
Theory and Practice of Logic Programming 1

Appendix B of the Introduction to the
31st International Conference on Logic

Programming Special Issue:
Abstracts of Accepted Contribution at the 11th

ICLP Doctoral Consortium

submitted 23 May 2015; accepted 16 June 2015; revised 17 July 2015



2

Dynamic Programming on Tree Decompositions using Binary Decision

Diagrams: Research Summary

Günther Charwat

TU Wien, Institute of Information Systems

Favoritenstraße 9, 1040 Wien, Austria

(e-mail: gcharwat@dbai.tuwien.ac.at)

Dynamic programming (DP) on tree decompositions is a well studied approach

for solving hard problems efficiently. State-of-the-art implementations usually rely

on tables for storing information, and algorithms specify how the tuples are ma-

nipulated during traversal of the decomposition. However, a major bottleneck of

such table-based algorithms is relatively high memory consumption. The goal of the

doctoral thesis herein discussed is to mitigate performance and memory shortcom-

ings of such algorithms. The idea is to replace tables with an efficient data structure

that no longer requires to enumerate intermediate results explicitly during the com-

putation. To this end, Binary Decision Diagrams (BDDs) and related concepts are

studied with respect to their applicability in this setting. Besides native support for

efficient storage, from a conceptual point of view BDDs give rise to an alternative

approach of how DP algorithms are specified. Instead of tuple-based manipulation

operations, the algorithms are specified on a logical level, where sets of models can

be conjointly updated. The goal of the thesis is to provide a general tool-set for

problems that can be solved efficiently via DP on tree decompositions.

KEYWORDS: Logic, Dynamic Programming, Fixed Parameter Tractability, Binary

Decision Diagram, Algorithm Design



Appendix B 3

Formal Methods for Answer Set Programming

Amelia Harrison

Department of Computer Science

The University of Texas at Austin

2317 Speedway, 2.302, Austin, Texas 78712, USA

Internal Mail Code: D9500

(e-mail: ameliaj@cs.utexas.edu)

Answer set programming is a logic programming paradigm that has increased in

popularity over the past decade and found applications in a wide variety of fields.

Even so, manuals written by the designers of answer set solvers usually described

the semantics of the input languages of their systems using examples and informal

comments that appeal to the users’ intuition, without references to any precise

semantics. We describe a precise semantics for the input language of the grounder

gringo, which serves as the front end for several answer set solvers. The semantics

represents gringo rules as infinitary propositional formulas. We develop methods

for using this semantics to prove properties of gringo programs, such as verifying

program correctness.

KEYWORDS: Infinitary formulas, Semantics of Aggregates, Stable Models.



4

Handling Uncertainty in Answer Set Programming

Yi Wang

School of Computing, Informatics, and Decision Systems Engineering

Arizona State University, Tempe, USA

(e-mail: ywang485@asu.edu)

Answer Set Programming (ASP) is a powerful declarative computing paradigm

that is especially suitable for modeling commonsense reasoning problems. However,

the crisp nature of the underlying semantics, the stable model semantics, makes

it difficult to handle reasoning domains involving probability and inconsistency.

To address this issue, we present an extension of logic programs under the stable

model semantics, where rules are associated with weights. Under our semantics,

probabilistic commonsense domains where inconsistency might be involved can be

represented in an intuitive and elaboration tolerant way. Our semantics extends

MLN and logic programming under stable model semantics. We have shown that

probabilistic action domains and Pearl’s probabilisitic causal models can be rep-

resented, and various existing probabilistic logic programming frameworks can be

embedded in our language. Future work includes further investigating the property

of this language, devising algorithms for inference and learning in our language,

and exploring various possible extensions of our language.

KEYWORDS: Stable Model Semantics, Answer Set Programming, Markov Logic

Network, Probabilistic Logic Programming



Appendix B 5

Higher Order Support in Logic Specification Languages for Data Mining

Applications

Matthias van der Hallen

KU Leuven

Department of Computer Science

Celestijnenlaan 200a

3001 Leuven, Belgium

(e-mail: matthias.vanderhallen@kuleuven.be)

In this paper, we introduce our work on our doctorate with title “Higher Order

Support in Logic Specification Languages for Data Mining Applications”. Current

logic specification languages, such as FO(·) provide an intuitive way for defining

the knowledge within a problem domain.

Extended support for data representation is lacking however, and we want to intro-

duce structured recursive types and generic types, together with a first class citizen

approach to predicates. These additions correspond to higher order concepts.

We provide a background of the current techniques that might be of interest when

implementing these higher order abstractions, such as lazy grounding and oracles.

We sketch the eventual goal of our research, and give an overview of the current

state and research questions that are being considered.

KEYWORDS: Logic Specification, Higher Order, Grounding, Lifted Reasoning



6

Extended Abstract : Transforming Delimited Control: Achieving Faster

Effect Handlers

Amr Hany Saleh

KU Leuven

Department of Computer Science

Celestijnenlaan 200a

3001 Leuven, Belgium

(e-mail: ah.saleh@cs.kuleuven.be)

Schrijvers et al. (2013) have introduced support for delimited control in Prolog.

It enables the definition of new high-level language features at the program level

(e.g., in libraries). Effect handlers (Plotkin and Pretnar 2009) are an attractive

application of delimited control. They are an elegant way to add many kinds of

side-effectful operations to a language in a compositional fashion.

Problem Statement. Handlers can be combined in two different ways. The first is

composing them, which is one of the main attractions of effect handlers. However,

this modularity comes at the cost of considerably reduced runtime performance.

The second is to develop monolithic handlers such that one handler handles all

the effects a program needs. Monolithic handlers are generally faster than modular

ones. However, the cost of monolithiy is losing the modularity. Therefore, how can

we combine both, modularity and performance.

Our Approach. We are trying to systematically derive the monolithic definition of

handlers from the modular ones. This way the programmer can write his programs

in terms of the modular handlers, but the Prolog system can actually run the

corresponding monolithic handler. Our main technique for the systematic derivation

is static program transformation using folding/unfolding framework of Pettorossi

and Proietti. We complement it with transformation rules (which we proved to be

sound) that capture the semantics of delimited control.

Preliminary Results and Open Issues Our experimental evaluation indicates that

merged handlers are twice as fast on average. Our main issue is automating the

transformation and finding a technique to handle recursive handlers’ operations.

KEYWORDS: Delimited Control, Algebraic Effect Handlers, Program Transforma-

tion, Folding / Unfolding



Appendix B 7

Advances in Analyzing Coroutines by Abstract Conjunctive Partial De-

duction

Vincent Nys

KU Leuven

Department of Computer Science

Celestijnenlaan 200a

3001 Leuven, Belgium

(e-mail: vincent.nys@kuleuven.be)

The current work describes a technique for the analysis of coroutining in Logic Pro-

grams. The technique provides greater insight into the execution of Logic Programs

and yields a transformation from programs with nonstandard execution rules to

programs with the standard execution rule of Prolog. The transformation, in turn,

allows the use of analysis and optimization techniques developed for the standard

execution rule.

A technique known as Compiling Control, or CC for short, was used to study

these issues 30 years ago, but it lacked the tools to formalize a complete proce-

dure. Abstract Conjunctive Partial Deduction, introduced by Leuschel, provides an

appropriate setting to redefine Compiling Control for simple examples. For more

elaborate examples, we extend Leuschel’s framework with a new operator.

Preliminary experiments with the new operator show that a wide range of programs

can be analyzed. We have performed a complete manual analysis and transformation

for five examples of increasing complexity, as well as a complete analysis for a sixth

example. We have also developed an automated program analyzer, which performs

the analysis phase with a small amount of user interaction. The analyzer is capable

of duplicating the manual analysis for all the examples. We conjecture that the

extension to Abstract Conjunctive Partial Deduction allows for the analysis of any

standard logic program with an instantiation-based selection rule.

The technique outlined here requires no information which is not known to the

author of a Logic Program. It can be largely automated, allowing the user to write

declarative programs which can be further optimized with techniques for standard

Logic Programs.

KEYWORDS: Coroutines, Compiling Control, Abstract Conjunctive Partial De-

duction



8

Opinions and Beliefs as constraint system operators

Salim PERCHY and Frank VALENCIA

Comète LIX - École Polytechnique de Paris, France

(e-mail: yamil-salim.perchy@inria.fr,frank.valencia@gmail.com)

The growing presence of digital distributed systems in social life is exemplified

by many particular instances, including opinion forums, social networks, dating

sites and photo sharing portals. The increased usage in the last decade of these

systems brings various risks and behaviors, inherent from the social interaction

therein. An epistemic aspect is singled out as a common feature shared between

these systems and the behaviors carried within them. Designing, constructing and

verifying formalisms to represent information that is epistemic in nature can help

develop a sound theory to analyze the scenarios mentioned before and at the same

time bridge the concepts involved to a logical and mathematical domain.

Regarding this, a specific concept of declarative and logic programming, that of

a constraint system, deals with information represented by constraints (a con-

straint c could be a logical proposition partially describing a bigger system, e.g.

temperature > 20). Constraint systems capable of incorporating the concept of

spatiality such as user-spaces or message walls already exist (i.e. [c]i, could read as

“data/belief/constraint c belongs to agent i”). However, the movement of informa-

tion between spaces is still not designed nor included in said constraint systems.

Some process algebras do possess a concept of space mobility, notwithstanding, it is

from an operational point of view, specifying only its behavior. Therefore it remains

to mathematically define it along with all its properties.

The proposed project intends to provide constraint systems with an algebraic op-

erator that correspond to moving information in-between spaces as to mimic the

mobility of data of distributed systems such as posting opinions/lies to other spaces

or publicly disclosing data (i.e. ↑ic reads as “extruding data/belief/constraint c from

the space of agent i). Also, this extrusion operator should have a direct relation-

ship with the spatiality operator, meaning that it should be modeled in constraint

systems that also posses the concept of space (i.e. [c t ↑id]i = [c]i t d reads “infor-

mation d is extruded from the space of agent i”, it can be alternatively interpreted

as agent i posting an opinion d).

The authors developed a constraint system implementing the concepts of space

and extrusion. The interaction between these conceptos account for mobility with

no side effects, it is modeled as extrusion being the right inverse of space (i.e.

[↑ic]i = c for any agent i). Additionally, given an already defined concept of space

in a constraint system, the authors described different constructive ways of defining

its extrusion and their mathematical properties. As a practical example, by means

of a constraint system with space and extrusion, the authors gave semantic meaning



Appendix B 9

to a logic with modalities of belief Bi and utterance Ui where BiUiφ ⇔ φ for any

formula φ of the logic.


