
1

Online appendix for the paper

Complexity and Compilation of GZ-Aggregates
in Answer Set Programming

published in Theory and Practice of Logic Programming

MARIO ALVIANO and NICOLA LEONE

Department of Mathematics and Computer Science, University of Calabria, Italy

submitted 30 June 2015; revised 04 July 2015; accepted 14 July 2015

Appendix A Proofs of Section 3

Lemma 1

Let Π be in ASP(M). The least fixpoint of TΠ(I) exists and is polytime computable.

Let I be the least fixpoint of TΠ, and J be the least fixpoint of TG(Π,I). If I 6= J

then Π is G-incoherent, otherwise GSM (Π) = {I}.

Proof

We first show that the least fixpoint of TΠ is polytime computable. Let Π be a

program in ASP(M), and I be an interpretation. Computing TΠ(I) requires to

iterate over every rule r of Π and check whether I |= B(r). Checking I |= B(r) can

be done in polynomial-time if aggregates are polynomial-time computable functions,

as it is assumed in this section. Hence, a single application of TΠ is polynomial-time

computable. The least fixpoint of TΠ is computed, by definition, starting from ∅
and repeatedly applying TΠ. Define I0 = ∅, Ii+1 = TΠ(Ii) (for i ≥ 0). For each

i ≥ 0, either Ii+1 \ Ii 6= ∅ or Ii is the least fixpoint of TΠ. Since atoms in Ii+1 \ Ii
are among those in At(Π), we have that I|At(Π)| = I|At(Π)|+1.

We now show the second part of the lemma. I |= Π by construction. Note that

G(Π, I) is a plain Datalog program. It is unique minimal model is the least fixpoint

of TG(Π,I), i.e., interpretation J . Hence, I ∈ GSM (Π) if and only if I = J . To

complete the proof is enough to show that no other interpretation is a G-stable

model of Π. Let K be an interpretation such that K 6= I and K |= Π. Therefore,

K ⊃ I because I is the least fixpoint of TΠ. To prove that K /∈ GSM (Π) note that

I |= G(Π,K).

Theorem 1

G-coherence testing is in P for ASP(M).

2

Proof

Let I be the least fixpoint of TΠ. I is computable in polynomial-time because of

Lemma 1. Actually, I is the only candidate to be a G-stable model of Π because

of Lemma 1. To check whether I ∈ GSM (Π), build G(Π, I) and compute the least

fixpoint of TG(Π,I), again in polynomial-time because of Lemma 1. If the two least

fixpoints are equal then Π is G-coherent, otherwise it is G-incoherent.

Theorem 2

G-coherence testing is in NP for programs in ASP(¬, M, C, N).

Proof

Let Π be in ASP(¬, M, C, N), and I be an interpretation. We provide a polynomial-

time procedure for checking that I is a G-stable model of Π. The procedure first

checks that I |= Π in polynomial-time. If it is the case, the procedure builds the

reduct G(Π, I), again in polynomial-time. Program G(Π, I) is in ASP(−) and there-

fore Lemma 1 can be applied to obtain the unique minimal model of G(Π, I), say

J , in polynomial-time. If I = J then the procedure accepts I as a G-stable model,

otherwise it rejects I.

Lemma 2

Let Π be in ASP(¬, ∨). Then, GSM (Π) ≡At(Π) GSM (C(Π)) ≡At(Π) GSM (N(Π)).

Proof

Let I be an interpretation. I |= Π if and only if I |= C(Π). In particular, if ∼p is

replaced by an aggregate A in a rule r, we have I |= ∼p if and only if I |= A. Note

that I 6|= ∼p implies that r is removed in the reducts G(Π, I), G(C(Π), I), while

I |= ∼p implies that both ∼p and A are replaced by the empty set in the rules

obtained from r in the reducts. We therefore conclude that G(Π, I) = G(Π, C(I)),

from which we obtain GSM (Π) ≡At(Π) GSM (C(Π)).

The proof of GSM (Π) ≡At(Π) GSM (N(Π)) is similar. We have just to addition-

ally note that ⊥ /∈ I holds for every I ∈ GSM (Π) ∪GSM (N(Π)).

Theorem 3

G-coherence testing is ΣP
2 -hard for both ASP(∨, C) and ASP(∨, N). It is NP-hard

for both ASP(C) and ASP(N).

Proof

G-coherence testing is ΣP
2 -hard for ASP(¬, ∨), and it is NP-hard for ASP(¬) (Eiter

and Gottlob 1995). G-coherence of Π can be reduced to G-coherence testing of

C(Π) or of N(Π) because of Lemma 2. Since C(Π) and N(Π) can be computed in

polynomial-time, do not introduce disjunction, eliminate negation, and only have

convex and non-convex aggregates, respectively, the proof is complete.

Theorem 4

G-coherence testing is P-hard for ASP(M).

3

Proof

G-cautious reasoning over Datalog programs is P-hard (Eiter and Gottlob 1995).

We reduce this problem to G-coherence testing of disjunction- and negation-free

programs with monotone aggregates. Let Π be in ASP(−), and p be a propositional

atom. Program Π′ = Π∪ {p← A}, where dom(A) = {p} and A(I) = |{p} ∩ I| ≥ 0,

can be built using only logarithmic space. Since Π is a Datalog program, it has

a unique G-stable model, say I. If p ∈ I then p belongs to the least fixpoint of

TΠ because of Lemma 1, and therefore it belongs to the least fixpoint of TΠ′ too

because of monotonicity. On the other hand, if p /∈ I then any model J of Π′ is such

that J ⊃ I because of rule p ← A (note that A is always true). We conclude that

G(Π′, J) = G(Π, J) ∪ {p ← p}, and therefore the least fixpoint of TG(Π′,J), which

is equal to the least fixpoint of TG(Π,J), is a subset of I. We conclude that J is not

a G-stable model of Π′ and hence Π′ is G-incoherent.

Lemma 3

Let Π be in ASP(¬, ∨). The following relation holds: GSM (Π) ≡At(Π) GSM (M(Π)).

Proof

Without loss of generality, let us assume that all atoms in At(Π) occur negated in

Π at least once. Let I be a G-stable model of Π. Define IF = I ∪ {pF | p /∈ I}.
We have IF |= M(Π). Concerning G(M(Π), IF) note that for each p ∈ At(Π) rule

p ∨ pF ← A is either replaced by

p ∨ pF ←

in case p /∈ I, or by

p ∨ pF ← p

if p ∈ I. In the first case, the rule guarantees that every model J of G(M(Π), IF)

such that J ⊆ I satisfies pF ∈ J . Hence, rules of G(M(Π), IF) containing pF can

be simplified by removing pF , which essentially results into G(Π, I) (plus rules

obtained from p ∨ pF ← A). In the second case, the rule is trivially satisfied by all

interpretations, and therefore it can be removed from G(M(Π), IF). Since I is a

minimal model of G(Π, IF), we have that IF is a minimal model of G(M(Π), IF),

i.e., IF ∈ GSM (M(Π)).

For the other direction, let I be a G-stable model of M(Π). We shall show that

I ∩At(Π) is a G-stable model of Π. First of all, note that I |= A for any aggregate

A occurring in M(Π), and therefore I ∩{p, pF } 6= ∅ because of rule p∨pF ← A, for

all p ∈ At(Π). Moreover, since I is a minimal model of G(M(Π), I) by assumption,

and pF does not occur in any other rule heads, we have |I ∩ {p, pF }| = 1. We can

therefore argument as in the previous direction and conclude that I ∩ At(Π) is a

minimal model of G(Π, I ∩At(Π)), i.e., I ∩At(Π) ∈ GSM (Π).

As a final observation, note that also |GSM (Π)| = |GSM (M(Π))| holds because

in any G-stable model of M(Π) truth values for atoms of the form pF are implied

by truth values of atoms of the form p.

4

Theorem 5
G-coherence testing is ΣP

2 -hard for ASP(∨, M).

Proof
G-coherence testing is ΣP

2 -hard for a program Π in ASP(¬, ∨) (Eiter and Gottlob

1995). G-coherence of Π can be reduced to G-coherence testing of M(Π) because of

Lemma 3. Since M(Π) can be computed in polynomial-time, eliminates negation,

and only has monotone aggregates, the proof is complete.

Theorem 6
G-cautious reasoning is in P for ASP(M).

Proof
We provide a procedure for checking whether a given propositional atom p is a

G-cautious consequence of Π. The procedure first checks G-coherence of Π in

polynomial-time (Theorem 1). If Π is G-incoherent then the procedure rejects.

Otherwise, because of Lemma 1, the unique G-stable model of Π, say I, is the least

fixpoint of TΠ. The procedure then computes I in polynomial-time (Lemma 1), and

accepts if p ∈ I, otherwise it rejects.

Theorem 7
G-cautious reasoning is in co-NP for programs in ASP(¬, M, C, N).

Proof
Let Π be in ASP(¬, M, C, N), and p a propositional atom. We prove that the

complementary problem, checking the existence of a G-stable model I of Π such

that p /∈ I, is in NP. To this aim, let I be an interpretation such that p /∈ I. The

following is a polynomial-time procedure for checking that I is a G-stable model of

Π: The procedure first builds G(Π, I), which is disjunction-, negation and aggregate-

free. Then, it computes the unique G-stable model, say J , of G(Π, I), i.e., the least

fixpoint of TG(Π,I) (Lemma 1), and accepts if I = J .

Theorem 8
G-cautious consequence is ΠP

2 -hard for ASP(∨, M), ASP(∨, C) and ASP(∨, N). It

is co-NP-hard for ASP(C) and ASP(N).

Proof
G-cautious reasoning is ΠP

2 -hard for ASP(¬, ∨) already for programs in which

negation only occurs in a rule of the form w ← ∼w (Eiter and Gottlob 1995).

Therefore, let us consider a program Π = Π′ ∪ {w ← ∼w}, where Π′ is in ASP(∨).

From Lemmas 2–3, GSM (Π) ≡At(Π) GSM (M(Π)) ≡At(Π) GSM (C(Π)) ≡At(Π)

GSM (N(Π)). Let p be a propositional atom among those in At(Π). It holds that

p is a G-cautious consequence of Π if and only if p is a G-cautious consequence of

the other programs. Hence, ΠP
2 -hardness follows.

Similarly, G-cautious reasoning for ASP(¬) is co-NP-hard already for programs

in which negation only occurs in a rule of the form w ← ∼w. Since C(Π) and N(Π)

are disjunction-free if Π is disjunction-free, co-NP-hardness follows.

5

Appendix B Proofs of Section 4

Theorem 9

Let Π be a program. The following relation holds: GSM (Π) ≡At(Π) FSM (rew(Π)).

Proof

Let I be a G-stable model of Π. We shall show that I ′ = I ∪ {p′ | p ∈ At(Π)} is an

F-stable model of rew(Π). In fact, I ′ |= rew(Π) because I |= Π. Consider a model

J ⊆ I of the reduct F (rew(Π), I). We have J ∩ At(Π) |= G(Π, I), and therefore

J ∩At(Π) = I holds because I is a G-stable model of Π by assumption. Because of

rules of introduced by item 1 in Definition 4, J ∩ At(Π) = I implies J = I, i.e., I

is an F-stable model of rew(Π).

Let I be an F-stable model of rew(Π). We shall show that I ∩ At(Π) is a G-

stable model of Π. First of all, note that {p′ | p ∈ At(Π)} ⊆ I because I |= Π and

because of rules introduced by item 1 in Definition 4. Therefore, I ∩ At(Π) |= Π

follows. Consider a model J ⊆ I ∩ At(Π) of the reduct G(Π, I). We have J ∪ {p′ |
p ∈ At(Π)} |= F (rew(Π), I), and therefore J ∪ {p′ | p ∈ At(Π)} = I because I is

an F-stable model of rew(Π) by assumption. It follows that J = I ∩ At(Π), i.e.,

I ∩At(Π) is a G-stable model of Π.

Finally, note that also |GSM (Π)| = |FSM (rew(Π))| holds because the mappings

used above are one-to-one.

Theorem 10

Let Π be a program. The following relation holds: GSM (Π) ≡At(Π) FSM (str(Π)).

Proof

Let I be a G-stable model of Π. We shall show that I ′ = I ∪{p′ | p ∈ At(Π)}∪{p′′ |
p ∈ I} is an F-stable model of str(Π). In fact, I ′ |= str(Π) because I |= Π. Consider

a model J ⊆ I of the reduct F (str(Π), I). We have J ∩ At(Π) |= G(Π, I), and

therefore J ∩ At(Π) = I holds because I is a G-stable model of Π by assumption.

Because of rules of the groups (i)–(ii) in Definition 5, J ∩At(Π) = I implies J = I,

i.e., I is an F-stable model of str(Π).

Let I be an F-stable model of str(Π). We shall show that I ∩At(Π) is a G-stable

model of Π. First of all, note that {p′ | p ∈ At(Π)} ⊆ I because I |= Π and

because of rules of the group (i). Moreover, note that p ∈ I if and only if p′′ ∈ I

because of rules of the group (iii), for all p ∈ At(Π). And also note that for each

aggregate A′′ occurring in str(Π), I |= A′′ if and only if I ∩At(Π) |= A. Therefore,

I ∩At(Π) |= Π follows. Consider a model J ⊆ I ∩At(Π) of the reduct G(Π, I), and

define J ′ = J ∪ {p′ | p ∈ At(Π)} ∪ {p′′ | p ∈ I}. We have J ′ |= F (str(Π), I), and

therefore J ′ = I because I is an F-stable model of str(Π) by assumption. It follows

that J = I ∩At(Π), i.e., I ∩At(Π) is a G-stable model of Π.

Finally, note that also |GSM (Π)| = |FSM (str(Π))| holds because the mappings

used above are one-to-one.

6

Theorem 11

Let Π,Π′ be programs such that Π ∩ Π′ = ∅. For tr ∈ {rew , str}, the following

conditions are satisfied: tr(Π ∪Π′) = tr(Π) ∪ tr(Π′), and tr(Π) ∩ tr(Π′) = ∅.

Proof

Immediate because the rewritings work on one rule at time.

Theorem 12

Let Π be a program. The programs rew(Π) and str(Π) are polynomial-time con-

structible, and the following relations holds: (i) ‖rew(Π)‖ ≤ 4 · |At(Π)| + 2 · ‖Π‖;
(ii) ‖str(Π)‖ ≤ 10 · |At(Π)|+ 2 · ‖Π‖.

Proof

We first prove relation (i). Program rew(Π) contains 2 rules for each atom in At(Π),

each one of size 2, and a rule for each rule of Π. The number of atoms in these rules

is at most two times the number of atoms in the original rules.

We now show relation (ii). Program rew(Π) contains 5 rules for each atom in

At(Π), each one of size 2, and a rule for each rule of Π. The number of atoms in

these rules is at most two times the number of atoms in the original rules.

Theorem 13

Let Π be a program, and I be an interpretation. If I |= rew(Π) or I |= str(Π) then

{p′ | p ∈ At(Π)} ⊆ I. Moreover, for each J ⊆ I such that J |= F (str(Π), I), it holds

that {p′′ | p ∈ I} ⊆ J .

Proof of Theorem 13

If I satisfies rules introduced by item 1 in Definition 4, or equivalently of the group

(i) in Definition 5, then {p′ | p ∈ At(Π)} ⊆ I. Consider a model J ⊆ I of the reduct

F (str(Π), I). For each p′′ ∈ I, F (str(Π), I) contains a rule p′′ ← because of rules

of the group (ii) in Definition 5.

Theorem 14

Let Π be a program. All aggregates in str(Π) are stratified, and if Π has no dis-

junction then both rew(Π) and str(Π) have no disjunction.

Proof

We first provide a more formal definition of stratified aggregate. The dependency

graph of Π has a node p for each atom p ∈ At(Π), and an arc from q to p if there is

a rule r ∈ Π such that p ∈ H(r) and q occurs in B(r), either as a possibly negated

literal or in the domain of an aggregate. Π is stratified with respect to aggregates

if there is no rule r ∈ Π such that p ∈ H(r) and q occurring in B(r) belong to the

same strongly connected component of Π.

Let Π be a program, and A be an aggregate in str(Π). Hence, by construc-

tion, dom(A) ⊆ {p′′ | p ∈ At(Π)}. Note that all rules whose head contains some

atom in dom(A) belong to the group (ii) in Definition 5, and therefore each atom

7

p′′ ∈ dom(A) belongs to a singleton strongly connected component. Stratification

of aggregates in str(Π) is thus proved.

Let Π be a program without disjunction. Program rew(Π) and str(Π) contain

rules of the groups (i)–(iii), which have no disjunction, and rules obtained from those

in Π by replacing aggregates. Hence, neither rew(Π) nor str(Π) has disjunction.

References

Eiter, T. and Gottlob, G. 1995. On the computational cost of disjunctive logic pro-
gramming: Propositional case. Ann. Math. Artif. Intell. 15, 3-4, 289–323.

