
Appendix

Theorem 2

Given a KELPS framework < R,Aux,C >, initial state S0 and sequence ext1, . . . , exti,. . .

of sets of external events, suppose that the OS generates the sequences of sets

acts1, . . . , actsi,. . . of actions and S1, . . . , Si,. . . of states. Then R ∪ Cpre is true in

I = Aux ∪ S∗ ∪ ev∗ if, for every goal tree that is added to a goal state Gi, i � 0, the

goal clause true is added to the same goal tree in some goal state Gj , j � i.

Proof

To show Cpre is true in Aux ∪ S∗ ∪ ev∗, it suffices to show Cpre is true in each

Aux ∪ S∗i ∪ ev∗i ∪ ev∗i+1. But this is ensured by step 4 of the OS.

To show R is true in Aux ∪ S∗ ∪ ev∗, we need to show that for every

rule of the form ∀X [antecedent → ∃Y consequent] in R, whenever some instance

antecedent σ of the antecedent is true in I then the corresponding instance

consequent σ of the consequent is also true in I . But if antecedent σ is true in I , then

antecedent σ becomes true at some time i in Aux ∪ S∗0 ∪ . . . ∪ S∗i ∪ ev∗0 ∪ . . . ∪ ev∗i ,

and consequent σ is added as the root of a new goal tree to the current goal state

Gi. Each disjunct consequentj σ whose temporal constraints are satisfiable in Aux is

added as a child of the root node.

Clearly, consequentj σ implies consequent σ. So if true → consequentj σ is true in

I , then consequent σ is true in I . The truth of true → consequentj σ in I follows

from the more general fact that if a goal clause C is added in step 2 as a child of a

goal clause C’, then C → C’ is true in I .

Therefore, the existence of a goal state Gj where i � j and true is added to the

same goal tree as consequent σ in Gj implies that consequent σ is true at time j, and

therefore consequent σ is true in I .

The proof of Theorem 3 uses Lemma 2, which is proved using Lemma 1:

Lemma 1

For i � 0, let r be a rule in Ri. Then there exists a rule in R of the form ear ∧ con

→ consequent and a substitution σ that grounds all and only the variables in ear

such that

ear σ is true in Aux ∪ S∗0 ∪ ev∗0 . . . ∪ ev∗i

ear σ < con σ

con σ → consequent σ is r.

Proof

Let n be the number of applications of step 1 in the derivation of r. The proof is by

induction on n.

Base case n = 0: Because r was derived by 0 applications of step 1, it follows that

r ∈ R. Then r has the form ear ∧ con → consequent, where ear is empty (equivalent



to true). Let σ be the empty substitution. Then

ear σ is true in Aux ∪ S∗0 ∪ . . . ∪ S∗i ∪ ev∗0 . . . ∪ ev∗i

ear σ < con σ

con σ → consequent σ is r.

This proves the base case.

Inductive step n > 0: Let r be added to some Rk by an application of step 1 of

the OS to some rule r’ in Rk , where k � i. By step 1 of the OS:

r’ has the form current ∧ later → consequent, where current θ < later θ,

r has the form later θ → consequent θ,

current θ is true in Aux ∪ S∗k ∪ ev∗k ,

θ instantiates all and only the variables in current, and

θ instantiates all the timestamp variables in FOL conditions in current to k.

By the inductive hypothesis applied to r’, there exists a rule r∗ in R of the form

earlier ∧ curr ∧ rest → conseq and a substitution σ

that grounds all and only the variables in earlier such that

earlier σ is true in Aux ∪ S∗0 ∪ . . . ∪ S∗k ∪ ev∗0 . . . ∪ ev∗k ,

earlier σ < curr σ ∧ rest σ,

current is curr σ and later is rest σ.

Then

earlier σ θ ∧ curr σ θ is true in Aux ∪ S∗0 ∪ . . . ∪ S∗i ∪ ev∗0 . . . ∪ ev∗i ,

earlier σ θ ∧ curr σ θ < rest σ θ,

rest σ θ → conseq σ θ is r. This proves the inductive step.

Lemma 2

For i � 0, let C be a goal clause in Gi. Then there exists a rule r in R of the form

antecedent → [other ∨ [earlier ∧ conds]] and a substitution σ that grounds all and

only the variables in antecedent ∧ earlier such that

antecedent σ ∧ earlier σ is true in Aux ∪ S∗0 ∪ . . . ∪ S∗i ∪ ev∗0 . . . ∪ ev∗i ,

earlier σ < conds σ and,

conds σ is C.

Proof

Let n be the number of applications of step 2 in the derivation of C . The proof is

by induction on n, and is similar to that of Lemma 1.

Base case n = 0: If C is in G0, then, by the definition of G0, there exists a rule

r of the form true → [other ∨ [earlier ∧ C]] where earlier is empty, and r has the

form required in the statement of the Lemma. If C is added in step 1 of the OS to

Gk, k � i, then Rk contains a rule r of the form true→ [other ∨ C] where other ∨ C

is a new root node added to Gk . As a consequence of Lemma 1, there exists a rule

in R of the form ear ∧ con → consequent and a substitution σ that grounds all and

only the variables in ear such that

ear σ is true in Aux ∪ S∗0 ∪ . . . ∪ S∗k ∪ ev∗0 . . . ∪ ev∗k ,

ear σ < con σ,



con σ → consequent σ is r. So

con σ is true, and consequent σ is other ∨ C.

Let consequent have the form [alternatives ∨ [earlier ∧ conds]] where earlier is true

and conds σ is C. Then σ grounds all and only the variables in ear ∧ con ∧ earlier

and

ear σ ∧ con σ ∧ earlier σ is true in Aux ∪ S∗0 ∪ ... ∪ S∗i ∪ ev∗0 . . . ∪ ev∗i
earlier σ < conds σ

conds σ is C. This proves the base case.

Inductive step n > 0: Let C be added in step 2 of the OS to Gk as a child of a

goal clause C’, where C’ is in Gk , k � i. By step 2 of the OS:

C’ has the form current ∧ later, where current θ < later θ ,

C has the form later θ,

current θ is true in Aux ∪ S∗k ∪ ev∗k ,

θ instantiates all and only the variables in current, and

θ instantiates all the timestamp variables in FOL conditions in current to k.

By the inductive hypothesis applied to C’, there exists a rule r in R of the form

antecedent → [other ∨ [earlier ∧ curr ∧ rest ]] and a substitution σ

that grounds all and only the variables in antecedent ∧ earlier such that

antecedent σ∧ earlier σ is true in Aux ∪ S∗0 ∪ . . . ∪ S∗k ∪ ev∗0 . . . ∪ ev∗k ,

earlier σ < curr σ ∧ rest σ,

current is curr σ and later is rest σ.

Then

antecedent σ θ ∧ earlier σ θ ∧ curr σ θ,

is true in Aux ∪ S∗0 ∪ . . . ∪ S∗i ∪ ev∗0 . . . ∪ ev∗i ,

earlier σ θ ∧ curr σ θ < rest σ θ,

rest σ θ is C. This proves the inductive step.

Theorem 3

Given a range restricted KELPS framework <R,Aux,C >, initial state S0 and set

of external events ext∗, let acts∗ be the set of actions generated by the OS, and

ev∗ = ext∗ ∪ acts∗. Then I = Aux ∪ S∗ ∪ ev∗ is a reactive interpretation.

Proof

Assume that, for i � 0, an action action τ is added to candidate-actsi+1 in step 3

and included in actsi+1 in step 4 of the OS at time i. It follows that there exists

a sequencing action τ � rest τ of an instance of a goal clause action ∧ rest in Gi,

where τ instantiates only the timestamp variable in action to the time i+1.

By Lemma 2 there exists a rule r in R of the form antecedent → [other ∨ [earlier

∧ conds1 ∧ conds2]] and a substitution σ that grounds all and only the variables in

antecedent ∧ earlier such that

antecedent σ ∧ earlier σ is true in Aux ∪ S∗0 ∪ . . . ∪ S∗i ∪ ev∗0 . . . ∪ ev∗i ,

conds1 σ is action,

conds2 σ is rest,

earlier σ < action ∧ rest.



It follows that r σ τ supports action τ, in the sense that:
(a) action τ is conds1 σ τ,

(b) antecedent σ τ ∧ earlier σ τ < conds1 σ τ ∧ conds2 σ τ,

(c) antecedent σ τ ∧ earlier σ τ ∧ conds1 σ τ is true in I .

Moreover, step 4 ensures that Cpre is true in Aux ∪ S∗i ∪ ev∗i+1. Therefore, Cpre is true

in I . Therefore, I is reactive. End of proof.

Theorem 4

Given a range restricted KELPS framework < R,Aux,C >, initial state S0 and

external events ext∗, let acts∗ be a set of actions such that I = Aux∪S∗ ∪ ev∗, where

ev∗ = ext∗ ∪ acts∗, is a reactive interpretation. Then there exist choices in steps 2, 3,

and 4 such that the OS generates acts∗ (and therefore generates I ).

Proof

Let RI = {(r, σ, t) | r σ supports an action actt at time t}. We show by induction on

i that for all times i � 0, there exist choices in steps 2, 3, and 4 such that

(1) For all (r, σ, t) ∈ RI , if i � t then, at the beginning of the OS cycle at time i,

either (a) there exists a reactive rule ri ∈ Ri such that

• r has the form earlier ∧ later → consequent,

• earlier σ is true in Aux ∪ S∗0 ∪ . . . ∪ S∗i-1 ∪ ev∗0 . . . ∪ ev∗i-1,

• later σ → consequent σ is an instance of ri and

• earlier σ < later σ,

or (b) there exists a goal clause Ci in Gi such that

• r has the form antecedent → [other ∨ [early ∧ late]],

• antecedent σ ∧ early σ is true in Aux ∪ S∗0 ∪ . . . ∪ S∗i-1 ∪ ev∗0 . . . ∪ ev∗i-1,

• late σ is an instance of Ci and

• antecedent σ ∧ early σ < late σ.

(2) At the end of the OS cycle at time i-1, the OS has chosen in step 4 all and only

the actions in acts∗i . Clearly, (2) implies the statement of the Theorem.

Let i = 0 and (r, σ, t) ∈ RI . If r has the form true→ [other ∨ [earlier ∧ act ∧ rest]],

where r σ supports act σ, then early ∧ earlier ∧ act ∧ rest, where early is empty

(i.e. true), is the desired goal clause C0 in G0. Otherwise, r has the form later →
consequent, where later is not empty, which has the same form as earlier ∧ later →
consequent, where earlier is empty. This is the desired reactive rule r0 ∈ R0. So case

(1a) holds. (2) also holds, because there are no actions before time 1.

Let i > 0 and assume that (1) holds (at the beginning of the cycle at time i-1)

and that (2) holds (at the end of cycle at time i-2). To show that (1) holds at time i,

let (r, σ, t) ∈ RI where i � t. By the induction hypothesis, either (1a) or (1b) holds

for (r, σ, t) at time i-1. Suppose first that (1a) holds at time i-1. Then there exists a

reactive rule ri-1 ∈ Ri-1 such that

• r has the form earlier ∧ later → consequent,

• earlier σ is true in Aux ∪ S∗0 ∪ . . . ∪ S∗i-2 ∪ ev∗0 . . . ∪ ev∗i-2,

• later σ → consequent σ is an instance of ri-1 and

• earlier σ < later σ.



If no timestamp in later σ is equal to i-1, then ri-1 persists until the end of the

cycle, becomes the desired ri at the beginning of the next cycle, and (1a) holds for

(r, σ, t) at time i. Otherwise, later has the form current ∧ rest where current σ is true

in Aux∪ S∗i-1 ∪ ev∗i-1 and current σ < rest σ. Then step 1 of the OS must evaluate the

FOL conditions and temporal constraints in ri-1 that have current σ as an instance,

generating a rule ri ∈ Ri-1 such that rest σ → consequent σ is an instance of ri.

Therefore, ri ∈ Ri-1 is such that

• r has the form earlier ∧ current ∧ rest→ consequent,

• earlier σ ∧ current σ is true in Aux ∪ S∗0 ∪ . . . ∪ S∗i-1 ∪ ev∗0 . . . ∪ ev∗i-1,
• rest σ → consequent σ is an instance of ri and

• earlier σ ∧ current σ < rest σ.

If rest σ is not empty, then ri persists until the end of the cycle, becomes the desired

ri at beginning of the next cycle, and (1a) holds for (r, σ, t) at time i.

If rest σ is empty, then the OS deletes ri from Ri-1 and adds a new goal tree

to Gi-1 with root node having consequent σ as an instance. Because r σ supports

some action actt at time t where i-1 � t, then r has the form antecedent → [other ∨
[conclusion]] where actt is a bare action conjunct of conclusion. Then the OS adds

to Gi-1 a goal clause C as a child of the new root node such that

• r has the form antecedent→ [other ∨ [conclusion]],

• antecedent σ is true in Aux ∪ S∗0 ∪ . . . ∪ S∗i-1 ∪ ev∗0 . . . ∪ ev∗i-1,
• conclusion σ is an instance of C and

• antecedent σ � conclusion σ.

If no timestamp in FOL conditions in conclusion σ is equal to i-1, then rewrite

conclusion as early ∧ late where early is empty. Then

• r has the form antecedent→ [other ∨ [early ∧ late]],

• antecedent σ ∧ early σ is true in Aux ∪ S∗0 ∪ . . . ∪ S∗i-1 ∪ ev∗0 . . . ∪ ev∗i-1,
• late σ is an instance of C and

• antecedent σ ∧ early σ < late σ.

C persists until the end of the cycle, becomes the desired Ci at the beginning of the

next cycle, and (1b) holds for (r, σ, t) at time i.

Otherwise, conclusion has the form early ∧ late where early is not empty, early σ

is true in Aux ∪ S∗i-1 ∪ ev∗i-1, and early σ < late σ. Let the OS in step 2 choose and

evaluate the FOL conditions and temporal constraints in C that have early σ as an

instance, generating a goal clause Ci in Gi-1 such that late σ is an instance of Ci.

Then

• r has the form antecedent→ [other ∨ [early ∧ late]],

• antecedent σ ∧ early σ is true in Aux ∪ S∗0 ∪ . . . ∪ S∗i-1 ∪ ev∗0 . . . ∪ ev∗i-1,
• late σ is an instance of Ci and

• antecedent σ ∧ early σ < late σ.

Ci persists until the end of the cycle, becomes the desired Ci at the beginning of the

next cycle; and (1b) holds for (r, σ, t) at time i.

Suppose instead that the induction hypothesis holds for (1b). Then there exists a

goal clause Ci-1 in Gi-1 such that



• r has the form antecedent→ [other ∨ [early ∧ late]],

• antecedent σ ∧ early σ is true in Aux ∪ S∗0 ∪ . . . ∪ S∗i-2 ∪ ev∗0 . . . ∪ ev∗i-2,

• late σ is an instance of Ci-1 and

• antecedent σ ∧ early σ < late σ.

If no timestamp in FOL conditions in late σ is equal to i-1, then Ci-1 persists until

the end of the cycle, becomes the desired Ci at the beginning of the next cycle; and

(1b) holds for (r, σ, t) at time i.

Otherwise late has the form current ∧ rest where current is not empty, current σ

is true in Aux ∪ S∗i-1 ∪ ev∗i-1, and current σ < rest σ. Let the OS in step 2 choose and

evaluate the FOL conditions and temporal constraints in Ci-1 that have current σ as

an instance, generating a goal clause Ci in Gi-1 such that rest σ is an instance of Ci.

Then

• r has the form antecedent→ [other ∨ [early ∧ current ∧ rest]],

• antecedent σ ∧ early σ ∧ current σ is true in Aux∪S∗0 ∪ . . .∪S∗i-1 ∪ ev∗0 . . .∪ ev∗i-1,
• rest σ is an instance of Ci and

• antecedent σ ∧ early σ ∧ current σ < rest σ.

Ci persists until the end of the cycle, becomes the desired Ci at the beginning of the

next cycle; and (1b) holds for (r, σ, t) at time i.

To show that (2) holds at time i, we need to ensure that steps 3 and 4 of the

OS can choose acti if (r, σ, i) ∈ RI . But this follows from (1b), which ensures that

if r has the form antecedent → [other ∨ [earlier ∧ action ∧ rest]] where action σ =

acti and r σ supports acti, then there exists a goal clause Ci-1 in Gi-1 such that

action σ ∧ rest σ is an instance of Ci-1. It is easy to see that step 3 can include acti in

candidate-actsi. Because Cpre is true in I , step 4 of the OS can choose acti among the

actions generated at the end of the cycle. Moreover, for any other bare action atom

act in a goal clause in Gi-1 (whether i � t or i > t for all (r, σ, t) ∈ RI ), whether or

not step 3 chooses act, step 4 should not choose act; and this is possible because I

satisfies Cpre.




