
Under consideration for publication in Theory and Practice of Logic Programming 1

Logic Programming as Scripting Language for Bots in
Computer Games – Research Overview

Grzegorz Jaśkiewicz
Warsaw University of Technology, Poland

(e-mail: grzegorz@jaskiewi.cz)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

This publication is to present a summary of research (referred as κ-Labs1) carried out in author’s Ph.D
studies on topic of application of Logic Programming as scripting language for virtual character behavior
control in First Person Shooter (FPS) games.

The research goal is to apply reasoning and knowledge representation techniques to create character
behavior, which results in increased players’ engagement.

An extended abstract / full version of a paper accepted to be presented at the Doctoral Consortium of the
30th International Conference on Logic Programming (ICLP 2014), July 19-22, Vienna, Austria

KEYWORDS: Logic Programming, Video Games, Virtual Characters, Scripting Language, Decision Rules

Contents

1 Introduction 2
2 Related works 3

2.1 Rule-based systems in video games development 3
2.2 Frameworks for developing rational agents 3

3 Research Overview 4
3.1 Research status summary 4
3.2 Bot architecture elaborated during research 5

4 Experiments and Results 6
4.1 Offline experiments 7
4.2 Online experiments 7
4.3 Performance 9

5 Future Works 9
References 9

1 website available at http://www.kappalabs.org

2 G. J. Jaśkiewicz

1 Introduction

The First Person Shooter (FPS) is a type of video game where a player sees the level from the
eyes of the character being played. Counter-Strike is one of the most popular and successful FPS
games in the world. It is one of the top 10 online games on the Steam network with a daily peak
of online players near 40.0002 and it is played professionally around the world in e-sport leagues
(Jana et al. 2007). Sample screenshots of the gameplay is presented in the fig. 1.

Fig. 1. First person perspective view in Counter-Strike game.

The game is about fight of terrorist (Ts) and counter-terrorist (CTs) forces. Players are divided
into those two teams and try to fulfill objectives, which are dependent on a map type. Most
commonly played map types are defusion (DE) and counter-strike (CS). On CS maps CTs has to
rescue hostages, which are guarded by Ts. Example of such map is cs assault, where hostages
are held in a warehouse, or cs 747, where hostages are held in a Boeing plane on an airfield. In
DE maps CTs has to prevent Ts from bombing some important location.

The game was created in 1994 and its first versions were entirely multiplayer3. The lack of
ability to play in single player mode resulted in community-developed Artificial Intelligence (AI)
algorithms for replacing human controlled opponents. The software which controls characters in
a multiplayer game is usually called “bot”.

Counter-Strike has large community of people who create modifications for the game (Kücklich
2005). As a result there are available many different bot implementations. Many of them are dis-
tributed as an open-source software. The research described in this article is based on the open-
source bot implementation called E[POD]. The bot’s source code was altered to allow scripting
the bot behavior using Logic Programming. The name κBot is used to refer to the bot which is
an object of the research.

The idea of embedding a scripting language into video game is well-known practice in the
game development industry. It allows to clearly divide responsibilities in project of creating a
video game – game engine programmers and game world designers. In some cases game engine
is not developed. Instead, the license is bought for usage in the particular product. The ability to
script some aspects of gameplay makes such engine more flexible. Commonly, scripts are used to
describe player interactions with game world, but character behavior is also part of this domain,
hence there is a perfectly valid use-case for existence scripting tool for their behavior.

2 source: daily statistics for Counter-Strike 1.6 provided by the Steam – online gaming platform, see http://store.
steampowered.com/stats/, access date: 07.2013.

3 game mode where multiple players participate in same game session; often played on a network (LAN or Internet).

Logic Programming as Scripting Language for Bots in Computer Games – Research Overview3

Lua, Python and Unreal Script dominate as scripting languages for game engines (Ander-
son 2011). All of them are multiple paradigm languages: imperative, object-oriented, functional,
procedural. However, none of them does allow logic programming by its syntax. This is distinct
paradigm, which relies strongly on notion of reasoning and knowledge representation – the main
concepts of rational agents. Virtual characters in FPS games could be regarded as rational agents,
so the scripting language for character behavior in κBot allows logic programming.

2 Related works

2.1 Rule-based systems in video games development

The similarities presented in this section are based on application of rule-based systems for ex-
pressing a character behavior rules in video games. The most prominent examples of such solu-
tions are:

• Generic Robot Language (Horswill 2000) – a simple functional language to define decision
rules, which are compiled to C++ code;

• Goal Oriented Action Planning (Orkin 2005) – a performance-oriented planning algorithm
based on A? algorithm. Uses pre- and post-conditions based on a predicate calculus for
actions;

• Adaptive game AI with dynamic scripting (Spronck et al. 2006) – a machine learning algo-
rithm used to optimize a selection of preprogrammed decision rules for fighting characters;

• Cognitive Modeling Language (Funge 1998) – a language integrated with planning us-
ing A? algorithm. It allows specifying constraints through logical rules on solutions being
searched;

• Avatar Definition Language (Anderson 2005) – an imperative language to script conditions
for triggering state changes for an underlying finite state machine. The script represents
a high-level logic of a bot functioning, while states are executing actions for achieving
simple goals.

2.2 Frameworks for developing rational agents

Multiagent scientific field is well-developed. There exists many tools and methods, which facili-
tate software development in this paradigm.

The examples of platforms for general multiagent development are JADE (Bellifemine et al.
2005) and SOAR (Laird et al. 1987). Those could be possibly used for controlling virtual char-
acters in a game environment (Laird 2001).

There is also a software platform dedicated for that purpose: Pogamut (Gemrot et al. 2009).
The examples of planning algorithms for rational agents which are based on knowledge rep-

resentation and reasoning are:

• GOAL (Hindriks 2009) - agents derive their choice of action from their beliefs and goals,
• FLUX (Thielscher 2005) - programming framework for rational agents based on the fluent

calculus (Thielscher 1998).

The variety of tools for developing rational agent is a motivation to apply some of them for
characters in video games.

4 G. J. Jaśkiewicz

3 Research Overview

The goal of the research is to explore capabilities of logic programming as scripting language
for controlling virtual characters in FPS video games. The reason for starting this research was a
presence of logic programming in a multiagent programming domain.

3.1 Research status summary

We have choosen Prolog as scripting language for κBot, because it is a general-purpose, Turing-
complete scripting language. This is important, because it gives programming flexibility, so that
a programmer can construct arbitrary algorithms using Prolog script. Still, the κBot scripts can
benefit from declarative syntax, which is property of Prolog.

We have chosen a SWI-Prolog (Wielemaker 2003) as Prolog interpreter, because of unre-
strictive license and ease of embedding into software written in C++. The interpreter is not only
a logic module, which computes a model for given rules and facts in order to make a decision. It
is capable of invoking functions from the bot’s code. We made such decision to enhance Prolog
usage as programming language, not only as an inference method. Typically, some parts of the
script define agent’s reasoning rules and some are part of framework for reasoning, i.e. we use
some generic predicates to divide inference rules into different generality levels: game rules, map
type rules and map-specific rules.

We have used source code of E[POD] bot to create κBot bot. The original version of E[POD]
relies on Brooks architecture (Zubek 2001) – the logic is divided into two layers with different
level of abstraction:

• low-level reasoning – for expressing simple actions like moving around the map, attacking
enemy, planting bombs, etc. Low-level reasoning algorithm tailored for particular task (e.g.
planting a bomb) is called high-level action.

• high-level reasoning – for building bot behaviors by selecting of high-level actions.

The practice of separating task into several layers of abstraction is common practice in multia-
gent programming. For game bots two layers of abstraction is reasonable amount. However, for
more complicated agents, more layers could be defined, e.g. robots, which must control their
servomotors, may need additional hardware abstraction layers (Minsky 1986).

The goal is to develop a scripting module for the high-level reasoning layer. In first versions of
κBot, E[POD]’s high-level decision-making algorithm was mimicked entirely by Prolog script.
This was achieved by rewriting in Prolog all the rules and conditions which trigger change of
high-level actions. Afterwards, rules for controlling bot behavior were divided into packages with
different level of generality, i.e. general rules for playing the game, rules for playing on specific
map type and rules for playing on concrete instance of the map. In recent versions κBot bot
has predefined set of tactics scripted per map. Those tactics describe how to exploit map-specific
features for gaining tactical advantage. For some maps they are even simulated bot negotiation for
selecting collective team tactics, e.g. bot can vote according to its own, individual preferences,
which tactic should it commit to.

Logic Programming as Scripting Language for Bots in Computer Games – Research Overview5

3.2 Bot architecture elaborated during research

In this section we will show a core concept of the bot’s architecture, which is scriptable in
Prolog. Many specific details like bots’ communication or collaboration are not covered by
this section. However, any of those details are based upon concepts presented in this chapter.

Obviously, to make any decisions for any character the bot must learn information about the
game environment it operates within. Relevant information are feed into Prolog script by in-
voking native predicates. Those can retrieve and transfer information, which are managed by the
game engine, into Prolog interpreter, e.g. information about visible enemies, hearing footsteps,
amount of ammunition and money available etc. An example of the declaration of such predicate
is shown in the listing 1.

Listing 1. An example of native predicate declaration.
/ / p r e d i c a t e b o t i n f o v (? botID , ? bot ID)
/ / c h e c k s i f a c h a r a c t e r i s i n a f i e l d o f v iew
/ / o f a n o t h e r c h a r a c t e r . May have m u l t i p l e g o a l s .
PREDICATE NONDET(b o t i n f o v , 2) { /∗ . . . ∗ / }

Another source of information is a database of dynamic clauses, which is implemented with
help of assert / retract predicates. Those information are used to implement the bot’s mem-
ory. In contrary to information provided by the native predicates, memorized information can be
changed freely by Prolog script. The example of information kept in bot’s memory are, e.g.

• information about a map topology, which change infrequently, e.g. hiding spots, ambush
points,

• information about past actions, e.g. bot should not try to buy weapons more then once a
round,

High-level actions are started by invoking a native predicate in the script. The backtracking of
a proof does not cancel once created action. In order to keep control over the script execution, the
bot script should be constructed in such way that these action predicates will not be backtracked.
This often leads to decision rules in following form:

Listing 2. An example of starting an action from script.
d o r e a s o n i n g (BotID) :−

s h o u l d d o a c t i o n (BotId , A r g s f o r a c t i o n) ,
d o a c t i o n (BotId , A r g s f o r a c t i o n) .

where do action in listing 2 is a native predicate for starting some action. Term should do action

is condition for this action; backtracking can occur while proving it. The conditional expression
also provides arguments, which are passed to the action being invoked.

The high-level actions has two important features: motivations and continuations. A moti-
vation is a logical condition expressed through Prolog terms. The action is executed as long as
motivation is evaluated to truth value (YES) according to information, which the bot receives from
the environment. Introducing the motivation improves control over the bot by Prolog scripts, be-
cause it is possible to interrupt execution of high-level action. This technique also improves the
separation between bot’s C++ code and Prolog scripts, because script creator does not have to
know detailed specification of any particular action.

An example of a motivation:

6 G. J. Jaśkiewicz

Listing 3. An example of motivation for action.
a c t i o n k i l l (

BotID ,
EnemyID ,
and (b o t a l i v e (EnemyID) , d a n g e r l o w (BotID))) .

The action in listing 3 will make bot with identifier BotID try killing the bot with identifier
EnemyID as long as invocation

c a l l (and (b o t a l i v e (EnemyID) , n o t i n d a n g e r (BotID))) .

evaluates to YES. This condition expresses conjunction of two sub-subconditions: the character
referenced by EnemyID is alive and the character referenced BotID is not in danger. At the
moment of checking the motivation both variables are instantiated — BotID is owner of task and
EnemyID is the target to eliminate.

Continuations are simple form of planning and defining complex behaviors consisting of se-
quence of several high-level actions. There could be assigned a continuation to any high-level
action. A continuation is a term in Prolog script which is executed after high-level action is
successfully completed. As a result of executing continuation there could be created a new ac-
tion to be executed. The new action could have its own motivation and continuation. Example of
continuation usage:

Listing 4. An example of continuation for action.
a c t i o n g o t o (BotID , Wp, andThen (

a c t i o n l i b e r a t e h o s t a g e s (BotID)) .

The action in listing 4 will create an action for the character with identifier BotID, which will
cause him go to a waypoint with identifier Wp. After reaching waypoint the continuation is started
by executing

c a l l (a c t i o n l i b e r a t e h o s t a g e s (BotID)) .

This will create new action for the character to liberate hostages.
The schematics of dependencies between system components has been presented in diagram

2.
The dependencies in diagram 2 are following:

1. high-level actions change environment (e.g. move an agent),
2. high-level actions read environment state,
3. script execution may create new high-level actions,
4. motivations may cease action execution; continuations may create new actions,
5. reasoning, motivations and continuations may read and change contents of dynamic database,

which constitute inner state,
6. perception predicates serves as a proxy for learning facts about game environment.

4 Experiments and Results

In experiments κBot has been always compared to E[POD], because κBot without map-specific
rules and knowledge plays no different than E[POD]. This is caused by close translation of

Logic Programming as Scripting Language for Bots in Computer Games – Research Overview7

Counter-Strike
Game Engine

Game environment

κBot

High-level
Actions

Prolog

interpreter

Deliberative
and

Reflex
Reasoning

Motivations
and

Continuations

Perception
Predicates

Inner
State

2.

1.
6.

3. 4.

5.5.

6.

6.

Fig. 2. Draft of bot architectural software design.

E[POD]’s behavioral rules, expressed by C++ code, into Prolog script. This property is par-
ticularly useful, because it allows to attribute all changes in player perception of gameplay to
modifications in high-level reasoning — all high-level actions, like aiming and navigating in
map, were the same for the two compared bots.

4.1 Offline experiments

Offline experiments has been carried out, while κBot has been in development stage. Those kind
of experiments allows to determine, if the bot is functioning effectively, i.e. does it not crash, does
not consume too much CPU and is it able to reach its goals. Those experiments were conducted
by gathering match statistics with κBot playing against E[POD].

Those experiments were carried out on cs assault map. We have tracked a number of times
each team was victorious and a number of times when team fulfilled its objective. We have
defined fulfilling an objective as:

– for CTs, to rescue hostages, without killing the opposing team,
– for Ts, to prevent CTs from rescuing hostages, without the opposing team.

In table 1 and table 2 we present the results of offline testing of the version of κBot, which was
used in online experiments (section 4.2).

It could be seen that κBot gets better scores than E[POD]. Study of goal-fulfilled team victo-
ries suggests also that κBot is more goal-oriented than E[POD].

4.2 Online experiments

The primary idea of online experiments was to gather feedback and metrics from people who
casually play Counter-Strike. The metrics for players engagement were obtained through obser-

8 G. J. Jaśkiewicz

CTs AI Ts AI CTs wins Ts wins

E[POD] E[POD] 4.1 6.4
κBot E[POD] 8.6 5.3
E[POD] κBot 1.9 7.0
κBot κBot 6.6 8.4

Table 1. Gameplay statistics of total team victories – 10 matches average.

CTs AI Ts AI CTs wins Ts wins

E[POD] E[POD] 0.4 1.2
κBot E[POD] 3.6 0.5
E[POD] κBot 0.2 2.5
κBot κBot 1.1 0.1

Table 2. Gameplay statistics of goal-fulfilled team victories – 10 matches average.

vation of players game session time and receiving feedback through questionnaires. The ques-
tionnaires were about comparing gameplay quality playing with E[POD] bot and κBot bot. The
volunteer played on two servers hosting cs assault map: one with 7 E[POD] bots and one
with 7 κBot bots in his team of choice (T or CT). The main section of questionnaire consisted
of 3 comparisons: entertainment quality, realism of bot behavior and difficulty level. So far, such
questionnaires has been answered for research using map-specific tactics employing virtual char-
acter negotiations. The results of questionnaires has been presented in table 3. It could be seen
that this form of behavior specialization does not raise on average player gameplay satisfaction.
However, the number of strong positive and negative opinions are comparable. This shows that
player notice the change in bot behavior patterns. Player also feel that κBot behavior is more
realistic and it is harder to defeat. This may explain the fact some players like it and others do
not.

Which bot was . . . Surely
κBot

Rather
κBot

Hard to tell Rather
E[POD]

Surely
E[POD]

. . . more enjoyable? 37.5 % 9.375 % 6.25 % 18.75 % 28.125 %

. . . harder? 43.75 % 6.25 % 15.625 % 9.375 % 25 %

. . . more realistic? 46.875 % 9.375 % 25 % 6.25 % 12.5 %

Table 3. The results of questionnaires in online experiments.

The analysis of player session time shows player tend to play with κBot to the end of the
match. When they play with E[POD] they tend to disconnect from server before end of match
more often. This could probably, be explained by fact that player notice the difference between
well-known behavior of E[POD] bot and new behavioral specializations of κBot.

Logic Programming as Scripting Language for Bots in Computer Games – Research Overview9

4.3 Performance

κBot performance was measured in order to keep resource consumption within realistic con-
straints for practically usable software. The presence of κBot in the online experiments is ex-
ample of a server-side deployment. It differs from client-side deployment in terms of hardware
and game engine functioning. Server machine usually has more CPU power than laptop or work-
station. The server does not need to render 3D game environment scene, it only has to provide
symbolic information about game state to its clients. Because of those difference tests were run
for both settings. In general, the architecture seems to be usable: it is possible to define useful
behavior without much impact on CPU. In client-side deployment Prolog interpreter took≈ 1%
of wall time. In server-side deployment κBot caused 7% raise of CPU utilization when compared
to E[POD]. Note that those two metrics are not comparable to each other, but each of them is
appropriate to its application.

5 Future Works

The κBot architecture is a baseline for further extensions. We have tested a form of specialization
of bot behavior using very simplified default logic. Currently we are investigating obtaining
behavioral rules by computational methods.

Interpreters for some kind of logics, e.g. Golog, are implemented in Prolog or output a script
which is executed in Prolog interpreter. This gives opportunities to test those logics as reasoning
mechanism for κBot, without burden of integration with bot’s C++ code.

Acknowledgements

I would like to thank my mentor prof. Jarosław Arabas for advices provided while writing this
article.

References

ANDERSON, E. F. 2005. Scripting behaviour - towards a new language for making npcs act intelligently. In
Proceedings of zfxCON05 - 2nd Conference on Game Development. Stefan Zerbst Verlag, Braunschweig,
Germany.

ANDERSON, E. F. 2011. A classification of scripting systems for entertainment and serious computer
games. In Games and Virtual Worlds for Serious Applications (VS-GAMES), 2011 Third International
Conference on. IEEE, 47–54.

BELLIFEMINE, F., CAIRE, G., POGGI, A., AND RIMASSA, G. 2005. Jade, a white paper (2003).
FUNGE, J. 1998. Hardcore ai for computer games and animation.
GEMROT, J., KADLEC, R., B ÍDA, M., BURKERT, O., P ÍBIL, R., HAVLÍČEK, J., ZEMČÁK, L., ŠIMLOVIČ,

J., VANSA, R., ŠTOLBA, M., ET AL. 2009. Pogamut 3 can assist developers in building ai (not only) for
their videogame agents. In Agents for Games and Simulations. Springer, 1–15.

HINDRIKS, K. 2009. Programming rational agents in goal. In Multi-Agent Programming:, A. El Fal-
lah Seghrouchni, J. Dix, M. Dastani, and R. H. Bordini, Eds. Springer US, 119–157.

HORSWILL, I. 2000. Functional programming of behavior-based systems. Auton. Robots 9, 1, 83–93.
JANA, R., PETER, J., AND DANIEL, P. 2007. Exploring e-sports: A case study of gameplay in counter-

strike. In Situated Play. The University of Tokyo.
KÜCKLICH, J. 2005. Precarious Playbour: Modders and the Digital Games Industry. Fibreculture 5 (Sept.).

10 G. J. Jaśkiewicz

LAIRD, J. E. 2001. It knows what you’re going to do: adding anticipation to a quakebot. In Proceedings
of the fifth international conference on Autonomous agents. AGENTS ’01. ACM, New York, NY, USA,
385–392.

LAIRD, J. E., NEWELL, A., AND ROSENBLOOM, P. S. 1987. Soar: An architecture for general intelligence.
Artificial intelligence 33, 1, 1–64.

MINSKY, M. 1986. The society of mind. Simon & Schuster, Inc., New York, NY, USA.
ORKIN, J. 2005. Agent architecture considerations for real-time planning in games. In AIIDE, R. M. Young

and J. E. Laird, Eds. AAAI Press, 105–110.
SPRONCK, P., PONSEN, M. J. V., SPRINKHUIZEN-KUYPER, I. G., AND POSTMA, E. O. 2006. Adaptive

game ai with dynamic scripting. Machine Learning 63, 3, 217–248.
THIELSCHER, M. 1998. Introduction to the fluent calculus.
THIELSCHER, M. 2005. Flux: A logic programming method for reasoning agents. Theory and Practice of

Logic Programming 5, 4-5, 533–565.
WIELEMAKER, J. 2003. An overview of the SWI-Prolog programming environment. In Proceedings of the

13th International Workshop on Logic Programming Environments, F. Mesnard and A. Serebenik, Eds.
Katholieke Universiteit Leuven, Heverlee, Belgium, 1–16.

ZUBEK, R. 2001. Game agent control using parallel behaviors. Tech. rep.

