α (0)(H) there is a rule in Q of the form (4) such
that

u ≤ (uB1 ∗ . . .∗uBm ∗uC1 ∗ . . .∗uCn) · ri

and uB j ≤ TQJ ↑α−1 (0)(B j) and uC j ≤∼J(C j) for each positive literal B j and each negative lit-
eral notC j in the body of rule ri. By induction hypothesis, uB j ≤ ρ(TPI ↑α−1 (0)(B j)) for each B j

with 1≤ j ≤ m and, since J(H) = ρ(I(H)) and uC j ≤∼J(C j), it follows that uC j ≤ ρ(∼I(C j)).
Then, u≤ ρ(TPI ↑α (0)(H)).

In case that α is a limit ordinal TX ↑α (0) = ∑β<α TX ↑β (0)(H) and, thus, u ≤ TX ↑α (0) if and
only if u≤TX ↑β (0)(H) with β <α . By induction hypothesis, ρ(TPI ↑β (0)(H))=TQJ ↑β (0)(H)

and, thus, u≤ ρ(TPI ↑α (0)) if and only if u≤ TQJ ↑α (0). Hence, ρ(TPI ↑α (0)) = TQJ ↑α (0) and,
consequently, ΓQ(J) = ρ(ΓP(I)). �

Proposition 8
Let P be a labelled logic program over a signature 〈At,Lb〉where Lb is a finite set of labels where
no rule is a labelled by not(A) nor ∼∼not(A). Let Q be the result of removing all rules labelled
by ∼not(A) for some atom A. Then, LQ = ρnot(A)(LP) and UQ = ρnot(A)(UP). �
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Proof . Note that LX = Γ2
X ↑∞ (0) with X ∈ {P,Q}. Furthermore, by definition, it follows that

Γ2
P ↑0 (0) = Γ2

Q ↑0 (0) = 0. Then, assume as induction hypothesis that Γ2
Q ↑β (0) = ρ(Γ2

P ↑β (0))
for all β < α . When α is a successor ordinal, by definition Γ2

X ↑α (0) = Γ2
X (Γ

2
X ↑α−1 (0)) =

ΓX (ΓX (Γ
2
X ↑α−1 (0))) with X ∈ {P, Q} and, thus, the statement follows from Lemma B.11.

In case that α is a limit ordinal Γ2
X ↑α (0) = ∑β<α Γ2

X ↑β (0). Then, for every join irreducible u it
follows that u≤ Γ2

P ↑α (0) if and only if u≤ Γ2
P ↑β (0) for some β < α (by induction hypothesis)

iff ρ(u) ≤ Γ2
P ↑β (0) iff ρ(u) ≤ Γ2

P ↑α (0). Hence, Γ2
Q ↑α (0) = ρ(Γ2

P ↑α (0)) and, conseuqntly,
LQ = ρ(LP)

Finally, note that UX = ΓX (LX ) with X ∈ {P, Q} and, thus, the statement follows directly from
Lemma B.11. �

Proof of Theorem 8. By definition, program P is the result of removing all rules labelled with
∼not(A) in P. In case that L is some atom H, by definition, it follows that WP(H) = LP(H) and
WP(H) =LP(H) and, from Proposition 8, it follows that LP = ρ(LP) and, thus WP = ρ(WP).

Similarly, in case that L is a negative literal (L = not H), then WP(H) =∼UP(H) and WP(H) =

∼UP(H) and, from Proposition 8, it follows that UP = ρ(UP). Just note tha ρx(∼u) =∼ρx(u)
for any elementary term x and any value u. Hence, UP = ρ(UP) implies that ∼UP = ρ(∼UP)

and, consequently, WP = ρ(WP).

In case that L is an undefined literal (L = undef H), by definition, it follows that WP(H) =

∼WP(H)∗∼WP(not H) =∼LP(H)∗∼∼UP(H) and WP(H) =∼LP(H)∗∼∼UP(H) and the
result follows as before from Proposition 8. �

Appendix B.10. Proof of Theorem 9

Proof of Theorem 9. Note that ρ(λ p(u)) = λ p(ρ(u)) for any causal value u∈VLb. By definition
WhyP(L) = λ p(WP)(L) and, thus

ρ(WhyP(L)) = ρ(λ p(WP)(L)) = λ
p(ρ(WP))(L)

From Theorem 8, it follows that WP = ρ(WP) and, thus, ρ(WhyP(L)) = λ p(WP)(L). �

Appendix B.11. Proof of Theorem 2

The proof of Theorem 2 will rely on the relation between ECJ justifications and non-hypothetical
WnP justifications established by Theorem 9 plus the following result from (Damásio et al.
2013). First, we need some notation. Given a conjuntion of labels D, by Remove(D) we de-
note the set of negated labels in D, by Keep(D) the set of positive labels, by AddFacts(D) the set
of facts A such that ¬not(A) occurs in D and by NoFacts(D) the set of facts A such that not(A)
occurs in D.

Theorem 12 (Theorem 3 from Damásio et al. 2013)
Given a labelled logic program P, let N be a set of facts not in program P and R be a sub-
set of rules of P. A literal L belongs to the WFM of (P\R) ∪ N iff there is a conjunction
of literals D |=WhyP(L), such that Remove(D)⊆ R, Keep(D)∩R = /0, AddFacts(D)⊆ N, and
NoFacts(D)∩N = /0. �
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Definition 21
Given a positive program P, we define a direct consequence operator T̂P such that

T̂P(Î)(H) def= ∑
{

Î(B1)∗ . . .∗ Î(Bn) | (ri : H← B1, . . . ,Bn) ∈ P
}

for any standard interpretation interpretation Î and atom H ∈ At. �

Lemma B.12
Let P be a labelled logic program over a signature 〈At,Lb〉 where Lb is a finite set of labels and
let I and Î be respectively a ECJ and a standard interpretation satisfying that there is some enable
justification E ≤ ∼I(H) for every atom H such that Î(H) = 0. Then, every atom H satisfies
Γ̂P(Î)(H) = 1 iff there is some enabled justification E ≤ ΓP(I)(H). �

Proof . By definition ΓP(I) and Γ̂P(Î) are the least model of the programs PI and PÎ , respectively.
Furthermore, the least model of programs PI and PÎ are the least fixpoint of the TP and T̂P

operators, that is, ΓP(I) = TPI ↑ω (0) and Γ̂P(J) = T̂PÎ ↑ω (0). In case that α = 0, it follows that
T̂PÎ ↑0 (0)(H) for every atom H and, thus, the statement holds vacuous. We assume as induction
hypothesis that for every atom H and ordinal β < α such that T̂PÎ ↑β (0)(H) = 1, there is some
enabled justification E ≤ TPI ↑β (0)(H).

In case that α is a successor ordinal. If T̂PI ↑α−1 (0)(H) = 1, then there is a rule ri ∈ P of the form
(4) such that T̂PI ↑α−1 (0)(B j) = 1 and I(C j) = 0. On the one hand, by induction hypothesis, it
follows that there is some enabled justification EB j ≤ TPI ↑α−1 (0)(B j) and, by hypothesis, there
is some enabled justification EC j ≤∼I(C j). Hence,

E def= (EB1 ∗ . . .EBm ∗EC1 ∗ . . .∗ECn)·ri

is an enabled justification E ≤ TPI ↑α (0)(H).

The other way around, let E be some join irreducible justification. If E ≤ TPI ↑α (0)(H), then
there is a rule ri ∈ P of the form (4) such that

E ≤ (EB1 ∗ . . .EBm ∗EC1 ∗ . . .∗ECn)·ri

where EB j ≤ TPI ↑α (0)(B j) and EC j ≤ ∼I(C j) are enabled justifications. Hence, it follows that
T̂PÎ ↑α (0)(B j) = 1 and Î(C j) = 0.

In case that α is a limit ordinal, T̂PĨ ↑α (0) = 1 iff T̂PĨ ↑β (0) = 1 for some β < α iff there is a
join irreducible enabled justification E ≤ TPI ↑β (0))≤ λ p(TPI ↑α (0). �

Proof of Theorem 2. Let E ≤WP(L) be an enabled justification of L∈{A, not A, undef A}. From
Theorem 9, it follows that λ p(E) ≤ λ p(WP(L)) = ρ(WhyP(L)), that is, λ p(E) ≤ ρ(WhyP(L)).
Note that the minimum causal value t such that ρ(t) = ρ(WhyP(L)) is WhyP(L)∧

∧
A∈At not(A)

and, thus, D ≤WhyP(L) where D is defined by D = λ p(E)∧
∧

A∈At not(A). Furthermore, since
E is an enabled justification, λ p(E) is a positive conjunction and, thus, so it is D. Hence, there is
a positive conjunction D such that D ≤WhyP(L) and, from Theorem 12, it follows that L holds
with respect to the standard WFM of P.

The other way around. If L = A is an atom, then L holds with respect to the standard WFM iff
lfp(Γ̂2

P)(L) = 1. Furthermore, Γ̂2
P ↑0 (0)(H) = Γ2

P ↑0 (0) = 0 for any atom H and, thus, there is
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an enabled justification E ≤∼Γ2
P ↑0 (0) =∼0 = 1 for any atom H. Then, from Lemma B.12, for

any atom H , there is an enabled justification E ≤ ΓP(Γ
2
P ↑0 (0))(H) iff Γ̂P(Γ̂

2
P ↑0 (0))(H) = 1.

Applying this result again, it follows that E ≤ Γ2
P ↑1 (0)(H) = Γ2

P(Γ
2
P ↑0 (0))(H) if and only

if Γ̂2
P ↑1 (0))(H) = Γ̂2

P(Γ̂
2
P ↑0 (0))(H) = 1. Inductively applying this reasoning it follows that

Γ̂2
P ↑∞ (0)(H) = 1 iff there is an enabled justification E ≤ Γ2

P ↑∞ (0)(H) which, by Knaster-Tarski
theorem are the least fixpoints respectively of the Γ̂P and ΓP operators.

Similarly, if L= not A, then L holds with respect to the standard WFM if and only if gfp(Γ̂2
P)(L)=

Γ̂P(lfp(Γ̂2
P))(L)= 0 iff there is not any an enabled justification E ≤ΓP(lfp(Γ2

P))(L)= gfp(Γ2
P)(L)

iff there is an enabled justification E ≤WP(L) =∼gfp(Γ2
P)(L).

Finally, if L = undef A, then L holds with respect to the standard WFM iff lfp(Γ̂2
P)(L) = 0 and

gfp(Γ̂2
P)(L) = 1 if and only if there is not any enabled justification E ≤WP(L) and there is not

any enabled justification E ≤WP(not L) iff there is some enabled justification E ≤ ∼WP(L)
and there is some enabled justification E ≤ ∼WP(not L) iff there is some enabled justification
WP(undef A) =∼WP(A)∗∼WP(not A). �

Appendix B.12. Proof of Theorem 10

Lemma B.13
Let t and u be two causal terms such that no-sums occur in t ant t ≤ u. Then, ρx(t)≤ ρx(u). �

Proof . By definition t ≤ u if and only if t = t ∗u. Then, ρx(t) = ρx(t ∗u) = ρx(t)∗ρx(u) and, thus
if follows that ρx(t)≤ ρx(u). �

Lemma B.14
Let t be a causal term. Then, λ c(λ p(t))≤ λ p(λ c(t)). �

Proof . If t ∈ Lb is a label, then λ c(t) = t and λ p(t) = t and, thus, λ c(λ p(t)) = t ≤ t = λ p(λ c(t)).
If t = ∼l with l ∈ Lb a label, then λ c(t) = 0 and λ p(t) = ¬l and, thus, λ c(λ p(t)) = 0 ≤ 0 =

λ p(λ c(t)). If t =∼∼l with l ∈ Lb a label, then λ c(t) = 1 and λ p(t) = l and, thus, λ c(λ p(t)) =
l ≤ 1 = λ p(λ c(t)).

Assume as induction hypothesis that λ c(λ p(u)) ≤ λ p(λ c(u)) for every subterm u of t. If t =
u1·u2, then

λ
c(λ p(u1·u2)) = λ

c(λ p(u1)∗λ
c(λ p(u2) ≤ λ

p(λ c(u1)∗λ
p(λ c(u2) = λ

p(λ c(u1·u2))

Similarly, if t = ∑u∈U u, then

λ
c(λ p(∑

u∈U
u) = ∑

u∈U
λ

c(λ p(u) ≤ ∑
u∈U

λ
p(λ c((u)) = λ

p(λ c(∑
u∈U

u))

and if t = ∏u∈U u, then

λ
c(λ p(∏

u∈U
u) = ∏

u∈U
λ

c(λ p(u) ≤ ∏
u∈U

λ
p(λ c((u)) = λ

p(λ c(∏
u∈U

u))

�
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Proof of Theorem 10. From Theorem 9, it follows that ρ(WhyP(A)) = λ p(WP)(A). Further-
more, since D≤WhyP(A), from Lemma B.13, it follows that

ρ(D) ≤ ρ(WhyP(A)) = λ
p(WP)(A) = λ

p(LP)(A)

and, thus, λ c(ρ(D))≤ λ c(λ p(LP))(A). Let Ĩ be any CG stable model. Then, since Ĩ = λ c(I) for
some fixpoint I of Γ2

P, it follows that λ c(LP) ≤ Ĩ and, thus, λ p(λ c(LP)) ≤ λ p(Ĩ). Furthermore,
from Lemma B.14, it follows that λ c(λ p(LP))≤ λ p(λ c(LP)) and, thus

λ
c(ρ(D)) ≤ λ

c(λ p(LP))(A) ≤ λ
p(λ c(LP))(A) ≤ λ

p(Ĩ)(A)

Note that, since D is non-hypothetical and enabled, it does not contain negated labels and, thus,
λ c(ρ(D)) = ρ(D). Consequently, ρ(D)≤ λ p(Ĩ)(A). �


