
1

Online appendix for the paper

A model building framework for Answer Set
Programming with external computations

published in Theory and Practice of Logic Programming

Thomas Eiter, Michael Fink
Institut für Informationssysteme, Technische Universität Wien

Favoritenstraße 9-11, A-1040 Vienna, Austria
(e-mail: {eiter,fink}@kr.tuwien.ac.at)

Giovambattista Ianni
Dipartimento di Matematica, Cubo 30B, Università della Calabria

87036 Rende (CS), Italy
(e-mail: ianni@mat.unical.it)

Thomas Krennwallner, Christoph Redl
Institut für Informationssysteme, Technische Universität Wien

Favoritenstraße 9-11, A-1040 Vienna, Austria
(e-mail: {tkren,redl}@kr.tuwien.ac.at)

Peter Schüller
Computer Engineering Department, Faculty of Engineering, Marmara University

Goztepe Kampusu, Kadikoy 34722, Istanbul, Turkey
(e-mail: peter.schuller@marmara.edu.tr)

submitted 27 January 2015; revised 24 June 2015; accepted 28 June 2015

Appendix A Proofs

Proof of Theorem 1 (Splitting Theorem)
Given a set of ground atoms M and a set of rules R, we denote by M |R = M ∩ gh(R) the
projection of M to ground heads of rules in R.

(⇒) Let M ∈ AS(P). We show that (1) M |R ∈ AS(R) and that (2) M ∈ AS(P \R ∪
facts(M |R)).

As for (1), we first show thatM |R satisfies the reduct fRM |R , and then thatM |R is indeed
a minimal model of fRM |R . M satisfies fPM and R ⊆ P . Observe that, by definition of
FLP reduct, fRM ⊆ fPM . By definition of rule splitting set, satisfiability of rules inR does
not depend on heads of rules in P \R (due to the restriction of external atoms to extensional
semantics, this is in particular true for external atoms in R). Therefore fRM |R = fRM ,
M satisfies fRM |R , and M |R satisfies fRM |R . For showing M |R ∈ AS(R), it remains to
show that M |R is a minimal model of fRM |R .

Assume towards a contradiction that some S ⊂M |R is a model of fRM |R . Then there
is a nonempty set A = M |R \ S of atoms with A ⊆ gh(R). Let M? = M \ A. We
next show that M? is a model of fPM , which implies that M /∈ AS(P). Assume on the

2

contrary that M? is not a model of fPM . Hence there exists some rule r ∈ fPM such that
H(r) ∩M? = ∅, B+(r) ⊆ M?, B−(r) ∩M? = ∅ and external atoms in B+(r) (resp.,
B−(r)) evaluate to true (resp., false) wrt.M?. S agrees withM? on atoms from gh(R), and
S satisfies fRM |R . The truth values of external atoms in bodies of rules in R depends only
on atoms from gh(R), therefore external atoms in R evaluate to the same truth value wrt. S
and M?. Therefore r /∈ fRM |R and r ∈ f(P \R)M . Since r ∈ P \R, H(r) ⊆ gh(P \R),
and because M and M? agree on atoms from gh(P \R), H(r) ∩M? = ∅ from above
implies thatH(r)∩M = ∅. Because r ∈ fPM , its body is satisfied inM , and since its head
has no intersection with M , we get that fPM is not satisfied by M , which is a contradiction.
Therefore M? is a model of fPM . As M?⊂M , this contradicts our assumption that
M ∈ AS(P). Therefore S = M |R = X is a minimal model of fRM .

We next show that M satisfies the reduct f(P \ R ∪ facts(M |R))M , and then that
it is indeed a minimal model of the reduct. By the definition of reduct, f(P \ R ∪
facts(M |R))M = f(P \R)M ∪ facts(M |R). M satisfies facts(M |R) because M |R ⊆M .
Furthermore f(P \ R)M ⊆ fPM , hence M satisfies f(P \ R)M . Therefore M satisfies
f(P \R ∪ facts(M |R))M .

To show that M is a minimal model of f(P \ R ∪ facts(M |R))M , assume towards a
contradiction that some S⊂M is a model of f(P \R∪ facts(M |R))M . Since facts(M |R)

is part of the reduct, M |R ⊆ S, therefore S|gh(R) = M |R. By definition of rule splitting
set, satisfiability of rules in R does not depend on heads of rules in P \R, hence S satisfies
fRM . Because S satisfies f(P \R ∪ facts(M |R))M = f(P \R)M ∪ facts(M |R), it also
satisfies f(P \R)M . Since S satisfies both fRM , S satisfies fPM = f(P \R)M ∪ fRM .
This is a contradiction to M ∈ AS(P). Therefore S = M is a minimal model of f(P \R∪
facts(M |R))M .

(⇐) Let M ∈ AS(P \R∪ facts(X)) and let X ∈ AS(R). We first show that M satisfies
fPM , and then that it is a minimal model of fPM .

As factsX are part of the program P \R∪facts(X), and by definition of rule splitting set,
P \R contains no rule heads unifying with gh(R), hence we have X = M |R. Furthermore
f(P \ R ∪ facts(X))M \ facts(X) ∪ fRM = fPM , and as M satisfies the left side, it
satisfies the right side. To show that M is a minimal model of fPM , assume S⊂M is
a smaller model of fPM . By definition of reduct, S also satisfies f(P \ R)M and fRM .
Since R is a splitting set, satisfiability of rules in R does not depend on heads of rules in
P \ R, therefore fRM = fRM |R = fRX and S|gh(R) satisfies fRX . Since S ⊂ M , we
have S|gh(R) ⊆ X . Because X is a minimal model of fRX , S|gh(R) ⊂ X is impossible
and S|gh(R) = X . Therefore S|gh(P\R) ⊂ M |gh(P\R). Because S satisfies f(P \ R)M

and S|gh(R) = X , S also satisfies f(P \R ∪ facts(X))M . Since S ⊂M , this contradicts
the fact that M is a minimal model of P \R ∪ facts(X). Therefore S = M is a minimal
model of fPM .

Proof of Theorem 2 (Generalized Splitting Theorem)
By definition of generalized bottom, the set C = B \R contains only constraints, therefore
gh(B) = gh(R) and M |gh(B) = M |gh(R). As R ⊆ B and B \R contains only constraints,
AS(B) ⊆ AS(R). The only difference between Theorem 1 and Theorem 2 is, that for
obtaining X , the latter takes additional constraints into account.

(⇒) It is sufficient to show that M |gh(B) does not satisfy the body of any constraint in

3

C ⊆ P if M does not satisfy the body of any constraint in P . Since B is a generalized
bottom, no negative dependencies of constraints C to rules in P \B exist; therefore if the
body of a constraint c ∈ C is not satisfied by M , the body of c is not satisfied by M |gh(B).
As M satisfies P , it does not satisfy any constraint body in P , hence the projection M |gh(B)

does not satisfy any constraint body in B \R.
(⇐) It is sufficient to show that an answer set of R that satisfies a constraint body in

C also satisfies that constraint body in P , which raises a contradiction. As constraints in
C have no negative dependencies to rules in P \ B, a constraint with a satisfied body in
M |gh(R) also has a satisfied body in M , therefore the result follows.

Proof of Proposition 1
Assume towards a contradiction that there exist a non-constraint r ∈ P , a rule s ∈ P with
r →m,n s, and u′ ∈ U |r, v′ ∈ U |s such that (u′, v′) /∈ E. Due to Definition 9, r →m,n s

implies that s has H(s) 6= ∅ and therefore that s is a non-constraint. Definition 14 (b) then
implies that U |r = {u′} and U |s = {v′} (non-constraints are present in exactly one unit).

Case (i): for r →n s, Definition 14 (c) specifies that for all u ∈ U |r and v ∈ U |s there
exists an edge (u, v) ∈ E, therefore also (u′, v′) ∈ E, which is a contradiction.

Case (ii): for r →m s, Definition 14 (d) specifies that some u ∈ U |r exists such that for
every v ∈ U |s there exists an edge (u, v) ∈ E; since U |r = {u′} and U |s = {v′}, it must
hold that (u′, v′) ∈ E, which is a contradiction.

Proof of Proposition 2
Given two distinct units u1, u2 ∈ U , assume towards a contradiction that some γ ∈
gh(u1) ∩ gh(u2) exists. Then there exists some r ∈ u1 with α ∈ H(r) and α ∼ γ, and
there exists some s ∈ u2 with β ∈ H(s) and β ∼ γ. As α ∼ γ and β ∼ γ and γ is ground,
we obtain α ∼ β; hence, by Definition 9 (iii) we have r →m s and s →m r. As r and s
have nonempty heads, they are non-constraints. Thus by Proposition 1, there exist edges
(u1, u2), (u2, u1) ∈ E. As an evaluation graph is acyclic, it follows u1 = u2; this is a
contradiction.

Proof of Proposition 3
For an lde-safe program P , the graph E = ({P}, ∅) is a valid evaluation graph.

Proof of Theorem 3
For any set of rules, let constr(S) = {r ∈ S | H(r) = ∅} denote the set of constraints in
S. We say that the dependencies of r ∈ Q are covered at unit u ∈ U , if for every rule s ∈ Q
such that r →m,n s and s /∈ u, it holds that (u, u′) ∈ E for all u′ ∈ U |s, i.e., u has an edge
to all units containing s.

To prove that B = u< is a generalized bottom of P = u≤ wrt. the rule splitting set
R = u< \ constr(u<) as by Definition 12, we prove that (a) R ⊆ B ⊆ P , (b) B \ R
contains only constraints, (c) no constraint in B \ R has nonmonotonic dependencies to
rules in P \B, and (d) R is a rule splitting set of P .

Statement (a) corresponds to u< \ constr(u<) ⊆ u< ⊆ u≤ and u≤ is defined as
u≤ = u< ∪ u, therefore the relations all hold. For (b), B \R = u< \ (u< \ constr(u<)),
and as A \ (A \ B) = A ∩ B, it is easy to see that B \ R = u< ∩ constr(u<) and thus

4

B \ R only contains constraints. For (c), we show a stronger property, namely that no
rule (constraint or non-constraint) in B has nonmonotonic dependencies to rules in P \B.
B = u< is the union of evaluation units V = {v ∈ U | v < u}. By Definition 14 (c) all
nonmonotonic dependencies r →n s are covered at every unit w such that w ∈ Ur. Hence
if r ∈ w and w ∈ V , then either s ∈ w or s ∈ w< holds, and hence s ∈ w≤ ⊆ u<. As
P \B = u≤\u<, no nonmonotonic dependencies fromB = u< to P \B exist and (c) holds.
For (d) we know that R = u< \ constr(u<) contains no constraints, and by Proposition 1
all dependencies of non-constraints in R are covered by E . Therefore r ∈ R, r →m,n s,
and s ∈ P implies that s ∈ R. Consequently, (d) holds which proves the theorem.

Proof of Theorem 4
Similar to the proof of Theorem 3, we show this in four steps; given P = u<, R =

u′≤ \ constr(u′≤), and B = u′≤ = u′ ∪ u′<, we show that (a) R ⊆ B ⊆ P , (b) B \ R
contains only constraints, (c) no constraint in B \ R has nonmonotonic dependencies to
rules in P \ B, and (d) R is a rule splitting set of P . Let predsE(u) = {u1, . . . , uk} and
Let V = {v ∈ U | v < u′} be the set of units on which u′ transitively depends. (Note that
V ⊂ predsE(u) and u /∈ V .) As u′< contains all units u′ transitively depends on, we have
B = u′ ∪

⋃
w∈V w.

For (a), R ⊆ B holds trivially, and B ⊆ P holds by definition of u< and u′≤ and
because u′ ∈ predsE(u). Statement (b) holds, because B \ R removes R from B, i.e., it
removes everything that is not a constraint in B from B, therefore only constraints remain.
For (c) we show that no rule in B has a nonmonotonic dependency to rules in P \B. By
Definition 14 (c), all nonmonotonic dependencies are covered at all units. Therefore a rule
r ∈ w, w ∈ {u′} ∪ V with r →n s, s ∈ U implies that either s ∈ w, or that s is contained
in a predecessor unit of w and therefore in u′ or in V . Hence there are no nonmonotonic
dependencies from rules in B to any rules not in B, and hence also not to rules in P \B
and (c) holds. For (d) we know that R contains no constraints and by Proposition 1 all
dependencies of non-constraints in R are covered by E . Therefore r ∈ R, r →m,n s, s ∈ P
implies that s ∈ R and the theorem holds.

Proof of Proposition 4
(⇒) The added vertex m′ is assigned to one unit and gets assigned a type. Furthermore, the
graph stays acyclic as only outgoing edges from m′ are added. I-connectedness is satisfied,
as it is satisfied in I and we add no o-interpretation. O-connectedness is satisfied, as m′ gets
appropriate edges to o-interpretations at its predecessor units, and for other i-interpretations
it is already satisfied in I.

For FAI intersection, observe that if we add an edge (m′,mi) to I and it holds that
mi ∈ o-intsI(ui), then m′ reaches in I only one o-interpretation at ui, and due to O-
connectedness that o-interpretation is connected to exactly one i-interpretation at ui, which
is part of the original graph I and therefore satisfies FAI intersection. Therefore it remains
to show that the union of subgraphs of I reachable in I from m1,. . . ,mk, contains one
o-interpretation at each unit in the subgraph of E reachable from u1,. . . ,uk. We make a case
distinction.

Case (I): two o-interpretations mi ∈ o-intsI(ui), mj ∈ o-intsI(uj) in the join, with
1 ≤ i < j ≤ k, have no common unit that is reachable in E from ui and from uj : then

5

the condition is trivially satisfied, as the subgraphs of I reachable in I from mi and mj ,
respectively, do not intersect at any unit.

Case (II): two o-interpretations mi ∈ o-intsI(ui), mj ∈ o-intsI(uj) in the join, with
1 ≤ i < j ≤ k, have at least one common unit that is reachable from ui and from uj in E .
Let uf be a unit reachable in E from both ui and uj on two paths that do not intersect before
reaching uf . From ui to uf , and from uj to uf , exactly one o-interpretation is reachable in
I from mi and mj , respectively, as these paths do not intersect. uf is a FAI of u, and as the
join is defined, we reach in E exactly one o-interpretation at unit uf from mi and mj . Due
to O-connectedness, we also reach in I exactly one i-interpretation m′′ at uf from mi and
mj . Now m′′ is common to subgraphs of I that are reachable in I from mi and mj , and
m′′ satisfies FAI intersection in I.

Consequently, FAI intersection is satisfied in I ′ for all pairs of predecessors of m′ and
therefore in all cases. As no vertex m with {(m,m1), . . . , (m,mk)} ⊆ F exists and and as
I satisfies Uniqueness, also I ′ satisfies Uniqueness.

(⇐) Assume towards a contradiction that I ′ is an i-graph but that the join is not defined.
Then there exists some FAI u′ ∈ fai(u) such that either no or more than one o-interpretation
from o-intsI(u) is reachable in I from some mi, 1 ≤ i ≤ k. As I is an i-graph, due to
I-connectedness and O-connectedness, if a unit u′ is a FAI and therefore u′ is reachable in
E from ui, then at least one i-interpretation and one o-interpretation at u′ is reachable in
I from mi. If more than one o-interpretation is reachable in I from some mi, 1 ≤ i ≤ k,
this means that more than one o-interpretation at u′ is reachable in I ′ from the newly added
i-interpretation m. However, this violates FAI intersection in I ′, which is a contradiction.
Hence the result follows.

Proof of Proposition 5
(⇒) Whenever the join is defined, A′ is an i-graph by Proposition 4. It remains to show
that int(m′)+ ∈ AS(u<), and that A′ fulfills items (a) and (c) of an answer set graph.
By Theorem 4 we know that for each ui, u

≤
i is a generalized bottom of u< wrt. the set

Ri = {r ∈ u≤i | B(r) 6= ∅}. For each ui, therefore Y ∈ AS(u<) iff Y ∈ AS(u< \ Ri ∪
facts(X)) for some X ∈ AS(u≤i). As A is an answer set graph, for each mi we know that
int(mi)

+ ∈ AS(u≤i); hence Y ∈ AS(u<) if Y ∈ AS(u< \Ri ∪ int(mi)
+). Now from the

evaluation graph properties we know that u< = u≤1 ∪· · ·∪u
≤
k , and from the construction of

int(m′) and its dependencies inA′ we obtain that int(m′)+ = int(m1)+∪· · ·∪ int(mk)+.
It follows that int(m′)+ ∈ AS(u<), which satisfies condition (a). Due to the definition of
join, condition (c) is also satisfied and A′ is indeed an answer set graph.

(⇐) As A′ is an answer set graph, it is an i-graph, and hence by Proposition 4 m =

m1 ./ · · · ./ mk is defined.

Proof of Theorem 5
We prove this theorem using Proposition 6. We construct E ′′ = (U ′′, E′′) with U ′′ = U ∪
{ufinal}, ufinal = ∅, andE′′ = E∪{(ufinal , u) | u ∈ U}. As ufinal contains no rules and as
E ′′ is acyclic, no evaluation graph property of gets violated and E ′′ is also an evaluation graph.
AsA contains no interpretations at ufinal and dependencies from units inU are the same in E
and E ′′, A is in fact an answer set graph for E ′′. We now modify A to obtain A′′ as follows.

6

We add the set Mnew = {m | m = m1 ./ · · · ./ mn is defined at ufinal (wrt. A)} as i-
interpretations of ufinal and dependencies from eachm ∈Mnew to the respective o-interpre-
tationsmi, 1 ≤ i ≤ n. By Proposition 5,A′′ is an answer set graph for E ′′, and moreoverA′′
gets input-complete for ufinal by construction. AsA′′ is input-complete for U∪{ufinal} and
output-complete for U , by Proposition 6 we have that AS(P) = i -intsA(ufinal) = Mnew .
As for every join m = m1 ./ · · · ./ mn, we have int(m) = int(m1)∪ · · · ∪int(mn), to
complete the proof of the theorem, it remains to show that the join m between m1,. . . ,mn

is defined at ufinal iff the subgraph A′ of A reachable from the o-interpretations mi in
F fulfills |o-intsA(ui)| = 1, for each ui ∈ U . As the join involves all units in U , and
since A′′ is an answer set graph and thus an i-graph, it follows from the conditions for
an i-graph that at each ui ∈ U exactly one o-interpretation is reachable from m, and thus
also from each mi; thus the condition for A′ holds. Conversely, if the subgraph A′ fulfills
|o-intsA(ui)| = 1 for each ui ∈ U , then clearly the FAI condition for the join m being
defined is fulfilled.

Proof of Proposition 6
As ufinal depends on all units in U \ {ufinal}, due to O-connectedness every i-interpretation
m ∈ i -intsA(ufinal) depends on one o-interpretation at every unit in U \ {ufinal}. Let
U \ {ufinal} = {u1, . . . , uk} and let MM = {m1, . . . ,mk} be the set of o-interpretations
such that (m,mi) ∈ F and mi ∈ o-intsA(ui), 1 ≤ i ≤ k. Then, due to FAI intersection,
Mm contains each o-interpretation that is reachable from m in A, and Mm contains only
interpretations with this property. Hence int(m)+ = int(m1) ∪ · · · ∪ int(mk), and due to
condition (c) in Definition 19, we have int(m) = int(m)+. By the dependencies of ufinal ,
we have u<final = P , and as ufinal is input-complete, we have that AS(P) = AS(u<final) =

{int(m)+ | m ∈ i -intsA(ufinal)}. As int(m) = int(m)+ for every i-interpretation m at
ufinal , we obtain the result.

Proof of Proposition 7
The proposition follows from Property 1, which asserts that the grounding P ′ has the same
answer sets as P , and from the soundness and completeness of the evaluation algorithm for
ground HEX-programs as asserted by Property 2.

Proof of Theorem 6
We show by induction on its construction that I = (M,F, unit , type, int) is an answer set
graph for E , and that at the beginning of the while-loop I is input- and output-complete for
V \ U .

(Base) Initially, I is initially and V = U , hence the base case trivially holds.
(Step) Suppose that I is an answer set graph for E at the beginning of the while-loop,

and that it is input- and output-complete for V \ U . As the chosen u only depends on
units in V \ U , it depends only on output-complete units. For a leaf unit u, (b) creates an
empty i-interpretation and therefore makes u input-complete. For a non-leaf unit u, the first
for-loop (c) builds all possible joins of interpretations at predecessors of u and adds them
as i-interpretations to I. As all predecessors of u are output-complete by the hypothesis,
this makes u input-complete. Now suppose that Condition (d) is false, i.e., u 6= ufinal . Then
the second for-loop (e) evaluates u wrt. every i-interpretation at u and adds the result to

7

u as an o-interpretation. Due to Proposition 7, EVALUATELDESAFE(u, int(m′)) returns
all interpretations o such that o ∈ {X \ int(m′) | X ∈ AS(u ∪ facts(int(m′))}. As u
depends on all units on which its rules depend, and as i-interpretations contain all atoms
from o-interpretations of predecessor units (due to condition (c) of Definition 19), we have
EVALUATELDESAFE(u, int(m′)) = EVALUATELDESAFE(u, int(m′)+). By Theorem 3,
u< is a generalized bottom of u≤, and by the induction hypothesis int(m′)+ ∈ AS(u<);
hence by Theorem 2, we have that int(m′)+ ∪ o ∈ AS(u≤). Consequently, adding a new
o-interpretation m with interpretation int(m) = o and dependency to m′ to the graph I
results in int(m)+ ∈ AS(u≤), and adding all of them makes I output-complete for u.
Finally, in (f) u is removed from U ; hence at the end of the while-loop I is an answer set
graph and again input- and output-complete for V \ U .

It remains to consider the case where Condition (d) is true. Then ufinal was made
input-complete, which means that all predecessors of ufinal are output-complete. As ufinal

depends on all other units, we have U = {ufinal} and the algorithm returns i -intsA(u); by
Proposition 6, it thus returns AS(P), which will happen in the |V |-th iteration of the while
loop.

Appendix B Example Run of Algorithm 2

We provide here an example run of Algorithm 2 for our running example.

Example 1 (ctd.)
Consider an evaluation graph E ′2 which is E2 plus ufinal = ∅, which depends on all other
units. Following Algorithm 2 we first choose u = u1, and as u1 has no predecessor
units, step (b) creates the i-interpretation m1 with int(m1) = ∅. As u1 6= ufinal , we
continue and in loop (e) obtain O = AS(u1) =

{
{swim(ind)}, {swim(outd)}

}
. We

add both answer sets as o-interpretations m2 and m3 and then finish the outer loop with
U = {u2, u3, u4, ufinal}. In the next iteration, we could choose u = u2 or u = u3; assume
we choose u2. Then predsE(u2) = {u1} and k = 1, and we enter the loop (c) and build all
joins that are possible with o-interpretations at u1 (all joins are trivial and all are possible),
i.e., we copy the interpretations and store them at u2 as new i-interpretations m4 and
m5. In the loop (e), we obtain O = EVALUATELDESAFE(u2, {swim(ind)}) = ∅, as
indoor swimming requires money which is excluded by c8 ∈ u2. Therefore i-interpreta-
tion {swim(ind)} yields no o-interpretation, indicated by E. However, we obtain O =

EVALUATELDESAFE(u2, {swim(outd)}) = {∅}: as outdoor swimming neither requires
money nor anything else, i-interpretation {swim(outd)} derives no additional atoms and
yields the empty answer set, which we store as o-interpretation m6 at u2; the iteration ends
with U = {u3, u4, ufinal}. In the next iteration we choose u = u3, we add in loop (c) i-inter-
pretationsm7 andm8 to u3, and in loop (e) o-interpretationsm9, . . . ,m12 to u3; the iteration
ends with U = {u4, ufinal}. In the next iteration we choose u = u4; this time we have
multiple predecessors, and in loop (c) we check join candidates m6 ./ m9 and m6 ./ m10,
which are both not defined. The other join candidates are m6 ./ m11 and m6 ./ m12, which
are both defined; we thus add their results as i-interpretations m13 and m14, respectively, to
u4. The loop (e) computes then one o-interpretation m15 for i-interpretation m13 and no
o-interpretation for m14. The iteration ends with U = {ufinal}. In the next iteration, we

8

Algorithm 1: ANSWERSETSONDEMAND

Input: evaluation graph E for program P , with final unit ufinal = ∅
Output: the answer sets of P

initialize global storage S
repeat

mout := GETNEXTOUTPUTMODEL (ufinal)
if mout 6= UNDEF then output mout

until mout = UNDEF

have predsE(ufinal) = {u1, u2, u3, u4} and the loop (c) checks all combinations of one
o-interpretation at each unit in predsE(ufinal). Only one such join candidate is defined,
namely m = m3 ./ m6 ./ m11 ./ m15, whose result is stored as a new i-interpretation
at ufinal . The check (d) now succeeds, and we return all i-interpretations at ufinal ; i.e.,
we return {m} =

{
{swim(outd), goto(altD),ngoto(gansD), go,need(loc, yogamat)}

}
.

This is indeed the set of answer sets of Pswim .

Appendix C On Demand Model Streaming Algorithm

Algorithm 2 fully evaluates all other units before computing results at the final evaluation
unit ufinal , and it keeps the intermediate results in memory. If we are only interested in one
or a few answer sets, many unused results may be calculated.

Using the same evaluation graph, we can compute the answer sets with a different,
more involved algorithm ANSWERSETSONDEMAND (shown in Algorithm 1) that operates
demand-driven from units, starting with ufinal , rather than data-driven from completed units.
It uses in turn several building blocks that are shown in Algorithms 2–4

ANSWERSETSONDEMAND calls Algorithm GETNEXTOUTPUTMODEL for ufinal and
outputs its output models, i.e., the answer sets of the input program P given by the evaluation
graph E , one by one until it gets back UNDEF. Like Algorithm 2, GETNEXTOUTPUT-
MODEL builds in combination with the other algorithms an answer set graph A for E that is
input-complete at all units, if all statements marked with ’(+)’ are included; omitting them,
it builds A virtually and has at any time at most one input and one output model of each
unit in memory.

Roughly speaking, the models at units are determined in the same order in which a right-
to-left depth-first-traversal of the evaluation graph E would backtrack from edges. This is
because first all models of the subgraph reachable from a unit u are determined, then models
at the unit u, and then the algorithm backtracks. The models of the subgraph are retrieved
with GETNEXTINPUTMODEL one by one, and using NextAnswerSet the output models
are generated and returned. The latter function is assumed to return, given a HEX-program
P and the i-th element in an arbitrary but fixed enumeration I1, I2, . . . , Im of the answer
sets of P (without duplicates), the next answer set Ii+1, where by convention I0 = UNDEF

and the return value for Im is UNDEF. This is easy to provide on top of current solvers, and
the incremental usage of NextAnswerSet allows for an efficient stateful realization (e.g.
answer set computation is suspended).

The trickiest part of this approach is GETNEXTINPUTMODEL, which has to create locally

9

Algorithm 2: GETNEXTOUTPUTMODEL(u)

Input: u: unit
Output: mout: next omodel at u or UNDEF

if refsO(u) > 0 then return UNDEF

if cur I(u) = UNDEF then cur I(u) := GETNEXTINPUTMODEL(u)

while cur I(u) 6= UNDEF do
curO(u) := NextAnswerSet(u∪ facts(cur I(u)), curO(u))

if curO(u) 6= UNDEF then
(+) add omodel curO(u) to A with dependency to cur I(u)

return curO(u)

cur I(u) := GETNEXTINPUTMODEL(u)

return UNDEF

Algorithm 3: ENSUREMODELINCREMENT(u, at)

Input: u: unit with {u1, . . . , uk} = predsE(u), at: index 1 ≤ at ≤ k
Output: at′: index at ≤ at′ ≤ k or UNDEF

repeat
refsO(uat) := refsO(uat)− 1

m := GETNEXTOUTPUTMODEL(uat)

if m = UNDEF then at := at+ 1

else
refsO(uat) := refsO(uat) + 1

return at

until at = k + 1

return UNDEF

and in an incremental fashion all joins that are globally defined, i.e., all combinations of
incrementally available output models of predecessors which share a common predecessor
model at all FAIs. To generate all combinations of output models in the right order, it uses
the algorithm ENSUREMODELINCREMENT.

The algorithms operate on a global data structure S = (E ,A, cur I, curO, refsO) called
storage, where
• E = (U,E) is the evaluation graph containing ufinal ∈ U ,
• A = (M,F, unit , type, int) is the (virtually built) answer set graph,
• cur I : U → M ∪ {UNDEF} and curO : U → M ∪ {UNDEF}, are functions

that informally associate with a unit u the current input respectively output model
considered, and

• refsO : U → N∪{0} is a function that keeps track of how many current input models
point to the current output model of u; this is used to ensure correct joins, by checking
in GETNEXTOUTPUTMODEL that the condition (IG-F) for sharing models in the
interpretation graph is not violated (for details see Section 5.1.2 and Definition 17).

10

Algorithm 4: GETNEXTINPUTMODEL(u)

Input: u: unit
Output: mout: imodel at u or UNDEF

(a) if predsE(u) = ∅ then
if cur I(u) = UNDEF then

(+) add imodel ∅ at u to A
return ∅

else return UNDEF

let {u1, . . . , uk} = predsE(u) /* assume this order is fixed for each unit u */
if cur I(u) 6= UNDEF then

at := ENSUREMODELINCREMENT(u, 1)

if at = UNDEF then return UNDEF

at := at− 1

else at := k

(b) while at 6= 0 do
if curO(uat) 6= UNDEF then

refsO(uat) := refsO(uat) + 1

at := at− 1

else
m := GETNEXTOUTPUTMODEL(uat)

if m = UNDEF then
if at= k then return UNDEF

at := ENSUREMODELINCREMENT(u, at+ 1)

if at = UNDEF then return UNDEF

else
refsO(uat) := refsO(uat) + 1

at := at− 1

let m = curO(u1) ./ · · · ./ curO(uk)

(+) add imodel m to A with dependencies to curO(u1), . . . , curO(uk)

return m

Initially, the storage S is empty, i.e., it contains the input evaluation graph E , an empty
answer set graph A, and the functions are set to cur I(u) = UNDEF, curO(u) = UNDEF,
and refsO(u) = 0 for all u ∈ U . The call of GETNEXTOUTPUTMODEL for ufinal triggers
the right-to-left depth-first traversal of the evaluation graph.

We omit tracing Algorithm ANSWERSETSONDEMAND on our running example, as this
would take quite some space; however, one can check that given the evaluation graph E2, it
correctly outputs the single answer set

I = {swim(outd), goto(altD),ngoto(gansD), go,need(loc, yogamat)}.

Formally, it can be shown that given an evaluation graph E = (U,E) of a program P such
that E contains a final unit ufinal = ∅, Algorithm ANSWERSETSONDEMAND outputs one

11

by one all answer sets of P , without duplicates, and that in the version without (+)-lines, it
stores at most one input and one output model per unit (hence the size of the used storage is
linear in the size of the ground program grnd(P)).

Appendix D Overview of Liberal Domain-Expansion Safety

Strong domain-expansion safety is overly restrictive, as it also excludes programs that
clearly are finitely restrictable. In this section we give an overview about the notion and
refer to (Eiter et al. 2014) for details.

Example 2
Consider the following program:

P=

{
r1 : p(a). r3 : s(Y) ← p(X),&concat [X, a](Y).

r2 : q(aa). r4 : p(X)← s(X), q(X).

}
It is not strongly safe because Y in the cyclic external atom &concat [X, a](Y) in r3 does
not occur in an ordinary body atom that does not depend on &concat [X, a](Y). However,
P is finitely restrictable as the cycle is “broken” by dom(X) in r4.

To overcome unnecessary restrictions of strong safety in (Eiter et al. 2006), liberal domain-
expansion safety (lde-safety) has been introduced (Eiter et al. 2014), which incorporates
both syntactic and semantic properties of a program. The details of the notion are not
necessary for this paper, except that all lde-safe programs have finite groundings with the
same answer sets; we give here a brief overview.

Unlike strong safety, liberal de-safety is not a property of entire atoms but of attributes,
i.e., pairs of predicates and argument positions. Intuitively, an attribute is lde-safe, if the
number of different terms in an answer-set preserving grounding (i.e. a grounding which
has the same answer sets if restricted to the positive atoms as the original program) is finite.
A program is lde-safe, if all its attributes are lde-safe.

The notion of lde-safety is designed in an extensible fashion, i.e., such that several safety
criteria can be easily integrated. For this we parametrize our definition of lde-safety by a
term bounding function (TBF), which identifies variables in a rule that are ensured to have
only finitely many instantiations in the answer set preserving grounding. Finiteness of the
overall grounding follows then from the properties of TBFs.

For an ordinary predicate p∈P , let p�i be the i-th attribute of p for all 1 ≤ i ≤ ar(p).
For an external predicate &g ∈ X with input list X in rule r, let &g [X]r�T i with T ∈ {I, O}
be the i-th input resp. output attribute of &g [X] in r for all 1 ≤ i ≤ arT (&g). For a ground
program P , the range of an attribute is, intuitively, the set of ground terms which occur in
the position of the attribute. Formally, for an attribute p�i we have range(p�i, P) = {ti |
p(t1, . . . , tar(p)) ∈ A(P)}; for an attribute &g [X]r�T i we have range(&g [X]r�T i, P) =

{xTi | &g [xI](xO) ∈ EA(P)}, where xs = xs1, . . . , x
s
ars(&g).

We use the following monotone operator to compute by fixpoint iteration a finite subset
of grnd(P) for a program P :

GP (P ′) =
⋃
r∈P
{rθ | ∃I ⊆ A(P ′), I 6|= ⊥, I |= B+(rθ)},

12

where A(P ′) = {Ta,Fa | a ∈ A(P ′)} \ {Fa | a← . ∈ P} and rθ is the ground instance
of r under variable substitution θ : V → C. Note that in this definition, I might be partial,
but by convention we assume that all atoms which are not explicitly assigned to true are
false. That is, GP takes a ground program P ′ as input and returns all rules from grnd(P)

whose positive body is satisfied under some assignment over the atoms of Π′. Intuitively, the
operator iteratively extends the grounding by new rules if they are possibly relevant for the
evaluation, where relevance is in terms of satisfaction of the positive rule body under some
assignment constructable over the atoms which are possibly derivable so far. Obviously, the
least fixpoint G∞P (∅) of this operator is a subset of grnd(P); we will show that it is finite
if P is lde-safe according to our new notion. Moreover, we will show that this grounding
preserves all answer sets as all omitted rule instances have unsatisfied bodies anyway.

Example 3
Consider the following program P :

r1 : s(a). r2 : dom(ax). r3 : dom(axx).

r4 : s(Y)← s(X),&concat [X,x](Y), dom(Y).

The least fixpoint of GP is the following ground program:

r′1 : s(a). r′2 : dom(ax). r′3 : dom(axx).

r′4 : s(ax)← s(a),&concat [a, x](ax), dom(ax).

r′5 : s(axx)← s(ax),&concat [ax, x](axx), dom(axx).

Rule r′4 is added in the first iteration and rule r′5 in the second.

Towards a definition of lde-safety, we say that a term in a rule is bounded, if the number
of substitutions in G∞P (∅) for this term is finite. This is abstractly formalized using term
bounding functions.

Definition 1 (Term Bounding Function (TBF))
A term bounding function, denoted b(P, r, S,B), maps a program P , a rule r ∈ P , a set S
of (already safe) attributes, and a set B of (already bounded) terms in r to an enlarged set
of (bounded) terms b(P, r, S,B) ⊇ B, such that every t ∈ b(P, r, S,B) has finitely many
substitutions in G∞P (∅) if (i) the attributes S have a finite range in G∞P (∅) and (ii) each
term in terms(r) ∩B has finitely many substitutions in G∞P (∅).

Intuitively, a TBF receives a set of already bounded terms and a set of attributes that are
already known to be lde-safe. Taking the program into account, the TBF then identifies and
returns further terms which are also bounded.

The concept yields lde-safety of attributes and programs from the boundedness of vari-
ables according to a TBF. We provide a mutually inductive definition that takes the empty
set of lde-safe attributes S0(P) as its basis. Then, each iteration step n ≥ 1 defines first
the set of bounded terms Bn(r, P, b) for all rules r, and then an enlarged set of lde-safe
attributes Sn(P). The set of lde-safe attributes in step n+1 thus depends on the TBF, which
in turn depends on the domain-expansion safe attributes from step n.

Definition 2 (Liberal Domain-Expansion Safety)

13

Let b be a term bounding function. The set Bn(r, P, b) of bounded terms in a rule r ∈ P in
step n ≥ 1 is Bn(r, P, b) =

⋃
j≥0Bn,j(r, P, b) where Bn,0(r, P, b) = ∅ and for all j ≥ 0,

Bn,j+1(r, P, b) = b(P, r, Sn−1(P), Bn,j).

The set of domain-expansion safe attributes S∞(P) =
⋃

i≥0 Si(P) of a program P is
iteratively constructed with S0(P) = ∅ and for n ≥ 0:

• p�i∈Sn+1(P) if for each r∈P and atom p(t1, . . . , tar(p)) ∈ H(r), we have that
term ti ∈ Bn+1(r, P, b), i.e., ti is bounded;

• &g [X]r�Ii∈Sn+1(P) if each Xi is a bounded variable, or Xi is a predicate input
parameter p and p�1, . . . , p�ar(p) ∈ Sn(P);

• &g [X]r�Oi∈Sn+1(P) if and only if r contains an external atom &g [X](Y) such
that Yi is bounded, or &g [X]r�I1, . . . ,&g [X]r�Iar I(&g) ∈ Sn(P).

A program P is liberally domain-expansion (lde) safe, if it is safe and all its attributes
are domain-expansion safe.

A detailed description of liberal safety is beyond the scope of this paper. However, it is
crucial that each liberally domain-expansion safe HEX-program P is finitely restrictable, i.e.,
there is a finite subset Pg of grndC(P) s.t.AS(Pg) = AS(grndC(P)). A concrete ground-
ing algorithm GROUNDHEX is given in (Eiter et al. 2014); we use GROUNDHEX(P) in
this article to refer to a finite grounding of P that has the same answer sets.

References

EITER, T., FINK, M., KRENNWALLNER, T., AND REDL, C. 2014. Domain expansion for ASP-
programs with external sources. Tech. Rep. INFSYS RR-1843-14-02, Institut für Informationssys-
teme, Technische Universität Wien, A-1040 Vienna, Austria.

EITER, T., IANNI, G., SCHINDLAUER, R., AND TOMPITS, H. 2006. Effective integration of
declarative rules with external evaluations for semantic-web reasoning. In European Semantic Web
Conference (ESWC). Springer, 273–287.

