
1

Online appendix for the paper

Concolic Testing in Logic Programming
published in Theory and Practice of Logic Programming

FRED MESNARD, ÉTIENNE PAYET
LIM - Université de la Réunion, France

(e-mail: {fred,epayet}@univ-reunion.fr)

GERMÁN VIDAL
MiST, DSIC, Universitat Politècnica de València

(e-mail: gvidal@dsic.upv.es)

submitted 29 April 2015; revised 3rd July 2015; accepted 14 July 2015

In this appendix we report, for the sake of completeness, some auxiliary contents
that, for space limitations, we could not include in the paper.

Appendix A Towards Extending Concolic Testing to Full Prolog

In this section, we show a summary of our preliminary research on extending con-
colic execution to deal with full Prolog. First, we consider the extension of the
concrete semantics. Here, we mostly follow the linear semantics of (Ströder et al.
2011), being the main differences that we consider built-ins explicitly, we excluded
dynamic predicates for simplicity —but could be added along the lines of (Ströder
et al. 2011)— and that, analogously to what we did in Section 2, only the first
answer for the initial goal is considered.

In the following, we let the Boolean function defined return true when its argu-
ment is an atom rooted by a defined predicate symbol, and false otherwise (i.e., a
built-in). Moreover, for evaluating relational and arithmetic expressions, we assume
a function eval such that, given an expression e, eval(e) either returns the evalua-
tion of e (typically a number or a Boolean value) or the special constant error when
the expression is not instantiated enough to be evaluated. E.g., eval(2 + 2) = 4,
eval(3 > 1) = true, but eval(X > 0) = error.

The transitions rules are shown in Figure A 1. In the following, we briefly explain
the novelties w.r.t. the rules of Section 2:

• In rule choice we use the notation c[!/!m] to denote a copy of clause c where
the occurrences of (possibly labeled) cuts ! at predicate positions (e.g., not
inside a call), if any, are replaced by a labeled cut !m, where m is a fresh label.
Also, in the derived state, we add a scope delimiter ?m.

• Rule cut removes some alternatives from the current state, while rule cut fail

applies when a goal reaches the scope delimiter without success.
• The rules for call and negation should be clear. Let us only mention that the

2

notation A[V/call(V), !/!m] denotes the atom A in which all variables X on
predicate positions are replaced by call(X) and all (possibly labeled) cuts on
predicate positions are replaced by !m.

• Calls to the built-in predicate is are dealt with rules is and is error by means
of the auxiliary function eval. Rules rel and rel error proceed analogously with
relational operators like >, <, ==, etc.

Regarding the concolic execution semantics, we follow a similar approach to that of
Section 3. The labeled transition rules can be seen in Figure A 2. Now, we consider
six kinds of labels for ;:

• The labels � and c(L1,L2) with the same meaning as in the concolic semantics
of Section 3.

• The label u(t1, t2), which is used to denote a unification step, i.e., the step
implies that t1 and t2 should unify.

• In contrast, the label d(t1, t2) denotes a disunification, i.e., the step implies
that t1 and t2 should not unify.

• The label is(X, t) denotes a step where is is evaluated (see below).

(success) 〈trueδ |S〉 → 〈successδ〉

(failure) 〈(fail,B)δ〉 → 〈failδ〉
(backtrack)

S 6= ε

〈(fail,B) |S〉 → 〈S〉

(choice)
defined(A) ∧ clauses(A,P) = (c1, . . . , cn) ∧ n > 0 ∧m is fresh

〈(A,B)δ |S〉 → 〈(A,B)
c1[!/!m]
δ | . . . |(A,B)

cn[!/!m]
δ | ?mδ |S〉

(choice fail)
defined(A,P) ∧ clauses(A,P) = {}
〈(A,B)δ |S〉 → 〈(fail,B)δ |S〉

(unfold)
mgu(A,H1) = σ

〈(A,B)H1←B1
δ |S〉 → 〈(B1σ,Bσ)δσ |S〉

(cut) 〈(!m,B)δ |S′ | ?mδ′ |S〉 → 〈Bδ | ?mδ′ |S〉
(cut fail) 〈?mδ |S〉 → 〈failδ |S〉

(call)
A 6∈ V ∧m is fresh

〈(call(A),B)δ |S〉 → 〈(A[V/call(V), !/!m],B)δ | ?mδ |S〉

(call error)
A ∈ V

〈(call(A),B)δ |S〉 → 〈errorδ〉

(not)
m is fresh

〈(\+(A),B)δ |S〉 → 〈(call(A), !m, fail)δ |Bδ | ?mδ |S〉

(unify)
mgu(t1, t2) = σ 6= fail

〈(t1 = t2,B)δ |S〉 → 〈Bσδσ |S〉
(unify fail)

mgu(t1, t2) = fail

〈(t1 = t2,B)δ |S〉 → 〈failδ |S〉

(is)
eval(e2) = t2 6= error

〈(t1 is e2,B)δ |S〉 → 〈(t1 = t2,B)δ | S〉
(is error)

eval(e2) = error

〈(t1 is e2,B)δ |S〉 → 〈errorδ〉

(rel)
eval(t1 ⊕ t2) = A ∈ {true, fail}
〈(t1 ⊕ t2,B)δ |S〉 → 〈(A,B)δ | S〉

(rel error)
eval(t1 ⊕ t2) = error

〈(t1 ⊕ t2,B)δ |S〉 → 〈errorδ〉

Fig. A 1. Extended concrete semantics

3

• Finally, the label r(A′, A) denotes that the relational expression A′ should be
equal to A ∈ {true, fail}.

In particular, in rules unify and unify fail, the labels store the unification that
must hold in the step. Note that the fact that mgu(t1, t2) = fail does not imply
mgu(t′1, t

′
2) = fail since t′1 and t′2 might be less instantiated than t1 and t2.

In rule is, we label the step with is(X, t′2) which means that the fresh variable X

(success)
〈trueδ | S][trueθ | S′〉;� 〈successδ][successθ〉

(failure)
〈(fail,B)δ][(fail,B′)θ〉;� 〈failδ][failθ〉

(backtrack)
S 6= ε

〈(fail,B) | S][(fail,B′) | S′〉;� 〈S][S′〉

(choice)
defined(A) ∧ clauses(A,P) = cn ∧ n > 0 ∧m is fresh ∧ clauses(A′,P) = dk

〈(A,B)δ | S][(A′,B′)θ | S′〉
;c(`(cn),`(dk)) 〈(A,B)

c1[!/!m]
δ | . . . | (A,B)

cn[!/!m]
δ | ?mδ | S

][(A′,B′)c1[!/!m]
θ | . . . | (A′,B′)cn[!/!m]

θ | ?mθ | S
′〉

(choice fail)
defined(A,P) ∧ clauses(A,P) = {} ∧ clauses(A′,P) = ck

〈(A,B)δ | S][(A′,B′)θ | S′〉;c({},`(ck)) 〈(fail,B)δ | S][(fail,B′)θ | S′〉

(unfold)
mgu(A,H1) = σ ∧mgu(A′, H1) = σ′

〈(A,B)H1←B1
δ | S][(A′,B′)H1←B1

θ | S′〉;� 〈(B1σ,Bσ)δσ | S][(B1σ′,B′σ′)θσ′ | S′〉
(cut)

〈(!m,B)δ | S1 | ?m
δ′ | S][(!m,B′)θ | S′1 | ?m

θ′ | S′〉;� 〈Bδ | ?m
δ′ | S][B′θ | ?m

θ′ | S′〉
(cut fail)

〈?mδ | S][?mθ | S′〉;� 〈failδ | S][failθ | S′〉

(call)
A 6∈ V ∧m is fresh

〈(call(A),B)δ | S][(call(A′),B′)θ | S′〉
;� 〈(A[V/call(V), !/!m],B)δ | ?mδ | S][(A′[V/call(V), !/!m],B′)θ | ?mθ | S

′〉

(call error)
A ∈ V

〈(call(A),B)δ | S][(call(A′),B′)θ | S′〉;� 〈errorδ][errorθ〉

(not)
m is fresh

〈(\+(A),B)δ | S][(\+(A′),B′)θ | S′〉
;� 〈(call(A), !m, fail)δ | Bδ | ?mδ | S][(call(A′), !m, fail)θ | B′θ | ?mθ | S

′〉

(unify)
mgu(t1, t2) = σ ∧mgu(t′1, t

′
2) = σ′

〈(t1 = t2,B)δ | S][(t′1 = t′2,B′)θ | S′〉;u(t′1,t
′
2) 〈Bσδσ | S][B′σ′

δσ′ | S′〉

(unify fail)
mgu(t1, t2) = fail

〈(t1 = t2,B)δ | S][(t′1 = t′2,B′)θ | S′〉;d(t′1,t
′
2) 〈failδ | S][failθ | S′〉

(is)
eval(e2) = t2 6= error ∧ sym eval(e′2) = t′2 ∧X is fresh

〈(t1 is e2,B)δ | S][(t′1 is e′2,B′)θ | S′〉;is(X,t′2) 〈(t1 = t2,B)δ | S][(t′1 = X,B′)θ | S′〉

(is error)
eval(e2) = error

〈(t1 is e2,B)δ | S][(t′1 is e′2,B′)θ | S′〉;� 〈errorδ][errorθ〉

(rel)
eval(t1 ⊕ t2) = A ∈ {true, fail} ∧ sym eval(t′1 ⊕ t′2) = A′

〈(t1 ⊕ t2,B)δ | S][(t′1 ⊕ t′2,B′)θ | S′〉;r(A′,A) 〈(A,B)δ | S][(A′,B′)θ | S′〉

(rel error)
eval(t1 ⊕ t2) = error

〈(t1 ⊕ t2,B)δ | S][(t′1 ⊕ t′2,B′)θ | S′〉;� 〈errorδ][errorθ〉

Fig. A 2. Extended concolic execution semantics

4

should be bound to the evaluation of t′2 after grounding it. Note that introducing
such a fresh variable is required to avoid a failure in the subsequent step with
rule unify because of, e.g., a non-ground arithmetic expression that could not be
evaluated yet to a value using function sym eval. Note that rule is error does not
include any label since we assume that an error in the concrete computation just
aborts the execution and also the test case generation process.

Finally, in rule rel we label the step with r(A′, A) where A is the value true/fail

of the relational expression in the concrete goal, and A′ is a (possibly nonground)
corresponding expression in the symbolic goal. Here, we use the auxiliary function
sym eval to simplify the relational expression as much as possible. E.g., sym eval(3 >
0) = true but sym eval(3 + 2 > X) = 5 > X.

These labels can be used for extending the concolic testing algorithm of Section 4.
For instance, given a concolic execution step labeled with r(X > 0, true), we have
that solving ¬(X > 0) will produce a binding for X (e.g., {X/0}) that will follow
an alternative path. Here, the concolic testing procedure will integrate a constraint
solver for producing solutions to negated constraints. We find this extension of the
concolic testing procedure an interesting topic for future work.

Appendix B Proofs of Technical Results

B.1 Concolic Execution Semantics

Proof of Theorem 1
Since the base case i = 0 trivially holds, in the following we only consider the
inductive case i > 0. Let Ci = 〈Bcδ | S][Dc′θ | S′〉. By the inductive hypothesis, we
have |S| = |S′|, D 6 B, c = c′ (if any), and p(Xn)θ 6 p(tn)δ. Now, we consider the
step Ci ; Ci+1 and distinguish the following cases, depending on the applied rule:

• If the rule applied is success, failure, backtrack or choice fail, the claim follows
trivially by induction.

• If the rule applied is choice, let us assume that we have B = (A,B′), D =
(A′,D′) and clauses(A,P) = cj , j > 0. Therefore, we have Ci+1 = 〈Bc1δ | . . . |
Bcj

δ | S][Dc1θ | . . . | D
cj

θ | S′〉, and the claim follows straightforwardly by the
induction hypothesis.
• Finally, if the applied rule is unfold, then we have that Bcδ = (A,B′)cδ, Dcθ =

(A′,D′)cθ for some clause c = H1 ← B1. Therefore, we have Ci+1 = 〈(B1σ,B′σ)δσ |
S][(B1σ

′,D′σ′)θσ′ |S′〉, where mgu(A,H1) = σ and mgu(A′, H1) = σ′. First,
c = c′ holds by vacuity since the goals are not labeled with a clause. Also, the
number of concrete and symbolic goals is trivially the same since |S| = |S′| by
the inductive hypothesis. Now, by the inductive hypothesis, we have D 6 B
and thus A′ 6 A andD′ 6 B′. Then, since σ = mgu(A,H1), σ′ = mgu(A′, H1),
Var(H1 ← B1) ∩ Var(A) = {}, and Var(H1 ← B1) ∩ Var(A′) = {}, it is
easy to see that A′σ′ 6 Aσ (and thus D′σ′ 6 B′σ) and σ′ 6 σ when re-
stricted to the variables of H1 (and thus B1σ

′ 6 B1σ). Therefore, we can
conclude (B1σ

′,D′σ′) 6 (B1σ,B′σ). Finally, using a similar argument, we
have p(Xn)θσ′ 6 p(tn)δσ.

5

B.2 Solving Unifiability Problems

First, we prove the following invariant which justifies that the algorithm in Defini-
tion 6 is well defined.

Proposition 1
The following statement is an invariant of the loops at lines 2 and 3 of the algorithm
in Definition 6:

(invariant) (a) A ≈ B for all B ∈ B and (b) A ≤ B′ for some B′ ∈ B.

Proof
Let us first consider the loop at line 2. Clearly, the invariant holds upon initializa-
tion. Therefore, let us assume that it holds for some arbitrary set B and we prove
it also holds for B′ = Bη with η = {X/t} for some simple disagreement pair X, t
(or t,X). Let us consider part (a). Since A ≈ B for all B ∈ B, there exist a sub-
stitution θ such that Aθ = Bθ for all B ∈ B. Consider such an arbitrary B ∈ B. If
X 6∈ Var(B), then part (a) of the invariant holds trivially in B′. Otherwise, θ{X/t}
is clearly a unifier A and B, and it also holds. Consider now part (b). Since A ≤ B′

for some B′ ∈ B, there exists a substitution σ such that Aσ = B′. Using a similar
argument as before, either Aσ = B′ with B′ ∈ B′ or Aσ{X/t} = B′{X/t} with
B′{X/t} ∈ B, and part (b) of the invariant also holds in B′.

Let us now consider the loop at line 3. Clearly, the invariant holds when the
previous loop terminates. Let t, t′ be the selected disagreement pair. Then t, t′

is replaced in B by a fresh variable U ∈ U , thus obtainining a new set B′. Let
η1 := {U/t} and η2 := {U/t′}. Both η1 and η2 are idempotent substitutions because
U 6∈ Var(t) and U 6∈ Var(t′) since U is fresh. Let B1, B2 be the atoms of B where
t, t′ come from and C1, C2 be the atoms obtained by replacing t, t′ in B1, B2 by U .
Then B1 = C1η1 and B2 = C2η2. Now, we want to prove that the invariant also
holds in B′ = B \ {B1, B2} ∪ {C1, C2}. Part (a) is trivial, since we only generalize
some atoms: if A unify with B1 and B2, it will also unify with C1 and C2. Regarding
part (b), we have that A ≤ B′ for some B′ ∈ B. Clearly, part (b) also holds in B′

if B′ is different from B1 and B2. Otherwise, w.l.o.g., assume that B′ = B1 and
A ≤ B1. Since A ≈ B1 and A ≈ B2, and t, t′ is a disagreement pair for B1, B2,
we have that the subterm of A that corresponds to the position of t, t′ should be
more general than t, t′ (otherwise, it would not unify with both terms). Therefore,
replacing t by a fresh variable U will not change that, and we have A ≤ C1 for some
C1 ∈ B.

The following auxiliary results are useful to prove the correctness of the algorithms
in Definitions 6 and 7.

Lemma 1
Suppose that Aθ = Bθ for some atoms A and B and some substitution θ. Then we
have Aθη = Bηθη for any substitution η with [Dom(η) ∩ Var(B)] ∩ Dom(θ) = {}
and Ran(η) ∩Dom(θη) = {}.

6

Proof
For any X ∈ Var(B),

• either X 6∈ Dom(η) and then Xηθη = Xθη

• or X ∈ Dom(η) and thenXηθη = (Xη)θη = Xη because Ran(η)∩Dom(θη) =
{}. Moreover, X 6∈ Dom(θ) because [Dom(η) ∩ Var(B)] ∩ Dom(θ) = {}, so
Xθη = Xη. Finally, Xηθη = Xθη.

Consequently, Bηθη = Bθη. As Aθ = Bθ, we have Aθη = Bθη i.e. Aθη = Bηθη.

Proposition 2
The loop at line 2 always terminates and the following statement is an invariant of
this loop.

(inv) For each A′ ∈ {A} ∪ Hpos there exists B ∈ B and a substitution θ such that
A′θ = Bθ and Var(B) ∩Dom(θ) = {}.

Proof
Action (2b) reduces the number of simple disagreement pairs in B which implies
termination of the loop at line 2.

Let us prove that (inv) is an invariant. First, (inv) clearly holds upon initialization
of B. Suppose it holds prior to an execution of action (2b). Therefore, for each
A′ ∈ {A} ∪ Hpos there exists B ∈ B and a substitution θ such that A′θ = Bθ and
Var(B) ∩ Dom(θ) = {}. Let t, t′ be the selected simple disagreement pair. Then,
we consider a substitution η determined by t, t′. For any X ∈ Ran(η), we have
X ∈ Var(B). Thus X 6∈ Dom(θ) by (inv). Hence Ran(η)∩Dom(θ) = {}. Moreover,
as t, t′ is a simple pair we have Ran(η) ∩Dom(η) = {}. Hence,

Ran(η) ∩Dom(θη) = {} . (B1)

Since B ∈ B, we have [Dom(η) ∩ Var(B)] ∩ Dom(θ) = {}. Consequently, by (B1)
and Lemma 1 we have

A′θη = Bηθη .

Now, we want to prove that (inv) holds for Bη, i.e., that for each A′ ∈ {A} ∪ Hpos

there exists Bη ∈ Bη and a substitution θ′ such that A′θ′ = Bηθ′ and Var(Bη) ∩
Dom(θ′) = {}. We let θ′ = θη, so A′θη = Bηθη holds. Now, suppose by con-
tradiction that Var(Bη) ∩ Dom(θη) 6= {}, and let X be one of its elements. We
have X 6∈ Dom(η) because Ran(η) ∩ Dom(η) = {}, so X ∈ Dom(θ). Moreover,
X 6∈ Ran(η) by (B1) so X ∈ Var(B). Therefore, X ∈ Var(B) ∩ Dom(θ) which by
(inv) gives a contradiction. Consequently,

Var(Bη) ∩Dom(θη) = {}

and the claim follows.

7

Proposition 3
The loop at line 3 always terminates and the following statement is an invariant of
this loop.

(inv′) For each A′ ∈ {A} ∪Hpos there exists B ∈ B and a substitution θ such that
A′θ = Bθ and Var(B) ∩Dom(θ) ⊆ U .

Proof
Action (3b) reduces the number of disagreement pairs in B which implies termina-
tion of the loop at line 3.

Let us prove that (inv′) is an invariant. By Proposition 2, (inv) holds upon
termination of the loop at line 2, hence (inv′) holds just before execution of the
loop at line 3. Suppose it holds prior to an execution of action (3b), so we have
that, for each A′ ∈ {A} ∪ Hpos there exists B ∈ B and a substitution θ such that
A′θ = Bθ and Var(B) ∩ Dom(θ) ⊆ U . Let t, t′ be the selected disagreement pair.
Then t, t′ is replaced in B by a fresh variable U ∈ U , thus obtainining a new set
B′. Let η1 := {U/t} and η2 := {U/t′}. Both η1 and η2 are idempotent substitutions
because U 6∈ Var(t) and U 6∈ Var(t′) since U is fresh. Let B1, B2 be the atoms of B
where t, t′ come from and C1, C2 be the atoms obtained by replacing t, t′ in B1, B2

by U . Then B1 = C1η1 and B2 = C2η2. Now, we want to prove that (inv′) holds
in B′ = B \ {B1, B2} ∪ {C1, C2}, i.e., that for each A′ ∈ {A} ∪ Hpos there exists
B ∈ B′ and a substitution θ such that A′θ = Bθ and Var(B′) ∩Dom(θ) ⊆ U .

Since (inv′) holds in B, we have A′θ = Bθ. Moreover, A′ = A′η1 = A′η2 because
U does not occur in A′. So if B = B1 then A′η1θ = C1η1θ and if B = B2 then
A′η2θ = C2η2θ. Consequently, let us set

• θ′ := θ and B′ := B if B 6∈ {B1, B2}
• θ′ := η1θ and B′ := C1 if B = B1

• θ′ := η2θ and B′ := C2 if B = B2.

Then we have

A′θ′ = B′θ′ . (B2)

Moreover, Dom(θ′) ⊆ Dom(θ) ∪Dom(η1) ∪Dom(η2) i.e.

Dom(θ′) ⊆ Dom(θ) ∪ {U} . (B3)

As Var(C1, C2) ⊆ Var(B1, B2) ∪ {U} then

Var(C2, C2) ∩Dom(θ′) ⊆ U

because Var(B1, B2) ∩ Dom(θ) ⊆ U by (inv′) and Var(B1, B2) ∩ {U} = {U} ∩
Dom(θ) = {} and {U}∩{U} ⊆ U . Moreover, by (inv′) we have Var(B)∩(Dom(θ)∪
{U}) ⊆ U so by (B3)

Var(B) ∩Dom(θ′) ⊆ U .
Hence, Var(B \ {B1, B2} ∪ {C1, C2}) ∩ Dom(θ′) ⊆ U . With (B2) this implies that
upon termination of action (3b) the invariant (inv′) holds because B1 is set to C1

and B2 to C2.

The correctness of the algorithm in Definition 6 is then stated as follows.

8

Theorem 1
Let A be an atom and Hpos be a set of atoms such that Var({A} ∪Hpos)∩U = {}
and A ≈ B for all B ∈ Hpos . The algorithm in Definition 6 with input A and
Hpos always terminates and returns a substitution θ such that Aθη unifies with all
the atoms of Hpos for any idempotent substitution η with Dom(η) ⊆ Var(Aθ) and
Var(η) ∩ U = {}.

Proof
Proposition 2 and Proposition 3 imply termination of the algorithm. Upon ter-
mination of the loop at line 3 we have |B| = 1. Let B be the element of B
with Aθ = B. Now, we want to prove that Aθη unifies with all the atoms in
Hpos for any idempotent substitution η (i.e., Dom(η) ∩ Ran(η) = {}) such that
Dom(η) ⊆ Var(Aθ) = Var(B) and Var(η) ∩ U = {}. By Proposition 3, we have
that, for all B′ ∈ Hpos , there exists a substitution θ′ such that Bθ′ = B′θ′

and Var(B) ∩ Dom(θ′) ⊆ U . From all the previous conditions, it follows that
[Dom(η) ∩ Var(B)] ∩ Dom(θ′) = {} and Ran(η) ∩ Dom(θ′η) = {}. Therefore, by
Lemma 1, we have Bηθ′η = B′θ′η. Finally, since Aθ = B, we have Aθηθ′η = B′θ′η

and, thus, Aθη unifies with B′.

Proof of Theorem 2
Each step of the algorithm terminates, hence the algorithm terminates. Assume
that the algorithm returns a substitution σ. The set Gσ is ground by construction.
By Theorem 1, we have that Aσ = Aθη unifies with all the atoms in Hpos as long
as η is idempotent, Dom(η) ⊆ Var(Aθ) and Var(η)∩U = {}. Finally, the last check
ensures that Aσ does not unify with any atom of Hneg .

B.2.1 Completeness

For simplicity, we ignore the groundness constraint in this section. Therefore, we
now focus on the completeness of the following unification problem: Let A be an
atom and Hpos ,Hneg be sets of atoms such that A ≈ B for all B ∈ Hpos ∪ Hneg .
Then, we want to find a substitution σ such that

Aσ ≈ B for all B ∈ Hpos but ¬(Aσ ≈ B′) for all B′ ∈ Hneg(∗∗)

We further assume that all atoms are renamed apart.
Let us first formalize the notion of unifying substitution:

Definition 1 (unifying substitution)
Let A be an atom and let B be a set of atoms such that Var(A,B) ∩ U = {} and
A ≈ B for all B ∈ B. We say that σ is a unifying substitution for A w.r.t. B if
Aσ ≈ B for all B ∈ B.

In particular, we are interested in maximal unifying substitutions computed by the
algorithm in Definition 6. The relevance of maximal unifying substitutions is that
variables from U identify where further instantiation would result in a substitu-
tion which is not a unifying substitution anymore. For the remaining positions, we
basically return their most general unifier.

9

Now, we prove that binding an atom A with a maximal unifying substitution for A
w.r.t. Hpos does not affect to the existence of a solution to our unification problem
(**) above. Here, for simplicity, we assume that only most specific solutions are
considered, where a solution σ is called a most specific solution for A andHpos ,Hneg

if there exists no other solution which is strictly less general than σ. Furthermore,
we also assume that the atom A has the form p(X1, . . . , Xn).

Lemma 2
Let A be an atom and Hpos ,Hneg be sets of atoms such that A ≈ B for all B ∈
Hpos ∪Hneg . If there exists a substitution σ such that Aσ ≈ B for all B ∈ Hpos and
¬(Aσ ≈ B) for all B ∈ Hneg , then there exists a maximal unifying substitution θ

and a substitution σ′ such that Aθσ′ ≈ B for all B ∈ Hpos and ¬(Aθσ′ ≈ B) for
all B ∈ Hneg .

Proof
(sketch) Let us consider the stages of the algorithm in Definition 6 with input
Hpos (atom A is not needed since it has the form p(X1, . . . , Xn) and, thus, imposes
no constraint). The first stage just propagates simple disagreement pairs of the
form X, t or t,X. When X only occurs once, it is easy to see that σ is also a
(most specific) unifying substitution for A w.r.t. Hpos{X/t}. Consider, e.g., that σ
contains a binding of the form Xi/C[t′] for some i ∈ {1, . . . , n} and context C[]
and such that t′ corresponds to the same position of X and t in Hpos . Depending
on the terms in the corresponding position of the remaining atoms, we might have
t′ ≤ t or t ≤ t′. Either case, replacing X by t will not change the fact that σ is still
a most specific unifying substitution for Hpos{X/t}.

The step is more subtle when there are several simple disagreement pairs for a
given variable, e.g., X, t1 and X, t2 (we could generalize it to an arbitrary number
of pairs, but two are enough to illustrate how to proceed). In this case, if t1 ≤ t2,
we choose X, t2 and the reasoning is analogous to the previous case. However, when
neither t1 ≤ t2 not t2 ≤ t1, the algorithm in Definition 6 is non-deterministic and
allows us to choose any of them. As before, let us consider that σ contains bindings of
the form Xi/C[t′1] and Xj/C

′[t′2] for some i, j ∈ {1, . . . , n} and contexts C[], C ′[]
and such that t′1 and t′2 correspond to the same positions of t1 and t2 in Hpos ,
respectively. Here, assuming there are no further constraints from the remaining
atoms, a most specific unifying substitution might either bind Xi to C[t1] and leave
Xj unconstrained (e.g., bound to a fresh variable) or the other way around: bind
Xi to C[t2] and leave Xj unconstrained. Here, we choose the same alternative as in
the considered solution σ, say Xi is bound to C[t1]. Therefore, σ is still a unifying
substitution for A w.r.t. Hpos{X/t1}. Note that the new (non-simple) disagreement
pair t1, t2 introduced in Hpos{X/t1} will be generalized away in the next stage (and
replaced by a fresh variable from U).

Therefore, when the first stage is completed (i.e., step 2 in Definition 6), we have
propagated some terms from one atom to the remaining ones –as in the computation
of a most general unifier– thus producing a new set H′

pos such that σ is still a (most
specific) unifying substitution for A w.r.t. H′

pos .

10

By definition, after this stage, there are no simple disagreement pairs in H′
pos .

Then, in the second stage (step 3 in Definition 6), we replace every (non-simple)
disagreement pair t1, t2 by a fresh variable U from U . Since σ was a unifying sub-
stitution for H′

pos , it should have a binding Xi/C[W] for some i ∈ {1, . . . , n} and
context C[] and such that W corresponds to the same position of t1 and t2 in
H′

pos , where W is a variable. Therefore, replacing t, t′ by a fresh variable U will not
change the fact that σ is still a unifying substitution for the resulting set (up to
variable renaming).

Hence, when the second stage is finished, we have a new set H′′
pos without any

disagreement pair at all, i.e., H′′
pos = {B} with Aθ = B. Moreover, since σ is a most

specific uniyfing substitution for A w.r.t. H′′
pos , we have θ ≤ σ [Var(A)]. Therefore,

there exists a substitution σ′ such that Aσ = Aθσ′ such that σ′ is a solution for Aθ
and Hpos ,Hneg , which concludes the proof.

Appendix C Some More Examples on Solving Unifiability Problems

Example 1 (maximal unifying substitution)
Let A = p(X,Y) and Hpos = {p(s(a), s(c)), p(s(b), s(c)), p(Z,Z)}. First the algo-
rithm of Definition 6 sets B := {p(X,Y), p(s(a), s(c)), p(s(b), s(c)), p(Z,Z)}, then
it considers the simple disagreement pairs in B. The substitution η1 := {X/s(a)}
is determined by X, s(a). Action (2b) sets B to Bη1 i.e. to

{p(s(a), Y), p(s(a), s(c)), p(s(b), s(c)), p(Z,Z)} .

The substitution η2 := {Y/s(c)} is determined by Y, s(c). Action (2b) sets B to
Bη2 = {p(s(a), s(c)), p(s(b), s(c)), p(Z,Z)}. The substitution η3 := {Z/s(c)} is de-
termined by Z, s(c). Action (2b) sets B to Bη3 i.e. to

{p(s(a), s(c)), p(s(b), s(c)), p(s(c), s(c))} .

Now no simple disagreement pair occurs in B hence the algorithm skips to the loop
at line 3.

• Action (3b) replaces the disagreement pair a, b with a fresh variable U ∈ U ,
hence B is set to {p(s(U), s(c)), p(s(c), s(c))}.

• Action (3b) replaces the disagreement pair U, c with a fresh variable U ′ ∈ U ,
hence B is set to {p(s(U ′), s(c))}.

As |B| = 1 the loop at line 3 stops and the algorithm returns the substitution
{X/s(U ′), Y/s(c)}.

Note that there are several non-deterministic possibilities for η1, η2 and η3. For
instance, if we consider η3 := {Z/s(a)}, which is determined by Z/s(a), then B is
set to {p(s(a), s(c)), p(s(b), s(c)), p(s(a), s(a))}. The loop at line 3 finally sets B to
{p(s(U), s(U ′))}, so the algorithm returns the substitution {X/s(U), Y/s(U ′)}.

We note that the set B used by the algorithm of Definition 6 may contain several
occurrences of a same, non-simple, disagreement pair.

11

Example 2 (maximal unifying substitution)
Let A = p(X,Y) and Hpos = {p(a, a), p(b, b)}. First the algorithm sets B :=
{p(X,Y), p(a, a), p(b, b)}. Then the loop at line 2 considers the simple disagree-
ment pairs in B and, for instance, it sets B to {p(a, a), p(b, b)} (it may also set B to
{p(a, b), p(a, a), p(b, b)} or to {p(b, a), p(a, a), p(b, b)}). As no simple disagreement
pair now occurs in B, the algorithm jumps at line 3. The pair a, b occurs twice in
A. Action (3b) replaces each occurrence with the same variable U ∈ U , so the loop
at line 3 sets B to {p(U,U)} and the algorithm returns {X/U, Y/U}.

Example 3 (maximal unifying substitution)
Let A = p(X,Y) and Hpos = {p(a, b), p(b, a)}. First the algorithm sets B :=
{p(X,Y), p(a, b), p(b, a)}. Then the loop at line 2 considers the simple disagree-
ment pairs in B and, for instance, it sets B to {p(a, b), p(b, a)} (it may also set B to
{p(a, a), p(a, b), p(b, a)} or to {p(b, b), p(a, b), p(b, a)}). As no simple disagreement
pair now occurs in B, the algorithm jumps at line 3. The pairs a, b and b, a occur
once in A and Action (3b) replaces them with two different variables U,U ′ ∈ U . So
the loop at line 3 sets B to {p(U,U ′)} and the algorithm returns {X/U, Y/U ′}.

