Under consideration for publication in Theory and Practice of Logic Programming 1

Bound Founded Answer Set Programming

Rehan Abdul Aziz

Supervisors: Peter Stuckey and Geoffrey Chu
National ICT Australia, Victoria Laboratory,*
Department of Computing and Information Systems
Room 6.22, Doug McDonell Building (Building 168),
The University of Melbourne, Australia
Email: raziz@student.unimelb.edu.au

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Answer Set Programming (ASP) is a powerful modelling formalism that is very efficient in solving com-
binatorial problems. ASP solvers implement the stable model semantics that eliminates circular derivations
between Boolean variables from the solutions of a logic program. Due to this, ASP solvers are better suited
than propositional satisfiability (SAT) and Constraint Programming (CP) solvers to solve a certain class of
problems whose specification includes inductive definitions such as reachability in a graph. On the other
hand, ASP solvers suffer from the grounding bottleneck that occurs due to their inability to model finite
domain variables. Furthermore, the existing stable model semantics are not sufficient to disallow circular
reasoning on the bounds of numeric variables. An example where this is required is in modelling shortest
paths between nodes in a graph. Just as reachability can be encoded as an inductive definition with one
or more base cases and recursive rules, shortest paths between nodes can also be modelled with similar
base cases and recursive rules for their upper bounds. This deficiency of stable model semantics introduces
another type of grounding bottleneck in ASP systems that cannot be removed by naively merging ASP with
CP solvers, but requires a theoretical extension of the semantics from Booleans and normal rules to bounds
over numeric variables and more general rules. In this work, we propose Bound Founded Answer Set Pro-
gramming (BFASP) that resolves this issue and consequently, removes all types of grounding bottleneck
inherent in ASP systems.

1 Motivation

Answer Set Programming (Baral 2003) is a useful modelling paradigm to solve search and plan-
ning problems. Modern ASP solving (Gebser et al. 2007; Gebser et al. 2012) builds on propo-
sitional satisfiability (SAT) solving (Mitchell 2005). However, ASP solvers have a competitive
edge over SAT solvers in problems whose model involves some notion of transitive closure, e.g.,
reachability or connectivity in a graph. This is due to the difference in semantics of both systems;
ASP solvers implement stable model semantics (Gelfond and Lifschitz 1988) which minimizes
the number of variables that are true in a given logic program while a SAT solver only looks
for an assignment that satisfies all the given clauses. In ASP, in order for a variable to be true, it
must have some rule as a support that justifies it being true. Furthermore, no set of variables can
circularly support one another. E.g. given two rules a < b and b < a, the only valid solution in

* NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Council through the ICT Centre of Excellence program.

2 R.A. Aziz

stable model semantics is where a and b are both false, whereas in propositional semantics, both
the variables being true is also a valid solution.

As ASP systems such as SMODELS and CLASP only deal with Boolean variables, they are inef-
ficient for solving problems that are naturally modelled with integers, especially if they have large
domains. These combinatorial problems (e.g. scheduling) are ubiquitous in Computer Science,
which makes ASP a poor choice to model and solve them. The most obvious way to model these
in ASP is to represent each integer’s domain as a set of Boolean variables and impose constraints
on these variables to ensure consistency. This incurs what is commonly known as the grounding
bottleneck problem. Naturally, decomposing a large finite domain to Boolean variables blows
up the problem size in the size of domains of integer variables. Constraint Programming solvers
(Rossi et al. 2006) and Mixed Integer Programming solvers, on the other hand, are excellent can-
didates for these problems as they support numeric variables natively. Unfortunately, constraint
solvers suffer from the same inefficiency as SAT solvers regarding problems like reachability
that require inductive definitions. A hybrid system that has the best of both worlds, i.e., induc-
tive rules for Boolean variables from ASP, and native support for integers and constraints over
them from CP, addresses both the concerns. However, in this work, we propose that even this
hybrid approach is not sufficient, and there exists a type of grounding bottleneck that is still not
removed by combining the strengths of CP and ASP solvers. Let us illustrate this by first looking
at a benchmark from ASP competitions, and then modifying its problem description.

Consider the Minimum Connected Dominating Set (MCDS) problem. A dominating set is a
set of nodes such that every node in the graph is either in the set or has at least one neighbour in
the set. The objective is to find a dominating set of minimum cardinality such that the subgraph
induced by dominating nodes is connected. Let us look at the ASP encoding of the problem !.
A vertex X is given in the input as vtz(X), an edge from X to Y as edge(X,Y) and the edge
relation is symmetric.

Ry {dom(U) : vtz(U)}.

Ry in(V) « dom(V).

Rs in(V) + edge(U, V) A dom(U).

Cy + vtz (U) A —in(U).

Ry reach(U) + dom(U)A By<y : dom(V).

R5 reach(V) + reach(U) A dom (V') A edge(U, V).
Cy <« dom(U) A —reach(U).

O minimize{dom(U) : vtz(U)}.

R, introduces a decision variable dom for each vertex specifying whether it is a dominating
vertex or not. Ry is a choice rule which means that for a given node U, this rule can be a
justification for dom(U) if it is true. Ry, R3 and C; model that every node must either be a
dominating node or have a neighbour that is dominating. This is done with the help of an auxiliary
predicate in that becomes true when at least one of the conditions is met. C says that there can
be no node for which in is false. R4 and Ry define the predicate reach that is used to model the
connectivity constraint of the induced subgraph by the dominating nodes. R4 encodes the base
case for reachability, specifying that the node with the lowest index is reachable by definition.

1 Based on the model from Potassco group in the second ASP competition: http://dtai.cs.kuleuven.be/
events/ASP-competition/encodings.shtml

Bound Founded Answer Set Programming 3

This choice is arbitrary and its purpose can be satisfied by any criterion to select a dominating
node. Rj is a recursive case for reachability and it says that a dominating neighbour of a reachable
node is also reachable. The constraint C5 says that all dominating nodes must be reachable. The
objective, given by O, is to minimize the cardinality of the dominating set.

Let us modify MCDS such that the edges in the graph also have weights (edge (U, V, W) means
that the edge from U to V' has weight W) and there is an additional constraint that the diameter
(maximum distance between any two nodes) of the dominating subgraph is less than a certain
given value K. This problem has applications in computer networks (Kim et al. 2009; Buchanan
et al. 2013). Let d(X,Y) represent the distance (shortest path) between two dominating nodes
X and Y. In MCDS, it is sufficient to check for reachability of every dominating node from
an arbitrary node to ensure connectedness. However, to enforce the new constraint, we need a
distance variable for each pair of nodes in the dominating set. We can replace R4, R5 and C5 in
the above encoding of MCDS with the following:

Ry d(U,U) <0+« dom(U).
Rs d(U,T)<d(V,T)+ W < dom(T) A dom(U) A dom(V') A edge(U,V,W).
Cy < dom(U)Adom(V)ANd(U,V)> K.

R, is the base case for d and it says that the distance from a dominating node to itself is at
most 0. R is a recursive rule that specifies that for two dominating neighbours and a dominating
node T, the distance between one end of the node to 7" is at most the distance between the other
end and 7', plus the weight of the edge. Finally, the constraint Cs establishes that the distance
between any two dominating nodes must be at most K. It is unnecessary to include the previous
reachability rules since finite distances between all pairs of dominating nodes implies that the
dominating set is connected.

Rules like R4 and Rs5 on integer variables are clearly not supported by current ASP systems.
The semantics that we wish to associate with the distance variables is that firstly, if there are
no rules supporting them, then they are equal to co. Secondly, any rule for a distance variable
justifies a value lower than co and thirdly, the upper bounds of these variables cannot form a
circular justification. E.g. if there are two rules: @ < b and b < a, then any solution where a and
b are equal to a finite value should be rejected, and the only stable solution should be one where
both are equal to co. The distance variable is essentially an upper-bound founded (ub-founded)
variable, for which the upper bound needs to be justified by some rule. We can encode these
upper-bound founded distance variables in ASP along with our desired semantics by replacing
R4, R5, and C5 as follows:

dup (U, V,N) < dom(U) A dom(V) A dyp (U, V,N — 1), N < M.

dup (U, U, 0) < dom(U).

dup (U, T, D + W) < dom(T) A dom(U) A dom(V') A edge(U,V,W) Ad(V,T, D).
d(U,V, D) < dom(U) A dom(V) A dyy(U, V, D) A ~du (U, V, D — 1).

— dom(U) A dom(V) AN d(U,V,D)AND > K.

In the above encoding, M is a sufficiently large integer and d,; (U, V, N) specifies that the
distance between the dominating nodes U and V' is at most N (the subscript ub stands for upper-
bound). d(U,V, D) is defined as the minimum value for which d,; (U, V, D) is true. Unfortu-
nately, an ASP solver on this encoding quickly runs into the grounding bottleneck problem as

4 RA. Aziz

we increase edge weights and the bound on diameter. This is the motivation of this work, i.e., to
support founded numeric variables and rules like R4 and R5 without grounding them.

The symmetric analog for a ub-founded variable is a lower-bound founded (1b-founded) vari-
able, which is by default equal to —oco (false for Boolean) and further rules for it can justify
a greater value on its lower bound. In this generalization, ASP variables are simply Ib-founded
Boolean variables. For simplicity, we only consider 1b-founded variables, and refer to them as
founded variables. This simplification is possible because we can replace all ub-founded vari-
ables, their rules, and their constraints by corresponding 1b-founded variables with similar rules
and constraints. E.g., for the above problem, let d(U, V') represent the negative of the distance
between U and V/, then we can perform this transformation as follows:

Ry d(U,U) >0+ dom(U).
Rs d(U,T) > d(V,T)—W « dom(T) A dom(U) A dom(V') A edge(U, V,W).
Cy <+ dom(U)Adom(V)ANd(U, V) < —K.

An important point in the encoding of MCDS is that if we remove the reachability condition
from the problem specification, and R4, R5, and C5 from the encoding, then the problem can be
solved by a SAT solver just as efficiently as an ASP solver. Recall that the only shortcoming of
SAT solvers is related to modelling properties like reachability since the propositional semantics
that they are based on does not naturally model recursive definitions. This leads us to the im-
portant observation that besides founded variables like reach and d, there can be variables in a
problem like the dom variables that are not founded. Let us call them standard variables, owing
to the fact that these are the usual variables in CP solvers. Standard variables can be assigned
any value as long as all the constraints associated with them are satisfied. Founded variables, on
the other hand, need rules to define their values and without them, they are equal to some default
value.

Since there are no rules and founded variables in CP and MIP solvers, MCDS with bounded
diameter as defined above cannot be efficiently solved by them. The MIP formulation as given in
(Buchanan et al. 2013) encodes each distance variable with K propositional variables, meaning
that the problem size increases with K. Our encoding above that uses founded variables does
not suffer from this problem. This leads us to distinguish between the two types of grounding
bottlenecks. One is caused in a system by the absence of its support for standard integer variables.
Let us call this type the standard grounding bottleneck. The other type of grounding bottleneck
is caused by the lack of a system’s capabilities to handle founded numeric variables, therefore,
let us call it founded grounding bottleneck.

In the next section, we formally define the semantics of Bound Founded Answer Set Program-
ming (BFASP), a formalism that generalizes the stable model semantics to bounds over numeric
variables, and allows for a richer set of rules for founded variables. 2

2 Bound Founded Answer Set Programming

Let V be the set of variables. We consider three types of variables: integer, real, and Boolean.
Furthermore, we divide the set of variables in two disjoint sets: standard S and founded variables
F. A domain D maps each variable = € V to a set of constant values D(x). A valuation (or

2 The MINIZINC encoding of MCDS with bounded diameter in BEASP is given Appendix A.

Bound Founded Answer Set Programming 5

assignment) 6 over variables vars(d) C V maps each variable z € vars(6) to a value 6(z). A
constraint ¢ is a set of assignments over the variables vars(c), representing the solutions of the
constraint. Given a constraint ¢, a variable y € vars(c) is monotonically increasing (decreasing)
in ¢ if for all solutions 6 that satisfy ¢, increasing (decreasing) the value of y also creates a
solution, that is 6’ where 6'(y) > 0(y), and 0'(x) = 0(x), z € vars(c) — {y}, is also a solution
of c.

A positive-CP P is a collection of constraints where each constraint is increasing in exactly
one variable and decreasing in the rest. The minimal solution of a positive-CP is an assignment 6
that satisfies P s.t. there is no other assignment 6’ that also satisfies P and there exists a variable v
for which 0’(v) < 6(v). Note that for Booleans, true > false. A satisfiable positive-CP P always
has a unique minimal solution. If we have bounds consistent propagators for all the constraints
in the program, then the unique minimal solution can be found simply by performing bounds
propagation on all constraints until a fixed point is reached, and then setting all variables to their
lowest values.

A rule r is a pair (¢, y) where ¢ is a constraint, y € F is the head of the rule and it is increasing
in ¢. A bound founded answer set program (BFASP) P is a tuple (S, 7, C, R) where C and R
are sets of constraints and rules respectively. Given a variable y € F, rules(y) is the set of rules
with y as their heads.

The reduct of a BFASP P w.r.t. an assignment 6, written P?isa positive-CP made from each
rule 7 = (¢, y) by replacing in ¢ each variable & € vars(c) — {y}, if it is a standard variable or if
c is not decreasing in it, by its value §(x) to create a positive-CP constraint ¢’. Let r? denote this
constraint. If 77 is not a tautology, it is included in the reduct. An assignment 6 is a stable model
of P iff i) it satisfies all the constraints in P and ii) it is the minimal model that satisfies P?.

Example 1

Consider a BFASP with standard variable s, integer founded variables a, b, Boolean founded
variables = and y, and the rules: (a > 0,a), (b > 0,b), (a > b+ s,a), (b > 8 < x,b), (v +
=y A (a > 5),x). Consider an assignment 6 s.t. (x) = true, 0(y) = false, 8(b) =8, 0(s) =9
and 6(a) = 17. The reduct of 0 is the positive-CP: a > b+ 9,b > 8 < z, 2 + a > 5. The
minimal model that satisfies the reduct is equal to 6, therefore, 6 is a stable model of the program.
Consider another assignment 6" where all values are the same as in 6, but #'(s) = 3. Then, pY
is the positive-CP: ¢ > 0,0 > 0,a > b+ 3,b > 8 < x, z + a > 5. The minimal solution that
satisfies this positive-CP is M where M (a) = 3, M (b) = 0, M (z) = M (y) = false. Therefore,
6’ is not a stable model of the program.

3 Overview of the existing literature

There are several approaches in the literature that aim at removing the standard grounding bot-
tleneck from ASP systems. A majority of these approaches work as follows: they introduce finite
domain integer variables and constraints inside the ASP program. The ASP solver passes these
to a CP solver while maintaining a Boolean variable to represent the truth value of each con-
straint that is in the ASP program. For a constraint c that appears in the program, this is done by
reifying the constraint, i.e., introducing a Boolean variable b to represent whether the constraint
is true. The ASP and CP solvers communicate using these introduced Boolean variables. E.g., if
b is set true by the ASP solver, then the constraint ¢ is enforced by the CP solver. Since the ASP
solver treats CP as a blackbox, it cannot directly learn clauses from the propagation performed by

6 R.A. Aziz

the CP solver. Examples of systems that use this approach are the AC SOLVER algorithm (Mel-
larkod et al. 2008), CLINGCON (Gebser et al. 2009) and EzCSP (Balduccini 2009). Recently,
some systems have been introduced that overcome the limited learning by using a single solver
that supports both founded Booleans as well as standard integer variables and constraints over
them. One way to achieve this is to introduce standard integer variables inside an ASP solver, and
extending ASP’s propagation engine to work like a CP solver (de Cat et al. 2013; Drescher and
Walsh 2012). The second approach is given in our earlier work (Aziz et al. 2013a), and extends
an existing CP solver with founded Boolean variables and normal rules. To implement the stable
model semantics over these, it implements the source pointer technique (Simons et al. 2002) to
prune unfounded sets (Van Gelder et al. 1988) of variables as a propagator, similar to the ASP
solver CLASP (Gebser et al. 2012).

Translating in terms of its supported features a specification that is missing in a system is an-
other way to remove standard grounding bottleneck. There are two approaches in the literature to
accomplish this. The first approach provides a translation from an ASP program augmented with
numeric variables and constraints to a Mixed Integer Program (Liu et al. 2012). As discussed
earlier, the non-recursive parts of the program are straight-forward to translate. The non-trivial
part is encoding rules that involve positive recursion. This is done using the level ranking map-
ping as given in (Janhunen 2004). The fundamental idea of the translation is that if there is an
unfounded set in the solution of the original program, then the mapping contains an inconsistent
set of inequalities. The second approach (Drescher and Walsh 2010) encodes entire CP solving
into ASP using the well-known eager CP decompositions to SAT. Unfortunately, this a priori
translation of CP to SAT is already known to be highly inefficient in the CP community where it
is much more efficient to translate lazily as in lazy clause generation (Ohrimenko et al. 2009).

Compared to the standard grounding bottleneck, the focus on the founded grounding bottle-
neck has been relatively weak. The formalism that is closest to BFASP in terms of removing
this bottleneck is Fuzzy Answer Set Programming (FASP) (Nieuwenborgh et al. 2006; Blondeel
et al. 2013). The fuzzy atoms in FASP correspond to founded real variables in BFASP, and each
logical connective in FASP can be expressed as a rule form in BFASP. We have provided the
translation in our previous work (Aziz et al. 2013), showing that BFASP subsumes FASP. Most
importantly, from the implementation point of view, the MIP based unfounded set detection al-
gorithm (Janssen et al. 2008) given for FASP only detects unfounded sets in a complete solution,
which means that it cannot prune partial solutions that contain unfounded sets. Therefore, the
algorithm has a similar shortcoming as CMODELS (Lierler and Maratea 2004) has in case of
Boolean unfounded sets. Finally, lack of any good implementation for FASP makes it infeasible
to carry out an empirical comparison of BFASP and FASP.

4 Goals and current status of the research

The broader goal of my PhD is to analyze the strengths and implementation techniques of ASP
in order to enhance the existing modelling and solving capabilities of constraint solvers. This
overall goal can be divided into the following subgoals.

o To define, study, implement, and evaluate BFASP in order to put it forward as a formalism,
with an accompanying implementation, that does not suffer from any kind of grounding
bottleneck. This subgoal has been completed, and the most important features of BFASP
were published in ICLP 2013 (Aziz et al. 2013). The paper defines the semantics of BFASP

Bound Founded Answer Set Programming 7

and presents an unfounded set algorithm that detects circular sets of bounds and prunes
them during search. It presents performance comparison of our implementation of BFASP
with ASP on three benchmarks, and with CP on one benchmark, and the results demon-
strate the need for BFASP.

Prior to introducing BFASP, we extended a CP solver with founded Boolean variables and
normal rules (Aziz et al. 2013a). We implemented two known algorithms for unfounded
set detection from the ASP literature inside the CP solver CHUFFED and compared it with
CLINGCON on problems that involve inductive definitions as well as standard integer vari-
ables.

o To define and study the language of BFASP. As compared to ASP languages like GRINGO
that follow a very restrictive grammar, the grammar for BFASP is very permissive and a
user can write complex expressions as rules. Therefore, the first task in this subgoal is to
simplify these rules to a small set of primitive rules. In other words, we want to extend
the flattening principles (Stuckey and Tack 2013) used in constraint languages to BFASP.
Secondly, ASP grounders use bottom-up grounding that generates as few useless rules as
possible. These are rules that can be removed without affecting the stable solutions of
the program. The second task is to generalize ASP bottom-up grounding technique for
BFASP. Finally, magic set rewriting is a useful technique in logic programming that only
instantiates rules that are relevant to a given query. Considering variables appearing in
constraints and objective function comprise our query, i.e. the set of variables whose values
are of interest, the final task is to generalize the magic set transformation for BFASP.

o Identify research areas and benchmarks where BFASP can be applied and that cannot be
efficiently solved by the current ASP, CP, and Constraint ASP (Gebser et al. 2009) systems.
The doctoral programme could prove especially beneficial with regard to this subgoal.

References

Az1z, R. A., CHU, G., AND STUCKEY, P. J. 2013. Stable model semantics for founded bounds. Theory
and Practice of Logic Programming 13, 4-5, 517-532. Proceedings of the 29th International Conference
on Logic Programming.

Az1z,R. A., STUCKEY, P. J., AND SOMOGYI, Z. 2013a. Inductive definitions in constraint programming.
In Proceedings of the Thirty-Sixth Australasian Computer Science Conference, B. Thomas, Ed. CRPIT,
vol. 135. ACS, 41-50.

BALDUCCINI, M. 2009. Representing constraint satisfaction problems in answer set programming. In
ICLP09 Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP09).

BARAL, C. 2003. Knowledge representation, reasoning and declarative problem solving. Cambridge
University Press.

BLONDEEL, M., SCHOCKAERT, S., VERMEIR, D., AND DE COCK, M. 2013. Fuzzy answer set program-
ming: An introduction. In Soft Computing: State of the Art Theory and Novel Applications. Springer,
209-222.

BUCHANAN, A., SUNG, J. S., BOGINSKI, V., AND BUTENKO, S. 2013. On connected dominating sets of
restricted diameter. European Journal of Operational Research.

DE CAT, B., BOGAERTS, B., DEVRIENDT, J., AND DENECKER, M. 2013. Model expansion in the presence
of function symbols using constraint programming. In IEEE International Conference on Tools with
Artificial Intelligence.

DRESCHER, C. AND WALSH, T. 2010. A translational approach to constraint answer set solving. Theory
and Practice of Logic Programming 10, 4-6, 465—480.

8 R.A. Aziz

DRESCHER, C. AND WALSH, T. 2012. Answer set solving with lazy nogood neneration. In Technical
Communications of the 28th International Conference on Logic Programming. 188-200.

GEBSER, M., KAUFMANN, B., NEUMANN, A., AND SCHAUB, T. 2007. Conflict-driven answer set solv-
ing. In Proceedings of the 20th International Joint Conference on Artificial Intelligence. MIT Press,
386.

GEBSER, M., KAUFMANN, B., AND SCHAUB, T. 2012. Conflict-driven answer set solving: From theory
to practice. Artificial Intelligence 187, 52-89.

GEBSER, M., OSTROWSKI, M., AND SCHAUB, T. 2009. Constraint answer set solving. In Proceedings of
the 25th International Conference on Logic Programming. Springer, 235-249.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In Proceed-
ings of the Fifth International Conference on Logic Programming. MIT Press, 1070-1080.

JANHUNEN, T. 2004. Representing normal programs with clauses. In Proceedings of the 16th Eureopean
Conference on Artificial Intelligence. 358-362.

JANSSEN, J., HEYMANS, S., VERMEIR, D., AND CoCK, M. D. 2008. Compiling fuzzy answer set pro-
grams to fuzzy propositional theories. In Proceedings of the 24th International Conference on Logic
Programming. Springer Berlin Heidelberg, 362-376.

KM, D., WU, Y., L1, Y., Zou, F., AND Du, D.-Z. 2009. Constructing minimum connected dominat-
ing sets with bounded diameters in wireless networks. IEEE Transactions on Parallel and Distributed
Systems, 147-157.

LIERLER, Y. AND MARATEA, M. 2004. Cmodels-2: Sat-based answer set solver enhanced to non-tight
programs. In LPNMR. 346-350.

L1u, G., JANHUNEN, T., AND NIEMELA, I. 2012. Answer set programming via mixed integer program-
ming. In Proceedings of the 13th International Conference on Principles of Knowledge Representation
and Reasoning. AAAI Press, 32-42.

MELLARKOD, V. S., GELFOND, M., AND ZHANG, Y. 2008. Integrating answer set programming and
constraint logic programming. Annals of Mathematics and Artificial Intelligence 53, 1-4, 251-287.

MITCHELL, D. G. 2005. A SAT solver primer. Bulletin of the EATCS 85, 112-132.

NIEUWENBORGH, D. V., CoCcK, M. D., AND VERMEIR, D. 2006. Fuzzy answer set programming. In
Proceedings of Logics in Artificial Intelligence, 10th European Conference, JELIA 2006. Springer Berlin
Heidelberg, 359-372.

OHRIMENKO, O., STUCKEY, P. J., AND CODISH, M. 2009. Propagation via lazy clause generation. Con-
straints 14, 3, 357-391.

Rossi, F., BEEK, P. v.,, AND WALSH, T. 2006. Handbook of Constraint Programming (Foundations of
Artificial Intelligence). Elsevier Science, New York, NY.

SIMONS, P., NIEMELA, I., AND SOININEN, T. 2002. Extending and implementing the stable model se-
mantics. Artificial Intelligence 138, 1-2, 181-234.

STUCKEY, P. J. AND TACK, G. 2013. Minizinc with functions. In Proceedings of the 10th International
Conference on Integration of Artificial Intelligence (Al) and Operations Research (OR) techniques in
Constraint Programming. Number 7874 in LNCS. Springer, 268-283.

VAN GELDER, A., Ross, K. A., AND SCHLIPF, J. S. 1988. Unfounded sets and well-founded semantics
for general logic programs. In Proceedings of the ACM Symposium on Principles of Database Systems.
ACM, 221-230.

Bound Founded Answer Set Programming 9

Appendix A MINIZINC Encoding of Minimum Connected Dominating Set with Bounded

int: N;

int: E;

array[l..E] of 1..N: from;
array[l..E] of 1..N: to;
array[l..E] of int: weight;
int: K;

array[l..N] of var bool: dom;

o)

% Dominating set constraint

constraint forall (n in 1..N)

Diameter

gnumber of nodes
$number of edges
%$encodes an edge i1 (from[i], to[i])

$weight of an edge
%$bound on diameter

$whether a node is dominating

(

dom[n] \/ exists(e in 1..E where from[e] = n) (dom[to[e]])

)

[o)

% Rules for negative distance

array[l..N,1..N] of var int: founded;
rule forall (n in 1..N) (d[n,n] >= 0 :: head(d[n,n]));
rule forall (e in 1..E, n in 1..N) (

d[from[e],n] >= d[to[e],n] - weight[e]

<- dom[from[e]] /\ dom[to[e]l] /\ dom[n] :: head(d[from[e],n])

)
% Diameter constraint
constraint forall (u,v in 1..N where u != v) (

dom[u] /\ dom[v] -> d[u,v] >= -K

)

% Objective to minimize the cardinality of dominating set

solve minimize sum (n in 1..N)

% A toy instance

N=4;

E=6;

K=35;

from =[1, 2, 2, 3, 3, 471;
to =[2, 1, 3, 2, 4, 31;

weight =[20,20,30,30,40,40];

(bool2int (dom([n]));

