
1

Online appendix for the paper

CLP(H): Constraint Logic Programming for Hedges
published in Theory and Practice of Logic Programming

BESIK DUNDUA

VIAM, Tbilisi State University, Georgia and LIACC, University of Porto, Portugal

(e-mail: bdundua@gmail.com)

MÁRIO FLORIDO

DCC-FC and LIACC, University of Porto, Portugal (e-mail: amf@dcc.fc.up.pt)

TEMUR KUTSIA

RISC, Johannes Kepler University Linz, Austria (e-mail: kutsia@risc.jku.at)

MIRCEA MARIN

West University of Timişoara, Romania (e-mail: mmarin@info.uvt.ro)

submitted 28 September 2014; revised 07 January 2015; accepted 23 February 2015

Appendix A

Theorem 1

If the constraint C is solved, then I |= ∃C holds for all intended structures I.

Proof

Since C is solved, each disjunct K in it has a form v1
.
= e1 ∧ · · · ∧ vn

.
= en ∧ v′1 in

R1 ∧ · · · ∧ v′m in Rm where m,n ≥ 0, vi, v
′
j ∈ V and ei is an expression corresponding

to vi. Moreover, v1, . . . , vn, v
′
1, . . . , v

′
m are distinct and [[Rj]] 6= ∅ for all 1 ≤ j ≤ m. Note

that while vi’s do not occur anywhere else in K, it still might be the case that some v′j ,

1 ≤ j ≤ m, occurs in some ek, 1 ≤ k ≤ n.

Let e′j be an element of [[Rj]] for all 1 ≤ j ≤ m. Assume that for each 1 ≤ i ≤ n, the

substitution σ′i is a grounding substitution for ei with the property that v′jσ
′
i = e′j for

all 1 ≤ j ≤ m. Then σ = {v1 7→ e1σ
′
1, . . . , vn 7→ enσ

′
n, v
′
1 7→ e′1, . . . , v

′
m 7→ e′m} solves K.

Therefore, I |= ∃C holds.

Theorem 2 (Termination of solve)

solve terminates on any quantifier-free constraint.

Proof

We need to show that NF(step) terminates for any quantifier-free constraint in DNF. We

define a complexity measure cm(C) for such constraints, and show that cm(C′) < cm(C)
holds whenever C′ = step(C).

For a hedge H (resp., for a regular expression R), we denote by size(H) (resp., by

size(R)) its denotational length, e.g., size(ε) = 0, size(eps) = 1, size(f(f(a)), x) = 4, and

size(f(f(a · b∗))) = 6.

2

The complexity measure cm(K) of a conjunction of primitive constraints K is the tuple

〈N1,M1, N2,M2,M3〉 defined as follows ({||} stands for a multiset):

• N1 is the number of unsolved variables in K.

• M1 := {|size(H) | H in R ∈ K, H 6= ε|}.
• N2 is the number of primitive constraints in the form x in R in K .

• M2 := {|size(R) | H in R ∈ K|}.
• M3 := {|size(t1) + size(t2) | t1

.
= t2 ∈ K|}.

The complexity measure cm(C) of a constraint C = K1 ∨ · · · ∨ Kn is defined as

{|cm(K1), . . . , cm(Kn)|}.
Measures are compared by the multiset extension of the lexicographic ordering on

tuples. The components that are natural numbers (N1 and N2) are, of course, compared

by the standard ordering on naturals. The multiset components M1, M2, and M3 are

compared by the multiset extension of the standard ordering on the naturals.

The strict part of the ordering on measures is obviously well-founded. The Log rules

strictly reduces it. For the other rules, the table below shows which rule reduces which

component of the measure. The symbols > and ≥ indicate the strict and non-strict

decrease, respectively. It implies the termination of the algorithm solve.

Rule N1 M1 N2 M2 M3

(M1), (M10), (E1)–(E7) >

(F5), (F7), (M2), (M3), (M8), (M11), (M12) ≥ >

(M9) ≥ ≥ >

(F6), (M4)–(M7) ≥ ≥ ≥ >

(D1), (D2), (F1)–(F4), (Del1)–(Del3) ≥ ≥ ≥ ≥ >

Lemma 1

If step(C) = D, then I |= ∀
(
C ↔ ∃var(C)D

)
for all intended structures I.

Proof

By case distinction on the inference rules of the solver, selected by the strategy first in

the application of step. We illustrate here two cases, when the selected rules are (E3) and

(M2). For the other rules the lemma can be shown similarly.

In (E3), C has a disjunct K = (x,H)
.
= T ∧ K′ with x 6∈ var(T), and D is the result of

replacing K in C with the disjunction C′ =
∨

T=(T1,T2)
(x

.
= T1 ∧Hϑ

.
= T2 ∧ K′ϑ) where

ϑ = {x 7→ T1}. Therefore, it is sufficient to show that I |= ∀(K ↔ ∃var(C)C′). Since

var(C′) = var(K), this amounts to showing that for all ground substitutions σ of var(K)

we have I |= (xσ,Hσ)
.
= Tσ ∧ K′σ iff I |= (

∨
T=(T1,T2)

(x
.
= T1 ∧Hϑ

.
= T2 ∧ K′ϑ))σ.

• Assume I |= (xσ,Hσ)
.
= Tσ ∧ K′σ. We can split Tσ into T1σ and T2σ such that

xσ = T1σ and Hσ = T2σ. Now, we show vϑσ = vσ for all v ∈ var(x,H, T). Indeed,

if v 6= x, the equality trivially holds. If v = x, we have xϑσ = T1σ = xσ. Hence,

I |= (
∨

T=(T1,T2)
(x

.
= T1 ∧Hϑ

.
= T2 ∧ K′ϑ))σ.

3

• Assume I |= (
∨

T=(T1,T2)
(x

.
= T1 ∧Hϑ

.
= T2 ∧ K′ϑ))σ. Then there exists the split

T = (T1, T2) such that I |= (xσ
.
= T1σ ∧Hϑσ

.
= T2σ ∧ K′ϑσ). Again, we can show

vϑσ = vσ for all v ∈ var(x,H, T). Hence, I |= (xσ,Hσ) = Tσ ∧K′σ. It finishes the

proof for (E3).

Now, let the selected rule be (M2). In this case C has a disjunct K = (t,H) in

R ∧ K′ with H 6= ε and R 6= eps. Then D is the result of replacing K in C with

C′ =
∨

(f(R1),R2)∈lf (R)(t in f(R1)∧H in R2 ∧K′). Therefore, to show I |= ∀(C ↔ ∃var(C)D),

it is enough to show that I |= ∀(K ↔ ∃var(C)C′). Since var(C′) = var(K), this amounts to

showing that for all ground substitutions σ of var(K) we have I |= (tσ,Hσ) in R∧K′σ iff

I |= (
∨

(f(R1),R2)∈lf (R)(t in f(R1) ∧H in R2 ∧ K′))σ. Recall that the linear form lf (R) of a

regular expression R has the property:

[[R]] \ {ε} =
⋃

(f(R1),R2)∈lf (R)

[[f(R1) · R2]], (lf)

• Assume I |= (tσ,Hσ) in R ∧ K′σ. By the property (lf) and by the definitions of

intended structure and entailment, we get that I |= (tσ,Hσ) in R ∧ K′σ implies

I |= (tσ,Hσ) in lf (R) ∧ K′σ . Hence, we can conclude I |= (
∨

(f(R1),R2)∈lf (R)(tσ in

f(R1) ∧Hσ in R2 ∧ K′σ)).

• Assume I |= (
∨

(f(R1),R2)∈lf (R)(tσ in f(R1) ∧ Hσ in R2 ∧ K′σ)). Then we have

I |= (tσ,Hσ) in lf (R) ∧ K′σ which, by (lf), implies I |= (tσ,Hσ) in R ∧ K′σ.

Theorem 3

If solve(C) = D, then I |= ∀
(
C ↔ ∃var(C)D

)
for all intended structures I, and D is either

partially solved or the false constraint.

Proof

We assume without loss of generality that C is in DNF. I |= ∀
(
C ↔ ∃var(C)D

)
follows

from Lemma 1 and the following property: If I |= ∀
(
C1 ↔ ∃var(C1)C2

)
and I |= ∀

(
C2 ↔

∃var(C2)C3
)
, then I |= ∀

(
C1 ↔ ∃var(C1)C3

)
. The property itself relies on the fact that

I |= ∀
(
∃var(C1)∃var(C2)C3 ↔ ∃var(C1)C3

)
, which holds because all variables introduced by

the rules of the solver in C3 are fresh not only for C2, but also for C1.

As for the partially solved constraint, by the definition of solve and Theorem 2, D is in

a normal form. Assume by contradiction that it is not partially solved. By inspection of

the solver rules, based on the definition of partially solved constraints, we can see that

there is a rule that applies to D. But this contradicts the fact that D is in a normal form.

Hence, D is partially solved.

Lemma 2

Let v
.
= e be an equation, where v is a variable and e is the corresponding expression

such that v does not occur in e. Let K1 and K2 be two arbitrary (possibly empty)

conjunctions of extended literals such that the conjunction K1 ∧K2 ∧ v
.
= e is well-moded.

Let θ = {v 7→ e} be a substitution. Then K1 ∧ K2θ ∧ v
.
= e is also well-moded.

4

Proof

The point in this lemma is that it does not matter how K1 and K2 are chosen. We consider

two cases. First, when v
.
= e is the leftmost literal containing v in a well-moded sequence

corresponding to K1 ∧ K2 ∧ v
.
= e and, second, when this is not the case.

Case 1. Let Ẽ1, v
.
= e, Ẽ2 be a well-moded sequence corresponding to K1 ∧ K2 ∧ v

.
= e,

such that Ẽ1 does not contain v. Note that there is no assumption (apart from what

guarantees well-modedness of K1 ∧ K2 ∧ v
.
= e) on the appearance of literals in Ẽ1 and

Ẽ2: They may contain literals from K1 only, from K2 only, or from both K1 and K2.

Well-modedness of Ẽ1, v
.
= e, Ẽ2 requires the variables of e to appear in Ẽ1. Consider

the sequence Ẽ1, v
.
= e, Ẽ2[θ], where the notation Ẽ[θ] stands for such an instance of Ẽ in

which θ affects only literals from K2. Then Ẽ1, v
.
= e is well-moded and it can be safely

extended by Ẽ2[θ] without violating well-modedness, because the variables in v
.
= e still

precede (in the well-moded sequence) the literals from Ẽ2[θ], and the relative order of the

other variables (in the well-moded sequence) does not change. Hence, Ẽ1, v
.
= e, Ẽ2[θ] is a

well-moded sequence that corresponds to K1 ∧ K2θ ∧ v
.
= e.

Case 2. Let Ẽ1, L, Ẽ2, v
.
= e, Ẽ3 be a well-moded sequence corresponding to K1∧K2∧v

.
=

e, where L is the leftmost literal that contains v in an output position. Again, we

make no assumption on literal appearances in the subsequences of the sequence. Then

Ẽ1, L, v
.
= e, Ẽ2, Ẽ3 is also a well-moded sequence (corresponding to K1 ∧ K2 ∧ v

.
= e),

because v still appears in an output position in L left to v
.
= e, the variables in e still

precede literals from Ẽ3, and the relative order of the other variables does not change.

For literals in Ẽ2 that contain variables from e such a reordering does not matter.

Note that v does not appear in Ẽ1: If it were there in some literal in an output position,

then L would not be the leftmost such literal. If it were there in some literal L′ in an

input position, then well-modedness of the sequence would require v to appear in an

output position in another literal L′′ that is even before L′, i.e., to the left of L and it

would again contradict the assumption that L is the leftmost literal containing v in an

output position.

Let Ẽ1, L[θ], v
.
= e, Ẽ2[θ], Ẽ3[θ] be a sequence of all literals taken from K1 ∧K2 ∧ v

.
= e.

We distinguish two cases, depending whether θ affects L or not.

θ affects L. Then it replaces v in L with e, i.e., L[θ] = Lθ. Then the variables of e appear

in output positions in Lθ and, hence, placing v
.
= e after Lθ in the sequence would not

destroy well-modedness. As for the Lθ itself, we have two alternatives:

1. Lθ is an equation, say s
.
= tθ, obtained from L = (s

.
= t) by replacing occurrences

of v in t by e. In this case, by well-modedness of Ẽ1, L, v
.
= e, Ẽ2, Ẽ3, variables of s

appear in Ẽ1 and s does not contain v. Then the same property is maintained in

Ẽ1, Lθ, v
.
= e, Ẽ2[θ], Ẽ3[θ], since s remains in Lθ and Ẽ1 does not change.

2. Lθ is an atom. Then replacing v by e in an output position of L, which gives Lθ,

does not affect well-modedness.

Hence, we got that Ẽ1, L, v
.
= e is well-moded. Now we can safely extend this sequence

with Ẽ2[θ], Ẽ3[θ], because variables in new occurrences of e in Ẽ2[θ], Ẽ3[θ] are preceded

by v
.
= e, and the relative order of the other variables does not change. Hence, the

sequence Ẽ1, Lθ, v
.
= e, Ẽ2[θ], Ẽ3[θ] is well-moded.

θ does not affect L. Then L[θ] = L, the sequence Ẽ1, L, v
.
= e is well-moded and it can

5

be safely extended with Ẽ2[θ], Ẽ3[θ], obtaining the well-moded sequence Ẽ1, L, v
.
= e,

Ẽ2[θ], Ẽ3[θ].

Hence, we showed also in Case 2 that there exists a well-moded sequence of literals, namely,

Ẽ1, L[θ], v
.
= e, Ẽ2[θ], Ẽ3[θ], that corresponds to K1∧K2θ∧v

.
= e. Hence, K1∧K2θ∧v

.
= e

is well-moded.

Lemma 3

Let Pr be a well-moded CLP(H) program and 〈G ‖ C〉 be a well-moded state. If 〈G ‖ C〉�
〈G′ ‖ C′〉 is a reduction using clauses in Pr, then 〈G′ ‖ C′〉 is also a well-moded state.

Proof

Let G = L1, . . . , Li, . . . , Ln, C = K1∨· · ·∨Km, and 〈G ‖ C〉 be a well-moded state. We will

use the notation Ĝ for the conjunction of all literals in G, i.e., Ĝ = L1 ∧ · · · ∧Li ∧ · · · ∧Ln.

Assume that Li is the selected literal in reduction that gives 〈G′ ‖ C′〉 from 〈G ‖ C〉. We

consider four possible cases, according to the definition of operational semantics:

Case 1. Let Li be a primitive constraint and C′ 6= false. Let D denote the DNF of

C ∧ Li.

In order to prove that 〈G′ ‖ C′〉 is well-moded, by the definition of solve, it is sufficient

to prove that 〈G′ ‖ step(D)〉 is well-moded. Since, obviously, 〈G′ ‖ D〉 is a well-moded

state, we have to show that state well-modedness is preserved by each rule of the solver.

Since C′ 6= false, the step is not performed by any of the failure rules of the solver. For

the rules M1–M8, M11–M12, D1, and D2, it is pretty easy to verify that 〈G′ ‖ step(D)〉 is

well-moded. Therefore, we consider the other rules in more detail. We denote the disjunct

of D on which the rule is applied by KD. The cases below are distinguished by the rules:

Del. Here the same variable is removed from both sides of the selected equation. Assume

1, s
.
= t,2 is a well-moded sequence corresponding to Ĝ′ ∧ KD, and s

.
= t is the selected

equation affected by one of the deletion rules. Well-modedness of 1, s
.
= t,2 requires

that the variable deleted at this step from s
.
= t should occur in an output position

in some other literal in 1. Let s′
.
= t′ be the equation obtained by the deletion step

from s
.
= t. Then 1, s

′ .= t′,2 is again well-moded, which implies that Ĝ′ ∧ step(KD) is

well-moded and, therefore, that 〈G′ ‖ step(D)〉 is well-moded.

M9. Let Ĝ′ ∧KD be represented as Ĝ′ ∧x in f(R)∧K′, where x in f(R) is the membership

atom affected by the rule. Note that then Ĝ′ ∧ x .
= x ∧ x in f(R) ∧ K′ is also well-

moded. Applying Lemma 2, we get that Ĝ′ ∧ x .
= x ∧ x in f(R) ∧ K′θ is well-moded,

where θ = {x 7→ x}. Then we get well-modedness of Ĝ′ ∧ step(KD), which implies

well-modedness of 〈G′ ‖ step(D)〉.
M10. Let Ĝ′ ∧ KD be represented as Ĝ′ ∧X(H) in f(R) ∧ K′, where X(H) in f(R) is the

membership atom affected by the rule. Note that then Ĝ′ ∧X(H) in f(R)∧X .
= f ∧K′

is also well-moded. Applying Lemma 2, we get that Ĝ′ ∧X(H)θ in f(R) ∧X .
= f ∧K′θ

is well-moded, where θ = {X 7→ f}. But it means that Ĝ′ ∧ step(KD) is well-moded,

which implies that 〈G′ ‖ step(D)〉 is well-moded.

E1, E2. For these rules, well-modedness of Ĝ′ ∧ step(KD) is a direct consequence of

Lemma 2.

E3. Let Ĝ′ ∧ KD be represented as Ĝ′ ∧ (x,H1) ' H2 ∧ K′, where (x,H1) ' H2 is the

equation affected by the rule and x 6∈ var(H2). Then Ĝ′ ∧ x .
= H ′ ∧H1

.
= H ′′ ∧ K′ is

6

also well-moded for some H ′ and H ′′ with (H ′, H ′′) = H2. Applying Lemma 2, we get

that Ĝ′ ∧ x .
= H ′ ∧ H1θ

.
= H ′′ ∧ K′θ is well-moded, where θ = {x 7→ H ′}. Since H ′

and H ′′ were arbitrary, it implies that Ĝ′ ∧ step(KD) and, therefore, 〈G′ ‖ step(D)〉 is

well-moded.

E4. Similar to the case of the rule E3.

Case 2. Let Li be a primitive constraint and C′ = false, where C′ = solve(C ∧ Li). Then

by the operational semantics we have G′ = � and the theorem trivially holds, since the

state 〈� ‖ false〉 is well-moded.

Case 3. Let Li be an atom p(t1, . . . , tk, . . . , tl). Assume that Pr contains a clause of the

form p(r1, . . . , rk, . . . , rl)← B, where B denotes the body of the clause. Assume also that

for the predicate p, the set {1, . . . , k} is the set of the input positions and {k + 1, . . . , l}
is the set of the output ones. Then we have

G = L1, . . . , Li−1, p(t1, . . . , tk, . . . , tl), Li+1, . . . , Ln,

G′ = L1, . . . , Li−1, t1
.
= r1, . . . , tk

.
= rk, . . . , tl

.
= rl,B, Li+1, . . . , Ln,

C′ = C = K1 ∨ · · · ∨ Km.

From well-modedness of the state 〈G ‖ C〉 we know that for all 1 ≤ j ≤ m, the literals

from L1, . . . , Li−1, Li+1, . . . , Ln and Kj can be reordered in two sequences of literals 1
j

and 2
j in such a way that the sequence 1

j , p(t1, . . . , tk, . . . , tl),
2
j is well-moded. Then we

have var(t1, . . . , tk) ⊆ outvar(1j). Therefore, we obtain that the sequence

1
j , t1

.
= r1, . . . , tk

.
= rk,

2
j (A1)

is well-moded for all 1 ≤ j ≤ m.

From well-modedness of p(r1, . . . , rk, . . . , rl) ← B we know that var(rk+1, . . . , rl) ⊆
outvar(B) ∪ var(r1, . . . , rk). By the definition of program well-modedness, the literals

of B can be put into a well-moded sequence, written, say, as B1, . . . , Bq, such that for

each 1 ≤ u ≤ q and v ∈ invar(Bu) we have v ∈ outvar(Bu′) for some u′ < u, or

v ∈ var(r1, . . . , rk). From then we can say that the sequence

t1
.
= r1, . . . , tk

.
= rk, B1, . . . , Bq, tk+1

.
= rk+1, . . . , tl

.
= rl (A2)

is well-moded.

From (A1) and (A2), by the definition of well-modedness, we can conclude that

1
j , t1

.
= r1, . . . , tk

.
= rk, B1, . . . , Bq, tk+1

.
= rk+1, . . . , tl

.
= rl,

2
j (A3)

is well-moded for all 1 ≤ j ≤ m. By construction, the literals in (A3) are exactly those

from Ĝ′ ∧ Kj for 1 ≤ j ≤ m. It means that 〈G′ ‖ Kj〉 is well-moded for all 1 ≤ j ≤ m,

which implies that 〈G′ ‖ C′〉 is well-moded.

Case 4. If defnP (Li) = ∅, then G′ = �, C′ = false, and the theorem trivially holds.

Corollary 1

If C is a well-moded constraint, then solve(C) is also well-moded.

Proof

By the definition of well-modedness, since C is well-moded, the state 〈a .
= a ‖ C〉 is also

well-moded, where a is an arbitrary function symbol. By the operational semantics, we

7

have the reduction 〈a .
= a ‖ C〉 � 〈� ‖ solve(a

.
= a ∧ C)〉. By Lemma 3, we get that

〈� ‖ solve(a
.
= a ∧ C)〉 is also well-moded and, hence, solve(a

.
= a ∧ C) is well-moded.

By the definition of solve and the rules of the solver, it is straightforward to see that

solve(a
.
= a ∧ C) = solve(C). Hence, solve(C) is well-moded.

Theorem 4

Let C be a well-moded constraint and solve(C) = C′, where C′ 6= false. Then C′ is solved.

Proof

By the Corollary 1, the constraint C′ is well-moded. If C′ is true then it is already solved.

Consider the case when C′ is not false. Let C′ = K1 ∨ · · · ∨ Km. Since C′ 6= false, by the

Theorem 3 C′ is partially solved. It means that each Kj , 1 ≤ j ≤ m, is partially solved and

well-moded. By definition, Kj is well-moded if there exists a permutation of its literals

c1, . . . , ci, . . . , cn which satisfies the well-modedness property. Assume c1, . . . , ci−1 are

solved. By this assumption and the definition of well-modedness, each of c1, . . . , ci−1 is

an equation whose one side is a variable that occurs neither in its other side nor in any

other primitive constraint. Then well-modedness of Kj guarantees that the other sides of

these equations are ground terms. Assume by contradiction that ci is partially solved,

but not solved. If ci is a membership constraint, well-modedness of Kj implies that ci
does not contain variables and, therefore, can not be partially solved. Now let ci be an

equation. Since all variables in c1, . . . , ci−1 are solved, they can not appear in ci. From

this fact and well-modedness of Kj , ci should have at least one ground side. But then it

can not be partially solved. The obtained contradiction shows that C′ is solved.

Theorem 5

Let 〈G ‖ true〉� · · ·� 〈� ‖ C〉 be a finished derivation with respect to a well-moded

CLP(H) program, starting from a well-moded goal G. If C 6= false, then C is solved.

Proof

We prove a slightly more general statement: Let 〈G ‖ true〉 � · · · � 〈G′ ‖ C′〉 be a

derivation with respect to a well-moded program, starting from a well-moded goal G and

ending with G′ that is either � or consists only of atomic formulas without arguments

(propositional constants). If C′ 6= false, then C′ is solved.

To prove this statement, we use induction on the length n of the derivation. When

n = 0, then C′ = true and it is solved. Assume the statement holds when the derivation

length is n, and prove it for the derivation with the length n+ 1. Let such a derivation

be 〈G ‖ true〉� · · ·� 〈Gn ‖ Cn〉� 〈Gn+1 ‖ Cn+1〉. Assume that Gn+1 that is either �
or consists only of propositional constants. According to the operational semantics, there

are two possibilities how the last step is made:

1. Gn has a form (modulo permutation) L, p1, . . . , pm, m ≥ 0, where L is primitive

constraint, the p’s are propositional constants, Gn+1 = p1, . . . , pm, and Cn+1 =

solve(Cn ∧ L).

2. Gn has a form (modulo permutation) q, p1, . . . , pm, m ≥ 0, where q and p’s are

propositional constants, the program contains a clause q ← q1, . . . , qk, k ≥ 0, where

all qi, 1 ≤ i ≤ k, are propositional constants, Gn+1 = q1, . . . , qk, p1, . . . , pm, and

Cn+1 = Cn.

8

In the first case, by the n-fold application of Lemma 3 we get that 〈Gn ‖ Cn〉 is well-

moded. Since the p’s have no influence on well-modedness (they are just propositional

constants), Cn ∧ L is well-moded and hence it is solvable. By Theorem 4 we get that if

Cn+1 = solve(Cn ∧ L) 6= false, then Cn+1 is solved.

In the second case, since Gn consists of propositional constants only, by the induction

hypothesis we have that if Cn is not false, then it is solved. But Cn = Cn+1. It finishes the

proof.

Lemma 4

Any partially solved KIF constraint is solved.

Proof

Let K be a partially solved conjunction of primitive constraints. Then, by the definition,

each primitive constraint c from K should be either solved in K, or should have one of

the following forms:

• Membership atom:

— fu(H1, x,H2) in fu(R).

— (x,H) in R where H 6= ε and R has the form R1 · R2 or R∗1.

• Equation:

— (x,H1)
.
= (y,H2) where x 6= y, H1 6= ε and H2 6= ε.

— (x,H1)
.
= (T, y,H2), where x 6∈ var(T), H1 6= ε, and T 6= ε. The variables x and

y are not necessarily distinct.

— fu(H1, x,H2)
.
= fu(H3, y,H4) where (H1, x,H2) and (H3, y,H4) are disjoint.

However, c is also a KIF constraint. By the definition of KIF form, none of the above

mentioned forms for membership atoms and equations are permitted. Hence, c is solved

in K and, therefore, K is solved. It implies the lemma.

Theorem 6

Let C be a KIF constraint and solve(C) = C′, where C′ 6= false. Then C′ is solved.

Proof

By Theorem 3, C′ should be in a partially solved form. It is also in the KIF form, as we

noted above. Then, by Lemma 4, C′ is solved.

Theorem 7

Let 〈G ‖ true〉� · · ·� 〈� ‖ C′〉 be a finished derivation with respect to a KIF program,

starting from a KIF goal G. If C′ 6= false, then C′ is solved.

Proof

Since the reduction preserves KIF states, C′ is in the KIF form. Since the derivation is

finished and C′ 6= false, by the definition of finished derivation, C′ is partially solved. By

Lemma 4, we conclude that C′ is solved.

