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Proposition 1

There is a one-to-one correspondence between the KM revision operators and the

set of all faithful assignments.

Proof

Let ◦1, ◦2 be two KM revision operators. From Theorem 1 one can build two faith-

ful assignments associating respectively with every formula φ the total preorders

≤1
φ (for the first faithful assignment) and ≤2

φ (for the second one), such that for all

formulae φ, ψ, mod(φ ◦1 ψ) = min(mod(ψ),≤1
φ) and mod(φ ◦2 ψ) = min(mod(ψ),

≤2
φ). Assume now that ◦1 6= ◦2. This means that there exist two propositional

formulae φ, ψ such that φ ◦1 ψ 6≡ φ ◦2 ψ, so mod(φ ◦1 ψ) 6= mod(φ ◦2 ψ), thus

min(mod(ψ),≤1
φ) 6= min(mod(ψ),≤2

φ). Hence, ≤1
φ 6=≤2

φ, so the two faithful assign-

ments associated respectively with ◦1 and ◦2 are different. Conversely, assume that

the two faithful assignments associated respectively with ◦1 and ◦2 are different.

Then, there exists a formula φ such that ≤1
φ 6=≤2

φ. This means that there exists

two interpretations I , J such that I ≤1
φ J and J <2

φ I . Let ψ be any formula such

that mod(ψ) = {I , J}. We have I ∈ min(mod(ψ),≤1
φ) and I /∈ min(mod(ψ),≤2

φ).

Hence, mod(φ ◦1 ψ) 6= mod(φ ◦2 ψ), or equivalently, φ ◦1 ψ 6≡ φ ◦2 ψ. This means

that ◦1 6= ◦2.

Proposition 2

?D is a GLP revision operator.
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Proof

Let P ,Q be two logic programs. The fact that P ?D Q returns a GLP when P ,Q

are both GLPs is obvious from the definition. Postulates (RA1 - RA4) are directly

satisfied from the definition. (RA5 - RA6) Let P ,Q ,R be three GLPs. If (P?DQ)+R

is not consistent then (RA5) is trivially satisfied, so assume that (P ?D Q) + R is

consistent. We have to show that (P?DQ)+R ≡s P?D (Q+R). We fall now into two

cases. Assume first that P+Q is consistent. By definition, (P?DQ)+R = P+Q+R.

Yet since (P ?D Q) + R is consistent, so is P + Q + R, thus we get by definition

P ?D (Q + R) = P + Q + R. Therefore, (P ?D Q) + R ≡s P ?D (Q + R). Now,

assume that P + Q is not consistent. By definition, (P ?D Q) + R = Q + R. Since

P + Q is not consistent, we also have P + Q + R not consistent. So by definition

P ?D (Q + R) = Q + R. Hence, (P ?D Q) + R ≡s P ?D (Q + R).

Proposition 3

An LP operator ? is a GLP revision operator if and only if there exists a pair

(Φ,Ψ), where Φ is an LP faithful assignment associating with every GLP P a total

preorder ≤P , Ψ is a well-defined assignment associating with every GLP P and

every interpretation Y a set of interpretations P(Y ), and such that for all GLPs

P ,Q ,

SE (P ?Q) = {(X ,Y ) | (X ,Y ) ∈ SE (Q),Y ∈ min(mod(Q),≤P ),X ∈ P(Y )}·

Proof

(Only if part) In this proof, for every well-defined set of SE interpretations S , lp(S )

denotes any GLP P such that SE (P) = S . To alleviate notations, when S is of the

form {(Y ,Y ) | Y ∈ E} for some set of interpretations E , we write lp(E ) instead of

lp(S ). For instance, lp({(Y ,Y ), (Y ′,Y ′), (Y (2),Y (2))}) will simply be denoted by

lp({Y ,Y ′,Y (2)}). The proof exploits on several occasions the following remarks:

Remark 2

If ? is an LP revision operator satisfying the postulates (RA5) and (RA6), then

for all GLPs P ,Q ,R such that (P ?Q) + R is consistent, we have (P ?Q) + R ≡s

P ? (Q + R).

Remark 3

For all sets of interpretations E ,F , lp(E ) + lp(F ) ≡s lp(E ∩ F ).

Remark 4

Let ? be an LP revision operator satisfying the postulates (RA1) and (RA3). Then

for any GLP P and any non-empty set of interpretations E , mod(P ? lp(E )) 6= ∅
and mod(P ? lp(E )) ⊆ E .

Let ? be a GLP revision operator. For every GLP P , define the relation ≤P

over interpretations such that ∀Y ,Y ′ ∈ Ω, Y ≤P Y ′ iff Y |= P ? lp({Y ,Y ′}).
Moreover, for every GLP P , ∀Y ∈ Ω, let P(Y ) = {X ⊆ Y | (X ,Y ) ∈ SE (P ?

lp({(X ,Y ), (Y ,Y )}))}. Let P be any GLP. We first show that ≤P is a total pre-

order. Let Y ,Y ′,Y (2) ∈ Ω.
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(Totality of ≤P ): By Remark 4, Y |= P ? lp({Y ,Y ′}) or Y ′ |= P ? lp({Y ,Y ′}).
Hence, Y ≤P Y ′ or Y ′ ≤P Y .

(Reflexivity of ≤P ): By Remark 4, Y |= P ? lp({Y }), so Y ≤P Y .

(Transitivity of ≤P ): Assume towards a contradiction that Y ≤P Y ′, Y ′ ≤P Y (2)

and Y 6≤P Y (2). We consider two cases:

Case 1: (P ? lp({Y ,Y ′,Y (2)})) + lp({Y ,Y (2)}) is consistent. Then we have

(P ? lp({Y ,Y ′,Y (2)})) + lp({Y ,Y (2)})
≡s P ? (lp({Y ,Y ′,Y (2)}) + lp({Y ,Y (2)})) (by Remark 2)

≡s P ? lp({Y ,Y (2)}) (by Remark 3)·

Since Y 6≤P Y (2), by definition of ≤P we get that Y 6|= P ? lp({Y ,Y (2)}), hence

Y 6|= P ? lp({Y ,Y ′,Y (2)}). By Remark 4, there are two remaining cases:

(i) Y ′ |= P ? lp({Y ,Y ′,Y (2)}). In this case, (P ? lp({Y ,Y ′,Y (2)}))+ lp({Y ,Y ′})
is consistent, so

(P ? lp({Y ,Y ′,Y (2)})) + lp({Y ,Y ′})
≡s P ? (lp({Y ,Y ′,Y (2)}) + lp({Y ,Y ′})) (by Remark 2)

≡s P ? lp({Y ,Y ′}) (by Remark 3)·

Since Y ≤P Y ′, by definition of ≤P we get that Y |= P ? lp({Y ,Y ′}), hence

Y |= P ? lp({Y ,Y ′,Y (2)}). which contradicts the previous conclusion that

Y 6|= P ? lp({Y ,Y ′,Y (2)}).
(ii) Y ′ 6|= P?lp({Y ,Y ′,Y (2)}). Since we also have that Y 6|= P?lp({Y ,Y ′,Y (2)}),

by Remark 4 we must have that Y (2) |= P ? lp({Y ,Y ′,Y (2)}) In this case,

(P ? lp({Y ,Y ′,Y (2)})) + lp({Y ′,Y (2)}) is consistent, so

(P ? lp({Y ,Y ′,Y (2)})) + lp({Y ′,Y (2)})
≡s P ? (lp({Y ,Y ′,Y (2)}) + lp({Y ′,Y (2)})) (by Remark 2)

≡s P ? lp({Y ′,Y (2)}) (by Remark 3)·

Since Y ′ ≤P Y (2), by definition of ≤P we get that Y ′ |= P ? lp({Y ′,Y (2)}),
hence Y ′ |= P ? lp({Y ,Y ′,Y (2)}), which is a contradiction.

Case 2: (P ?lp({Y ,Y ′,Y (2)}))+lp({Y ,Y (2)}) is not consistent. Then by Remark 4,

Y ′ |= P?lp({Y ,Y ′,Y (2)}). Then (P?lp({Y ,Y ′,Y (2)}))+lp({Y ,Y ′}) is consistent,

and by using Remark 2 and 3 and following similar reasonings as in (i), we get that

Y ′ |= P ?lp({Y ,Y ′}) and Y 6|= P ?lp({Y ,Y ′}). By definition of ≤P this contradicts

Y ≤P Y ′ and concludes the proof that ≤P is a total preorder.

Now, let Q be any GLP. We have to show that SE (P ?Q) = {(X ,Y ) | (X ,Y ) ∈
SE (Q),Y ∈ min(mod(Q),≤P ),X ∈ P(Y )}. Let us denote by S the latter set and

first show the first inclusion SE (P ? Q) ⊆s S. Let (X ,Y ) ∈ SE (P ? Q) and let us

show that (i) (X ,Y ) ∈ SE (Q), (ii) ∀Y ′ |= Q ,Y ≤P Y ′ and that (iii) X ∈ P(Y ).

(i) is direct from (RA1). For (ii), let Y ′ |= Q . Since ? returns a GLP, SE (P ?Q) is

well-defined. That is, since (X ,Y ) ∈ SE (P ? Q), we have Y |= P ? Q . Therefore,

(P ?Q) + lp({Y ,Y ′}) is consistent. So by Remark 2 and 3, Y |= P ? lp({Y ,Y ′}).
Hence, Y ≤P Y ′. For (iii), since (X ,Y ) ∈ SE (P?Q), (P?Q)+lp({(X ,Y ), (Y ,Y )})
is consistent, so we have (X ,Y ) ∈ SE (P ? lp({(X ,Y ), (Y ,Y )})) by Remark 2
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and 3; hence, X ∈ P(Y ). Let us now show the other inclusion S ⊆s SE (P ? Q).

Assume (X ,Y ) ∈ S. Then ∀Y ′ |= Q , Y ≤P Y ′ and X ∈ P(Y ). First, from

the definition of P(Y ) we have Y ∈ P(Y ), so also (Y ,Y ) ∈ S. Since S 6= ∅, Q
is consistent, thus by Remark 4 there exists Y∗ |= Q , Y∗ |= P ? Q . Let R# =

lp({(X ,Y ), (Y ,Y ), (Y∗,Y∗)}). Note that R# ⊆s Q and that (P ? Q) + R# is

consistent since Y∗ is a model of both P ? Q and R#. Then by Remark 2 we get

that (P ?Q)+R# ≡s P ?(Q+R#) ≡s P ?R#. Since we have to show that (X ,Y ) ∈
SE (P ?Q), it comes down to show that (X ,Y ) ∈ SE (P ? R#). Assume towards a

contradiction that (X ,Y ) /∈ SE (P ? R#). By Remark 4 and since Y∗ |= P ? R#,

we have two cases: (i) Y 6|= P ? R#. Since (P ? R#) + lp({(Y ,Y ), (Y∗,Y∗)}) is

consistent, by Remark 2 and 3 we get that Y 6|= P ? lp({(Y ,Y ), (Y∗,Y∗)}). This

contradicts Y ≤P Y∗. (ii) Y |= P ? R#. Since (P ? R#) + lp({(X ,Y ), (Y ,Y )}) is

consistent, by Remark 2 and 3 we get that (X ,Y ) /∈ SE (P ? lp({(X ,Y ), (Y ,Y )})).
This contradicts X ∈ P(Y ).

It remains to verify that all conditions (1 - 3) of the faithful assignment and

conditions (a - e) of the well-defined assignment are satisfied:

(1) Assume Y |= P and Y ′ |= P . By (RA2), P ? lp({Y ,Y ′}) ≡s P + lp({Y ,Y ′}).
So Y |= P ? lp({Y ,Y ′}) and Y ′ |= P ? lp({Y ,Y ′}), hence Y 'P Y ′;

(2) Assume Y |= P and Y ′ 6|= P . By (RA2), P ? lp({Y ,Y ′}) ≡s P + lp({Y ,Y ′}).
So Y |= P ? lp({Y ,Y ′}) and Y ′ 6|= P ? lp({Y ,Y ′}), hence Y <P Y ′;

(3) Obvious from (RA4);

(a) By definition of P(Y ) and by (RA1) and (RA3), we must have Y |= P ?

lp({(X ,Y ), (Y ,Y )}), i.e., Y |= P(Y );

(b) If X ∈ P(Y ) then X ⊆ Y by definition of P(Y );

(c) Assume (X ,Y ) ∈ SE (P). Then Y |= P . By (RA2), P?lp({(X ,Y ), (Y ,Y )}) ≡s

P + lp({(X ,Y ), (Y ,Y )}) ≡s lp({(X ,Y ), (Y ,Y )}), so (X ,Y ) ∈ SE (P ?

lp({(X ,Y ), (Y ,Y )})). Therefore, X ∈ P(Y ).

(d) Assume (X ,Y ) /∈ SE (P) and Y |= P . By (RA2), P ?lp({(X ,Y ), (Y ,Y )}) ≡s

P + lp({(X ,Y ), (Y ,Y )}) ≡s lp({Y }), so (X ,Y ) /∈ lp({(X ,Y ), (Y ,Y )}).
Therefore, X /∈ P(Y ).

(e) Obvious from (RA4).

(If part) We consider a faithful assignment that associates with every GLP P a

total preorder ≤P and a well-defined assignment that associates with every GLP

P and every interpretation Y a set P(Y ) ⊆ Ω. For all GLPs P ,Q , let S(P ,Q) be

the set of SE interpretations defined as S(P ,Q) = {(X ,Y ) | (X ,Y ) ∈ SE (Q),Y ∈
min(mod(Q),≤P ),X ∈ P(Y )}. Let P ,Q be two GLPs and let us show that S(P ,Q)

is well-defined. Let (X ,Y ) ∈ S(P ,Q). By condition (a) of the well-defined assign-

ment and since X ⊆ Y , we have Y ∈ P(Y ), so (Y ,Y ) ∈ S(P ,Q). Hence, S(P ,Q)

is well-defined. Then let us define an operator ? associating two GLPs P ,Q with a

new GLP P ?Q such that for all GLPs P ,Q , SE (P ?Q) = S(P ,Q).

It remains to show that postulates (RA1 - RA6) are satisfied. Let P ,Q bet two

GLPs.
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(RA1) By definition, SE (P ?Q) ⊆ SE (Q).

(RA2) Assume that P +Q is consistent. We have to show that SE (P ?Q) = SE (P +

Q). We first show the inclusion SE (P ? Q) ⊆ SE (P + Q). Let (X ,Y ) ∈
SE (P ? Q). Towards a contradicton, assume that (X ,Y ) /∈ SE (P + Q). By

definition of ? we have (X ,Y ) ∈ SE (Q), thus (X ,Y ) /∈ SE (P). We fall into

two cases:

(i) (Y ,Y ) ∈ SE (P). Then from condition (d), we have X /∈ P(Y ). This

contradicts (X ,Y ) ∈ SE (P ?Q);

(ii) (Y ,Y ) /∈ SE (P). Then from condition (2), ∀Y ′ |= P , Y ′ <P Y . In

particular, ∀Y ′ |= P + Q , Y ′ <P Y . This contradicts (X ,Y ) ∈ SE (P ?Q).

We now show the other inclusion SE (P + Q) ⊆ SE (P ? Q). Let (X ,Y ) ∈
SE (P + Q). So (X ,Y ) ∈ SE (Q). From conditions (1) and (2), ∀Y ′ ∈ Ω,

Y <P Y ′. Moreover from condition (c), since (X ,Y ) ∈ SE (P) we get that

X ∈ P(Y ). Therefore, (X ,Y ) ∈ SE (P ?Q).

(RA3) Suppose that Q is consistent, i.e., SE (Q) 6= ∅. As Ω is a finite set of in-

terpretations, we have no infinite descending chain of inequalities w.r.t. ≤P .

Moreover, ≤P is a total relation. Hence, there is an interpretation Y∗ |= Q

such that ∀Y ′ |= Q , Y∗ ≤P Y ′. Lastly by condition (a), Y∗ ∈ PY∗ . Hence,

Y∗ |= P ?Q , i.e., P ?Q is consistent.

(RA4) Obvious by definition of ? and from conditions (3) and (e).

(RA5) Let (X ,Y ) ∈ SE ((P ? Q) + R). So by definition of ?, ∀Y ′ |= Q , Y ≤P Y ′

and X ∈ P(Y ). In particular, ∀Y ′ |= Q + R, Y ≤P Y ′ and X ∈ P(Y ). So

(X ,Y ) ∈ SE (P ? (Q + R)).

(RA6) Assume that (P ?Q) + R is consistent. Let Y∗ |= (P ?Q) + R. Let (X ,Y ) ∈
SE (P ? (Q + R)). Assume towards a contradiction that (X ,Y ) /∈ SE ((P ?

Q) +R). Since (X ,Y ) ∈ SE (R), we have (X ,Y ) /∈ SE (P ?Q). But (X ,Y ) ∈
SE (Q), this means that Y∗ <P Y or X /∈ P(Y ). Yet Y∗ |= Q + R, so

(X ,Y ) /∈ SE (P ? (Q + R)). This leads to a contradiction.

Proposition 4

An LP revision operator is a GLP revision operator if and only if it is a propositional-

based GLP revision operator.

Proof

(Only If part) Let ? be a GLP revision operator. We have to show that there exists

a KM revision operator ◦ and a mapping f from Ω to 2Ω such that ∀Y ∈ Ω,

Y ∈ f (Y ) and if X ∈ f (Y ) then X ⊆ Y , and such that for all GLPs P ,Q ,

SE (P ? Q) = SE (P ?◦,f Q). Yet from Proposition 3 there exists a GLP parted

assignment (Φ,Ψ), where Φ associates with every GLP P a total preorder ≤P

and Ψ associates with every GLP P and every interpretation Y a set of interpre-

tations P(Y ), such that for all GLPs P ,Q , SE (P ? Q) = {(X ,Y ) | (X ,Y ) ∈
SE (Q),Y ∈ min(mod(Q),≤P ),X ∈ P(Y )}. Then, let ◦ be the KM revision ope-

rator associated with the faithful assignment (cf. Definition 3) that associates with

every propositional formula φ the total preorder ≤φ=≤P , where P is any GLP
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such that φ ≡ α2
P (from Remark 1, such an assignment is, indeed, faithful and

unique). Then from Theorem 1, for every Y ∈ Ω, Y ∈ min(mod(Q),≤P ) if and

only if Y |= α2
P ◦ α2

Q . Then define f as the mapping from Ω to 2Ω such that

∀Y ∈ Ω, f (Y ) = P(Y ). From conditions (a) and (b) of the well-defined assign-

ment (cf. Definition 15), f is such that ∀Y ∈ Ω, Y ∈ f (Y ) and if X ∈ f (Y )

then X ⊆ Y . Now, given two GLPs P ,Q , if P + Q is consistent, we directly

get SE (P ? Q) = SE (P ?◦,f Q) from Definition 15 and postulate (RA2). So as-

sume that P + Q is inconsistent. Given an SE interpretation (X ,Y ), we have

(X ,Y ) ∈ SE (P ? Q) if and only if (X ,Y ) ∈ SE (Q), Y ∈ min(mod(Q),≤P ) and

X ∈ P(Y ), if and only if (X ,Y ) ∈ SE (Q), Y |= α2
P ◦ α2

Q and X ∈ f (Y ), if and

only if (X ,Y ) ∈ SE (P ?◦,f Q). That is to say, SE (P ?Q) = SE (P ?◦,f Q).

(If part) Let ?◦,f be a propositional-based GLP revision operator. We have to show

that there exists a GLP revision operator ? such that SE (P ?◦,f Q) = SE (P ?Q).

Since ◦ is a KM revision operator, from Theorem 1 there is a faithful assignment

associating with every propositional formula φ a total preorder ≤φ. Then using

Remark 1, let Φ be the LP faithful assignment associating with every GLP P the

total preorder ≤P=≤φ, where φ is any propositional formula such that α2
P ≡ φ.

From Theorem 1, for all GLPs P ,Q and for every Y ∈ Ω, Y |= α2
P ◦ α2

Q if and

only if Y ∈ min(mod(Q),≤P ). Now, let Ψ be the mapping associating with every

GLP P and every interpretation Y the set of interpretations P(Y ) = {X ∈ Ω |
(X ,Y ) ∈ SE (P)} ∪ {X ∈ f (Y ) | Y 6|= P}. By definition, Ψ satisfies conditions

(a) - (e) of a well-defined assignment (cf. Definition 13). Then, let us consider the

GLP revision operator ? associated with the GLP parted assignment (Φ,Ψ). We

need to check that for all GLPs P ,Q , SE (P ? Q) = SE (P ?◦,f Q). Given two

GLPs P ,Q , if P + Q is consistent, we directly get SE (P ? Q) = SE (P ?◦,f Q)

from Definition 15 and postulate (RA2). So assume that P +Q is inconsistent. We

first prove that SE (P ? Q) ⊆ SE (P ?◦,f Q). Let (X ,Y ) ∈ SE (P ? Q). We have

(X ,Y ) ∈ SE (Q), Y ∈ min(mod(Q),≤P ) and X ∈ P(Y ). Thus (X ,Y ) ∈ SE (Q),

Y |= α2
P ◦ α2

Q and X ∈ P(Y ). We need to show that X ∈ f (Y ). Yet since P + Q

is inconsistent, we have (X ,Y ) 6∈ SE (P); and since (X ,Y ) ∈ SE (Q), we also have

(Y ,Y ) ∈ SE (Q), so (Y ,Y ) 6∈ SE (P), thus Y 6|= P . By definition of P(Y ), this

means that X ∈ f (Y ). Since (X ,Y ) ∈ SE (Q), Y |= α2
P ◦ α2

Q and X ∈ f (Y ), we

have (X ,Y ) ∈ SE (P ?◦,f Q). Therefore, SE (P ?Q) ⊆ SE (P ?◦,f Q). We prove now

that SE (P?◦,f Q) ⊆ SE (P?Q). Let (X ,Y ) ∈ SE (P?Q). We have (X ,Y ) ∈ SE (Q),

Y ∈ α2
P ◦ α2

Q and X ∈ f (Y ). Thus (X ,Y ) ∈ SE (Q), Y ∈ min(mod(Q),≤P ) and

X ∈ f (Y ). We need to show that X ∈ P(Y ). Yet since P + Q is inconsistent and

since we have (X ,Y ) ∈ SE (Q), we also have (Y ,Y ) ∈ SE (Q), so (Y ,Y ) 6∈ SE (P),

thus Y 6|= P . So by definition of P(Y ), we get that X ∈ P(Y ). Since (X ,Y ) ∈
SE (Q), Y ∈ min(mod(Q),≤P ) and X ∈ P(Y ), we have (X ,Y ) ∈ SE (P ? Q).

Therefore, SE (P ?◦,f Q) ⊆ SE (P ?Q). Hence, SE (P ?◦,f Q) = SE (P ?Q).

Proposition 5

For all propositional-based GLP revision operators ?◦1,f1 , ?◦2,f2 , we have ?◦1,f1 =

?◦2,f2 if and only if ◦1 = ◦2 and f1 = f2.
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Proof

Let ?◦1,f1 , ?◦2,f2 be two propositional-based GLP revision operators.

(If part) Obvious by Definition 15.

(Only If part) Let us prove the contraposite, i.e., assume that ◦1 6= ◦2 or f1 6= f2
and let us show that ?◦1,f1 6= ?◦2,f2 . First, assume that ◦1 6= ◦2. This means that

there exist two propositional formulae φ, ψ such that φ◦1ψ 6≡ φ◦2ψ. Then, let P ,Q

be two GLPs defined such that α2
P ≡ φ and α2

Q ≡ ψ. We have mod(α2
P ◦1 α2

Q) 6=
mod(α2

P ◦2 α2
Q). By Definition 15 since ?◦1,f1 , ?◦2,f2 are both propositional-based

GLP revision operators, ◦1 and ◦2 are both KM revision operators. This means

that ◦1 and ◦2 satisfy the postulate (R2) (see Definition 2), but since mod(α2
P ◦1

α2
Q) 6= mod(α2

P ◦2 α2
Q), this also means that α2

P ∧ α2
Q is inconsistent, i.e., P +Q is

inconsistent. Hence, from Definition 15 we can see that for every propositional-based

LP revision operator ?◦,f , we have mod(P ?◦,f Q) = mod(α2
P ◦ α2

Q), This means

that mod(P ?◦1,f1 Q) 6= mod(P ?◦2,f2 Q), thus SE (P ?◦1,f1 Q) 6= SE (P ?◦2,f2 Q).

Therefore, ?◦1,f1 6= ?◦2,f2 .

Now, assume that f1 6= f2. So there exists an interpretation Y such that f1(Y ) 6=
f2(Y ). We fall into at least one of the two following cases: (i) there exists X ∈
f1(Y ) such that X /∈ f2(Y ), or (ii) there exists X ∈ f2(Y ) such that X /∈ f1(Y ).

Assume that we fall into the first case (i) (the second case (ii) leads to the same

result by symmetry). Now, let P ,Q be two GLPs defined such that Y 6|= P and

SE (Q) = {(X ,Y ), (Y ,Y )}. P + Q is inconsistent. Then by Definition 15 we get

that SE (P ?◦1,f1 Q) = {(X ,Y ), (Y ,Y )} and SE (P ?◦2,f2 Q) = {(Y ,Y )}, thus

SE (P ?◦1,f1 Q) 6= SE (P ?◦2,f2 Q). Therefore, ?◦1,f1 6= ?◦2,f2 .

Proposition 6

For every (Φ,Ψ) ∈ GLPpart and every Γ ∈ GLPfaith , ((Φ,Ψ),Γ) ∈ σpart→faith if

and only if for all GLPs P ,Q , min(SE (Q),≤∗P ) = {(X ,Y ) | (X ,Y ) ∈ SE (Q),Y ∈
min(mod(Q), ≤P ),X ∈ P(Y )}.

Proof

In this proof, for every well-defined set of SE interpretations S , lp(S ) denotes any

GLP P such that SE (P) = S . Let (Φ,Ψ) ∈ GLPpart and Γ ∈ GLPfaith . We have to

show that ((Φ,Ψ),Γ) ∈ σ, i.e., conditions (i) and (ii) involved in the definition of

σpart→faith are satisfied, if and only if for all GLP P ,Q , we have min(SE (Q),≤∗P )

= {(X ,Y ) | (X ,Y ) ∈ SE (Q),Y ∈ min(mod(Q),≤P ),X ∈ P(Y )}. For simplicity

reasons we abuse notations and respectively denote Sfaith = min(SE (Q),≤∗P ) and

Spart = {(X ,Y ) | (X ,Y ) ∈ SE (Q),Y ∈ min(mod(Q),≤P ),X ∈ P(Y )}.

(If part) Assume that for all GLP P ,Q , Sfaith = Spart . We have to show that

conditions (i) and (ii) involved in the definition of σpart→faith are satisfied.

We first prove that (i) for every GLP P and all interpretations Y ,Y ′ ∈ Ω,

(Y ,Y ) ≤∗P (Y ′,Y ′) if and only if Y ≤P Y ′. Let Y ,Y ′ ∈ Ω, assume that

(Y ,Y ) ≤∗P (Y ′,Y ′) and assume toward a contradiction that Y ′ <P Y . Let

Q be the GLP Q = lp({Y ,Y ′}). Then Y /∈ min(mod(Q),≤P ), thus (Y ,Y ) /∈
Spart . Hence, (Y ,Y ) /∈ Sfaith , which contradicts (Y ,Y ) ≤∗P (Y ′,Y ′). The other
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way around, assume that Y ≤P Y ′ and assume toward a contradiction that

(Y ′,Y ′) <∗P (Y ,Y ). Let Q be the GLP Q = lp({Y ,Y ′}). Then Y /∈ Sfaith ,

thus Y /∈ Spart , which means that Y /∈ min(mod(Q),≤P ) or Y /∈ P(Y ). Yet the

fact that Y /∈ min(mod(Q),≤P ) contradicts Y ≤P Y ′ and Y /∈ P(Y ) contradicts

condition (a) required by the well-defined assignment Ψ. This proves (i).

We now prove that (ii) for every GLP P , (X ,Y ) ≤∗P (Y ,Y ) and all interpre-

tations X ,Y ∈ Ω s.t. X ⊆ Y , (X ,Y ) ≤∗P (Y ,Y ) if and only if X ∈ P(Y ). Let

X ,Y ∈ Ω, X ⊆ Y , assume that (X ,Y ) ≤∗P (Y ,Y ) and assume toward a contra-

diction that X /∈ P(Y ). Then for the GLP Q defined as Q = lp({(X ,Y ), (Y ,Y )}),
we have (X ,Y ) /∈ Sfaith , so (X ,Y ) /∈ Spart , which contradicts (X ,Y ) ≤∗P (Y ,Y ).

The other way around, assume that X ∈ P(Y ) and assume toward a contradiction

that (Y ,Y ) <∗P (X ,Y ). Let Q be the GLP defined as Q = lp({(X ,Y ), (Y ,Y )}).
On the one hand Q has the only model Y , so min(mod(Q),≤P ) = {Y }. On the

other hand, we have (X ,Y ) /∈ Sfaith , so (X ,Y ) /∈ Spart , which means that we

should have Y /∈ min(mod(Q),≤P ) since we assumed that X ∈ P(Y ). This leads

to a contradiction. This proves (ii).

(Only If part) Assume that conditions (i) and (ii) involved in the definition of

σpart→faith are satisfied. We have to show that for all GLP P ,Q , we have Sfaith =

Spart . Let P ,Q be two GLPs.

We first prove that Sfaith ⊆ Spart . Let (X ,Y ) ∈ Sfaith . This means that for

every (X ′,Y ′) ∈ SE (Q), (X ,Y ) ≤∗P (X ′,Y ′). In particular, (X ,Y ) ≤∗P (Y ′,Y ′).

And condition (4) required by the GLP compliant faithful assignment Γ states that

(Y ,Y ) ≤∗P (X ,Y ). Hence, (Y ,Y ) ≤∗P (Y ′,Y ′). So by condition (i) involved in the

definition of σpart→faith , we get that Y ≤P Y ′ for every Y ′ ∈ Ω. So we showed that

Y ∈ min(mod(Q),≤P ). Furthermore, since for all (X ′,Y ′) ∈ SE (Q), (X ,Y ) ≤∗P
(X ′,Y ′), we also have that (X ,Y ) ≤∗P (Y ,Y ), and condition (ii) involved in the

definition of σpart→faith implies that X ∈ P(Y ). Since Y ∈ min(mod(Q),≤P ) and

X ∈ P(Y ), we get that (X ,Y ) ∈ Spart .

We prove now that Spart ⊆ Sfaith . Let (X ,Y ) ∈ Spart . Since Y ∈ min(mod(Q),

≤P ), condition (i) involved in the definition of σpart→faith implies that (Y ,Y ) ≤∗P
(Y ′,Y ′) for every Y ′ ∈ Ω. Together with condition (4) required by the GLP

compliant faithful assignment Γ, we get for all X ′,Y ′ ∈ Ω s.t. X ′ ⊆ Y ′ that

(Y ,Y ) ≤∗P (X ′,Y ′). And since X ∈ P(Y ), condition (ii) involved in the defini-

tion of σpart→faith implies that (X ,Y ) ≤∗P (Y ,Y ). Therefore, for all X ′,Y ′ ∈ Ω

s.t. X ′ ⊆ Y ′, (X ,Y ) ≤∗P (X ′,Y ′). This is true in particular for every (X ′,Y ′) ∈
SE (Q). This means that (X ,Y ) ∈ Sfaith , and this concludes the proof.

Proposition 7

Let ◦ be a KM revision operator. Then for all GLP revision operators ?1, ?2 ∈
GLP(◦), ?1 �◦ ?2 if and only if for all GLPs P ,Q , we have AS (P ?1 Q) ⊆ AS (P ?2

Q).

Proof

Let ◦ be a KM revision operator and ?1, ?2 ∈ GLP(◦).
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(Only if part) Assume that ?1 �◦ ?2. By Definition 18, for every interpretation

Y we have f2(Y ) ⊆ f1(Y ). Let P ,Q be two GLPs such that P + Q is incon-

sistent (the case where P + Q is consistent is trivial since by Definition 15, we

would have P ?1 Q = P ?2 Q = P + Q) and let Y ∈ AS (P ?1 Q). We need to

show that Y ∈ AS (P ?2 Q). We have (Y ,Y ) ∈ SE (P ?1 Q) and for every X ( Y ,

(X ,Y ) /∈ SE (P ?1Q). Since ?1 is a propositional-based revision operator (cf. Propo-

sition 4), from Definition 15 we get that Y |= α2
P ◦ α2

Q (i) and for every X ( Y ,

(X ,Y ) /∈ SE (Q) or X /∈ f1(Y ), thus (X ,Y ) /∈ SE (Q) or X /∈ f2(Y ), therefore

(X ,Y ) /∈ SE (P ?2 Q) (ii). By (i) we get that (Y ,Y ) ∈ SE (P ?2 Q) and by (ii) we

have for every X ( Y , (X ,Y ) /∈ SE (P ?2 Q). Therefore, by Definition 15 we get

that Y ∈ AS (P ?2 Q). Hence, AS (P ?1 Q) ⊆ AS (P ?2 Q).

(If part) Assume that for all GLPs P ,Q , AS (P ?1 Q) ⊆ AS (P ?2 Q). Toward a

contradiction, assume that ?1 6�◦ ?2. This means that there exists an interpretation

Y such that f2(Y ) 6⊆ f1(Y ), that is, there exists an interpretation X ( Y such

that X ∈ f2(Y ) and X /∈ f1(Y ). Then, consider a GLP Q such that SE (Q) =

{(X ,Y ), (Y ,Y )} and any GLP P such that Y 6|= P . Since Y is the only in-

terpretation satisfying Y |= Q , from postulates (R1) and (R3) of a KM revision

operator we have Y |= α2
P ◦ α2

Q . Moreover X /∈ f1(Y ). So we get from Definition

15 that SE (P ?1 Q) = {(Y ,Y )}. On the other hand, since X ∈ f2(Y ) we get that

SE (P ?2Q) = {(X ,Y ), (Y ,Y )}. Therefore, Y ∈ AS (P ?1Q) and Y /∈ AS (P ?2Q).

This contradicts AS (P ?1 Q) ⊆ AS (P ?2 Q).

Proposition 8

The skeptical GLP revision operators are the only GLP revision operators ? such

that for all GLPs P ,Q , whenever P + Q is inconsistent, we have AS (P ? Q) ⊆
AS (Q).

Proof

Let ◦ be a KM revision operator and ?◦S be the corresponding skeptical GLP revision

operator. We first show that for all GLPs P ,Q such that P + Q is inconsistent,

we have AS (P ?◦S Q) ⊆ AS (Q). ?◦S corresponds to the propositional-based revision

GLP operator ?◦,f such that for every interpretation Y , f (Y ) = 2Y . Let P ,Q

be two GLPs such that P + Q is inconsistent. Let Y ∈ AS (P ?◦S Q). We have

(Y ,Y ) ∈ SE (P ?◦S Q), so by Definition 15 we get that (Y ,Y ) ∈ SE (Q). Now,

assume toward a contradiction that Y /∈ AS (Q). This means that there exists X (
Y such that (X ,Y ) ∈ SE (Q). Yet f (Y ) = 2Y , so X ∈ f (Y ), thus by Definition

15 this implies that (X ,Y ) ∈ SE (P ?◦S Q), this contradicts Y ∈ AS (P ?◦S Q).

Therefore, Y ∈ AS (Q). Hence, AS (P ?◦S Q) ⊆ AS (Q).

We now show that for some any revision operator ?◦,f , if we have AS (P ? Q) ⊆
AS (Q) for all GLPs P ,Q such that P + Q is inconsistent, then ?◦,f corresponds

to the skeptical GLP revision operator ?◦S . Let us show the contraposite, that is,

assume that ?◦,f is not a skeptical GLP revision operator. This means that there

exists an interpretation Y such that f (Y ) 6= 2Y , i.e., there exists X ( Y such that

X /∈ f (Y ). Then, consider a GLP Q such that SE (Q) = {(X ,Y ), (Y ,Y )} and any
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GLP P such that Y 6|= P . Since Y is the only interpretation satisfying Y |= Q ,

from postulates (R1) and (R3) of a KM revision operator we have Y |= α2
P ◦α2

Q . On

the one hand, since SE (Q) = {(X ,Y ), (Y ,Y )} we have Y /∈ AS (Q). On the other

hand, since X /∈ f (Y ) we get from Definition 15 that SE (P ?◦,f Q) = {(Y ,Y )},
that is, Y ∈ AS (P ?◦,f Q). Therefore, AS (P ?◦,f Q) 6⊆ AS (Q).

Proposition 9

The brave GLP revision operators are the only GLP revision operators ?◦,f such

that for all GLPs P ,Q , whenever P + Q is inconsistent, we have AS (P ?◦,f Q) =

mod(α2
P ◦ α2

Q).

Proof

Let ◦ be a KM revision operator and ?◦B be the corresponding brave GLP revision

operator. We first show that for all GLPs P ,Q such that P + Q is inconsistent,

we have AS (P ?◦B Q) = mod(α2
P ◦ α2

Q). ?◦B corresponds to the propositional-based

revision GLP operator ?◦,f such that for every interpretation Y , f (Y ) = {Y }.
Let P ,Q be two GLPs such that P + Q is inconsistent. For every interpretation

Y and every X ( Y , X /∈ f (Y ), thus from Definition 15 for every interpretation

Y , we have Y ∈ AS (P ?◦B Q) if and only if (Y ,Y ) ∈ SE (P ?◦B Q) if and only if

Y |= α2
P ◦ α2

Q . Therefore, AS (P ?◦B Q) = mod(α2
P ◦ α2

Q).

We now show that for some any revision operator ?◦,f , if we have AS (P ?◦B Q) =

mod(α2
P ◦α2

Q) for all GLPs P ,Q such that P +Q is inconsistent, then ?◦,f corres-

ponds to the brave GLP revision operator ?◦B . Let us show the contraposite, that

is, assume that ?◦,f is not a brave GLP revision operator. This means that there

exists an interpretation Y such that f (Y ) 6= {Y }, i.e., there exists X ( Y such

that X ∈ f (Y ). Then, consider a GLP Q such that SE (Q) = {(X ,Y ), (Y ,Y )}
and any GLP P such that Y 6|= P . On the one hand, since Y is the only interpre-

tation satisfying Y |= Q , from postulates (R1) and (R3) of a KM revision operator

we have Y |= α2
P ◦ α2

Q . On the other hand, since SE (Q) = {(X ,Y ), (Y ,Y )} and

X ∈ f (Y ), we get from Definition 15 that SE (P ?◦,f Q) = {(X ,Y ), (Y ,Y )}, that

is, Y /∈ AS (P ?◦,f Q). Therefore, AS (P ?◦B Q) = mod(α2
P ◦ α2

Q).

Proposition 10

MC(◦D) is coNP-complete.

Proof

Let φ, ψ be two formulae and I be an interpretation. In the case where I |= φ ∧ ψ
or I 6|= ψ, to determine whether I |= φ ◦D ψ can be checked in polynomial time

(the answer is “yes” in the former case, “no” in the latter one). So let us assume

that I |= ¬φ∧ψ. Then to determine whether I |= φ ◦D ψ comes down to determine

whether φ ∧ ψ is an inconsistent formula, that can be down using one call to a

coNP oracle. Hence, MC(◦D) ∈ coNP. We prove coNP-hardness by exhibiting a

polynomial reduction from the unsatisfiability problem. Consider a propositional

formula α over a set of propositional variables A, and let us associate with it in

polynomial time:

• the formulae φ, ψ defined on A ∪ {new ,new ′} (with A ∩ {new ,new ′} = ∅) as
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φ = α ∧ new and ψ = new ′;

• the interpretation I overA∪{new ,new ′} defined as I (p) = 0 if p = new , otherwise

I (p) = 1.

If α is inconsistent then φ is inconsistent, so φ◦D ψ = ψ = new ′; since I (new ′) = 1,

we get that I |= ψ, so I |= φ ◦D ψ. Now, if α is consistent then φ is consistent,

so φ ◦D ψ = φ ∧ ψ = α ∧ new ∧ new ′; since I (new) = 0, we get that I 6|= φ ◦D ψ.

We just showed that α is inconsistent if and only if I |= φ ◦D ψ, thus MC(◦D) is

coNP-hard.

Proposition 11

The skeptical GLP revision operators are both DLP revision operators and NLP

revision operators.

Proof

We show that every skeptical GLP revision operator ?◦,f = ?◦S is a DLP revision

operator. We have to prove that for all DLP P ,Q , P ?◦,f Q is a DLP, i.e., that

SE (P ?◦S Q) is a complete set of SE interpretations. This is trivial when P + Q is

consistent since in this case, P ?◦S Q = P + Q and expansion preserves complete-

ness of SE models, so assume that P + Q is inconsistent. Let X ,Y ,Z s.t. Y ⊆ Z ,

(X ,Y ), (Z ,Z ) ∈ SE (P ?◦,f Q), and let us show that (X ,Z ) ∈ SE (P ?◦,f Q). By defi-

nition of a propositional-based LP revision operator, we know that (X ,Y ), (Z ,Z ) ∈
SE (Q). Yet Q is a DLP, thus (X ,Z ) ∈ SE (Q). Since (Z ,Z ) ∈ SE (P ?◦,f Q), we

get that Z |= α2
P ◦ α2

Q . Moreover, X ∈ f (Z ) since ?◦S is a skeptical GLP revision

operator. Hence, by definition of a propositional-based LP revision operator we get

that (X ,Z ) ∈ SE (P ?◦,f Q).

One can prove that every skeptical GLP revision operator ?◦,f = ?◦S is a NLP

revision operator is a similar way, by augmenting the above conditions of com-

pleteness on SE interpretations with the condition of closeness under here-

intersection.

Proposition 12

An LP operator ? is a DLP (resp. NLP) revision operator if and only if there

exists a DLP (resp. NLP) parted assignment (Φ,ΨΦ), where Φ associates with

every DLP (resp. NLP) P a total preorder ≤P , ΨΦ is a Φ-based complete (resp.

normal) assignment which associates with every DLP (resp. NLP) P and every

interpretation Y a set of interpretations PΦ(Y ), and such that for all DLPs (resp.

NLPs) P ,Q ,

SE (P ?Q) = {(X ,Y ) | (X ,Y ) ∈ SE (Q),Y ∈ min(mod(Q),≤P ),X ∈ PΦ(Y )}·

Proof

Let us first prove the representation of DLP revision operators.

(Only if part) The proof is identical to the one of Proposition 3 (i.e., our represen-

tation theorem for GLP revision operators), except that we now consider that for

every well-defined set of SE interpretations S , lp(S ) denotes any DLP R whose set

of SE models is the smallest (w.r.t. the set inclusion) superset of S , i.e., S ⊆ SE (R)
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and there is no DLP R′ such that S ⊆ SE (R′) and SE (R′) ( SE (R). Remark

here that given some set S , the DLP lp(S ) is uniquely defined (modulo strong equi-

valence): to determine SE (lp(S )), it is enough to add to S all SE interpretations

(X ,Z ) which are missing from S to ensure its completeness, i.e., those SE interpre-

tations (X ,Z ) such that (X ,Y ), (Z ,Z ) ∈ S for some interpretation Y ⊆ Z . Also

when S is of the form {(Y ,Y ) | Y ∈ E} for some set of interpretations E , we write

lp(E ) instead of lp(S ).

Obviously enough, Remark 2 and 4 from the proof of Proposition 3 still hold. We

show now that Remark 3 from the proof of Proposition 3 also holds, i.e., that for

all sets of interpretations E ,F , lp(E ) + lp(F ) ≡s lp(E ∩ F ). First, let us show the

following intermediate result, that is, for every set E of interpretations and every

SE interpretation (X ,Z ),

(X ,Z ) ∈ SE (lp(E )) if and only if (X ,X ), (Z ,Z ) ∈ SE (lp(E ))· (1)

Equation 1 trivially holds when X = Z , so assume X ( Z . The if part comes from

the fact that SE (lp(E )) is complete. Let us prove the only if part. On the one hand,

(Z ,Z ) ∈ SE (lp(E )) since SE (lp(E )) is well-defined. On the other hand, SE (lp(E ))

is complete and minimal w.r.t. the set inclusion, which means that there necessarily

exists Y ( Z , X ⊆ Y such that (X ,Y ) ∈ SE (lp(E )). If now X ( Y , then the

reasoning can be repeated recursively (by setting Z = Y each time). Then after a

finite number of steps we get that X = Y since we deal with a finite set of atoms,

that is, (X ,X ) ∈ SE (lp(E )) which proves that Equation 1 holds. Now, for every

SE interpretation (X ,Z ), we have that

(X ,Z ) ∈ SE (lp(E ) + lp(F ))

if and only if (X ,Z ) ∈ SE (lp(E )) ∩ SE (lp(F ))

if and only if (X ,X ), (Z ,Z ) ∈ SE (lp(E )) ∩ SE (lp(F )) (by Equation 1)

if and only if X ,Z ∈ E ∩ F

if and only if (X ,X ), (Z ,Z ) ∈ SE (lp(E ∩ F ))

if and only if (X ,Z ) ∈ SE (lp(E ∩ F )) (by Equation 1).

This shows that Remark 3 from the proof of Proposition 3 also holds here, i.e., that

for all sets of interpretations E ,F , lp(E ) + lp(F ) ≡s lp(E ∩ F ).

Consider now a DLP revision operator ?. We associate with ? a DLP parted

assignment (Φ,ΨΦ) which uses the same construction as for a GLP parted assign-

ment in the proof of Proposition 3: define for every DLP P the relation ≤P over

interpretations such that ∀Y ,Y ′ ∈ Ω, Y ≤P Y ′ iff Y |= P ? lp({Y ,Y ′}), and by

defining for every DLP P and every Y ∈ Ω the set PΦ(Y ) as PΦ(Y ) = {X ⊆ Y |
(X ,Y ) ∈ SE (P ? lp({(X ,Y ), (Y ,Y )}))}. Then the same proof as for Proposition

3 can be used to show that:

(i) for every DLP P , ≤P is a total preorder;

(ii) for all DLPs P ,Q , SE (P?Q) = {(X ,Y ) | (X ,Y ) ∈ SE (Q),Y ∈ min(mod(Q),

≤P ),X ∈ PΦ(Y )};
(iii) conditions (1 - 3) of the faithful assignment Φ and conditions (a - e) of the

Φ-based complete assignment ΨΦ are satisfied.
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It remains to show that the condition (f) of ΨΦ is satisfied. Let P be a DLP, X ,Y ,Z

be interpretations such that Y ⊆ Z , Y 'P Z and X ∈ PΦ(Y ). Assume toward

a contradiction that X /∈ PΦ(Z ). By (ii) we get that SE (P ? lp({(X ,Y ), (Y ,Y ),

(Z ,Z ), (X ,Z )})) = {(X ,Y ), (Y ,Y ), (Z ,Z )}, which is not a complete set of SE

interpretations since (X ,Z ) does not belong to it. This contradicts the fact that

P ? lp({(X ,Y ), (Y ,Y ), (Z ,Z ), (X ,Z )}) is a DLP, i.e., that ? is a DLP revision

operator.

(If part) We consider a faithful assignment Φ that associates with every DLP

P a total preorder ≤P and a Φ-based complete assignment ΨΦ that associates

with every DLP P and every interpretation Y a set PΦ(Y ) ⊆ Ω. For all DLPs

P ,Q , let S(P ,Q) be the set of SE interpretations defined as S(P ,Q) = {(X ,Y ) |
(X ,Y ) ∈ SE (Q),Y ∈ min(mod(Q),≤P ),X ∈ PΦ(Y )}. Let P ,Q be two GLPs.

The proof that S(P ,Q) is well-defined is given in the proof of Proposition 3, by

using condition (a) of the Φ-based complete assignment ΨΦ. We show that S(P ,Q)

is complete by using condition (f). Let (X ,Y ), (Z ,Z ) be two SE interpretations

such that Y ⊆ Z and (X ,Y ), (Z ,Z ) ∈ S(P ,Q). By definition of S(P ,Q) we

get that Y ,Z ∈ min(mod(Q),≤P ), which means that Y 'P Z , and we also get

that X ∈ PΦ(Y ). Thus condition (f) implies that also X ∈ PΦ(Z ). Therefore,

(X ,Z ) ∈ S(P ,Q) which means that S(P ,Q) is complete. Then we define an ope-

rator ? associating two DLPs P ,Q with a new DLP P ?Q such that for all DLPs

P ,Q , SE (P ? Q) = S(P ,Q). The proof that ? satisfies postulates (RA1 - RA6) is

identical to the one of Proposition 3.

The proof in the NLP case is very similar to the DLP one and uses the same

construction, by adapting the structures accordingly and considering the additional

condition (g) involved in a NLP parted assignment.

(Only if part) For every well-defined set of SE interpretations S , lp(S ) denotes any

NLP R (which is uniquely defined modulo equivalence) whose set of SE models is

the smallest (w.r.t. the set inclusion) superset of S . And when S is of the form

{(Y ,Y ) | Y ∈ E} for some set of interpretations E , we write lp(E ) instead of

lp(S ).

Remark 2 and 4 from the proof of Proposition 3 still hold, but we need to show

that Remark 3 from the proof of Proposition 3 also holds, i.e., that for all sets of

interpretations E ,F , lp(E ) + lp(F ) ≡s lp(E ∩ F ). For this purpose, we prove an

adaptation of Equation 1 previously given in this proof for DLPs, to the case of

NLPs; that is, for every set E of interpretations and every SE interpretation (X ,Z ),

(X ,Z ) ∈ SE (lp(E )) if and only if one of the two following conditions holds:

(i) (X ,X ), (Z ,Z ) ∈ SE (lp(E ))

(ii) there is a set of interpretations Y such that
⋂

Y∈Y Y = X , |Y| ≥ 2,

and ∀Y ∈ Y, (Y ,Y ) ∈ SE (lp(E ))·

(2)

Equation 2 trivially holds when X = Z , so assume X ( Z . The if part comes

from the fact that SE (lp(E )) is complete and closed under here-intersection. Let

us prove the only if part. Assume that it does not hold that (X ,X ), (Z ,Z ) ∈
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SE (lp(E )). Then by Equation 1, (X ,Z ) belongs to SE (lp(E )) because its condition

specific for closure under here-intersection, i.e., ∃Y ,Y ′ ⊆ Z , Y ∩ Y ′ = X , Y 6=
Y ′, (Y ,Z ), (Y ′,Z ) ∈ SE (lp(E )). By applying this reasoning recursively, since we

are dealing with a finite set of atoms there must exist a finite set Y of at least

two interpretations such that
⋂

Y∈Y Y = X , and such that all (Y ,Z ) such that

Y ∈ Y belong SE (lp(E )) because the condition of completeness, which means by

Equation 1 that for every Y ∈ Y, (Y ,Y ) ∈ SE (lp(E )).

Now, for every SE interpretation (X ,Z ), we have that

(X ,Z ) ∈ SE (lp(E ) + lp(F ))

if and only if (X ,Z ) ∈ SE (lp(E )) ∩ SE (lp(F ))

if and only either (i) or (ii) from Equation 2 holds for both E and F ·

Yet on the one hand, condition (i) from Equation 2 holds for both E and F if

and only if X ,Z ∈ E ∩ F if and only if (X ,X ), (Z ,Z ) ∈ SE (lp(E ∩ F )). On the

other hand, condition (ii) from Equation 2 holds for both E and F if and only if

there is a set of interpretations Y such that
⋂

Y∈Y Y = X , |Y| ≥ 2 and ∀Y ∈
Y, (Y ,Y ) ∈ SE (lp(E )) ∩ SE (lp(F )), if and only there is a set of interpretations

Y such that
⋂

Y∈Y Y = X , |Y| ≥ 2 and ∀Y ∈ Y, Y ∈ E ∩ F , if and only if

there is a set of interpretations Y such that
⋂

Y∈Y Y = X , |Y| ≥ 2 and ∀Y ∈ Y,

(Y ,Y ) ∈ SE (lp(E ∩ F )). Therefore, by Equation 2 we get that either (i) or (ii)

from Equation 2 holds for both E and F if and only if (X ,Z ) ∈ SE (lp(E ∩ F )).

This shows that Remark 3 from the proof of Proposition 3 also holds here, i.e., that

for all sets of interpretations E ,F , lp(E ) + lp(F ) ≡s lp(E ∩ F ).

Consider now a NLP revision operator ?, and similarly to the case of DLPs, we

associate with ? the following NLP parted assignment (Φ,ΨΦ): we define for every

DLP P the relation ≤P over interpretations such that ∀Y ,Y ′ ∈ Ω, Y ≤P Y ′ iff

Y |= P ? lp({Y ,Y ′}), and for every GLP P and every Y ∈ Ω the set PΦ(Y ) as

PΦ(Y ) = {X ⊆ Y | (X ,Y ) ∈ SE (P ? lp({(X ,Y ), (Y ,Y )}))}. Then the same proof

as for Proposition 3 can be used to show that:

(i) for every NLP P , ≤P is a total preorder;

(ii) for all NLPs P ,Q , SE (P?Q) = {(X ,Y ) | (X ,Y ) ∈ SE (Q),Y ∈ min(mod(Q),

≤P ),X ∈ PΦ(Y )};
(iii) conditions (1 - 3) of the faithful assignment Φ and conditions (a - e) of the

Φ-based complete assignment ΨΦ are satisfied.

Additionally, we can use the same proof as for DLPs to show that condition (f). It

remains to show that the condition (g) of ΨΦ is satisfied. Let P be a DLP, X ,Y ,Z be

interpretations such that X ,Y ∈ PΦ(Z ). Assume toward a contradiction that X ∩
Y /∈ PΦ(Z ). By (ii) we get that SE (P ? lp({(X ,Z ), (Y ,Z ), (Z ,Z ), (X ∩Y ,Z )})) =

{(X ,Y ), (Y ,Y ), (Z ,Z )}, which is not closed under here-intersection since (X ∩
Y ,Z ) does not belong to it. This contradicts the fact that P ? lp({(X ,Z ), (Y ,Z ),

(Z ,Z ), (X ∩Y ,Z )}) is a NLP, i.e., that ? is a NLP revision operator.

(If part) We consider a NLP parted assignment (Φ,ΨΦ) defined as the DLP parted

assignment in the if part of the proof for the DLP case. Then defined an operator
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? associating two NLPs P ,Q with a new NLP P ?Q such that for all NLPs P ,Q ,

SE (P ?Q) = {(X ,Y ) | (X ,Y ) ∈ SE (Q),Y ∈ min(mod(Q),≤P ),X ∈ PΦ(Y )}. We

already showed that SE (P ?Q) is well-defined and complete, and condition (g) of

the Φ-based normal assignment ΨΦ directly implies that SE (P ?Q) is closed under

here-intersection. Therefore, P ? Q is a NLP. The proof that ? satisfies postulates

(RA1 - RA6) is identical to the one of Proposition 3.


