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Appendix A Figures

This appendix contains some figures associated with the gear wheels example (Ex-

ample 4.13). The first figure contains a circuit representation of the parametrised

well-founded model of logic program Pw from Example 4.13.
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Fig. A 1. A circuit representation of the gear wheel theory Th(Aw).

The next figure contains a circuit representation of the parametrised well-founded

model of the following logic program Pw,2 that represent the gear wheel example
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with time ranging from 0 to 2:

turns1(0)← turns2(0) turns2(0)← turns1(0)

turns1(1)← turns2(1) turns2(1)← turns1(1)

turns1(2)← turns2(2) turns2(2)← turns1(2)

turns1(1)← turns1(0) ∧ ¬button1(0) turns2(1)← turns2(0) ∧ ¬button2(0)

turns1(1)← ¬turns1(0) ∧ button1(0) turns2(1)← ¬turns2(0) ∧ button2(0)

turns1(2)← turns1(1) ∧ ¬button1(1) turns2(2)← turns2(1) ∧ ¬button2(1)

turns1(2)← ¬turns1(1) ∧ button1(1) turns2(2)← ¬turns2(1) ∧ button2(1)
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Fig. A 2. A circuit representation of the gear wheel example for up to two time points.
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Appendix B Proofs

Definition-Proposition 3.1.

Let O : L → L be an operator and f : L → K a lattice morphism. We say that O

respects f if for every x, y ∈ L with f(x) = f(y), it holds that f(O(x)) = f(O(y)).

If f is surjective and O respects f , then there exists a unique operator Of : K →
K with Of ◦ f = f ◦O, which we call the projection of O on K.

Proof

We prove the existence and uniqueness of Of .

Choose x ∈ K. Since f is surjective, there is a x′ ∈ L with f(x′) = x. We

know that Of must map x to f(O(x′)), hence uniqueness follows. Furthermore,

this mapping is well-defined (independent of the choice of x′) since O respects

f .

Proposition B.1

If (x′, y′) is an A-refinement of (x, y), then (f(x′), f(y′)) is an Af -refinement of

(f(x), f(y)).

Proof

1. First suppose (x′, y′) is an application A-refinement of (x, y). Thus

(x, y)≤p (x′, y′)≤pA(x, y).

From the fact that f is a lattice morphism, it follows that

f2(x, y)≤p f2(x′, y′)≤p f2(A(x, y)).

From the fact that f respects A, we then find

f2(x, y)≤p f2(x′, y′)≤pAf (f2(x, y)),

hence f2(x′, y′) is an application Af -refinement of f2(x, y).

2. The second direction is analogous to the first. Suppose (x′, y′) is an unfoundedness

A-refinement of (x, y). Thus x′ = x and

A(x, y′)2 ≤ y′ ≤ y.

Then also f(x′) = f(x) and

f(A(x, y′)2) ≤ f(y′) ≤ f(y),

thus

Af (f(x), f(y′))2 ≤ f(y′) ≤ f(y)

and the result follows.

Lemma B.2

If O and Of are monotone, then f(lfp(O)) = lfp(Of ).
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Proof

The least fixpoint of O is the limit of the sequence ⊥ → O(⊥)→ O(O(⊥))→ . . . . It

follows immediately from the definition of Of that for every ordinal n, f(On(⊥)) =

Onf (f(⊥)) = Onf (⊥K), hence the result follows.

Proposition 3.3.

If (xj , yj)j≤α is a well-founded induction of A, then (f(xj), f(yj))j≤α is a well-

founded induction of Af . If (xj , yj)j≤α is terminal, then so is (f(xj), f(yj))j≤α.

Proof

The first claim follows directly (by induction) from Proposition B.1.

For the second claim, all that is left to show is that if there are no strict A-

refinements of (xα, yα), then there are also no strictAf -refinements of (f(xα), f(yα)).

First of all, since (xα, yα) is a fixpoint of A, it also follows for every i that

Af (f(xα), f(yα)) = f2(A(xα, yα)) = (f(xα), f(yα)). Thus, there are no strict ap-

plication refinements of Af either.

Since there are no unfoundedness refinements of (xα, yα), Proposition 2.1 yields

that yα = lfpSxA. It is easy to see that for every i, the operator f ◦ SxA = S
f(x)
Af
◦ f .

Hence, Lemma B.2 (for the operator SxA) guarantees that f(yα) = f(lfpSxA) =

lfpS
f(x)
Af

. Thus, using Proposition 2.1 we find that there is no strict unfoundedness

refinement of (f(xα), f(yα)).

Theorem 3.4.

If (x, y) is theA-well-founded fixpoint ofO, then, (f(x), f(y)) is theAf -well-founded

fixpoint of Of .

Proof

Follows immediately from Proposition 3.3.

Theorem 3.6.

Suppose L is a parametrisation of K through (fi)i∈I . Let O : L→ L be an operator

and A an approximator of O such that both O and A respect each of the fi. If (x, y)

is the A-well-founded fixpoint of O, the following hold.

1. For each i, (fi(x), fi(y)) is the Afi-well-founded fixpoint of Ofi .

2. If the Afi-well-founded fixpoint of Ofi is exact for every i, then so is the

A-well-founded fixpoint of O.
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Proof

The first point immediately follows from Theorem 3.4.

Using the first point, we find that if the Afi -well-founded fixpoint of Ofi is exact

for every i, then fi(x) = fi(y) for every i. Hence the definition of parametrisation

guarantees that x = y as well, i.e., the A-well-founded fixpoint of O is indeed exact.

Proposition 4.5.

For every formula ϕ over Σ, S ∈ (Ldp)
2 and I ∈ 2Σp , it holds that ϕS

I

= (ϕS)I .

Proof

Trivial.

Proposition 4.6.

The lattice Ldp is a parametrisation of 2Σd through the mappings (πI : Ldp → 2Σd :

A 7→ AI)I∈2Σp .

Proof

It is clear that the mappings πI are lattice morphisms since evaluation of proposi-

tional formulas commutes with Boolean operations. Now, for A,A′ ∈ Ldp, it holds

that A ≤ A′ if and only if for every atom p ∈ Σd, A(p) entails A′(p). This is

equivalent to the condition that for every p ∈ Σd and every interpretation I ∈ 2Σd ,

A(p)I ≤ A′(p)I , i.e., with the fact that for every I, πI(A) ≤ πI(A′) which is what

we needed to show.

Theorem 4.8.

If P is a positive logic program, then TP is monotone. For every Σ-interpretation

I, it then holds that I |=wf P if and only if I |= Th(lfp(TP)).

Proof

Follows immediately from the definition of the parametrised well-founded semantics

combined with Lemma B.2.

Theorem 4.9.

For any parametrised logic program P, the following hold:

1. ΨP is an approximator of TP .

2. For every Σp-structure I, it holds that ΨI
P ◦ π2

I = π2
I ◦ ΨP .
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Proof

1. It follows immediately from the definitions that for exact interpretations S =

(A,A), ΨP coincides with TP . ≤p -monotonicity follows directly from the definition

of evaluation of formulas (Definition 4.4).

2. We find that for every S ∈ (Ldp)
2 and every p ∈ 2Σd ,

ΨI
P(π2

I (S))(p) = ΨI
P(SI)(p)

= ϕS
I

p

= (ϕSp )I

= (ΨP(S)(p))I

= π2
I (ΨP(S)(p)),

which indeed proves our claim.

Lemma B.3

For every Σp-interpretation I, there are at most |Σd| strict refinements in a well-

founded induction of ΨI
P .

Proof

Every strict refinement should at least change one of the atoms in Σd from unknown

to either true or false, hence the result follows.

Lemma B.4

Suppose (xi, yi)i≤β is a well-founded induction of TP in which every refinement is

maximally precise, i.e., either of the form (x, y) → TP(x, y) or an unfoundedness

refinement satisfying the condition in Proposition 2.1. The following hold:

• there are at most |Σd| subsequent strict application refinements in (xi, yi)i≤β ,

and

• if unfoundedness refinements only happen in (xi, yi)i≤β when no application

refinement is possible, then there are at most |Σd| unfoundedness refinements.

Proof

For the first part, we notice that every sequence of maximal application refinements

maps (by πI) onto a sequence of maximal application refinements of ΨI
P . Further-

more, from the proof of Proposition 3.3, it follows that if a TP -refinement is strict,

then at least on of the induced ΨI
P -refinements must be strict as well. The result

now follows from Lemma B.3.

The second point is completely similar to the first. There can be at most |Σd| strict

unfoundedness refinements in any well-founded induction of ΨI
P . Furthermore, the

condition in this point guarantees that if for some I, an unfoundedness refinement

in the induced well-founded induction is not strict, then neither will any later

unfoundedness refinements. Hence, the result follows.
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Theorem 5.1.

Let LBC be the language of Boolean circuits. The following hold: (i) Compile(LBC )

has polynomial-time complexity and (ii) the size of the output circuit of Compile(LBC )

is polynomial in the size of P.

Proof

First, we notice that if we have a circuit representation of S, then the representation

of ΨP(S) consists of the same circuit with maximally three added layers since ϕp
is a DNF for every defined atom p (a layer of negations, one of disjunctions and

one of conjunctions). Furthermore, the size of these layers is linear in terms of the

size of P. Similarly, the representation of an unfoundedness refinement will only be

quadratically in the size of P (quadratically since computing the smallest y′ is a

refinement takes a linear number of applications).

The two results now follow from Lemma B.4, which yields a polynomial upper

bound on the number of refinements, and which also allows us to ignore the stop

conditions (in general checking whether a fixpoint is reached is a co-NP problem,

namely checking equivalence of two circuits; however, we do not need to do this

since we have an upper bound on the maximal number of refinements before such

a fixpoint is reached).

Proposition 5.2.

Suppose the parametrised well-founded model of P is (A,A). Let (Ai,1,Ai,2) be a

well-founded induction of ΨP . Then for every i, Th(Ai,1) |= Th(A) |= Th(Ai,2).

Proof

Denecker and Vennekens (2007) showed that if (xi, yi)i≤β is a well-founded induc-

tion of A and (x, y) the A-well-founded model of O, then for every i ≤ β, it holds

that

(xi, yi)≤p (x, y).

Our proposition immediately follows from this result.


