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Appendix A Definition SMP and SMI

Definition 1 (SMP)

An instance of the SMP is a pair (SM , SW ) with SM = {σ1
M , . . . , σ

n
M} and SW =

{σ1
W , . . . , σn

W }. For every i ∈ {1, . . . , n}, σi
M and σi

W are permutations of {1, . . . , n}.
We call σi

M and σi
W the preferences of man mi and woman wi respectively. If

k = σi
M (j), woman wk is man mi’s j

th most preferred woman. The case k = σi
W (j)

is similar. Man m and woman w form a blocking pair in a set of marriages S if m

strictly prefers w to his partner in S and w strictly prefers m to her partner in S.

A weakly stable matching is a set of marriages without blocking pairs or individuals.

Definition 2 (SMI )

An instance of the SMI is a pair (SM , SW ) with SM = {σ1
M , . . . , σ

n
M} and SW =

{σ1
W , . . . , σp

W }. For every i ∈ {1, . . . , n}, σi
M is a permutation of a subset of {1, . . . , p}.

Symmetrically σi
W is a permutation of a subset of {1, . . . , n} for every i ∈ {1, . . . , p}.

We call σi
M and σi

W the preferences of man mi and woman wi respectively. If

k = σi
M (j), woman wk is man mi’s j

th most preferred woman. The case k ∈ σi
W (j)

is similar. If there is no l such that j ∈ σi
M (l), woman wj is an unacceptable part-

ner for man mi, and similarly when there is no l such that j ∈ σi
W (l). Man m
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and woman w form a blocking pair in a set of marriages S if m strictly prefers

w to his partner in S and w strictly prefers m to her partner in S. A blocking

individual in S is a person who stricly prefers being single to being paired to his

partner in S. A weakly stable matching is a set of marriages without blocking pairs

or individuals.

Appendix B Complexity results

Table B 1 presents an overview of known complexity results concerning finding an

optimal stable set1.

Table B 1. Literature complexity results for finding an optimal stable set

sex-equal egalitarian

SMP NP-hard (Kato 1993) P (O(n4) (Irving et al. 1987))
SMI NP-hard (McDermid and Irving 2012)
SMT
SMTI

min. regret max. card.

SMP P (O(n2) (Gusfield 1987)) P (O(n2) (Gale and Shapley 1962))
SMI P (Gale and Sotomayor 1985)
SMT NP-hard (Manlove et al. 2002)
SMTI NP-hard (Manlove 1999; Manlove et al. 2002)

Between brackets we mention in Table B 1 the complexity of an algorithm that

finds an optimal stable set if one exists, in function of the number of men n. To the

best of our knowledge, the only exact algorithm tackling an NP-hard problem from

Table B 1 finds a sex-equal stable set for an SMP instance in which the strict pref-

erence lists of men and/or women are bounded in length by a constant (McDermid

and Irving 2012). To the best of our knowledge, no exact implementations exist to

find an optimal stable set for an SMP instance with ties, regardless of the pres-

ence of unacceptability and regardless which notion of optimality from Table B 1 is

used. Our approach yields an exact implementation of all problems mentioned in

Table B 1.

Appendix C Proof of Proposition 1

Proposition 1
Let (SM , SW ) be an instance of the SMTI and let P be the corresponding ASP

program. If I is an answer set of P, then a weakly stable matching for (SM , SW ) is

given by {(x, y) | accept(x, y) ∈ I}. Conversely, if {(x1, y1), . . ., (xk, yk)} is a weakly

stable matching for (SM , SW ) then P has the following answer set I:

{manpropose(xi, y) | i ∈ {1, . . . , k}, xi ∈M,y <xi

M yi ∨ y = yi 6= xi}

1 We assume that P 6= NP
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∪{womanpropose(x, yi) | i ∈ {1, . . . , k}, yi ∈W,x <yi

W xi ∨ x = xi 6= yi}
∪{accept(xi, yi) | i ∈ {1, . . . , k}}

Proof

Let (SM , SW ) and P be as described in the proposition. Because of the symmetry

between the men and women we restrict ourselves to the male case when possible.

Answer set ⇒ weak stable set We prove this in 4 steps.

1. For every i ∈ {1, . . . , n}, every j ∈ {1, . . . , p} and for every answer set I

of P, it holds that accept(mi, wj) ∈ I implies that j ∈ acceptableiM and

i ∈ acceptablejW .

This can be proved by contradiction. We will prove that for every man mi

and every j ∈ unacceptableiM , accept(mi, wj) is in no answer set I of the

induced ASP program P. For accept(mi, wj) to be in an answer set I, the

reduct must contain some rule with this literal in the head and a body which

is satisfied. The only rule for which this can be the case is the one of the form

(1), implying that manpropose(mi, wj) should be in I. But since j is not in

acceptableiM there is no rule with manpropose(mi, wj) in the head and so

manpropose(mi, wj) can never be in I.

2. For every answer set I of P and every man mi, there exists at most one

woman wj such that accept(mi, wj) ∈ I. Similarly, for every woman wj

there exists at most one man mi such that accept(mi, wj) ∈ I. Moreover,

if accept(mi,mi) ∈ I then accept(mi, wj) /∈ I for any wj, and likewise when

accept(wj , wj) ∈ I then accept(mi, wj) /∈ I for any mi.

This can be proved by contradiction. Suppose first that there is an answer

set I of P that contains accept(mi, wj) and accept(mi, wj′) for some man

mi and two different women wj and wj′ . The first step implies that j and

j′ are elements of acceptableiM . Either man mi prefers woman wj to woman

wj′ (wj ≤mi

M wj′), or the other way around (wj′ ≤mi

M wj) or man mi has no

preference among them (wj ≤mi

M wj′ and wj′ ≤mi

M wj). The first two cases

are symmetrical and can be handled analogously. The last case follows from

the first case because it has stronger assumptions. We prove the first case and

assume that man mi prefers woman wj to woman wj′ . The rules (4) imply the

presence of a rule manpropose(mi, wj′)← . . ., not accept(mi, wj), . . . and this

is the only rule which can make manpropose(mi, wj′) true (the only rule with

this literal in the head). However, since accept(mi, wj) is also in the answer

set, the body of this rule is not satisfied so manpropose(mi, wj′) can never be

in I. Consequently accept(mi, wj′) can never be in I since the only rule with

this literal in the head is of the form (1) and this body can never be satisfied,

which leads to a contradiction.

Secondly assume that accept(mi, wj) and accept(mi,mi) are both in an an-

swer set I of P. Again step 1 implies that j ∈ acceptableiM . Because of the

rules (2), P will contain the rule accept(mi,mi)← . . . , not accept(mi, wj), . . ..

An analogous reasoning as above implies that since accept(mi, wj) is in the

answer set I, accept(mi,mi) can never be in I.
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3. For every man mi, in every answer set I of P exactly one of the following

conditions is satisfied :

(a) there exists a woman wj such that accept(mi, wj) ∈ I,

(b) accept(mi,mi) ∈ I,

and similarly for every woman wi.

Suppose I is an arbitrary answer set of P and mi is an arbitrary man. We

already know from step 2 that a man cannot be paired to a woman while being

single, so both possibilities are disjoint. Therefore, suppose there is no woman

wj such that accept(mi, wj) is in I. P will contain the rule (2). Because of

our assumptions and the definition of the reduct, this rule will be reduced to

accept(mi,mi)←, and so accept(mi,mi) will be in I.

4. For an arbitrary answer set I of P the previous steps imply that I pro-

duces a set of marriages without blocking individuals. Weak stability also

demands the absence of blocking pairs. Suppose by contradiction that there

is a blocking pair (mi, wj), implying that there exist i 6= i′ and j 6= j′ such

that accept(mi, wj′) ∈ I and accept(mi′ , wj) ∈ I while wj <mi

M wj′ and

mi <
wj

W mi′ . The rules of the form (1), which are the only ones with the

literals accept(mi, wj′) and accept(mi′ , wj) in the head, imply that literals

manpropose(mi, wj′) and womanpropose(mi′ , wj) should be in I. But since

wj <
mi

M wj′ and because of the form of the rules (4) there are fewer conditions

to be fulfilled formanpropose(mi, wj) to be in I than formanpropose(mi, wj′)

to be in I. Therefore, manpropose(mi, wj) should be in I as well. A similar

reasoning implies that womanpropose(mi, wj) should be in I. But now the

rules of the form (1) imply that accept(mi, wj) should be in I, contradicting

step 2 since accept(mi, wj′) and accept(mi′ , wj) are already in I.

Weak stable set ⇒ answer set Suppose we have a stable set of marriages S =

{(x1, y1), . . . , (xk, yk)}, implying that every yi is an acceptable partner of xi and

the other way around. The rules of the form (1) do not alter when forming the

reduct, but the other rules do as those contain naf-literals. Notice first that the

stability of S implies that there cannot be an unmarried couple (m,w), with m a

man and w a woman, such that manpropose(m,w) is in I and womanpropose(m,w)

is in I. By definition of I this would mean that they both strictly prefer each other

to their current partner in S. This means they would form a blocking pair, but since

S was stable, that is impossible. Therefore, the rules of the form (1) will be applied

exactly for married couples (mi, wj), since by definition of I manpropose(mi, wj)

and womanpropose(mi, wj) are both in I under these conditions. For other cases the

rule will also be fulfilled since the body will be false. This reasoning implies that the

unique minimal model of the reduct w.r.t. I should indeed contain accept(mi, wj)

for every married couple (mi, wj) in S. Since S is a stable set of marriages, every

person is either married or single. If a man mi is single, there will be no other literal

of the form accept(mi, .) in I, so rule (2) will reduce to a fact accept(mi,mi) ←,

which is obviously fulfilled by I. Similarly if a woman wj is single. Any other rule

of the form (2) or (3) is deleted because mi or wj is not single in that case and thus

there is some literal of the form accept(mi, w) for some woman w and some literal
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of the form accept(m,wj) for some man m in I, falsifying the body of the rules.

If mi is single, then accept(mi,mi) is in I and this is the only literal of the form

accept(mi, .) in I, so the rules of the form (4) will all be reduced to facts. The heads

of these fact rules should be in the minimal model of the reduct and are indeed in

I since the women w for which manpropose(mi, w) is in I are exactly those who

are strictly preferred to staying single. The rules of the form (4) for women wj in

neutraliM will all be deleted in this case, because accept(mi,mi) is in I. If man mi

is married to a certain woman wj in the stable set S then the rules of the form

(4) will reduce to facts of the form manpropose(mi, w)← for every woman w who

is strictly preferred to wj and will be deleted for every other woman appearing in

the head, because those rules will contain not accept(mi, wj) in the body. Again I

contains these facts by definition, as the minimal model of the reduct should. We

can use an analogous reasoning for the women. The presence of the literals of the

form manpropose(., .), womanpropose(., .) and accept(., .) in I is thus required in

the unique minimal model of the reduct w.r.t. I. We have proved that every literal

in I should be in the minimal model of the reduct and that every rule of the reduct

is fulfilled by I, implying that I is an answer set of P.

Appendix D Proof of Proposition 2

Proposition 2

Let the criterion crit be an element of {sexeq, weight, regret, singles}. For every

answer set I of the program Pcrit induced by an SMTI instance the set SI =

{(m,w) | accept(m, w) ∈ I} forms an optimal stable matching of marriages w.r.t.

criterion crit and the optimal criterion value is given by the unique value vI for

which crit(vI) ∈ I. Conversely for every optimal stable matching S = {(x1, y1), . . . ,

(xk, yk)} with optimal criterion value v there exists an answer set I of Pcrit such

that {(x, y) | accept(x, y) ∈ I} = {(xi, yi) | i ∈ {1, . . . , k}} and v is the unique value

for which crit(v) ∈ I.

Proof

Let (SM , SW ) be an SMTI instance.

Answer set ⇒ optimal stable matching Let I be an arbitrary answer set of Pcrit

and let SI be as formulated. It is clear that the only rules in Pcrit that influence

the literals of the form manpropose(., .), womanpropose(., .) and accept(., .) are the

rules in Pnorm. Hence I should contain an answer set Inorm of Pnorm as a subset.

Proposition 1 implies that Inorm corresponds to a stable matching SI = {(m,w) |
accept(m,w) ∈ Inorm}. Moreover, the only literals of the form manpropose(., .),

womanpropose(., .) and accept(., .) in I are those in Inorm, so SI = {(m,w) |
accept(m,w) ∈ I}. If crit = sexeq, it is straightforward to see that the literals of the

form accept(., .) in Inorm uniquely determine which literals of the form mancost(., .),

womancost(., .), manweight(.), womanweight(.) and sexeq(.) should be in the an-

swer set I. These literals do not occur in rules of Pcrit besides those in Psexeq
ext .

Note that the rules which do contain these literals imply that there will be just one

literal of the form sexeq(.) in I, namely sexeq(v) with v the sex-equality cost of SI .
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Analogous results can be derived for crit ∈ {weight, regret, singles}. It remains to

be shown that SI is an optimal stable matching. Suppose by contradiction that SI

is not optimal, so there exists a stable matching S∗ such that vI > v∗, with v∗ the

criterion value of S∗ to be minimized. We prove that this implies that I cannot be

an answer set of Pcrit, contradicting our initial assumption.

Proposition 1 and Lemma 1 imply that there exists an interpretation I∗disj of the

ASP program Pdisj induced by (SM , SW ) that corresponds to the stable match-

ing S∗. Moreover this interpretation is consistent, i.e. it will not contain atom and

¬atom for some atom atom. This implies that the interpretation I ′disj defined as

I∗disj in which ¬atom is replaced by natom for every atom atom will falsify the

body of the rules of the form (11) of P ′critext . An analogous reasoning as above

yields that the literals of the form accept′(., .) in I ′disj uniquely determine which lit-

erals of the form mancost′(., .), womancost′(., .), mansum′(., .), womansum′(., .),

manweight′(.), womanweight′(.) and sexeq′(.) should be in I ′disj . With those extra

literals added to I ′disj , we find that I ′disj satisfies all the rules of P ′critext . Moreover,

crit(v∗) is the unique literal of the form crit(.) in I ′disj . Note that I ′disj does not

contain the atom sat.

Define the interpretation J = Inorm ∪ I ′disj . From the previous argument it fol-

lows that J will satisfy every rule of Pcrit
ext ∪ P ′critext since the predicates occurring

in both programs do not overlap. Moreover J contains crit(vI) and crit′(v∗) and

these are the only literals of the form crit(.) or crit′(.). Since vI > v∗ the rules of

the form (13) will be satisfied by J since their body is always false. Call J ′ the set

J ∪ {a | (a ←) ∈ Psat}. Since J ′ does not contain sat, the rules of Psat will all be

satisfied by J ′, with exception of the rule ← not sat.

The rule of the form (14) implies that I, as an answer set of Pcrit, should con-

tain sat. Now the set of rules (15) – (16) imply that I should also contain the

literals mancost′(., .), womancost′(., .) and manpropose′(., .), womanpropose′(., .),

accept′(., .) with the corresponding literals prefixed by n for every possible argu-

ment stated by the facts in Psat. The rules (12), (21) and (23) in P ′critext , by which

we replaced rules (8) – (9), (18) – (19) and (22), guarantee that for every possible

set of marriages and its corresponding criterion value c, I will contain crit(c) and

all associated intermediate results. For example, for crit = sexeq, the rules will

garantuee that I also contains mansum′(., .), manweight(.), womansum(., .) and

womanweight(.) for every argument that could occur in a model of P ′critext . Note

that this would not be the case if we used the original rules with #sum, #max

and #count in P ′critext , since these rules would lead to only one value cM for which

e.g. manweight(cM ) should be in I, and similarly only one value cW for which

womanweight(cW ) should be in I. Consequently there would be only one value c

such that crit(c) should be in I. This value would not necessarily correspond to v∗

and so we would not be able to conclude that I ′disj ⊆ I. However, with the current

formulation of the rules we can conclude that I ′disj ⊆ I. We already reasoned in

the beginning of the proof that Inorm ⊆ I holds so it follows that J ⊆ I. Since the

literals of J ′ \ J are stated as facts of Pcrit
ext , they should be in I, hence J ′ ⊆ I.

Moreover J ′ ⊂ I since sat ∈ I \ J ′.
We use the notation red(P, I) to denote the reduct of an ASP program P w.r.t.
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an interpretation I. There is no rule in P ′critext with negation-as-failure in the body,

hence red(P ′critext , I) = red(P ′critext , J
′) = P ′critext . We already reasoned that J ′ satifies

all the rules of the latter. We also reasoned that I does not contain any other liter-

als of the form accept(., .) than those which are also in Inorm, and by construction

the same holds for J ′. Hence red(Pcrit
ext , I) = red(Pcrit

ext , J
′) and by construction J ′

satisfies all the rules of this reduct. It is clear that red(Psat, I) is Psat without the

rule← not sat, since sat ∈ I. Again we already argued that J ′ satisfies red(Psat, I).

Hence J ′ satisfies all the rules of red(Pcrit, I), implying that I, which strictly con-

tains J ′, cannot be an answer set of Pcrit since it is not a minimal model of the

negation-free ASP program red(Pcrit, I) (Gelfond and Lifschitz 1988).

Optimal stable matching ⇒ answer set Let S = {(x1, y1), . . . , (xk, yk)} be an op-

timal stable matching with optimal criterion value v. To see that the second part

of the proposition holds it suffices to verify that the following interpretation I is an

answer set of Pcrit, with the notation Pxi(y) as the index a for which y ∈ σl
M (a) if

xi = ml and symmetrically Pyi
(x) as the index a for which x ∈ σl′

W (a) if yi = wl′ . If

xi = yi we set Pxi(yi) = Pyi(xi) = |σi
M | if xi is a man and Pxi(yi) = Pyi(xi) = |σi

W |
otherwise. So let I be given by: I = I1 ∪ I2 with

I1 ={accept(xi, yi) | i ∈ {1, . . . , k}} ∪ {crit(v)} ∪ {sat}
∪{womanpropose(xi, yi) |xi 6= yi}{manpropose(xi, yi)|xi 6= yi}
∪{manpropose(xi, y) | i ∈ {1, . . . , k}, xi = ml,∃a < Pxi

(yi):y ∈ σl
M (a)}

∪{womanpropose(x, yi)|i ∈ {1, . . . , k}, yi = wl′ ,∃a < Pyi
(xi):x ∈ σl′

W (a)}
∪{mancost(l, Pxi

(yi)) | crit 6= singles, i ∈ {1, . . . , k}, xi = ml}
∪{womancost(Pyi

(xi), l
′) | crit 6= singles, i ∈ {1, . . . , k}, yi = wl′}

∪{manweight(cM (S)), womanweight(cW (S)) | crit ∈ {sexeq, weight}}
∪{manregret(cregret,M (S)), womanregret(cregret,W (S)) | crit = regret}

and

I2 ={manargcost′1(z) | 1 ≤ z ≤ n} ∪ {manargcost′2(z) | 1 ≤ z ≤ p+ 1}
∪{womanargcost′1(z) | 1 ≤ z ≤ p}} ∪ {womanargcost′2(z) | 1 ≤ z ≤ n+ 1}
∪{man(x) |x ∈M} ∪ {woman(x) |x ∈W} (D1)

∪{mancost′(i, j) | crit 6= singles, 1 ≤ i ≤ n, 1 ≤ j ≤ p+ 1}
∪{womancost′(j, i) | crit 6= singles, 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ p} (D2)

∪{manpropose′(x, y), womanpropose′(x, y) |x ∈M,y ∈W}
∪{nmanpropose′(x, y), nwomanpropose′(x, y) |x ∈M,y ∈W}
∪{accept′(x, y) |x ∈M,y ∈W} ∪ {accept′(x, x) |x ∈M ∪W}
∪{naccept′(x, y) |x ∈M,y ∈W} ∪ {naccept′(x, x) |x ∈M ∪W} (D3)

∪{crit′(val) | val ∈ arg(crit)}
∪{single′(i, j) | crit = singles, 1 ≤ i ≤ n+ p, j ∈ {0, 1}}
∪{singlesum′(i, j) | crit = singles, 1 ≤ i ≤ n+ p, 1 ≤ j ≤ n+ p− i+ 1}}
∪{mansum′(i, j) | crit ∈ {sexeq, weight}, 1 ≤ i ≤ n,
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n− i+ 1 ≤ j ≤ (n− i+ 1)(p+ 1)}
∪{womansum′(j, i) | crit ∈ {sexeq, weight}, 1 ≤ j ≤ p,

p− j + 1 ≤ i ≤ (p− i+ 1)(n+ 1)}
∪{manweight′(z) | crit ∈ {sexeq, weight}, n ≤ z ≤ n(p+ 1)}
∪{womanweight′(z) | crit ∈ {sexeq, weight}, p ≤ z ≤ p(n+ 1)}
∪{manmax′(i, j) | crit = regret, 1 ≤ i ≤ n, 1 ≤ j ≤ p+ 1}
∪{womanmax′(j, i) | crit = regret, 1 ≤ j ≤ p, 1 ≤ i ≤ n+ 1}
∪{manregret′(z) | crit = regret, 1 ≤ z ≤ p+ 1}
∪{womanregret′(z) | crit = regret, 1 ≤ z ≤ n+ 1} (D4)

The notation arg(c) stands for the possible values the criterion can take within this

problem instance:

• if crit = sexeq then arg(crit) = {0, . . . ,max(np+ n− p, np+ p− n)},
• if crit = weight then arg(crit) = {n+ p, . . . , 2np+ p+ n},
• if crit = regret then arg(crit) = {1, . . . ,max(p, n) + 1},
• if crit = singles then arg(crit) = {0, . . . , n+ p}.

To verify whether this interpretation is an answer set of Pcrit, we should compute

the reduct w.r.t. I and check whether I is a minimal model of the reduct (Gel-

fond and Lifschitz 1988). It can readily be checked that I satisfies all the rules of

red(Pcrit, I). It remains to be shown that there is no strict subset of I which satis-

fies all the rules. First of all, all the facts of Pcrit must be in the minimal model of

the reduct, explaining why the sets of literals (D1) should be in I. The only rules

with negation-as-failure are part of Pcrit
ext .

As in the previous part of the proof, it is straightforward to see that I1 is the unique

minimal model of the reduct of Pcrit
ext w.r.t. I, considering that the literals in I2 do

not occur in Pcrit
ext . So any minimal model of red(Pcrit, I) must contain I1.

The key rule which makes sure that I is a minimal model of the reduct is (13).

The rules (11) imply that for each model of red(Pcrit, I) that does not contain

sat, the literals of P ′critext in that model will correspond to a stable matching of the

SMTI instance. In that case rule (13) will have a true body, since S is optimal,

implying that sat should have been in the model. And the presence of sat in any

minimal model implies the presence of the set of literals (D4) in any minimal model

of the reduct. This can be seen with the following reasoning. Due to the presence

of the facts (D1) and sat in any minimal model of the reduct, rules (15) imply the

presence of the literals (D2) in any minimal model. For the same reason rules (16)

imply that the literals (D3) should be in any minimal model of red(Pcrit, I). For

crit = sexeq the presence of the literals of the form (D2) in any minimal model

of the reduct together with rules (12) imply that mansum′(i, j) should be in any

minimal model for every i ∈ {1, . . . , n} and j ∈ {n− i+ 1, . . . , (n− i+ 1)(p+ 1)}:
for i = n, the first rule of (12) implies that mansum′(n, x) is in any minimal model

for every x such that manargcost′2(x) is in it, i.e. any x ∈ {1, . . . , p + 1}. Now

the second rule of (12) implies that mansum′(n − 1, x) is in any minimal model

for every x + y such that manargcost′2(x) and mansum′(n, y) are in it, i.e. any
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x + y ∈ {2, . . . , 2(p + 1)}. If we continue like this, it is straightforward to see that

every literal of the form mansum′(., .) of I2 should be in any minimal model. The

third rule of (12) now implies that manweight′(x) should be in any minimal model

for every x such that mansum′(1, x) is in it, i.e. x ∈ {n, . . . , n(p + 1)}. The same

reasoning can be repeated for the literals womansum′ and womanweight′. At this

point rules (10) imply that sexeq′(|x− y|) should be in any minimal model which

contains manweight′(x) and womanweight′(y). Note that only one of the two rules

in (10) will apply for every x and y since the numerical variables in DLV are posi-

tive. Considering the arguments for which manweight′ and womanweight′ should

be in any minimal model, it follows that sexeq′(x) should be in any minimal model

for every x ∈ {0, . . . ,max(p(n + 1) − n, n(p + 1) − p)}, which is exactly arg(crit).

For the other criteria, an analogous reasoning shows that the presence of all literals

of I2 is required in any minimal model of the reduct.

Considering the fact that we have proved that all literals of I should be in any

minimal model of the reduct and I fulfils all the rules of the reduct, we know that

I is a minimal model of the reduct and thus an answer set of Pcrit.
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