Appendix

Theorem 2

Given a KELPS framework $\langle \mathbf{R}, \mathbf{Aux}, \mathbf{C} \rangle$, initial state S_0 and sequence $ext_1, \dots, ext_i, \dots$ of sets of external events, suppose that the OS generates the sequences of sets $acts_1, \dots, acts_i, \dots$ of actions and S_1, \dots, S_i, \dots of states. Then $\mathbf{R} \cup C_{pre}$ is true in $\mathbf{I} = \mathbf{Aux} \cup \mathbf{S}^* \cup \mathbf{ev}^*$ if, for every goal tree that is added to a goal state $G_i, i \ge 0$, the goal clause *true* is added to the same goal tree in some goal state $G_i, j \ge i$.

Proof

To show C_{pre} is true in $Aux \cup S^* \cup ev^*$, it suffices to show C_{pre} is true in each $Aux \cup S_i^* \cup ev_i^* \cup ev_{i+1}^*$. But this is ensured by step 4 of the OS.

To show **R** is true in $Aux \cup S^* \cup ev^*$, we need to show that for every rule of the form $\forall X \ [antecedent \rightarrow \exists Y \ consequent]$ in **R**, whenever some instance antecedent σ of the antecedent is true in **I** then the corresponding instance consequent σ of the consequent is also true in **I**. But if antecedent σ is true in **I**, then antecedent σ becomes true at some time *i* in $Aux \cup S_0^* \cup ... \cup S_i^* \cup ev_0^* \cup ... \cup ev_i^*$, and consequent σ is added as the root of a new goal tree to the current goal state G_i . Each disjunct consequent $j \sigma$ whose temporal constraints are satisfiable in Aux is added as a child of the root node.

Clearly, consequent_j σ implies consequent σ . So if true \rightarrow consequent_j σ is true in I, then consequent σ is true in I. The truth of true \rightarrow consequent_j σ in I follows from the more general fact that if a goal clause C is added in step 2 as a child of a goal clause C', then $C \rightarrow C'$ is true in I.

Therefore, the existence of a goal state G_j where $i \leq j$ and *true* is added to the same goal tree as *consequent* σ in G_j implies that *consequent* σ is true at time *j*, and therefore *consequent* σ is true in *I*.

The proof of Theorem 3 uses Lemma 2, which is proved using Lemma 1:

Lemma 1

For $i \ge 0$, let r be a rule in R_i . Then there exists a rule in **R** of the form $ear \land con \rightarrow consequent$ and a substitution σ that grounds all and only the variables in *ear* such that

ear
$$\sigma$$
 is true in $Aux \cup S_0^* \cup ev_0^* \ldots \cup ev_i^*$
ear $\sigma < con \sigma$
 $con \sigma \rightarrow consequent \sigma$ is r.

Proof

Let n be the number of applications of step 1 in the derivation of r. The proof is by induction on n.

Base case n = 0: Because r was derived by 0 applications of step 1, it follows that $r \in \mathbf{R}$. Then r has the form $ear \land con \rightarrow consequent$, where ear is empty (equivalent

to *true*). Let σ be the empty substitution. Then

ear
$$\sigma$$
 is true in $Aux \cup S_0^* \cup \ldots \cup S_i^* \cup ev_0^* \ldots \cup ev_i^*$
ear $\sigma < con \sigma$
 $con \sigma \rightarrow consequent \sigma$ is r.

This proves the base case.

Inductive step n > 0: Let r be added to some R_k by an application of step 1 of the OS to some rule r' in R_k , where $k \leq i$. By step 1 of the OS: r' has the form current \wedge later \rightarrow consequent, where current θ < later θ , r has the form later $\theta \rightarrow consequent \theta$, current θ is true in $Aux \cup S_k^* \cup ev_k^*$, θ instantiates all and only the variables in *current*, and θ instantiates all the timestamp variables in FOL conditions in *current* to k. By the inductive hypothesis applied to r', there exists a rule r^* in **R** of the form earlier \land curr \land rest \rightarrow conseq and a substitution σ that grounds all and only the variables in earlier such that earlier σ is true in $Aux \cup S_0^* \cup \ldots \cup S_k^* \cup ev_0^* \ldots \cup ev_k^*$, earlier $\sigma < curr \sigma \wedge rest \sigma$. current is curr σ and later is rest σ . Then earlier $\sigma \ \theta \land curr \ \sigma \ \theta$ is true in $Aux \cup S_0^* \cup \ldots \cup S_i^* \cup ev_0^* \ldots \cup ev_i^*$, earlier $\sigma \ \theta \land curr \ \sigma \ \theta < rest \ \sigma \ \theta$, rest $\sigma \theta \rightarrow conseq \sigma \theta$ is r. This proves the inductive step.

Lemma 2

For $i \ge 0$, let C be a goal clause in G_i . Then there exists a rule r in **R** of the form antecedent \rightarrow [other \lor [earlier \land conds]] and a substitution σ that grounds all and only the variables in antecedent \land earlier such that

antecedent $\sigma \wedge earlier \sigma$ is true in $Aux \cup S_0^* \cup \ldots \cup S_i^* \cup ev_0^* \ldots \cup ev_i^*$, earlier $\sigma < conds \sigma$ and, conds σ is C.

Proof

Let n be the number of applications of step 2 in the derivation of C. The proof is by induction on n, and is similar to that of Lemma 1.

Base case n = 0: If C is in G_0 , then, by the definition of G_0 , there exists a rule r of the form $true \rightarrow [other \lor [earlier \land C]]$ where *earlier* is empty, and r has the form required in the statement of the Lemma. If C is added in step 1 of the OS to $G_k, k \leq i$, then R_k contains a rule r of the form $true \rightarrow [other \lor C]$ where $other \lor C$ is a new root node added to G_k . As a consequence of Lemma 1, there exists a rule in **R** of the form $ear \land con \rightarrow consequent$ and a substitution σ that grounds all and only the variables in *ear* such that

ear σ is *true* in $Aux \cup S_0^* \cup \ldots \cup S_k^* \cup ev_0^* \ldots \cup ev_k^*$, *ear* $\sigma < con \sigma$, $con \sigma \rightarrow consequent \sigma$ is r. So

con σ is true, and consequent σ is other \vee C.

Let consequent have the form [alternatives \lor [earlier \land conds]] where earlier is true and conds σ is C. Then σ grounds all and only the variables in ear \land con \land earlier and

ear $\sigma \wedge con \sigma \wedge earlier \sigma$ is true in $Aux \cup S_0^* \cup ... \cup S_i^* \cup ev_0^* \ldots \cup ev_i^*$ earlier $\sigma < conds \sigma$ conds σ is C. This proves the base case.

Inductive step n > 0: Let C be added in step 2 of the OS to G_k as a child of a goal clause C', where C' is in G_k , $k \leq i$. By step 2 of the OS:

C' has the form *current* \wedge *later*, where *current* θ < *later* θ ,

C has the form *later* θ ,

current θ is true in $Aux \cup S_k^* \cup ev_k^*$,

 θ instantiates all and only the variables in *current*, and

 θ instantiates all the timestamp variables in FOL conditions in *current* to k.

By the inductive hypothesis applied to *C'*, there exists a rule *r* in **R** of the form antecedent $\rightarrow [other \lor [earlier \land curr \land rest]]$ and a substitution σ that grounds all and only the variables in antecedent $\land earlier$ such that antecedent $\sigma \land earlier \sigma$ is true in $Aux \cup S_0^* \cup ... \cup S_k^* \cup ev_0^* ... \cup ev_k^*$, earlier $\sigma < curr \sigma \land rest \sigma$, current is curr σ and later is rest σ .

Then

antecedent $\sigma \ \theta \land earlier \ \sigma \ \theta \land curr \ \sigma \ \theta$, is true in $Aux \cup S_0^* \cup \ldots \cup S_i^* \cup ev_0^* \ldots \cup ev_i^*$, earlier $\sigma \ \theta \land curr \ \sigma \ \theta < rest \ \sigma \ \theta$, rest $\sigma \ \theta$ is C. This proves the inductive step.

Theorem 3

Given a range restricted KELPS framework $\langle R, Aux, C \rangle$, initial state S_0 and set of external events ext^* , let $acts^*$ be the set of actions generated by the OS, and $ev^* = ext^* \cup acts^*$. Then $I = Aux \cup S^* \cup ev^*$ is a reactive interpretation.

Proof

Assume that, for $i \ge 0$, an action $action \tau$ is added to *candidate-acts*_{*i*+1} in step 3 and included in *acts*_{*i*+1} in step 4 of the OS at time *i*. It follows that there exists a sequencing *action* $\tau \le rest \tau$ of an instance of a goal clause *action* $\wedge rest$ in G_i , where τ instantiates only the timestamp variable in *action* to the time *i*+1.

By Lemma 2 there exists a rule r in **R** of the form *antecedent* \rightarrow [other \lor [earlier \land conds1 \land conds2]] and a substitution σ that grounds all and only the variables in *antecedent* \land earlier such that

antecedent $\sigma \wedge earlier \sigma$ is true in $Aux \cup S_0^* \cup \ldots \cup S_i^* \cup ev_0^* \ldots \cup ev_i^*$, conds1 σ is action, conds2 σ is rest, earlier $\sigma < action \wedge rest$. It follows that $r \sigma \tau$ supports action τ , in the sense that:

(a) action τ is conds1 σ τ ,

(b) antecedent $\sigma \tau \wedge earlier \sigma \tau < conds1 \sigma \tau \wedge conds2 \sigma \tau$,

(c) antecedent $\sigma \tau \wedge earlier \sigma \tau \wedge conds1 \sigma \tau$ is true in *I*.

Moreover, step 4 ensures that C_{pre} is *true* in $Aux \cup S_i^* \cup ev_{i+1}^*$. Therefore, C_{pre} is *true* in *I*. Therefore, *I* is reactive. End of proof.

Theorem 4

Given a range restricted KELPS framework $\langle R, Aux, C \rangle$, initial state S_0 and external events ext^* , let $acts^*$ be a set of actions such that $I = Aux \cup S^* \cup ev^*$, where $ev^* = ext^* \cup acts^*$, is a reactive interpretation. Then there exist choices in steps 2, 3, and 4 such that the OS generates $acts^*$ (and therefore generates I). *Proof*

Let $\mathbf{R}^{I} = \{(r, \sigma, t) \mid r \sigma \text{ supports an action } act_{t} \text{ at time } t\}$. We show by induction on *i* that for all times $i \ge 0$, there exist choices in steps 2, 3, and 4 such that

- (1) For all $(r, \sigma, t) \in \mathbb{R}^{I}$, if $i \leq t$ then, at the beginning of the OS cycle at time *i*, either (a) there exists a reactive rule $r_i \in \mathbb{R}_i$ such that
 - *r* has the form *earlier* \land *later* \rightarrow *consequent*,
 - earlier σ is true in $Aux \cup S_0^* \cup \ldots \cup S_{i-1}^* \cup ev_0^* \ldots \cup ev_{i-1}^*$,
 - *later* $\sigma \rightarrow consequent \sigma$ is an instance of r_i and
 - earlier σ < later σ, or (b) there exists a goal clause C_i in G_i such that
 - *r* has the form *antecedent* \rightarrow [*other* \lor [*early* \land *late*]],
 - antecedent $\sigma \wedge early \sigma$ is true in $Aux \cup S_0^* \cup \ldots \cup S_{i-1}^* \cup ev_0^* \ldots \cup ev_{i-1}^*$
 - *late* σ is an instance of C_i and
 - antecedent $\sigma \wedge early \sigma < late \sigma$.
- (2) At the end of the OS cycle at time *i*-1, the OS has chosen in step 4 all and only the actions in $acts_i^*$. Clearly, (2) implies the statement of the Theorem.

Let i = 0 and $(r, \sigma, t) \in \mathbb{R}^{I}$. If r has the form $true \rightarrow [other \lor [earlier \land act \land rest]]$, where $r \sigma$ supports $act \sigma$, then $early \land earlier \land act \land rest$, where early is empty (i.e. true), is the desired goal clause C_0 in G_0 . Otherwise, r has the form $later \rightarrow$ *consequent*, where *later* is not empty, which has the same form as *earlier* $\land later \rightarrow$ *consequent*, where *earlier* is empty. This is the desired reactive rule $r_0 \in R_0$. So case (1a) holds. (2) also holds, because there are no actions before time 1.

Let i > 0 and assume that (1) holds (at the beginning of the cycle at time *i*-1) and that (2) holds (at the end of cycle at time *i*-2). To show that (1) holds at time *i*, let $(r, \sigma, t) \in \mathbb{R}^{I}$ where $i \leq t$. By the induction hypothesis, either (1a) or (1b) holds for (r, σ, t) at time *i*-1. Suppose first that (1a) holds at time *i*-1. Then there exists a reactive rule $r_{i-1} \in \mathbb{R}_{i-1}$ such that

- *r* has the form *earlier* \land *later* \rightarrow *consequent*,
- earlier σ is true in $Aux \cup S_0^* \cup \ldots \cup S_{i-2}^* \cup ev_0^* \ldots \cup ev_{i-2}^*$,
- *later* $\sigma \rightarrow consequent \sigma$ is an instance of r_{i-1} and
- earlier $\sigma < later \sigma$.

If no timestamp in *later* σ is equal to *i*-1, then r_{i-1} persists until the end of the cycle, becomes the desired r_i at the beginning of the next cycle, and (1a) holds for (r, σ, t) at time *i*. Otherwise, *later* has the form *current* \wedge *rest* where *current* σ is true in $Aux \cup S_{i-1}^* \cup ev_{i-1}^*$ and *current* $\sigma < rest \sigma$. Then step 1 of the OS must evaluate the FOL conditions and temporal constraints in r_{i-1} that have *current* σ as an instance, generating a rule $r_i \in R_{i-1}$ such that *rest* $\sigma \rightarrow consequent \sigma$ is an instance of r_i . Therefore, $r_i \in R_{i-1}$ is such that

- *r* has the form *earlier* \land *current* \land *rest* \rightarrow *consequent*,
- earlier $\sigma \wedge current \sigma$ is true in $Aux \cup S_0^* \cup \ldots \cup S_{i-1}^* \cup ev_0^* \ldots \cup ev_{i-1}^*$
- rest $\sigma \rightarrow consequent \sigma$ is an instance of r_i and
- earlier $\sigma \wedge current \sigma < rest \sigma$.

If rest σ is not empty, then r_i persists until the end of the cycle, becomes the desired r_i at beginning of the next cycle, and (1a) holds for (r, σ, t) at time *i*.

If rest σ is empty, then the OS deletes r_i from R_{i-1} and adds a new goal tree to G_{i-1} with root node having *consequent* σ as an instance. Because $r \sigma$ supports some action act_t at time t where $i-1 \leq t$, then r has the form *antecedent* \rightarrow [*other* \lor [*conclusion*]] where act_t is a bare action conjunct of *conclusion*. Then the OS adds to G_{i-1} a goal clause C as a child of the new root node such that

- *r* has the form *antecedent* \rightarrow [*other* \lor [*conclusion*]],
- antecedent σ is true in $Aux \cup S_0^* \cup \ldots \cup S_{i-1}^* \cup ev_0^* \ldots \cup ev_{i-1}^*$
- conclusion σ is an instance of C and
- antecedent $\sigma \leq \text{conclusion } \sigma$.

If no timestamp in FOL conditions in *conclusion* σ is equal to *i*-1, then rewrite *conclusion* as *early* \wedge *late* where *early* is empty. Then

- *r* has the form *antecedent* \rightarrow [*other* \lor [*early* \land *late*]],
- antecedent $\sigma \land early \sigma$ is true in $Aux \cup S_0^* \cup \ldots \cup S_{i-1}^* \cup ev_0^* \ldots \cup ev_{i-1}^*$
- *late* σ is an instance of *C* and
- antecedent $\sigma \wedge early \sigma < late \sigma$.

C persists until the end of the cycle, becomes the desired C_i at the beginning of the next cycle, and (1b) holds for (r, σ, t) at time *i*.

Otherwise, conclusion has the form early \wedge late where early is not empty, early σ is true in $Aux \cup S_{i+1}^* \cup ev_{i+1}^*$, and early $\sigma < late \sigma$. Let the OS in step 2 choose and evaluate the FOL conditions and temporal constraints in C that have early σ as an instance, generating a goal clause C_i in G_{i-1} such that late σ is an instance of C_i . Then

- *r* has the form *antecedent* \rightarrow [*other* \lor [*early* \land *late*]],
- antecedent $\sigma \land early \sigma$ is true in $Aux \cup S_0^* \cup \ldots \cup S_{i-1}^* \cup ev_0^* \ldots \cup ev_{i-1}^*$
- *late* σ is an instance of C_i and
- antecedent $\sigma \wedge early \sigma < late \sigma$.

 C_i persists until the end of the cycle, becomes the desired C_i at the beginning of the next cycle; and (1b) holds for (r, σ, t) at time *i*.

Suppose instead that the induction hypothesis holds for (1b). Then there exists a goal clause C_{i-1} in G_{i-1} such that

- *r* has the form *antecedent* \rightarrow [*other* \lor [*early* \land *late*]],
- antecedent $\sigma \land early \sigma$ is true in $Aux \cup S_0^* \cup \ldots \cup S_{i-2}^* \cup ev_0^* \ldots \cup ev_{i-2}^*$
- *late* σ is an instance of C_{i-1} and
- antecedent $\sigma \wedge early \sigma < late \sigma$.

If no timestamp in FOL conditions in *late* σ is equal to *i*-1, then C_{i-1} persists until the end of the cycle, becomes the desired C_i at the beginning of the next cycle; and (1b) holds for (r, σ, t) at time *i*.

Otherwise *late* has the form *current* \land *rest* where *current* is not empty, *current* σ is true in $Aux \cup S_{i-1}^* \cup ev_{i-1}^*$, and *current* $\sigma < rest \sigma$. Let the OS in step 2 choose and evaluate the FOL conditions and temporal constraints in C_{i-1} that have *current* σ as an instance, generating a goal clause C_i in G_{i-1} such that *rest* σ is an instance of C_i . Then

- *r* has the form antecedent \rightarrow [other \lor [early \land current \land rest]],
- antecedent $\sigma \land early \sigma \land current \sigma$ is true in $Aux \cup S_0^* \cup \ldots \cup S_{i-1}^* \cup ev_0^* \ldots \cup ev_{i-1}^*$
- rest σ is an instance of C_i and
- antecedent $\sigma \land early \sigma \land current \sigma < rest \sigma$.

 C_i persists until the end of the cycle, becomes the desired C_i at the beginning of the next cycle; and (1b) holds for (r, σ, t) at time *i*.

To show that (2) holds at time *i*, we need to ensure that steps 3 and 4 of the OS can choose act_i if $(r, \sigma, i) \in \mathbb{R}^I$. But this follows from (1b), which ensures that if *r* has the form *antecedent* $\rightarrow [other \lor [earlier \land action \land rest]]$ where $action \sigma = act_i$ and $r \sigma$ supports act_i , then there exists a goal clause C_{i-1} in G_{i-1} such that $action \sigma \land rest \sigma$ is an instance of C_{i-1} . It is easy to see that step 3 can include act_i in candidate- $acts_i$. Because C_{pre} is true in *I*, step 4 of the OS can choose act_i among the actions generated at the end of the cycle. Moreover, for any other bare action atom act in a goal clause in G_{i-1} (whether $i \leq t$ or i > t for all $(r, \sigma, t) \in \mathbb{R}^I$), whether or not step 3 chooses act, step 4 should not choose act; and this is possible because *I* satisfies C_{pre} .