
1

Online appendix for the paper

Tabling as a Library with Delimited Control
published in Theory and Practice of Logic Programming

BENOIT DESOUTER and MARKO VAN DOOREN

Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Belgium

benoit.desouter,marko.vandooren@ugent.be

TOM SCHRIJVERS

Department of Computer Science, KU Leuven, Belgium

tom.schrijvers@cs.kuleuven.be

submitted 29 April 2015; revised 5 June 2015; accepted 5 June 2015

Appendix A Full Benchmark Results

The following tables show the absolute execution times for the benchmarks from

Table 2. For clarity, we have also duplicated the relative timing information.

Benchmark hProlog XSB B-Prolog

Absolute Relative Absolute Relative

fib

500 24 O/F — 0 ∞
750 33 O/F — 2 17

1000 46 O/F — 1 46

10000 982 O/F — 370 3

recognize

20000 205 8 26 59490 0.003

50000 503 17 30 377295 0.001

n-reverse

500 767 20 38 71 11

1000 2800 90 31 444 6

shuttle

2000 44 0 ∞ 459 0.1

5000 138 6 23 1833 0.08

20000 582 24 24 27499 0.02

50000 1586 54 29 172098 0.01

pingpong

10000 271 6 45 4038 0.07

20000 490 14 35 16222 0.03

path double first
loop

50 653 34 19 52 13

100 4638 266 17 449 10

2

Benchmark hProlog XSB B-Prolog

Absolute Relative Absolute Relative

path double first

50 162 6 27 11 15

100 989 50 20 82 12

200 6785 371 18 434 16

500 110463 4371 25 5936 19

path right last:
pyramid 500

1914 55 35 65 29

path right last:
binary tree 18

108662 1390 78 2169 50

test large joins 2
(size 12)

3001 302 10 761 4

joins mondial

6444 810 8 939 7

Benchmark Yap Ciao

Absolute Relative Absolute Relative

fib

500 0 ∞ — —

750 1 41 — —

1000 2 19 — —

10000 22 44 — —

recognize

20000 18 11 46 4

50000 37 14 129 4

n-reverse

500 50 15 17 45

1000 351 8 82 34

shuttle

2000 0 ∞ 5 9

5000 0 ∞ 12 12

20000 0 ∞ 57 10

50000 0 ∞ 134 12

pingpong

10000 0 ∞ 19 14

20000 0 ∞ 58 8

path double first
loop

50 0 ∞ 93 7

100 0 ∞ 815 6

path double first

50 0 ∞ 12 14

100 0 ∞ 101 10

3

Benchmark Yap Ciao

Absolute Relative Absolute Relative

200 0 ∞ 694 10

500 0 ∞ 7999 14

path right last:
pyramid 500

0 ∞ 70 27

path right last:
binary tree 18

31 3461 2606 42

test large joins 2
(size 12)

0 ∞ 256 12

joins mondial

29 224 1062 6

Appendix B Nonbacktrackable Variables and Term Mutation

In this appendix, we first describe the semantics and implementation effort of the

predicates for nonbacktrackable global variables. Such variables are available in

many popular Prolog implementations. The overhead of these features is only a

small constant. Afterwards, we describe nonbacktrackable mutation. The descrip-

tions are adapted from the SWI-Prolog website as it appeared on June 10, 2015.

Global Nonbacktrackable Variables

nb setval(+Name, +Value) Associates with the atom Name without copying it.

The semantics on backtracking to a point before creating the link are poorly

defined for compound terms. The principal term is always left untouched, but

backtracking behaviour on arguments is undone if the original assignment was

trailed and left alone otherwise, which implies that the history that created the

term affects the behaviour on backtracking. A copy term/2 can be used to avoid

this.

nb getval(+Name, -Value) Get the value associated with the global nonback-

trackable variable Name and unify it with Value. Note that this unification may

further instantiate the value of the global variable.

In terms of implementation, nb setval/2 differs from b setval/2 by not trailing

its argument and freezing the heap in the case of a list or struct:

if (has_atom_tag(p2)) /* smallint, char or atom */

*p1 = (dlong)(p2);

else {

*p1 = (dlong)lochreg;

*lochreg = (dlong)p2;

lochreg++;

adapt_freeze_hreg(lochreg);

}

4

The heap backtrack pointer HB must be set to the top of the heap. This must also

happen at every backtrack, for which you may introduce an extra register FH. The

garbage collection phase also needs to be aware of this FH register.

Frozen heap is only reclaimed by garbage collection, but does not make more

space reachable: this does not affect the copying phase. The additional cost is in

computing the new frozen heap top. In the worst case, this is linear in the number

of choicepoints, but the work required is (for each choicepoint) a simple addition.

The overhead is really insignificant.

Nonbacktrackable Mutation For nonbacktrackable mutation, many Prologs provide

a predicate nb setarg/3 that has the semantics defined below. This predicate uses

the same technique as nb setval/2.

nb setarg(+Arg,+Term,+Value) Assigns the Arg-th argument of the com-

pound term Term with the given Value. On backtracking the assignment is not

reversed. The term Value is not duplicated before assignment.

The implementation can be made thread-safe, reentrant and capable of handling

exceptions. Realising these features with a traditional implementation based on

assert/retract or flag/3 is much more complicated.

Appendix C Worklist Completion Code

This appendix gives more implementation details of the completion phase, discussed

in Subsection 4.3.

To get answers and dependencies that must be combined from the local worklist,

we first extract the worklist from the table, and in preparation, set a flag indicating

that we are busy working. The actual work is delegated to table get work /3.

table_get_work(Table,_Answer,_Dependency) :-

get_worklist(Table,Worklist),

set_flag_executing_all_work(Worklist),

table_get_work_(Worklist,Answer,Dependency).

In table get work /3, we once more delegate the work nondeterministically, but

once an answer-dependency pair is extracted from the local worklist, we copy the

dependency to ensure that the original version is not modified. When the first rule

eventually fails, the work in this local worklist is done for now, so we unset the flag.

table_get_work_(Worklist,Answer,Dependency) :-

worklist_do_all_work(Worklist,Answer,Dependency0),

copy_term(Dependency0,Dependency).

table_get_work_(Worklist,_Answer,_Dependency) :-

unset_flag_executing_all_work(Worklist), fail.

The job of nondeterministically extracting answer-dependency pairs is tackled by

executing a single step and when this eventually fails, recursively calling yourself

unless all the work is done.

5

worklist_do_all_work(Worklist,Answer,Dependency) :-

(worklist_work_done(Worklist) ->

fail

;

worklist_do_step(Worklist,Answer,Dependency)

;

worklist_do_all_work(Worklist,Answer,Dependency)

).

The job of the local worklist is done for now if the pointer to the cluster of answers

that should be combined with dependencies, points to a dummy value. Alternatively,

the work is done if there is no dependency cluster, in which case the next entry in

the underlying double linked list representation of the worklist points to the dummy

value.

worklist_work_done(Worklist) :-

wkl_get_rightmost_inner_answer_cluster_pointer(Worklist,RiacPointer),

(wkl_is_dummy_pointer(Worklist,RiacPointer) -> true

;

dll_get_pointer_to_next(RiacPointer,NextPointer),

wkl_is_dummy_pointer(Worklist,NextPointer)

).

Taking the Cartesian product of an answer and a dependency cluster happens by

first swapping the clusters in local worklist. Next, the pointers to these clusters

are dereferenced by the underlying double linked list representation. Finally, one

answer and one dependency are nondeterministically yielded for combination.

worklist_do_step(Worklist,Answer,Dependency) :-

wkl_get_rightmost_inner_answer_cluster_pointer(Worklist,ACP),

wkl_swap_answer_continuation(Worklist,ACP,SCP),

dll_get_data(ACP, wkl_answer_cluster(AList)),

dll_get_data(SCP, wkl_suspension_cluster(SList)),

member(Answer,AList), member(Dependency,SList).

Swapping clusters is propagated to the underlying double linked list representation.

Afterwards, the pointer to the answer cluster that must be swapped next, must be

updated to the new location of the cluster.

wkl_swap_answer_continuation(Worklist,ACP,SCP) :-

dll_get_pointer_to_next(ACP,SCP),

dll_swap_adjacent_elements_(ACP,SCP),

wkl_update_righmost_inner_answer_cluster_pointer(Worklist,ACP).

Updating the pointer to the answer cluster that must be swapped next, is a no-op if

the cluster currently pointed to still has to be combined with dependency clusters,

and hence can still propagate to the right. Otherwise, a new cluster is found by

walking back in the underlying double linked list representation.

6

wkl_update_righmost_inner_answer_cluster_pointer(Worklist,ACP) :-

(wkl_answer_cluster_currently_moved_completely(Worklist,ACP) ->

wkl_find_new_rightmost_inner_answer_cluster_pointer(Worklist,ACP,ACP2),

wkl_set_rightmost_inner_answer_cluster_pointer(Worklist,ACP2)

;

true

).

