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Appendix A Grammar of ALM

〈boolean〉 :- true | false

〈non zero digit〉 :- 1 | ... | 9

〈digit〉 :- 0 | 〈non zero digit〉
〈lowercase letter〉 :- a | ... | z

〈uppercase letter〉 :- A | ... | Z

〈letter〉 :- 〈lowercase letter〉 | 〈uppercase letter〉
〈identifier〉 :- 〈lowercase letter〉 | 〈identifier〉〈letter〉 | 〈identifier〉〈digit〉
〈variable〉 :- 〈uppercase letter〉 | 〈variable〉〈letter〉 | 〈variable〉〈digit〉
〈positive integer〉 :- 〈non zero digit〉 | 〈positive integer〉〈digit〉
〈integer〉 :- 0 | 〈positive integer〉 | − 〈positive integer〉
〈arithmetic op〉 :- + | − | ∗ | / | mod

〈comparison rel〉 :- > | >= | < | <=

〈arithmetic rel〉 :- 〈eq〉 | 〈neq〉 | 〈comparison rel〉
〈basic arithmetic term〉 :- 〈variable〉 | 〈identifier〉 | 〈integer〉
〈basic term〉 :- 〈basic arithmetic term〉 | 〈boolean〉
〈function term〉 :- 〈identifier〉〈function args〉
〈function args〉 :- (〈term〉〈remainder function args〉)
〈remainder function args〉 :- ε | , 〈term〉〈remainder function args〉
〈arithmetic term〉 :- 〈basic arithmetic term〉〈arithmetic op〉〈basic arithmetic term〉
〈term〉 :- 〈basic term〉 | 〈arithmetic term〉
〈positive function literal〉 :- 〈function term〉 | 〈function term〉〈eq〉〈term〉
〈function literal〉 :- 〈positive function literal〉 | ¬〈function term〉 |

〈function term〉〈neq〉〈term〉
〈literal〉 :- 〈function literal〉 | 〈arithmetic term〉〈arithmetic rel〉〈arithmetic term〉
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〈var id〉 :- 〈variable〉 | 〈identifier〉
〈body〉 :- ε | , 〈literal〉〈body〉
〈dynamic causal law〉 :- occurs(〈var id〉) causes 〈positive function literal〉 if

instance(〈var id〉, 〈var id〉)〈body〉.
〈state constraint〉 :- 〈sc head〉 if 〈body〉.
〈sc head〉 :- false | 〈positive function literal〉
〈definition〉 :- 〈function term〉 if 〈body〉.
〈executability condition〉 :- imposible occurs(〈var id〉) if

instance(〈var id〉, 〈var id〉)〈extended body〉.
〈extended body〉 :- ε | , 〈literal〉〈body〉 | , occurs(〈var id〉)〈extended body〉 |

, ¬occurs(〈var id〉)〈extended body〉
〈system description〉 :- system description 〈identifier〉 〈theory〉〈structure〉
〈theory〉 :- theory 〈identifier〉〈set of modules〉 | import 〈identifier〉 from 〈identifier〉
〈set of modules〉 :- 〈module〉〈remainder modules〉
〈remainder modules〉 :- ε | 〈module〉〈remainder modules〉
〈module〉 :- module 〈identifier〉〈module body〉 |

import 〈identifier〉.〈identifier〉 from 〈identifier〉
〈module body〉 :- 〈sort declarations〉〈constant declarations〉〈function declarations〉〈axioms〉
〈sort declarations〉 :- ε | sort declarations 〈one sort decl〉〈remainder sort declarations〉
〈remainder sort declarations〉 :- ε | 〈one sort decl〉〈remainder sort declarations〉
〈one sort decl〉 :- 〈identifier〉〈remainder sorts〉 :: 〈sort name〉〈remainder sort names〉〈attributes〉
〈remainder sorts〉 :- ε | , 〈identifier〉〈remainder sorts〉
〈remainder sort names〉 :- ε | , 〈sort name〉〈remainder sorts〉
〈sort name〉 :- 〈identifier〉 | [ 〈integer〉..〈integer〉 ]

〈attributes〉 :- ε | attributes 〈one attribute decl〉〈remainder attribute declarations〉
〈one attribute decl〉 :- 〈identifier〉 : 〈arguments〉〈identifier〉
〈arguments〉 :- ε | 〈identifier〉〈remainder args〉 →
〈remainder args〉 :- ε | × 〈identifier〉〈remainder args〉
〈remainder attribute declarations〉 :- ε |

〈one attribute decl〉〈remainder attribute declarations〉
〈constant declarations〉 :- ε | object constants 〈one constant decl〉〈remainder constant declarations〉
〈one constant decl〉 :- 〈identifier〉〈constant params〉 : 〈identifier〉
〈remainder constant declarations〉 :- ε | 〈one constant decl〉〈remainder constant declarations〉
〈constant params〉 :- ( 〈identifier〉〈remainder constant params〉 )

〈remainder constant params〉 :- ε | , 〈identifier〉〈remainder constant params〉
〈function declarations〉 :- ε | function declarations 〈static declarations〉〈fluent declarations〉
〈static declarations〉 :- ε | statics 〈basic function declarations〉〈defined function declarations〉
〈fluent declarations〉 :- ε | fluents 〈basic function declarations〉〈defined function declarations〉
〈basic function declarations〉 :- ε | basic 〈one function decl〉〈remainder function declarations〉
〈defined function declarations〉 :- ε | defined 〈one function decl〉〈remainder function declarations〉
〈one function decl〉 :- 〈total partial〉〈one f decl〉
〈total partial〉 :- ε | total

〈one f decl〉 :- 〈identifier〉 : 〈identifier〉〈remainder args〉 → 〈identifier〉
〈remainder function declarations〉 :- ε | 〈one function decl〉〈remainder function declarations〉
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〈axioms〉 :- ε | axioms 〈one axiom〉〈remainder axioms〉
〈one axiom〉 :- 〈dynamic causal law〉 | 〈state constraint〉 | 〈definition〉 | 〈executability condition〉
〈remainder axioms〉 :- ε | 〈axiom〉〈remainder axioms〉
〈structure〉 :- structure 〈identifier〉〈constant defs〉〈instance defs〉〈statics defs〉
〈constant defs〉 :- ε | constants 〈one constant def〉〈remainder constant defs〉
〈one constant def〉 :- 〈identifier〉 = 〈value〉
〈value〉 :- 〈identifier〉 | 〈boolean〉 | 〈integer〉
〈remainder constant defs〉 :- ε | 〈one constant def〉〈remainder constant defs〉
〈instance defs〉 :- ε | instances 〈one instance def〉〈remainder instance defs〉
〈one instance def〉 :- 〈object name〉〈remainder object names〉 in

〈identifier〉〈cond〉〈attribute defs〉
〈object name〉 :- 〈identifier〉〈object args〉
〈object args〉 :- ε | (〈basic term〉〈remainder object args〉)
〈remainder object args〉 :- ε | , 〈basic term〉〈remainder object args〉
〈remainder object names〉 :- ε | , 〈object name〉〈remainder object names〉
〈cond〉 :- ε | where 〈literal〉〈remainder cond〉
〈remainder cond〉 :- ε | , 〈literal〉〈remainder cond〉
〈attribute defs〉 :- ε | 〈one attribute def〉〈remainder attribute defs〉
〈one attribute def〉 :- 〈identifier〉〈object args〉 = 〈basic term〉
〈statics defs〉 :- ε | values of statics 〈one static def〉〈remainder statics defs〉
〈one static def〉 :- 〈function literal〉 if 〈body〉.
〈remainder statics defs〉 :- ε | 〈one static def〉〈remainder statics defs〉
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Appendix B ALM and the Digital Aristotle

The reader may have noticed that the ALM examples included in the body of

the paper are relatively small, which is understandable given that their purpose

was to illustrate the syntax and semantics of our language and the methodology

of representing knowledge in ALM. In this section, we show how the reuse of

knowledge in ALM can potentially lead to the creation of larger practical systems.

We present an application of our language to the task of question answering, in

which ALM’s conceptual separation between an abstract theory and its structure

played an important role in the reuse of knowledge. The signature of the theory

and its structure provided the vocabulary for the logic form translation of facts

expressed in natural language while the theory axioms contained the background

knowledge needed for producing answers. The theory representing the biological

domain remained unchanged and was coupled with various structures corresponding

to particular questions and representing the domain at different levels of granularity.

In addition to demonstrating the reuse of knowledge in ALM, this application also

shows the elaboration tolerance of our language, as only minor changes to the

structure had to be made when the domain was viewed in more detail, while the

theory stayed the same. In what follows, we present the application in more detail.

After designing our language, we tested and confirmed its adequacy for knowl-

edge representation in the context of a practical question answering application:

Project Halo (2002-2013) sponsored by Vulcan Inc.1 The goal of Project Halo was

the creation of a Digital Aristotle — “an application containing large volumes of

scientific knowledge and capable of applying sophisticated problem-solving methods

to answer novel questions” (Gunning et al. 2010). Initially, the Digital Aristotle was

only able to reason and answer questions about static domains. It lacked a method-

ology for answering questions about dynamic domains, as it was not clear how to

represent and reason about such domains in the language of the Digital Aristotle.

Our task within Project Halo was to create a methodology for answering questions

about temporal projection in dynamic domains. We had two objectives. First, we

wanted to see if the use of ALM for knowledge representation facilitated the task of

encoding extensive amounts of scientific knowledge through its means for the reuse

of knowledge. Second, we investigated whether provable correct and efficient logic

programming algorithms could be developed to use the resulting ALM knowledge

base in answering non-trivial questions.

Our target scientific domain was biology, specifically the biological process of cell

division (also called cell cycle). Cell cycle refers to the phases a cell goes through

from its “birth” to its division into two daughter cells. Cells consist of a number of

parts, which in turn consist of other parts (e.g., eukaryotic cells contain organelles,

cytoplasm, and a nucleus; the nucleus contains chromosomes, and the description

can continue with more detailed parts). The eukaryotic cell cycle consists of a growth

phase (interphase) and a duplication/division phase (mitotic phase), both of which

are conventionally described as sequences of sub-phases. Depending on the level

1 http://www.allenai.org/TemplateGeneric.aspx?contentId=9
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of detail of the description, these sub-phases may be simple events or sequences of

other sub-phases (e.g., the mitotic phase is described in more detail as a sequence of

two sub-phases: mitosis and cytokinesis; mitosis, in turn, can be seen as a sequence

of five sub-phases, etc.). Certain chemicals, if introduced in the cell, can interfere

with the ordered succession of events that is the cell cycle.

In order to be useful in answering complex questions, the ALM representation

of cell cycle had to capture (1) non-trivial specialized biological knowledge about

the structure of the cell at different stages of the cell cycle and (2) the dynamics

of naturally evolving process (such as cell cycle), which consist of a series of phases

and sub-phases that follow one another in a specific order, unless interrupted. We

represented such processes as sequences of actions intended by nature and used a

commonsense theory of intentions (Baral and Gelfond 2005) to reason about them.

Our ALM cell cycle knowledge base consisted of two library modules. One of

them was a general commonsense module describing sequences, in particular se-

quences of actions. The other module was a specialized one formalizing the biologi-

cal phenomenon of cell division. We begin with the presentation of our commonsense

module describing sequences, useful in modeling naturally evolving processes such

as cell division. The equality component(S,N) = E appearing in the axioms of mod-

ule sequence is supposed to be read as “the N th component of sequence S is E”.

The library module sequence is stored in a general library called commonsense lib.

module sequence

sort declarations

sequences :: universe

attributes

length : positive natural numbers

component : [0..length]→ universe

action sequences :: sequences

axioms

false if component(S,N) = E,

instance(S, action sequences),

¬instance(E, actions),
¬instance(E, action sequences).

The axiom ensures proper typing for the domain of an attribute component.

Next, we present our formalization of cell cycle, given in a library module called

basic cell cycle stored in a general cell cycle lib library. We started by modeling

the eukaryotic cell, consisting of various parts that in turn consist of other parts.

Together, they form a “part of ” hierarchy, say Hcell, which can be viewed as a tree.

Nodes of this hierarchy were captured by a new sort, types of parts, while links in

the hierarchy were represented by an attribute, is part of , defined on elements of

the new sort (e.g., is part of(X) = Y indicates that Y is the father of X in Hcell).

We modeled the transitive closure of is part of by introducing a boolean function,

part of , where part of(X,Y ) is true if X is a descendant of Y in Hcell.

In the type of questions we addressed, at any given stage of the cell cycle pro-
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cess, all cells in the experimental sample had the same number of nuclei; simi-

larly for the other inner components. As a result, we could assume that, at ev-

ery stage and for each link from a child X to its parent Y in Hcell, this link

was assigned a particular number indicating the number of elements of type X

in one element of type Y . The states of our domain were described by a ba-

sic fluent, num : types of parts × types of parts → natural numbers, where

num(P1, P2) = N holds if the number of elements of type P1 in one element of

type P2 is N . For instance, num(nucleus, cell) = 2 indicates that, at the current

stage of the cell cycle, each cell in the environment has two nuclei.

To describe the cell cycle we needed two action classes: duplicate and split.

Duplicate, which acts upon an object that is an element from sort types of parts,

doubles the number of every part of this kind present in the environment. Split

also acts upon an object ranging over types of parts. An action a of this type with

object(a) = c1, where c2 is a child of c1 in Hcell, duplicates the number of elements

of type c1 in the environment and cuts in half the number of elements of type c2
in one element of type c1. For example, if the experimental environment consists

of one cell with two nuclei, the occurrence of an instance a of action split with

object(a) = cell increases the number of cells to two and decreases the number

of nuclei per cells to one, thus resulting in an environment consisting of two cells

with only one nucleus each. In addition to these two actions we had an exogenous

action, prevent duplication, with an attribute object with the range types of parts.

The occurrence of an instance action a of prevent duplication with object(a) = c

nullifies the effects of duplication and splitting for the type c of parts. We made

use of this exogenous action in representing external events that interfere with the

normal succession of sub-phases of cell cycle. All this knowledge is represented by

the following module:

module basic cell cycle

sort declarations

types of parts :: universe

attributes

is part of : types of parts

duplicate :: actions

attributes

object : types of parts

split :: duplicate

prevent duplication :: actions

attributes

object : types of parts

function declarations

statics

defined

part of : types of parts× types of parts→ booleans
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fluents

basic

total num : types of parts× types of parts→ natural numbers

prevented dupl : types of parts→ booleans

axioms

occurs(X) causes num(P2, P1) = N2 if instance(X, duplicate),

object(X) = P2,

is part of(P2) = P1,

num(P2, P1) = N1,

N1 ∗ 2 = N2.

occurs(X) causes num(P2, P1) = N2 if instance(X, split),

object(X) = P1,

is part of(P2) = P1,

num(P2, P1) = N1,

N2 ∗ 2 = N1.

occurs(X) causes prevented dupl(P ) if instance(X, prevent duplication),

object(X) = P.

part of(P1, P2) if is part of(P1) = P2.

part of(P1, P2) if is part of(P1) = P3,

part of(P3, P2).

num(P, P ) = 0.

num(P3, P1) = N if is part of(P3) = P2,

part of(P2, P1),

num(P2, P1) = N1,

num(P3, P2) = N2,

N1 ∗N2 = N.

impossible occurs(X) if instance(X, duplicate),

object(X) = P,

prevented dupl(P ).

Any model of cell cycle consists of a theory importing the two library mod-

ules presented above and a structure corresponding to the level of detail of that

model. Let us consider a first model, in which we view cell cycle as a sequence con-

sisting of interphase and the mitotic phase. This is represented in the structure by

adding the attribute assignments component(1) = interphase and component(2) =

mitotic phase to the definition of instance cell cycle. We remind the reader that

such attribute assignments are read as “the 1st component of cell cycle is interphase”

and “the 2nd component of cell cycle is mitotic phase”. Interphase is considered

an elementary action, while the mitotic phase splits the cell into two. We limit our

domain to cells contained in an experimental environment, called sample.

system description cell cycle(1)

theory

import module sequence from commonsense lib

import module basic cell cycle from cell cycle lib
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structure

instances

sample in types of parts

cell in types of parts

is part of = sample

cell cycle in action sequences

length = 2

component(1) = interphase

component(2) = mitotic phase

interphase in actions

mitotic phase in split

object = cell

This initial model of cell division is quite general. It was sufficient to answer a

number of the questions targeted by the Digital Aristotle. There were, however,

some questions which required a different model.

Consider, for instance, the following question from (Campbell and Reece 2001):

12.9. Text : In some organisms mitosis occurs without cytokinesis occurring.

Question : How many cells will there be in the sample at the end of the

cell cycle, and how many nuclei will each cell contain?

To answer it, the system needed to know more about the structure of the cell

and that of the mitotic phase. ALM facilitated the creation of a refinement of our

original model of cell division: a new system description, cell cycle(2), was easily

created by adding to the previous structure a few new instances:

nucleus in types of parts

is part of = cell

mitosis in duplicate

is part of = nucleus

cytokinesis in split

is part of = cell

and replacing the old definition of the instance mitotic phase by a new one:

mitotic phase in action sequences

length = 2

component(1) = mitosis

component(2) = cytokinesis

Similarly, various other refinements of our original model of cell division contained

the same theory as the original formalization; only the structure of our original

model needed to be modified, in an elaboration tolerant way. Matching questions

with models of cell division containing just the right amount of detail is computa-

tionally advantageous and, in most cases, the matching can be done automatically.

Our formalization of cell division illustrates ALM’s capabilities of creating large

knowledge bases for practical systems through its mechanisms for reusing knowledge.

In our example, the two modules that formed the theory were directly imported
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from the library into the system description. This shows that our main goal for

ALM – the reuse of knowledge – was successfully achieved.

Additionally, the example demonstrates ALM’s suitability for modeling not only

commonsense dynamic systems, but also highly specialized, non-trivial domains.

It shows the importance of creating and using libraries of knowledge in real-life

applications, and it demonstrates the ease of elaborating initial formalizations of

dynamic domains into more detailed ones.

Our second task in Project Halo was to develop a proof-of-concept question an-

swering system that used ALM formalizations of cell cycle in solving complex

temporal projection questions like 12.9 above. To do that, we used the methodol-

ogy described in Section 4.2, expanded by capabilities for reasoning about naturally

evolving processes. This latter part was done by incorporating a theory of intentions

(Baral and Gelfond 2005) and assuming that naturally evolving processes have the

tendency (or the intention) to go through their sequence of phases in order, unless

interrupted (e.g., we can say that a cell tends/ intends to go through its cell cycle,

which it does unless unexpected events happen).

In our question answering methodology, the structure of our ALM system de-

scription for the cell cycle domain provided the vocabulary for translating the ques-

tions expressed in natural language into a history. The theory of the system de-

scription contained the axioms encoding the background knowledge needed to answer

questions about the domain.

As an example, the information given in the text of 12.9 above would be encoded

by a history that contains the facts

observed(num(cell, sample), 1, 0)

observed(num(nucleus, cell), 1, 0)

intend(cell cycle, 0)

¬happened(cytokinesis, I)

for every step I. Note that, unless otherwise specified, it would be assumed that

the experimental sample consists of one cell with one nucleus.

The query in 12.9 would be encoded by the ASP{f} rules:

answer(X, “cells per sample”) ← last step(I),

num(cell, sample, I) = X.

answer(X, “nuclei per cell”) ← last step(I),

num(nucleus, cell, I) = X.

Our system, ALMAS, would solve the question answering problem by first gener-

ating a logic program consisting of the above facts and rules encoding the history

and query, respectively; the ASP{f} translation of the ALM system description

cell cycle(2); and the temporal projection module described in Section 4.2. Then,

the system would compute answer sets of this program, which correspond to answers

to the question. For 12.9 there would be a unique answer set, containing:
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intend(cytokinesis, 2) ¬occurs(cytokinesis, 2)

intend(cytokinesis, 3) ¬occurs(cytokinesis, 3)

intend(cytokinesis, 4) ¬occurs(cytokinesis, 4)

. . .

These facts indicate that the unfulfillable intention of executing action cytokinesis

persists forever. Additionally, the answer set would include atoms:

answer(1, “cells per sample”) holds(val(num(cell, sample), 1), 2)

answer(2, “nuclei per cell”) holds(val(num(nucleus, sample), 2), 2)

last step(2) holds(val(num(nucleus, cell), 2), 2)

which indicate that at the end of the cell cycle there will be one cell in the sample,

with two nuclei. This is in fact the correct answer to question 12.9.

This question answering methodology and the methodology of reasoning about nat-

urally evolving processes using intentions was successfully applied to other questions

about cell division.
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Appendix C Comparison between Languages ALM and MAD

In this section we give an informal discussion of the relationship between ALM
and the modular action language MAD (Lifschitz and Ren 2006; Erdoǧan and

Lifschitz 2006). Both languages have similar goals but differ significantly in the

proposed ways to achieve these goals. We believe that each language supports its

own distinctive style of representing knowledge about actions and change. The

difference starts with the non-modular languages that serve as the basis for ALM
and MAD. The former is a modular expansion of action language AL. The latter

expands action language C (Giunchiglia and Lifschitz 1998). Even though these

languages have a lot in common (see (Gelfond and Lifschitz 2012)) they differ

significantly in the underlying assumptions incorporated in their semantics. For

example, the semantics of AL incorporates the Inertia Axiom, which says that

“Things normally stay the same.” Language C is based on a different assumption

– the Causality Principle – which says that “Everything true in the world must

be caused.” Its underlying logical basis is causal logic (McCain and Turner 1997;

Giunchiglia et al. 2004). In C the inertia axiom for a literal l is expressed by a

statement

caused l if l after l,

read as “there is a cause for l to hold after a transition if l holds both before and

after the transition”. While AL allows two types of fluents – inertial and defined

–, C can be used to define other types of fluents (e.g., default fluents that, unless

otherwise stated, take on the fixed default values). The authors of this paper did not

find these types of fluents to be particularly useful and, in accordance with their

minimalist methodology, did not allow them in either AL or ALM. Of course,

the question is not settled and our opinion can change with additional experience.

On another hand, AL allows recursive state constraints and definitions, which are

severely limited in C. There is a close relationship between ASP and C but, in our

judgment, the distance between ASP and AL is smaller than that between ASP

and C. There is also a substantial difference between modules of ALM and MAD.

To better understand the relationship let us consider the ALM theory motion

and the system description travel from Section 3.2 and represent them in MAD.2

Example 1 (A MAD Version of the System Description travel)

The ALM system description travel is formed by the theory motion and the struc-

tureBob and John. The theory consists of two modules,moving and carrying things,

organized into a module hierarchy in which the latter module depends on the for-

mer. Let us start with the MAD representation of ALM’s module moving.

In general, the representation of an ALM module M in MAD consists of two

parts: the declaration of sorts of M and their inclusion relation, and the collection

of MAD modules corresponding to M . (In our first example a module of ALM

2 Although the “Monkey and Banana” problem presented in Section 4.1 has been encoded in
MAD as well (Erdoǧan 2008), we are not considering it here because of the length of its repre-
sentation and, most importantly, because there are substantial differences in how the problem
was addressed in ALM versus MAD from the knowledge representation point of view.
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will be mapped into a single module of MAD.) Note that sorts can also be declared

within the module but in this case they will be local (i.e., invisible to other modules).

Declarations given outside of a module can be viewed as global.

In our case, the sorts and inclusions sections of the translation

M1 = MAD(moving) consist of the following statements (We remind the reader

that in MAD variables are identifiers starting with a lower-case letter and constants

are identifiers starting with an upper-case letter, the opposite of ALM ):

sorts

Universe;Points;Things;Agents;

inclusions

Points << Universe;

Things << Universe;

Agents << Things;

The sorts part declares the sort universe (which is pre-defined and does not require

declaration in ALM) together with the sorts of moving that are not special cases

of actions. The inclusions part describes the specialization relations between these

sorts. The definition of a MAD module starts with a title:

module M1

The body of a MAD module consists of separate (optional) sections for the declara-

tions of sorts specific to the current module, objects, fluents, actions, and variables,

in this order, together with a section dedicated to axioms (Erdoǧan 2008). Our

module M1 starts with the declarations of fluents:

fluents

Symmetric connectivity : rigid;

Transitive connectivity : rigid;

Connected(Points, Points) : simple;

Loc in(Things) : simple(Points);

Rigid fluents of MAD are basic statics of ALM.

To declare the action class move of moving we need to model its attributes. To

do that we introduce variables with the same names as the associated attributes

in moving. This will facilitate referring to those attributes later in axioms. We

also order attributes alphabetically as arguments of the action term to ease the

translation of special case action classes of move:

actions

Move(Agents, Points, Points);

The variable declaration and axiom part come next. We will need to add extra

axioms (and associated variables) to say that Loc in is an inertial fluent (i.e., basic

fluent in ALM terminology) and that Move(Agents, Points, Points) is an exoge-

nous action (i.e., it does not need a cause in order to occur; it may or may not

occur at any point in time).
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variables

t, t1, t2 : Things;

actor : Agents;

origin, dest : Points;

axioms

inertial Loc in(t);

exogenous Move(actor, dest, origin);

The causal law for move can now be expressed in a natural way:

Move(actor, dest, origin) causes Loc in(actor) = dest;

Similarly for the executability conditions:

nonexecutable Move(actor, dest, origin) if Loc in(actor) 6= origin;

nonexecutable Move(actor, dest, origin) if Loc in(actor) = dest;

nonexecutable Move(actor, dest, origin) if Loc in(actor) = origin,

¬Connected(origin, dest);

The situation becomes substantially more difficult for the definition of Connected.

The definition used in moving is recursive and therefore cannot be easily emu-

lated by MAD’s causal laws. The relation can, of course, be explicitly specified

later together with the description of particular places, but this causes considerable

inconvenience.

To represent module carrying things from the theory motion we need a new

(global) sort:

sorts

Carriables;

inclusions

Carriables << Things;

The module M2 that corresponds to carrying things contains declarations of the

new action Carry and the corresponding variables.

module M2;

actions

Carry(Agents, Carriables, Points, Points);

variables

t : Things;

actor : Agents;

dest, origin, p : Points;

carried object, c : Carriables;

Next we need to define axioms of the module. Clearly we need to say that the action

Carry(actor, carried object, dest, origin) is a special case of the action

Move(actor, dest, origin). Since ALM allows action sorts, no new mechanism is

required to do that in carrying things. In MAD, while there is a built-in sort

action, special case actions are not sorts and the special constructs import and

is are introduced to achieve this goal. Special case actions are declared in MAD
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by importing the module containing the original action and renaming the original

action as the special case action as follows:

import M1;

Move(actor, dest, origin) is Carry(actor, carried object, dest, origin);

Intuitively, this import statement says that the action Carry(actor, carried object,

dest, origin) has all properties that are postulated for the action Move(actor, dest,

origin) in the module M1. We also need an additional axiom declaring the action to

be exogenous, and state constraints, and executability conditions similar to those

in carrying things:

axioms

exogenous Carry(actor, carried object, dest, origin);

% State constraints:

Is held(c) if Holding(t, c);

% Executability conditions:

nonexecutable Carry(actor, carried object, dest, origin) if

¬Holding(actor, carried object);

nonexecutable Move(actor, dest, origin) if Is held(actor);

Note, however, that the ALM module carrying things also contained the recursive

state constraints below, saying that agents and the objects they are holding have

the same location:
loc in(C) = P if holding(T,C), loc in(T ) = P.

loc in(T ) = P if holding(T,C), loc in(C) = P.
Since this is not allowed in MAD, we have to use a less elaboration tolerant repre-

sentation by adding an explicit causal law saying

Move(actor, dest, origin) causes Loc in(c) = dest if Holding(actor, c);

In MAD additional axioms will be needed to rule out certain initial situations

(e.g., “John is holding his suitcase. He is in Paris. His suitcase is in Rome.”) or to

represent and reason correctly about more complex scenarios (e.g., “Alice is in the

kitchen, holding her baby who is holding a toy. Alice goes to the living room.”).

This completes the construction of M2.

In general, special case actions are declared in MAD by importing the mod-

ule containing the original action and renaming the original action as the special

case action. That is why we needed to place the MAD representation of carry

in a new module that we call M2, in which we import module M1 while re-

naming Move(actor, dest, origin) as Carry(actor, carried object, dest, origin). In

ALM the declarations of move and its specialization carry could be placed in the

same module – the decision is up to the user – whereas in MAD they must be

placed in separate modules. This potentially leads to a larger number of smaller

modules in MAD than in ALM representations.

Finally, we consider the structure of our ALM system description. It contains

two types of actions go(Actor,Dest) and go(Actor,Dest,Origin). Let us expand the

structure by a new object, suitcase, and a new action carry(Actor, suitcase,Dest).
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For illustrative purposes, let us assume that we would like the MAD representation

to preserve these names.

To represent this in MAD, we introduce a new module S. It has the local defi-

nitions of objects:

module S;

objects

John,Bob : Agents;

New Y ork, Paris,Rome : Points;

Suitcase : Carriables;

and those of actions. The latter can be defined via the renaming mechanism of

MAD. This requires importing the modules in which the action classes were de-

clared. Thus, module S imports modules M1 and M2.

actions

Go(Agents, Points);

Go(Agents, Points, Points);

Carry(Agents, Carriables, Points);

variables

actor : Agents;

origin, dest : Points;

import M1;

Move(actor, dest, origin) is Go(actor, dest, origin);

import M1;

Move(actor, dest, origin) is Go(actor, dest);

import M2;

Carry(actor, Suitcase, dest, origin) is Carry(actor, Suitcase, dest)

This completes the construction of the MAD representation of the system descrip-

tion travel.

Even this simple example allows to illustrate some important differences between

ALM and MAD. Here is a short summary:

• Recursive definitions

The representation of state constraints of an ALM system description is

not straightforward if the set of state constraints defines a cyclic fluent de-

pendency graph (Gelfond and Lifschitz 2012). For instance, the ALM state

constraint:

p if p.

is not equivalent to the same axiom in MAD. The ALM axiom can be

eliminated without modifying the meaning of the system description; it says

that “in every state in which p holds, p must hold.” Eliminating the same

axiom from aMAD action description would not produce an equivalent action

description; inMAD, the axiom says that “p holds by default.” This difference
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between ALM and MAD is inherited from the similar difference between AL
and C.
• Separation of Sorts and Instances

One of the most important features of ALM is its support for a clear separa-

tion of the definition of sorts of objects of the domain (given in the system’s

theory) from the definition of instances of these sorts (given by the system’s

structure). Even though it may be tempting to view the first two modules,

M1 and M2 above as a MAD counterpart of the ALM theory motion, the

analogy does not hold. Unlike ALM where the corresponding theory has a

clear semantics independent of that of the structure, no such semantics exists

in MAD. Modules M1 and M2 only acquire their meaning after the addi-

tion of module S that corresponds to the ALM’s structure. We believe that

the existence of the independent semantics of ALM theories facilitates the

stepwise development and testing of the knowledge base and improves their

elaboration tolerance.

• Action Sorts

In ALM, the pre-defined sort actions is part of the sort hierarchy, whereas in

MAD actions are not considered sorts. Instead, MAD has special constructs

import and is (also known as bridge rules), which are used to define actions

as special cases of other actions. No such special constructs are needed in

ALM.

Moreover, in ALM, an action class and its specialization can be part of the

same module. This is not the case in MAD where a special case of an action

class must be declared in a separate module by importing the module contain-

ing the original action class and using renaming clauses. As a consequence,

the MAD representation of ALM system descriptions will generally contain

more modules that are smaller in size than the ALM counterpart. On the

other hand, note that ALM modules are not required to be large; they can

be as small as a user desires.

ALM allows the definition of fluents on (or ranging over) specific action

classes only, and not necessarily the whole pre-defined actions sort, for in-

stance:

intended : agent actions→ booleans

where agent actions is a special case of actions. There is no equivalent concept

in MAD, where fluents must be defined on, and range over, either primitive

sorts or the built-in sort action, but not specific actions.

• Variable Declarations

In ALM, we do not define the sorts of variables used in the axioms. This

information is evident from the atoms in which they appear. In MAD, vari-

ables need to be defined, which may lead to larger modules and cause errors

related to use of variables of wrong types.

• Renaming Feature of MAD

In MAD, sorts can be renamed by importing the module containing the orig-

inal declaration of a sort and using a renaming clause. The meaning of such a
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renaming clause is that the two sorts are synonyms. There is no straightfor-

ward way to define this synonymy in ALM. The closest thing is to use the

specialization construct of our language and declare the new sort as a special

case of the original one. The reverse (i.e., the original sort being a special

case of the renamed sort) cannot be added, as sort hierarchies of ALM are

required to be DAGs. This leads to further problems when the renamed sorts

appear as attributes in renamed actions of MAD.

• Axioms of MAD that have no equivalent in ALM
Some axioms, allowed in MAD, are not directly expressible in ALM. For

instance, MAD axioms of the type:

formula may cause formula [ if formula ]

or

default formula [ if formula ] [ after formula ]

belong to this group. The first axiom allows to specify non-deterministic ef-

fects of actions, while the second assignes default values to fluents (and more

complex formulas). As discussed above, we are not yet convinced that the lat-

ter type of axioms needs to be allowed in ALM. Non-determinism, however,

is an important feature that one should be able to express in an action formal-

ism. It may be added to ALM (and to AL) in a very natural manner, but it

is not allowed in AL and the mathematical properties of “non-deterministic”

AL were not yet investigated. Because of this we decided to add this feature

in the next version of ALM.

We hope that this section gives the reader some useful insight in differences be-

tween ALM and MAD. We plan to extend the comparison between ALM and

MAD in the future. Formally investigating the relationship between the two lan-

guages can facilitate the translation of knowledge modules from one language to

another, and can identify situations when one language is preferable to the other.

Readers interested in a formal translation of system descriptions of ALM to action

descriptions of MAD can consult (Inclezan 2012).

References

Baral, C. and Gelfond, M. 2005. Reasoning about Intended Actions. In AAAI-05:
Proceedings of the 20th National Conference on Artificial Intelligence. AAAI Press, 689–
694.

Campbell, N. A. and Reece, J. B. 2001. Biology , 6th ed. Benjamin Cummings.
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