
1

Online appendix for the paper

Planning as Tabled Logic Programming
published in Theory and Practice of Logic Programming

NENG-FA ZHOU

CUNY Brooklyn College and Graduate Center

ROMAN BARTÁK

Charles University

AGOSTINO DOVIER

Univ. di Udine

submitted 29 April 2015; revised 3 July 2015; accepted 14 July 2015

Appendix A Benchmarks used in the paper

In this section we summarize, for reader’s convenience, the descriptions of all

the domains used as benchmarks. Descriptions are drawn from https://helios.

hud.ac.uk/scommv/IPC-14/domains_sequential.html; Picat’s complete encod-

ings for these benchmarks are available at http://picat-lang.org/ipc14/.

A.1 Barman

There is a robot barman that manipulates drink dispensers, glasses, and a shaker.

The goal is to find a plan of robot’s actions that serves a desired set of drinks.

Robot hands can grasp at most one object at a time. Glasses need to be empty and

clean to be filled. The benchmark was proposed by Sergio Jiménez Celorrio.

In Figure A 1 we represent the initial configuration and the corresponding input

specifications.

Actions available are:

• grasp(OBJ) that executes the grasping either of a specific shot or shaker (OBJ)

• leave(OBJ) that allows us to leave the shot or shaker (OBJ)

• fill shot(SHOT,ING) that allows us to fill the shot SHOT with the ingredient

ING

• empty shot(SHOT) (resp., empty shaker(SHAKER)) that allows us to empty

the shot SHOT (resp., the skaker SHAKER)

• clean shot(SHOT) (resp., clean shaker(SHAKER)) that allows us to clean

the shot SHOT (resp., the skaker SHAKER)

2

%% INITIAL state

ontable(shaker1), ontable(shot1),

... , ontable(shot8),

clean(shaker1), clean(shot1),

... , clean(shot8),

empty(shaker1), empty(shot1),

..., empty(shot8),

dispenses(dispenser1,ingredient1), dispenses(dispenser2,ingredient2),

dispenses(dispenser3,ingredient3), dispenses(dispenser4,ingredient4),

handempty(left), handempty(right),

%% Cocktail rules

cocktail part1(cocktail1,ingredient1), cocktail part2(cocktail1,ingredient3),

...

cocktail part1(cocktail6,ingredient2), cocktail part2(cocktail6,ingredient1),

%% GOAL

contains(shot1,cocktail1), contains(shot2,cocktail1),

contains(shot3,cocktail2), contains(shot4,cocktail6).

1 2

3

1 2 3 4

5 6 7 8

1

4

Fig. A 1. Example of Barman instance

• pour shot to shaker(SHOT,SHAKER) (resp., pour shaker to shot(SHAKER,SHOT))

that allows us to pour the content of the shot SHOT in the shaker SHAKER

(resp., vice versa).

• shake(SHAKER) that executes that shaking of the shaker to mix the ingredi-

ents.

• reduce (remove a shot from the state once it contains a required cocktail

All actions have cost 1 but reduce that has cost 0.

A.2 Cave Diving

There is a set of divers, each of who can carry four tanks of air. These divers must

be hired to go into an underwater cave and either take photos or prepare the way

for other divers by dropping full tanks of air. The cave is too narrow for more than

one diver to enter at a time. Divers have a single point of entry. Certain rooms of

3

the cave branches are objectives that the divers must photograph. Swimming and

photographing both consume air tanks. Divers must exit the cave and decompress

at the end. They can therefore only make a single trip into the cave. Certain divers

have no confidence in other divers and will refuse to work if someone they have no

confidence in has already worked. Divers have hiring costs inversely proportional to

how hard they are to work with. This domain was proposed by Nathan Robinson,

Christian Muise, and Charles Gretton.

The cave system is represented by an undirected acyclic graph. Divers can carry

an amount of tanks according to their capacity. Rooms that need to be reached

are among the leaves of the graph. In Figure A 2 we represent an instance of the

problem.

%% Divers information

available(d0) available(d1) available(d2)

capacity(d0,four) capacity(d1,four) capacity(d2,four)

=(hiring cost(d0),60) =(hiring cost(d1),10) =(hiring cost(d2),10)

precludes(d1,d2)

%% Cave and tank information

in storage(t1)

next tank(t1,t2) ... next tank(t8,t9)

cave entrance(l0)

connected(l0,l1), ... connected(l5,l1)

%%GOAL

have photo(l4) have photo(l5)

decompressing(d0) decompressing(d1)

decompressing(d2) decompressing(d3)

0 1

2 3 4

5

1 2 3 4 5 6 7 8 9

0 1 2

Fig. A 2. Example of Cave Diving instance

The actions available are:

4

• hire diver(Diver) that requires the availability of hiring cost and should

satisfy the compatibility constraints among divers,

• prepare tank(T) that prepares the tank T for the current diver if his capacity

allows it,

• enter water that requires the diver to be in the cave entrance,

• photograph(Loc) that requires the diver to be in the target location Loc,

• drop tank(Loc) that allows the diver to leave a tank in the location Loc (the

tank can be either full or empty),

• swim(Loc1,Loc2) that allows the diver to swim between two locations that

are adjacent in the graph,

• pickup tank(Loc) that allows the diver to collect a tank stored in the location

Loc,

• decompress should be made at the end of diving in the cave entrance.

Each action swim and photograph consumes (empties) one air tank. All actions

but the first one have unitary cost.

A.3 Childsnack

This domain is to plan how to make and serve sandwiches for a group of children

in which some are allergic to gluten. There are two actions for making sandwiches

from their ingredients. The first one makes a sandwich and the second one makes

a sandwich taking into account that all ingredients are gluten-free. There are also

actions to put a sandwich on a tray and to serve sandwiches. Problems in this

domain define the ingredients to make sandwiches at the initial state. Goals consist

of having selected kids served with a sandwich to which they are not allergic. This

domain was proposed by Raquel Fuentetaja, Tomàs de la Rosa Turbides.

Available actions are the following:

• make sandwich no gluten(Sw,B,Co) and make sandwich(Sw,B,Co) where

SW is a sandwich, B is a (no-gluten) bread, and Co is a (no-gluten) content

allows us to make the sandwiches.

• put on tray(Sw,T) puts the sandwich Sw on the tray T

• serve sandwich no gluten(Sw,Ch,T,Loc) and serve sandwich(Sw,Ch,T,Loc)

serves the (no-gluten) sandwich Sw which is on tray T to the children Ch at

the location Loc

• move tray(T,Loc1,Loc2), where T is a tray, Loc1 and Loc2 is a location (i.e.,

a table, the kitchen)

Each action has cost 1. make sandwich (no-gluten) consumes ingredients.

A.4 Citycar

This model aims to simulate the impact of road building/demolition on traffic flows.

A city is represented as an acyclic graph, in which each node is a junction and edges

are “potential” roads. Some cars start from different positions and have to reach

their final destination as soon as possible. The agent has a finite number of roads

5

%% Positions

at(tray1,kitchen) at(tray2,kitchen)

at kitchen bread(bread1) at kitchen bread(bread2)

at kitchen bread(bread3)

at kitchen content(content1) at kitchen content(content2)

at kitchen content(content3) at kitchen content(content4)

at kitchen content(content5)

no gluten bread(bread3)

no gluten content(content1) no gluten content(content4)

waiting(child1,table1) waiting(child2,table2)

waiting(child3,table3) waiting(child4,table4)

%% Info on allergies

allergic gluten(child2) allergic gluten(child4)

%% Not yet ready sandwhiches

notexist(sandw1) notexist(sandw2)

notexist(sandw3) notexist(sandw4)

notexist(sandw5) notexist(sandw6)

%% Goal

served(child2) served(child3)

3

1 2
3

1 2

1

2 3
4 5

13
24

Table 1

Table 2

Fig. A 3. Example of Childsnack instance

available, which can be built for connecting two junctions and allowing a car to

move between them. Roads can also be removed, and placed somewhere else, if

needed. In order to place roads or to move cars, the destination junction must be

clear, i.e., no cars should be in there. The domain was proposed by Mauro Vallati.

Allowed actions are the following:

• car arrived(Dest), which has cost 0. It allows to remove a car from the

network and to remove the occurrence of the destination Dest (a junction)

from the list of all final destinations.

6

%% Initial State

same line(junction0 0,junction0 1) same line(junction0 1,junction0 0)

same line(junction1 0,junction1 1) same line(junction1 1,junction1 0)

same line(junction0 0,junction1 0) same line(junction1 0,junction0 0)

same line(junction0 1,junction1 1) same line(junction1 1,junction0 1)

diagonal(junction0 0,junction1 1) diagonal(junction1 1,junction0 0)

diagonal(junction0 1,junction1 0) diagonal(junction1 0,junction0 1)

clear(junction0 0) clear(junction0 1)

clear(junction1 0) clear(junction1 1)

at garage(garage0,junction0 1)

starting(car0,garage0) starting(car1,garage0)

%% GOAL

arrived(car0,junction1 1) arrived(car1,junction1 0)

0 1

0

1
garage 0
0 1

Fig. A 4. Example of Citycars instance

• car start(Loc): A car is put in the road from the garage of location Loc: it

has cost 1.
• move car in road(FromLoc) allows us to move a car in a road from the junc-

tion FromLoc (cost 1—the road is a straight line or a diagonal road starting

in FromLoc).
• move car out road(ToLoc) allows us to move a out of a road as soon as the

junction ToLoc is reached by the car (cost 1—the road is a straight line or a

diagonal road ending in ToLoc).
• These actions allow us to build diagonal, straight roads or of deleting one

road:

— build diagonal oneway(FromLoc,ToLoc) (cost 30),

— build straight oneway(FromLoc,ToLoc) (cost 20),

— destroy road(FromLoc,ToLoc) (cost 10).

Let us observe that search symmetries are eliminated by considering the cars

equivalent during the search. It is trivial to label them a-posteriori given a correct

plan.

A.5 GED

The GED problem is to find a min-cost sequence of operations that transforms one

genome (signed permutation of genes) into another. The purpose of this is to use

7

this cost as a measure of the distance between the two genomes, which is used to

construct hypotheses about the evolutionary relationship between the organisms.

The domains was proposed by Patrik Haslum.

This problem can be stated at several abstraction levels. A general version could

include gene insertions and deletions. Let us focus on the abstraction level and on

the three rules required by the competition benchmarks.

A gene is identified by a symbolic name. The connection between genes is stated

by a binary predicate cw that encodes a linear graph. Each gene can occur in a

regular direction (normal) or in reverse direction (inverted).

The three rules allowed are cut (of a substring) from the main genome, and then

a splice of the cut substring directed or reversed in a selected point of the main

genome. The reverse of a single gene is also allowed. Just to fix the ideas, let us

consider the example in figure A 5. Reversed genes are overlined.

%% INITIAL STATE

normal(a),

normal(b),

normal(c),

normal(d),

cw(a,b),

cw(b,c),

cw(c,d)

a · b · c · d
⇓ (cut 2–4, temp situation)
a b · c d

⇓ (cut 2-4, final situation)
a · d b · c
⇓ (reverse of the 2nd
string)
a · d c · b
⇓ (and splice in the 1st)
a · c · b · d

%% GOAL

normal(a),

inverted(b),

inverted(c),

normal(d),

cw(a,c),

cw(c,b),

cw(b,d)

Fig. A 5. An instance of the GED problem and a possible solution

Each complex action (cut and splice) is split in some sub-actions as done by Patrik

Haslum in his PDDL encoding (http://picat-lang.org/ipc14/ged.pddl).

A.6 Floortile, Parking, and Tetris

For the three domains discussed extensively in the core of paper we only show

here an instance both in concrete form and as a picture (see Figures A 6–A 8). The

Transport domain is discussed in detail in the next section.

8

%% Floor description

clear(01) ... clear(64),

up(11,01) ... up(64,54),

down(01,11) ... down(54,64)

right(02,01) ... right(64,63)

left(01,02) ... left(63,64)

%% Robots positions and states

robot at(robot1,11) robot has(robot1,white)

robot at(robot2,52) robot has(robot2,black)

available color(white) available color(black)

%% GOAL

painted(11,white) painted(12,black)

painted(13,white) painted(14,black)
...

...

painted(61,black) painted(62,white)

painted(63,black) painted(64,white)

1 2 3 4
0

1

2

3

4

5

6

1 2 3 4
0

1

2

3

4

5

6

Fig. A 6. Example of Floortile instance. A solution with plancost 104 exists (benchmark
instance p01642).

9

%% INITIAL STATE

at curb(car3), at curb num(car3,curb0),

behind car(car2,car3), car clear(car2),

at curb(car4), at curb num(car4,curb1),

behind car(car10,car4), car clear(car10),

at curb(car0), at curb num(car0,curb2),

behind car(car5,car0), car clear(car5),

at curb(car1), at curb num(car1,curb3),

behind car(car9,car1), car clear(car9),

at curb(car7), at curb num(car7,curb4),

behind car(car8,car7), car clear(car8),

at curb(car11), at curb num(car11,curb5),

behind car(car6,car11), car clear(car6),

curb clear(curb6)

%% GOAL

at curb num(car0,curb0), behind car(car7,car0),

at curb num(car1,curb1), behind car(car8,car1),

at curb num(car2,curb2), behind car(car9,car2),

at curb num(car3,curb3), behind car(car10,car3),

at curb num(car4,curb4), behind car(car11,car4),

at curb num(car5,curb5), at curb num(car6,curb6)

0

2

3

5

4

6

3 2

4 10

0

1 9

5

1

7 8

11 6

0

2

3

5

4

6

3

2

4

10

0

1

9

5

1

7

8

11

6

Fig. A 7. An instance of parking (left: initial state, right: goal). A solution with 18 moves
exists (benchmark instance p 12 7 01).

10

%% Board description

connected(f0 0f,f0 1f), ... connected(f0 2f,f0 3f)

connected(f1 1f,f1 0f), ... connected(f1 2f,f1 3f),

...

connected(f6 0f,f7 0f), ... connected(f6 3f,f7 3f)

clear(f0 3f), ... clear(f7 3f),

%% Pieces

at right l(rightl0,f0 0f,f1 0f,f1 1f), at right l(rightl1,f2 1f,f3 1f,f3 2f),

at two(straight0,f0 2f,f1 2f), at square(square0,f0 1f)

%% Goal

clear(f0 0f), ... clear(f0 3f)

clear(f1 0f) ... clear(f1 3f)

clear(f2 0f) ... clear(f2 3f)

clear(f3 0f) ... clear(f3 3f)

0 1 2 3
0

1

2

3

4

5

6

7

8

9

0 1 2 3
0

1

2

3

4

5

6

7

8

9

0 1 2 3
0

1

2

3

4

5

6

7

8

9

Fig. A 8. Example of Tetris instance: initial state (left), goal (center). A plan of length
36 exists (instance 01 8 of the benchmarks) leading to the final situation to the right.

11

Appendix B The Transport Domain

B.1 PDDL Encoding of the Transport Domain

(define (domain transport)
(:requirements :typing :action-costs)
(:types

location target locatable - object
vehicle package - locatable
capacity-number - object

)

(:predicates
(road ?l1 ?l2 - location)
(at ?x - locatable ?v - location)
(in ?x - package ?v - vehicle)
(capacity ?v - vehicle ?s1 - capacity-number)
(capacity-predecessor ?s1 ?s2 - capacity-number)

)

(:functions
(road-length ?l1 ?l2 - location) - number
(total-cost) - number

)

(:action drive
:parameters (?v - vehicle ?l1 ?l2 - location)
:precondition (and

(at ?v ?l1)
(road ?l1 ?l2)

)
:effect (and

(not (at ?v ?l1))
(at ?v ?l2)
(increase (total-cost) (road-length ?l1 ?l2))

)
)

(:action pick-up
:parameters (?v - vehicle ?l - location ?p - package ?s1 ?s2 - capacity-number)
:precondition (and

(at ?v ?l)
(at ?p ?l)
(capacity-predecessor ?s1 ?s2)
(capacity ?v ?s2)

)
:effect (and

(not (at ?p ?l))
(in ?p ?v)
(capacity ?v ?s1)
(not (capacity ?v ?s2))
(increase (total-cost) 1)

)
)

(:action drop
:parameters (?v - vehicle ?l - location ?p - package ?s1 ?s2 - capacity-number)
:precondition (and

(at ?v ?l)
(in ?p ?v)
(capacity-predecessor ?s1 ?s2)
(capacity ?v ?s1)

)
:effect (and

(not (in ?p ?v))
(at ?p ?l)
(capacity ?v ?s2)
(not (capacity ?v ?s1))
(increase (total-cost) 1)

)
)

12

)

B.2 Picat Encoding of the Transport Domain

final({Trucks,[]}) => % no waiting packages and no loaded packages
foreach([_Loc,Dests|_] in Trucks)

Dests == []
end.

% unload a package
action({Trucks,Packages},NextState,Action,ActionCost),

select([Loc,Dests,Cap],Trucks,TrucksR),
select(Loc,Dests,DestsR) % unload it deterministically

=>
Action = $unload(Loc),
ActionCost = 1,
NewTrucks = insert_ordered(TrucksR,[Loc,DestsR,Cap]),
NextState = {NewTrucks,Packages}.

action({Trucks,Packages},NextState,Action,ActionCost) ?=>
Action = $unload(Loc),
ActionCost = 1,
select([Loc,Dests,Cap],Trucks,TrucksR),
select(Dest,Dests,DestsR),
NewTrucks = insert_ordered(TrucksR,[Loc,DestsR,Cap]),
NewPackages = insert_ordered(Packages,(Loc,Dest)),
NextState = {NewTrucks,NewPackages}.

% load a package onto a truck if the truck and the package are at the same location
action({Trucks,Packages},NextState,Action,ActionCost) ?=>

Action = $load(Loc),
ActionCost = 1,
select([Loc,Dests,Cap],Trucks,TrucksR),
length(Dests) < Cap,
select((Loc,Dest),Packages,PackagesR), % the package is at the same location as the truck
NewTrucks = insert_ordered(TrucksR,[Loc,insert_ordered(Dests,Dest),Cap]),
NextState = {NewTrucks,PackagesR}.

% drive a truck from Loc to NextLoc
action({Trucks,Packages},NextState,Action,ActionCost) =>

Action = $move(Loc,NextLoc),
select([Loc|Tail],Trucks,TrucksR),
road(Loc,NextLoc,ActionCost),
NewTrucks = insert_ordered(TrucksR,[NextLoc|Tail]),
NextState = {NewTrucks,Packages},
estimate_cost(NextState) =< current_resource()-ActionCost.

table
estimate_cost({Trucks,Packages}) = Cost =>

LoadedPackages = [(Loc,Dest) : [Loc,Dests,_] in Trucks, Dest in Dests],
NumLoadedPackages = length(LoadedPackages),
TruckLocs = [Loc : [Loc|_] in Trucks],
travel_cost(TruckLocs,LoadedPackages,Packages,0,TCost),
Cost = TCost+NumLoadedPackages+length(Packages)*2. % includes load and unload costs

% the maximum of the minimum cost of transporting each single package
travel_cost(_Trucks,[],[],Cost0,Cost) => Cost=Cost0.
travel_cost(Trucks,[(PLoc,PDest)|Packages],Packages2,Cost0,Cost) =>

Cost1 = min([D1+D2 : TLoc in Trucks,
shortest_dist(TLoc,PLoc,D1),
shortest_dist(PLoc,PDest,D2)]),

travel_cost(Trucks,Packages,Packages2,max(Cost0,Cost1),Cost).
travel_cost(Trucks,[],Packages2,Cost0,Cost) =>

travel_cost(Trucks,Packages2,[],Cost0,Cost).

13

B.3 An Instance of the Transport Domain

1

4

3

5

2

36

40

37

26

24

18

1 2

3

4

1

4

3

5

2

36

40

37

26

24

18

1 2

3

4

Initial state Goal state

Fig. B 1. An Instance of the Transport Domain (p01).

B.3.1 Solving the instance with Picat

main =>
Facts =

$[road(c3,c1,40),road(c1,c3,40),road(c3,c2,18),
road(c2,c3,18),road(c4,c1,36),road(c1,c4,36),
road(c4,c3,37),road(c3,c4,37),road(c5,c2,24),
road(c2,c5,24),road(c5,c3,26),road(c3,c5,26)],

cl_facts(Facts,[$road(+,-,-)]),
Trucks = [[c2,[],3],[c1,[],2]],
Packages = [(c1,c2),(c1,c2),(c3,c1),(c2,c5)],
best_plan({sort(Trucks),sort(Packages)},Plan,PlanCost),
foreach ({I,Action} in zip(1..len(Plan),Plan))

printf("%3d. %w\n",I,Action)
end,
println(plan_cost=PlanCost).

B.3.2 An Optimal Plan for the Instance

1. load(c1)
2. load(c1)
3. load(c2)
4. move(c1,c3)
5. move(c2,c5)
6. unload(c5)
7. move(c3,c2)
8. unload(c2)
9. unload(c2)

10. move(c2,c3)
11. load(c3)
12. move(c3,c1)
13. unload(c1)

plan_cost = 148

