
Supplementary material: Technical Communication c© 2002 [Mário Abrantes and Luı́s Moniz Pereira] 1

Properties of Stable Model Semantics Extensions

Mário Abrantes

Departamento de Matemática, Escola Superior de Tecnologia e de Gestão,

Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal

Luı́s Moniz Pereira

Centro de Inteligência Artificial (CENTRIA), Departamento de Informática,

Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

The stable model (SM) semantics lacks the properties of existence, relevance and cumulativity. If we

prospectively consider the class of conservative extensions of the SM semantics (i.e., semantics that for

each normal logic program P retrieve a superset of the set of stable models of P), one may wander how do

the semantics of this class behave in what concerns the aforementioned properties. That is the type of issue

dealt with in this paper. We define a large class of conservative extensions of the SM semantics, dubbed affix

stable model semantics (ASM), and study the above referred properties into two non-disjoint subfamilies of

the class ASM, here dubbed ASMh and ASMm. From this study a number of results stem which facilitate the

assessment of semantics in the class ASMh ∪ASMm with respect to the properties of existence, relevance

and cumulativity, whilst unveiling relations among these properties. As a result of the approach taken in our

work, light is shed on the characterization of the SM semantics, as we show that the properties of (lack of)

existence and (lack of) cautious monotony are equivalent, which opposes statements on this issue that may

be found in the literature. We also characterize the relevance failure of SM semantics in a more clear way

than usually stated in the literature.

KEYWORDS: Stable model semantics, Conservative extensions to stable model semantics, Existence, Rel-

evance, Cumulativity, Defectivity, Excessiveness, Irregularity, 2-valued semantics for logic programs

1 Introduction

The SM semantics (Gelfond and Lifschitz 1988) is generally accepted by the scientific commu-

nity working on logic programs semantics as the de facto standard 2-valued semantics. Neverthe-

less there are some advantageous properties the SM semantics lacks such as (1) model existence

for every normal logic program, (2) relevance, and (3) cumulativity (Pinto and Pereira 2011).

Model existence guarantees that every normal logic program has a semantics. This is important

to allow arbitrary updates and/or merges involving Knowledge Bases, possibly from different au-

thors or sources (Pinto and Pereira 2011). Relevance allows for top-down query solving without

the need to always compute complete models, but just the sub-models that sustain the answer to

a query, though guaranteed extendable to whole ones (Pinto and Pereira 2011). As for cumulativ-

ity, it allows the programmer to take advantage of tabling techniques (Swift 1999) for speeding

up computations (Pinto and Pereira 2011). Independently of the motivations that underlay the

design of a semantics for logic programs, one may ask if it is easy to guarantee some or all of

2 Mário Abrantes and Luı́s Moniz Pereira

the above properties, or even if it is easy to assess the profile of the resulting semantics in what

concerns these properties. In this work we define a family of 2-valued conservative extensions of

the SM semantics, the affix stable model semantics family, ASM. We then take two subclasses,

ASMh⊂ ASM and ASMm⊂ASM, and present a number of results that simplify the task of assess-

ing the semantics in ASMh ∪ASMm on the properties of existence, relevance and cumulativity.

The semantics in these two classes bear resemblance with the already known SM and MH seman-

tics (see section 3), and this stands for the motivation to consider them. The following results,

obtained in this work, should be emphasized: (1) We present a refined definition of cumulativity

for semantics in the class ASMh∪ASMm, which turns into an easier job the dismissal of this prop-

erty by resorting to counter-examples; (2) We divide the sets of rules of normal logic programs

into layers, and use the decomposition of models into that layered structure to define three new

(structural) properties, defectivity, excessiveness and irregularity, which allow to state a number

of relations between the properties of existence, relevance and cumulativity for semantics of the

ASMh ∪ASMm class, and at the same time facilitate the assessment of semantics in this class

with respect to those properties; (3) As a result of the approach in our work light is shed on the

characterization of SM semantics, as we show that the properties of (lack of) existence and (lack

of) cautious monotony are equivalent, which opposes statements on this issue that may be found

in the literature; we also characterize the relevance failure of SM semantics in a more clear way

than usually stated in the literature. It should be stressed that this study is on the properties of

a class of 2-valued semantics, under a prospection motivation. The weighing of such semantics

rationales under an ‘intuitive’ point of view (or any other equivalently non-objective concept) is

beyond the reach of our study. The results presented in this paper are enounced for the universe

of finite ground normal logic programs, and are either proved in (Abrantes 2013), or immediate

consequences of results there contained.

The remainder of the paper proceeds as follows. In section 2 we define the language of normal

logic programs and the terminology to be used in the sequel. In section 3 the families ASM, ASMh

and ASMm are defined. In section 4 we characterize the property of cumulativity for the families

ASMh and ASMm, whilst in section 5 the properties of defectivity, excessiveness and irregularity

are defined. Some relations among existence, relevance and cumulativity, which are revealed by

means of those properties, are stated. Section 6 is dedicated to final remarks.

2 Language and Terminology of Logic Programs

A normal logic program defined over a language L is a set of normal rules, each of the form

b0← b1, · · · ,bm,not c1, · · · ,not cn (1)

where m,n are non-negative integers and b j,ck are atoms of L ; bi and not ck are generically

designated literals, not ck being specifically designated default literal. The operator ‘,’ stands

for the conjunctive connective, the operator ‘not’ stands for negation by default and the operator

‘←’ stands for a dependency operator that establishes a dependence of b0 on the conjunction on

the right side of ‘←’. b0 is the head of the rule and b1, · · · ,bm,not c1, · · · ,not cn is the body of

the rule. A rule is a fact if m = n = 0. A literal (or a program) is ground if it does not contain

variables. The set of all ground atoms of a normal logic program is called Herbrand base of P,

Properties of Stable Model Semantics Extensions 3

HP. A program is finite if it has a finite number of rules1. Given a program P, program Q is a

subprogram of P if Q⊆ P, where Q,P are envisaged as sets of rules.

For ease of exposition we henceforth use the following abbreviations: Atoms(E), is the set of all

atoms that appear in the ground structure E , where E can be a rule, a set of rules or a set of logic

expressions; Body(r), is the set of literals in the body of a ground rule r; Facts(E), is the set of

all facts that appear in the set of rules E; Heads(E), is the set of all atoms that appear in the heads

of the set of rules E; if E is unitary, we may use ‘Head’ instead of ‘Heads’ . We may compound

some of these abbreviations, as for instance Atoms(Body(r)) whose meaning is straightforward.

Each of the abbreviations may also be taken as the conjunction of the elements contained in the

respective sets.

Given a 2-valued interpretation I of a logic program P, we represent by I+ (resp. I−) the set of its

positive literals (resp. atoms whose default negations are true with respect to I). If I is 3-valued,

we additionally represent by Iu the set of undefined atoms with respect to I.

The following concepts concern the structure of programs. Let P be a logic program and r,s

any two rules of P. Complete rule graph, CRG(P)2: is the directed graph whose vertices are

the rules of P. Two vertices representing rules r and s define an arc from r to s iff Head(r) ⊆

Atoms(Body(s)). Rule depending on a rule2: rule s depends on rule r iff there is a directed path

in CRG(P) from r to s. Subprogram relevant to an atom3: a rule r ∈ P is relevant to an atom

a ∈ HP iff there is a rule s such that Head(s) = {a} and s depends on r. The set of all rules of

P relevant to a is represented by RelP(a), and is named subprogram (of P) relevant to a. Loop4:

a set of rules R forms a loop (or the rules of set R are in loop) iff, for any two rules r,s ∈ R, r

depends on s and s depends on r. We say that rule r ∈ R is in loop through literal L ∈ Body(r)

iff there is a rule s ∈ R such that Head(s) = Atoms(L). Rule layering3: the rule layering (or just

layering, for simplicity) of P is the labeling of each rule r ∈ P with the smallest possible natural

number, layer(r), in the following way: for any two rules r and s, (1) if rules r,s are in loop,

then layer(r) = layer(s); (2) if rule r depends on rule s but rule s does not depend on rule r, then

layer(r) > layer(s). Every integer number T in the image of the layer function defines a layer of

P, meaning the set of rules of P labeled with number T – we use the expression ‘layer’ to refer

both to a set of all rules with that label, and to the label itself. We represent by P6T (resp. P>T)

the set of all rules of P whose layer is less than or equal to (resp. greater than) T . T-segment of

a program: we say that P6T is the T-segment of P iff Atoms(P6T)∩Heads(P>T) = /0. We may

also say ‘segment T ’ to mean the set of rules corresponding to segment P6T .

Let SEM be a 2-valued semantics and SEM(P) the set of SEM models of a logic program P.

Let also the set of atoms kerSEM(P) =
⋂

M∈SEM(P)
M+ be dubbed semantic kernel of P with respect

to SEM (the semantic kernel is not defined if SEM(P) = /0). The following properties concern

semantics of logic programs. We say that a semantics SEM is: Existential iff every normal logic

1 In this work, if nothing to the contrary is said, by ‘logic program’, or simply by ‘program’, we mean a finite set of
normal ground rules.

2 Adapted from (Pinto and Pereira 2011).
3 Adapted from (Dix 1995b)
4 Adapted from (Costantini 1995)

4 Mário Abrantes and Luı́s Moniz Pereira

program has at least one SEM model; Cautious monotonic5 iff for every normal logic program

P, and for every set S ⊆ kerSEM(P), we have kerSEM(P) ⊆ kerSEM(P∪ S); Cut iff for every

normal logic program P, and for every set S⊆ kerSEM(P), we have kerSEM(P∪S)⊆ kerSEM(P);

Cumulative iff it is cautious monotonic and cut; Relevant iff for every normal logic program P

we have

∀a∈HP
(a ∈ kerSEM(P)⇔ a ∈ kerSEM(RelP(a))) (2)

where RelP(a) is the subprogram of P relevant to atom a; Global to local relevant iff the logical

entailment ’⇒’ stands in formula (2); Local to global relevant iff the logical entailment ’⇐’

stands in formula (2).

3 Conservative Extensions of the SM Semantics

In this section we define a family of abductive 2-valued semantics6, the affix stable model family,

ASM, whose members are conservative extensions of the SM semantics. For that purpose we

need the concepts of reduction system and MH semantics.

3.1 Reduction System and MH Semantics

In (Brass et al. 2001) the authors propose a set of five operations to reduce a program (i.e.,

eliminate rules or literals) – positive reduction, PR, negative reduction, NR, success, S, failure,

F and loop detection, L (see Appendix A for the definitions of these operations). We represent

this set of operations as 7→W FS:= {PR,NR,S,F,L}. By non-deterministically applying this set

of operations on a program P, we obtain the program P̂, the remainder of P, which is invariant

under a further application of any of the five operations. This transformation is terminating and

confluent (Brass et al. 2001). We denote the transformation of P into P̂ as P 7→W FS P̂. We also

write P̂ = remainderWFS(P). It is shown in (Brass et al. 2001) that WFM(P) = WFM(P̂), where

WFM stands for the well-founded model (Gelder 1993). See Appendix B for an example of the

computation of the remainder of a program.

One way to obtain conservative extensions of the SM semantics, is to relax some operations of

the reduction system 7→W FS, which yields weaker reduction systems, that is, systems that erase

less rules or literals than 7→W FS. An example of such a semantics is the minimal hypotheses

semantics, MH (Pinto and Pereira 2011), whose reduction system 7→MH is obtained from 7→W FS

by replacing the negative reduction operation, NR, by the layered negative reduction operation,

LNR, i.e., 7→MH := {PR,LNR,S,F,L}. LNR is a weaker version of NR that instead of eliminating

any rule r containing say not b in the body, in the presence of the fact b, as NR does, only

eliminates rule r if this rule is not in loop through literal not b. We write P 7→MH P̊, where P̊ is

the layered remainder of P. We also write P̊ = remainderMH(P). See Appendix C for an example

of the computation of the layered remainder of a program.

3.2 ASM,ASMh and ASMm Families

We define affix stable interpretation and then use this concept to put forward the definition of

ASM family.

5 Adapted from (Dix 1995a; Dix 1995b).
6 See (Denecker and Kakas 2002) for abductive semantics.

Properties of Stable Model Semantics Extensions 5

Definition 1

Affix Stable Interpretation. Let P be a normal logic program, SEM a 2-valued semantics with

a corresponding reduction system 7→SEM , and X ⊆ Atoms(remainderSEM(P)). We say that I is

an affix stable interpretation of P with respect to set X and semantics SEM (or simply a SEM

stable interpretation with affix X) iff I = WFM(P∪X) and W FMu(P∪X) = /0,7 that is, I is

the only stable model of the program P∪X . We name X an affix (or hypotheses set) of inter-

pretation I. We also name assumable hypotheses set of program P, Hyps(P), the union of all

possible affixes that may be considered to define the stable interpretations (we have Hyps(P) ⊆

Atoms(remainderSEM(P))).

Definition 2

Affix Stable Model Semantics Family, ASM. A 2-valued semantics SEM, with a corresponding

reduction system 7→SEM , belongs to the affix stable model semantics family, ASM, iff, given any

normal logic program P, SEM(P) contains all the SM models of P, in case they exist, plus a

subset (possibly empty) of the affix stable interpretations of P chosen by resorting to specifically

enounced criteria.

Both semantics SM and MH belong to the ASM family. The two non-disjoint subfamilies of

ASM next defined, ASMh and ASMm, will be the classes whose formal properties we study in the

sequel.

Definition 3

ASMh and ASMm Families. A semantics SEM ∈ ASM belongs to the ASMh or ASMm families

iff, for any normal logic program P, the models are computed as follows:

1. For both ASMh and ASMm the set of assumable hypotheses, Hyps(P), is contained in the

set of atoms that appear default negated in remainderSEM(P)8;

2. For semantics in the class ASMh, the affixes of the models of P are either those non empty

minimal with respect to set inclusion, if Hyps(P) 6= /0, or else the empty set if Hyps(P) = /0.

For semantics in the class ASMm, the models in SEM(P) are always minimal models.

We now refer some examples of ASMh and ASMm members, whose definitions can be found

in Appendix D. Besides SM, MH and others, the following are ASMh family members, referred

to subsequently:9 MHLS, MHLoop, MHSustainable, MHSustainable
min , MHRegular. Besides SM and

others, the following are ASMm family members, referred to subsequently: Navy, Blue, Cyan,

Green.

4 Characterization of Cumulativity for the ASMh∪ASMm Class

In this section we lay down a characterization of cumulativity for semantics SEM of the ASMh∪

ASMm class, via the following theorem.

7 Notice that WFMu(P∪X) is the set of undefined atoms in the model W FM(P∪X).
8 The purpose of computing the remainder of a program, is to obtain the assumable hypotheses set of the program.
9 The first three semantics were suggested by Alexandre Pinto.

6 Mário Abrantes and Luı́s Moniz Pereira

Theorem 1

Let SEM be a semantics of the ASMh∪ASMm class. For every program P and for every subset

S ⊆ kerSEM(P), the following results stand: (1) SEM is cautious monotonic iff SEM(P∪ S) ⊆

SEM(P); (2) SEM is cut iff SEM(P) ⊆ SEM(P∪ S); (3) SEM is cumulative iff SEM(P) =

SEM(P∪S) – this is a consequence of statements (1) and (2).10

The three items of this theorem correspond to refinements of the classical definitions of cau-

tious monotony, cut and cumulativity (see section 2). The new definitions establish the properties

by means of relations among sets of models, as opposed to the relations among sets of atoms that

characterize the classical definitions.

The results stated in this theorem are advantageous to spot cumulativity failure in semantics of

the ASMh∪ASMm class by means of counter-examples (logic programs), when compared with

common procedures (e.g., (Dix 1995a; Dix 1995b)). The reason is that common procedures al-

ways need the counter-examples to fail cumulativity11, whilst the results of theorem 1 allow us to

spot failure of cumulativity even in some cases where the counter-examples used do not show any

failure of this property. To make this point clear see the examples in Appendix E and Appendix F.

It should be stressed that there are 2-valued cumulative semantics to which SEM(P) 6= SEM(P∪

S) for some normal logic program P and some S⊆ kerSEM(P) (for an example, see the definition

of the 2-valued semantics Picky in Appendix G). Theorem 1 states this is not the case if SEM ∈

ASMh∪ASMm.

5 Defectivity, Excessiveness and Irregularity

Theorem 1 application for dismissing the cumulativity property by means of counter-examples,

demands computing the set of models SEM(P) of a program P, the set kerSEM(P), and after this

it needs the computation of the sets of models SEM(P∪ S), S ∈ kerSEM(P), to look for a case

that eventually makes SEM(P) = SEM(P∪S) false. In this section three structural properties are

defined, defectivity, excessiveness and irregularity, that will turn the dismissal of existence, rele-

vance or cumulativity spottable by means of one model only. It will be shown that for semantics

of the ASMh∪ASMm class, defectivity is equivalent to the failure of existence and to the failure of

global to local relevance, and also entails the failure of cautious monotony, whilst excessiveness

entails the failure of cut, and irregularity is equivalent to the failure of local to global relevance.

5.1 Defectivity

The rationale for the concept of defective semantics is the following: if a segment P6T has a

SEM model M that is not contained in any whole SEM model of P, then we say the semantics

SEM is defective, in the sense that it ‘does not use’ all the models of segment T in order to get

whole models of P.

10 Notice that SEM(P) represents the set of all SEM models of P.
11 The general procedure to spot the failure of cumulativity by resorting to counter-examples is as follows: compute

all the SEM models of a program P; add to P subsets S ⊆ kerSEM(P), and compute all the models of the resulting
programs P∪S, drawing a conclusion about cumulativity failure only in cases where kerSEM(P) 6= kerSEM(P∪S).

Properties of Stable Model Semantics Extensions 7

Definition 4

Defective semantics. A 2-valued semantics SEM is called defective iff there is a normal logic

program P, SEM(P) 6= /0, a segment P6T of P, and a SEM model M of the segment P6T , such that

SEM(P>T ∪M+) = /0. We also say that SEM is defective with respect to segment T of program

P, and that M is a defective model of P with respect to segment T and semantics SEM.

Example 1

Program P = {a← not b, b← not a, c← a, c← not c} may be used to show that the SM

semantics is defective. In fact, the only SM model of P is N = {a,not b,c} with affix {a}.

Meanwhile, P61 = {a← not b, b← not a} is a segment that has the stable model M = {not a,b},

and we have SM(P>1∪{b}) = /0.

The next theorem shows how conclusions about existence, relevance and cumulativity may be

immediately taken in the case of a defective semantics.

Theorem 2

The following relations are valid for any semantics of the ASMh∪ASMm class:

1. Defectivity⇔¬Existence⇔¬Global to Local Relevance;

2. Defectivity⇒¬Cautious Monotony.

The reader should notice the importance of this theorem: not only defectivity is enough to

dismiss existence, relevance and cumulativity, as also these properties appear strongly related

for semantics of the class ASMh ∪ASMm: if existence fails then relevance also fails (through

global to local relevance failure); if existence fails then cumulativity also fails (through cautious

monotony failure); if relevance fails (through global to local relevance failure), then cumulativity

also fails (through cautious monotony failure). Definition 4 above shows the structural nature of

defectivity, which allows the verification of the property by wisely constructing a program that

satisfies it. This may turn easier the assessment of existence, relevance and cumulativity, when

compared to dealing with this issue on the basis of abstract proofs. Even more, the relation be-

tween existence and defectivity stated in theorem 2, allows the failure of the existence property

to be detected by resorting to counter-examples, even in some cases where the program used as

counter-example has models. E.g., program P in Appendix E can be used to detect the failure

of existence for SM semantics, in spite of the existence of stable models for program P, since it

reveals the defectivity of SM.12

The results stated in theorem 2 also shed some light on the characterization of SM semantics with

respect to the properties of existence and cumulativity. In (Dix 1995b), section 5.6, the author

says that the SM is not cumulative and that this fact does not depend on the non existence of

stable models (i.e., the author states that lack of cumulativity is not a consequence of lack of

existence). Meanwhile theorem 2 above shows that SM is non-existential due to being defective,

which in turn makes it not cautious monotonic and thus not cumulative. Thus the failure of

cumulativity for the SM semantics case is indeed a consequence of the failure of existence for

this semantics. Moreover, with respect to the SM semantics a stronger result relating existence

12 It should be pointed out that there are 2-valued semantics for which the equivalence de f ectivity ⇔¬existence fails,

e.g., M
Supp
P (Apt et al. 1988) which is not defective in spite of failing the existence property – it is the case that M

Supp
P

is not a ASM semantics, since it does not conservatively extend the SM semantics.

8 Mário Abrantes and Luı́s Moniz Pereira

and cautious monotony may be enounced: these two properties show up equivalence in the sense

stated in proposition 3 below. To the best of our knowledge, this connection between these two

properties had not yet been stated.

Proposition 3

For the SM semantics the following result stands: there is a program P that shows existence

failure iff there is a program P∗ that shows cautious monotony failure.

5.2 Excessiveness and Irregularity

The rationale of the concept of excessive semantics is the following: if a normal logic program

P has a model N and a layer P6T such that for every model M∗ ∈ SEM(P6T) it is the case that

N /∈ SEM(P>T ∪M+
∗), then we say that model N (and thus the semantics) is excessive, in the

sense that it ‘goes beyond’ the semantics of the segment P6T by not being a ‘consequence’ of it.

Definition 5

Excessive semantics. A 2-valued semantics SEM is called excessive iff there is a logic program

P, a segment P6T , a model M ∈ SEM(P6T) and a model N ∈ SEM(P) such that:

1. M+ = N+
6T , where N+

6T = N+∩Heads(P6T);

2. For every model M∗ ∈ SEM(P6T) it is the case that N /∈ SEM(P>T ∪M+
∗);

3. There is at last a SEM model N∗ of P, such that N∗ ∈ SEM(P>T ∪M+).

We also say that SEM is excessive with respect to segment T of program P, and that N is an

excessive model of P with respect to segment T and semantics SEM.

In the excessiveness example in Appendix H it is shown that the semantics MH,MHLS,MHLoop,

Navy,Green are excessive.

The rationale of the concept of irregularity is as follows: given a certain whole model N ∈

SEM(P), if the set N+∩Heads(P6T) is not a model of a segment P6T , then we say that SEM is

irregular, since N ‘is not a consequence’ of the semantics of segment T .

Definition 6

Irregular semantics. A 2-valued semantics SEM is called irregular iff there is a logic program

P, a segment P6T and a SEM model N of P, such that for no model M of P6T do we have

N+
6T = M+, where N+

6T = N+∩Heads(P6T). We also say that SEM is irregular with respect to

segment T of program P, and that N is an irregular model of P with respect to segment T and

semantics SEM. A model that is not irregular is called regular, and a semantics that produces

only regular models is called regular.13

The concepts of excessiveness and irregularity exhibit independence for semantics of the

ASMh ∪ ASMm class, meaning there is a semantics in this class for any of the four possible

cases of validity or failure of excessiveness and irregularity. As a matter of fact, it can be shown

(Abrantes 2013) that Blue is irregular whilst not excessive (i.e., irregularity ; excessiveness); it

is also the case that MHRegular is excessive but not irregular (i.e., excessiveness ; irregularity).

13 In comparing excessiveness and irregularity, notice that a whole model can be excessive whilst containing models for
all the segments of the program (i.e., be a regular model) - see the excessiveness example in Appendix H.

Properties of Stable Model Semantics Extensions 9

Also MH is excessive and irregular, and Cyan is not excessive and is not irregular.

The following result states relations between excessiveness and cut, and between irregularity and

relevance.

Theorem 4

The following relations stand for any semantics of the ASMh∪ASMm class:

1. Excessiveness ⇒¬Cut;

2. Irregularity⇔¬Local to Global Relevance.

As excessiveness and irregularity are structural properties, being thus detectable by construc-

tion of adequate programs, they facilitate, via this theorem, the dismissal of cut and relevance.

For instance, this result together with the excessiveness example in Appendix H, shows that se-

mantics MH, MHLS, MHLoop, Navy and Green are excessive, and thus not cut. Also, this result

together with the irregularity example in Appendix H, shows that semantics MH, MHLS and

MHLoop, Green, Navy and Blue are irregular, and thus not relevant. As was the case for the rela-

tion between the properties of existence and cumulativity for the SM semantics, our work sheds

also some light on the SM semantics relevance failure, through the following results.

Proposition 5

Let P be a normal logic program and M ∈ SM(P). Then M is neither excessive nor irregular.

Corollary 6

SM is (vacuously) local to global relevant.

Notice that this corollary, together with the example in Appendix E and theorem 2, let clear

the cause for SM semantics relevance failure: SM fails relevance because it fails global to local

relevance. This is a more precise characterization than just saying that SM is not relevant, as

usually stated in literature (e.g., (Dix 1995b)).

If we consider the five formal properties of existence (∃), global to local relevance (gl), local to

global relevance (lg), cautious monotony (cm) and cut (cut), the validity or failure of each of these

properties allow, in the general case, the existence of 25 = 32 types of semantics. Meanwhile,

the study we present in this work shows that only 12 such types of semantics may exist in the

ASMh∪ASMm class. They are represented in table I 1 in Appendix I.

6 Final Remarks

In this paper we considered the characterization of 2-valued conservative extensions of the SM

semantics on the properties of existence, relevance and cumulativity. This theoretical endeavor

is reasonable under a point of view of prospectively assessing the behavior of such types of

semantics with respect to a set of properties that are desirable, both under a computational (rel-

evance and cumulativity) and a semantical (existence) standpoint. For that purpose we focused

our study on two subsets of the here defined ASM class of 2-valued conservative extensions of

the SM semantics, the non-disjoint classes ASMh and ASMm, whose elements maintain a degree

of resemblance with already known 2-valued semantics, such as the SM and the MH semantics.

As a result of this study, refined definitions of cautious monotony, cut and cumulativity were set.

10 Mário Abrantes and Luı́s Moniz Pereira

This new definitions turn into an easier job the dismissal of the properties of existence, relevance

and cumulativity, as shown in section 4. This study also reveals relations among these properties,

unveiled by theorems 2 and 4, that allow to draw conclusions about some of them on basis of

held knowledge about others. This last point builds on top of the new structural properties of de-

fectivity, excessiveness and irregularity, which provide an analytical shortcut to assess existence,

relevance and cumulativity. The approach taken in this work (characterizing families of seman-

tics, instead of individual semantics), revealed itself advantageous also in clarifying the profile

of the well known and studied SM semantics, via the results stated in proposition 3 and corollary

6. Our work also states a maximum of 12 types of semantics in the class ASMh ∪ASMm, with

respect to the satisfaction/failure of the properties of existence (∃), global to local relevance (gl),

local to global relevance (lg), cautious monotony (cm) and cut (cut).

Finally, the structural approach put forward in this paper has the potential of being used with

semantics other than 2-valued ones, and with other strong and weak properties besides existence,

relevance or cumulativity.14

Acknowledgments

We thank Alexandre Pinto for some important debates on conservative extensions of the SM

semantics. The work on this paper has been partially supported by Fundação para a Ciência e

Tecnologia and Instituto Politécnico de Bragança grant PROTEC : SFHR/49747/2009.

References

ABRANTES, M. 2013. Revision based total semantics for extended normal logic programs. Ph.D. thesis,

Universidade Nova de Lisboa.

APT, K., BLAIR, H. A., AND WALKER, A. 1988. Towards a theory of declarative knowledge. In Founda-

tions of deductive databases and logic programming, J. Minker, Ed. Morgan Kaufmann, Los Altos, CA,

89–142.

BRASS, S., DIX, J., FREITAG, B., AND ZUKOWSKI, U. 2001. Transformation-based bottom-up computa-

tion of the well-founded model. TPLP, 497–538.

COSTANTINI, S. 1995. Contributions to the stable model semantics of logic programs with negation.

Theoretical Computer Science 149, 2 (2 Oct.), 231–255.

DENECKER, M. AND KAKAS, A. C. 2002. Abduction in logic programming. In Computational Logic:

Logic Programming and Beyond’02. 402–436.

DIX, J. 1995a. A classification theory of semantics of normal logic programs: I. strong properties. Fundam.

Inform 22, 3, 227–255.

DIX, J. 1995b. A classification theory of semantics of normal logic programs: II. weak properties. Fundam.

Inform 22, 3, 257–288.

GELDER, A. V. 1993. The alternating fixpoint of logic programs with negation. J. of Comp. System

Sciences 47, 1, 185–221.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In

ICLP/SLP. MIT Press, 1070–1080.

PINTO, A. M. AND PEREIRA, L. M. 2011. Each normal logic program has a 2-valued minimal hypotheses

semantics. INAP 2011, CoRR abs/1108.5766.

SWIFT, T. 1999. Tabling for non-monotonic programming. Ann. Math. Artif. Intell 25, 3-4, 201–240.

14 The terms strong and weak applied to formal properties, are here adopted after (Dix 1995a; Dix 1995b).

Properties of Stable Model Semantics Extensions 11

Appendix A Reduction Operations

In the definitions below, P1 and P2 are two ground logic programs.

1. Positive reduction, PR. Program P2 results from P1 by positive reduction iff there is a rule

r ∈ P1 and a default literal not b∈ Body(r) such that b /∈Heads(P1), and P2 = (P1 \{r})∪

{Head(r)← (Body(r)\ {not b})}.

2. Negative reduction, NR. Program P2 results from P1 by negative reduction iff there is a

rule r ∈ P1 and a default literal not b∈ Body(r) such that b ∈ Facts(P1), and P2 = P1 \{r}.

3. Success, S. Program P2 results from P1 by success iff there is a rule r ∈ P1 and a fact

b∈ Facts(P1) such that b∈ Body(r), and P2 = (P1 \{r})∪{Head(r)← (Body(r)\{b})}.

4. Failure, F. Program P2 results from P1 by failure iff there is a rule r ∈ P1 and a positive

literal b ∈ Body(r) such that b /∈ Heads(P1), and P2 = P1 \ {r}.

5. Loop Detection, L. Program P2 results from P1 by loop detection iff there is a set A of

ground atoms such that:

(a) For each rule r ∈ P1, if Head(r) ∈A , then Body(r)∩A 6= /0;

(b) P2 := {r ∈ P1|Body(r)∩A = /0}.

Appendix B Remainder Computation Example

Let P be the set of all rules below. The remainder P̂ is the non shadowed part of the program.
The labels (i)–(v) indicate the operations used in the corresponding reductions: (i) PR, (ii) NR,
(iii) S, (iv) F, (v) L.

{a← not f (i), e ← d (v), a← not b (i), d ← e (v), b ← not a (ii), c← a (iii), d ← f (iv)}

Appendix C Minimal Hypotheses Models Computation

Let P be the set of rules below, which is equal to the program in Appendix B. The layered

remainder P̊ is the non-shadowed part of the program.

a← not f d← f

a← not b e← d

b← not a d← e

c← a

Notice that rule b← not a is no longer eliminated by the fact a, since this rule and rule a← not b

are in loop, and in the case of rule b← not a the loop is through the literal not a.

The MH models of a program P are computed as follows: (1) Take as assumable hypotheses

set, Hyps(P), the set of all atoms that appear default negated in P̊; in the case of the previous

program we have Hyps(P) = {a,b}; (2) Form all programs P∪H, for all possible subsets H ⊆

Hyps, H 6= /0 (if Hyps = /0, then H = /0 is the only set to consider); take all the interpretations

for which W FM(P∪H) is a total model (meaning a model that has no undefined literals); H is

the hypotheses set of the interpretation W FM(P∪H); (3) Take all the interpretations obtained

in the previous point, and chose as MH models the ones that have minimal H sets with respect

12 Mário Abrantes and Luı́s Moniz Pereira

to set inclusion. The MH models of program P in the example above, and the corresponding

hypotheses sets, are

M1 = {a,not b,c,not d,not e,not f} H = {a}

M2 = {a,b,c,not d,not e,not f} H = {b}.

Notice that M1 is the only SM model of P. The MH reduction system keeps some loops intact,

which are used as choice devices for generating MH models, allowing us to have MH(P) ⊇

SM(P). The sets H considered may be taken as abductive explanations (Denecker and Kakas

2002) for the corresponding models.

Appendix D Definitions of some Elements of ASMh and ASMm Families

Besides SM and others, the following are ASMh family members.

MHLS: the reduction system is obtained by replacing the success operation in 7→MH by the

layered success operation;15 MHLS models are computed as in the MH case.

MHLoop: the reduction system is 7→MH ; the assumable hypotheses set of a program P, Hyps(P),

is formed by the atoms that appear default negated in literals involved in loops in the layered

remainder P̊; MHLoop models are computed as in the MH case.

MHSustainable: the reduction system is 7→MH ; MHSustainable models are computed as in the MH

case with the following additional condition: if H is a set of hypotheses of a MHSustainable model

M of P, then

∀h∈H [(H \ {h}) 6= /0⇒ h ∈W FMu(P∪ (H \ {h}))],

that is, no single hypothesis may be defined in the well-founded model if we join to P all the

other remaining hypotheses.

MHSustainable
min : the reduction system is 7→MH ; MHSustainable

min (P) retrieves the minimal models con-

tained in MHSustainable(P) for any normal logic program P. MHSustainable
min also belongs to the

ASMm family, due to the minimality of its models.

MHRegular: the reduction system is 7→MH ; retrieves the same models as MH, except for the ir-

regular ones (cf. Definition 6).

Besides SM, MHSustainable
min (defined above in this appendix) and others, the following are ASMm

family members.

Navy: the reduction system is 7→W FS. Given a normal logic program P, Navy(P) contains all the

minimal models of P̂.16

Blue: the reduction system is 7→WFS. Given a normal logic program P, Blue(P) contains all the

models in Navy(P∪K) where K is obtained after terminating the following algorithm:17

(a) Compute K = kernelNavy(P̂);

(b) Compute K′ = kernelNavy(P∪K);

(c) If K 6= K′, then let P be the new designation of program P∪K′; go to step (a).

Repeat steps (a) – (c) until K 6= K′ comes false in (c).

15 Layered success is an operation proposed by Alexandre Pinto. It weakens the operation of success by allowing it to be
performed only in the cases where the rule r, whose body contains the positive literal b to be erased, is not involved in
a loop through literal b.

16 See definition of P̂ in subsection 3.1.
17 This algorithm is presented in (Dix 1995a).

Properties of Stable Model Semantics Extensions 13

Cyan: the reduction system is 7→W FS. Given a normal logic program P, compute Cyan(P)

through the steps of Blue computation, but taking only the regular models (cf. Definition 6)

to compute the semantic kernel at steps (a) and (b).

Green: the reduction system is 7→WFS. Given a normal logic program P, Green(P) contains all

the minimal models of P̂ that have the smallest (with respect to set inclusion) subsets of classi-

cally unsupported atoms.18

Appendix E Example of Cumulativity Failure Detection

The following 1-layer program P is a counter-example for showing, using theorem 1, that SM

semantics is not cumulative, due to being not cautious monotonic (program P does not allow us

to spot the failure of any of these properties by means of the usual definitions of cumulativity

and cautious monotony presented in section 2) .

a← not b,not s d← b d← a

b← not a,not c d← not d c← k

c← not b,not k k← a,d s← not a,d

In fact, the SM models of P are {a,d,c,k} and {b,d,s}, and thus kerSM(P) = {d}. Now P∪{d}

has the stable models {a,d,c,k}, {b,d,s} and {c,d,s}, and thus kerSM(P) = kerSM(P∪{d}) =

{d}. Hence no negative conclusion can be afforded about cumulativity, by means of the usual

definition of this property. Meanwhile, by using the statement (3) of theorem 1 it is straight-

forward to conclude that SM semantics does not enjoy the property of cumulativity, because

SM(P) 6= SM(P∪{d}). Moreover, statement (1) of the theorem tells us, via this example, that

SM semantics is not cautious monotonic because SM(P∪{d}) * SM(P).

Appendix F Proof of Cautious Monotony and Cut Failure

The following 1-layer program P = P̊ is a counter-example for showing, using theorem 1, that

none of the semantics MH, MHLS, MHLoop, MHSustainable and MHRegular is either cautious mono-

tonic or cut (program P does not allow us to spot the failure of any of these properties by means

of the usual definitions of cautious monotony and cut presented in section 2) .

u← b a← not b

u← c b← not c

t← a c← h,u

t← h h← not h,not t

Let SEM represent any of the above semantics. The minimal hypotheses models are the same

with respect to any of the four semantics (models are represented considering only positive

literals): {c,u,a,t} with affix {c}; {b,h,u,c,t} with affix {b,h}; {t,b,u} with affix {t}. Thus

kerSEM(P) = {t,u}. Now it is the case that the remainder of P∪{u} is the same for any of these

18 Given a logic program P, a model M of P and an atom b ∈M, we say that b is classically unsupported by M iff there
is no rule r ∈ P such that Head(r) = {b} and all literals in Body(r) are true with respect to M.

14 Mário Abrantes and Luı́s Moniz Pereira

semantics:

u← b a← not b

u← c b← not c

t← a c← h

t← h h← not h,not t u←

(as a matter of fact, the remainder for the MHLS has the rule c← h,u instead of c← h; but this

does not change the sequel of this reasoning). The minimal hypotheses models of P∪{u} are the

same with respect to any of the four semantics (models are represented considering only posi-

tive literals): {c,u,a,t} with affix {c}; {h,u,c,t,a} with affix {h}; {t,b,u} with affix {t}. Thus

kerSEM(P∪{u}) = {t,u}= kerSEM(P), and no conclusions about cumulativity can be drawn by

means of the usual general procedures. Meanwhile, M = {h,u,c,t,a}, with affix {h}, is a mini-

mal affix model of P∪{u} but is not a minimal affix model of P, which by point (1) of theorem 1

renders any of these semantics not cautious monotonic. Also N = {b,h,u,c,t}, with affix {b,h},

is a minimal affix model of P, but not a minimal affix model of P∪{u}, which by point (2) of

theorem 1 renders any of these semantics as not cut.

Appendix G Picky, a Special 2-valued Cumulative Semantics

The semantics Picky is defined as follows: for any normal logic program P (1) if SM(P) = /0, then

Picky(P) = /0; (2) if SM(P) 6= /0, then (2a) Picky(P) = SM(P) iff kerSM(P) = kerSM(P∪ S), for

every S ⊆ kerSM(P); (2b) otherwise Picky(P) = /0. This semantics is cumulative, by definition,

but it is not always the case that Picky(P) = Picky(P∪ S), S ⊆ kerSM(P) : for program P of

the example in Appendix E, we have Picky(P) = {{a,d,c,k},{b,d,s}} and Picky(P∪{d}) =

{{a,d,c,k},{b,d,s},{c,d,s}}, which means, by theorem 1, that Picky is not cumulative. Notice

that Picky is not a ASM semantics, because it does not conservatively extend the SM semantics:

for program P in the referred example, we have SM(P) 6= /0 and Picky(P) = /0.

Appendix H Excessiveness and Irregularity

Excessiveness. The following program P shows that semantics MH, MHLS, MHLoop, Navy and

Green are excessive (the dashed lines divide the program into layers; top layer is layer 1, bottom

layer is layer 4),

a← not b

b← not a

−−−−−1

u← a

u← b

−−−−−2

p← not p,not u

−−−−−3

q← not q,not p

−−−−−4.

Properties of Stable Model Semantics Extensions 15

Let SEM represent any of these semantics. It is the case that N = {a,u, p,not b,not q} with

affix {a, p}, is a model of P under any of the referred semantics, and for no SEM model M∗ ∈

SEM(P62), where SEM(P62) = {{a,not b,u},{not a,b,u}}, do we have N ∈ SEM(P>2∪M+
∗),

because atom u ∈ M+
∗ eliminates the rule in layer 3 via layered negative reduction operation

(which has here the same effect as negative reduction operation), and thus p belongs to no model

in SEM(P>2∪M+
∗).

Irregularity. Program P below shows that the semantics MH, MHLS and MHLoop, Green, Navy

and Blue are all irregular.

a← not b

b← not a

−−−−−1

p← not p,not a

q← not q,not b

In fact, all these semantics admit the model N = {a,b,not p,not q}. The models of segment P61

are {a,not b} and {b,not a}, none of whose positive sets of atoms equals N+
6T = {a,b}. As Blue

is not excessive, this example shows irregularity ; excessiveness.

Appendix I The 12 possible types of ASMh and ASMm semantics

In table I 1 below ‘0’ flags the failure of a property and ‘1’ means the property is verified.

Table I 1. The 12 possible types of ASMh and ASMm semantics

∃ gl lg cm cut

1 0 0 0 0 0

2 0 0 0 0 1

3 0 0 1 0 0

4 0 0 1 0 1

5 1 1 0 0 0

6 1 1 0 0 1

7 1 1 0 1 0

8 1 1 0 1 1

9 1 1 1 0 0

10 1 1 1 0 1

11 1 1 1 1 0

12 1 1 1 1 1

The 20 missing types of semantics correspond to cases where (∃ = 0 and gl = 1), or (∃ = 1

and gl = 0), or (∃ = 0 and cm = 1), each of these cases going against the statement of the-

orem 2. The correspondence of the ASMh ∪ASMm class semantics presented in this text and

16 Mário Abrantes and Luı́s Moniz Pereira

the entries in table I 1 is as follows: 1. MHsustainable,MHSustainable
min 2. −− 3. −− 4. SM 5.

MH,MHLS,MHLoop,Green 6. −− 7. Navy 8. Blue 9. MHRegular 10. −− 11. −− 12. Cyan.

Whether semantics of the ASMh ∪ASMm class exist for the types marked with ’−−’, may be

envisaged as an open issue.

Supplementary material: Technical Communication c© 2014 [M. Areias and R. Rocha] 1

A Simple and Efficient Lock-Free Hash Trie Design
for Concurrent Tabling

MIGUEL AREIAS and RICARDO ROCHA
CRACS & INESC TEC, Faculty of Sciences, University of Porto

Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
(e-mail: {miguel-areias,ricroc}@dcc.fc.up.pt)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

A critical component in the implementation of a concurrent tabling system is the design of the
table space. One of the most successful proposals for representing tables is based on a two-level
trie data structure, where one trie level stores the tabled subgoal calls and the other stores the
computed answers. In this work, we present a simple and efficient lock-free design where both
levels of the tries can be shared among threads in a concurrent environment. To implement
lock-freedom we took advantage of the CAS atomic instruction that nowadays can be widely
found on many common architectures. CAS reduces the granularity of the synchronization when
threads access concurrent areas, but still suffers from low-level problems such as false sharing
or cache memory side-effects. In order to be as effective as possible in the concurrent search
and insert operations over the table space data structures, we based our design on a hash trie
data structure in such a way that it minimizes potential low-level synchronization problems by
dispersing as much as possible the concurrent areas. Experimental results in the Yap Prolog
system show that our new lock-free hash trie design can effectively reduce the execution time
and scale better than previous designs.

KEYWORDS: Tabling, Concurrency, Hash Tries, Lock-Freedom, Performance.

1 Introduction

Tabling (Chen and Warren 1996) is a recognized and powerful implementation technique
that overcomes some limitations of traditional Prolog systems in dealing with recursion
and redundant sub-computations. Multithreading in Prolog is the ability to perform con-
current computations, in which each thread runs independently but shares the program
clauses (Moura 2008). Despite the availability of both multithreading and tabling in some
Prolog systems, the efficient implementation of these two features, such that they work
together, implies a complex redesign of several components of the underlying engine. XSB
was the first Prolog system to combine tabling with multithreading (Marques and Swift
2008). In more recent work (Areias and Rocha 2012b), we have proposed an alternative
view to XSB’s approach, where each thread views its tables as private but, at the engine
level, we use a common table space, i.e., from the thread point of view, the tables are
private but, from the implementation point of view, tables are shared among all threads.

A critical component in the implementation of an efficient tabling system is the design
of the data structures and algorithms to access and manipulate tabled data. To deal with

2 M. Areias and R. Rocha

concurrent table accesses, our initial approach, implemented on top of the Yap Prolog
system (Santos Costa et al. 2012), was to use lock-based data structures (Areias and
Rocha 2012b). Yap implements the table space using a two-level trie data structure,
where one trie level stores the tabled subgoal calls and the other stores the computed
answers. More recently (Areias and Rocha 2014), we presented a sophisticated lock-
free design to deal with concurrency in both trie levels. Lock-freedom allows individual
threads to starve but guarantees system-wide throughput. To implement lock-freedom
we took advantage of the CAS atomic instruction that nowadays can be widely found
on many common architectures. The CAS reduces the granularity of the synchronization
when threads access concurrent areas, but still suffers from contention points where
synchronized operations are done on the same memory locations, leading to low-level
problems such as false sharing or cache memory ping pong side-effects.

In this work, we go one step further and we present a simpler and efficient lock-
free design based on hash tries that minimizes these problems by dispersing as much
as possible the concurrent areas. Hash tries (or hash array mapped tries) are a trie-
based data structure with nearly ideal characteristics for the implementation of hash
tables (Bagwell 2001). An essential property of the trie data structure is that common
prefixes are stored only once (Fredkin 1962), which in the context of hash tables allows
us to efficiently solve the problems of setting the size of the initial hash table and of
dynamically resizing it in order to deal with hash collisions. The aim of our proposal is
to be as effective as possible in the search and insert operations, by exploiting the full
potentiality of lock-freedom on those operations, and in such a way that it minimizes the
bottlenecks and performance problems mentioned above without introducing significant
overheads for sequential execution.

Several approaches do exist in the literature for the implementation of lock-free hash
tables, such as Shalev and Shavit split-ordered lists (Shalev and Shavit 2006), Triplett
et al. relativistic hash tables (Triplett et al. 2011) or Prokopec et al. CTries (Prokopec
et al. 2012). However, to the best of our knowledge, none of them is specifically aimed for
an environment with the characteristics of our tabling framework that does not requires
concurrent deletion support. In general, a tabled program is deterministic, finite and
only executes search and insert operations over the table space data structures. In Yap
Prolog, space is recovered when the last running thread abolish a table. Since no delete
operations are performed, the size of the tables always grows monotonically during an
evaluation. Initial experiments, on top of a 32 core AMD machine, show that our new
lock-free hash-trie design can effectively reduce the execution time and scale better than
all the previously implemented lock-based and lock-free strategies.

2 Background

A trie is a tree structure where each different path corresponds to a term described by
the tokens labeling the nodes traversed. For example, the tokenized form of the term
p(1, f(X)) is the sequence of 4 tokens p/2, 1, f/1 and VAR0, where each variable is
represented as a distinct VARi constant. Two terms with common prefixes will branch off
from each other at the first distinguishing token. Consider, for example, a second term
p(1, a). Since the main functor and the first argument, tokens p/2 and 1, are common to

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling 3

both terms, only one additional node will be required to fully represent this second term
in the trie. Figure 1 shows Yap’s trie structure that represents both terms.

1

p/2

f/1 a

VAR0

Fig. 1. Trie
example

Whenever the chain of child nodes for a common parent node be-
comes larger than a predefined threshold value, a hash mechanism is
used to provide direct node access and therefore optimize the search. To
deal with hash collisions, all previous Yap’s approaches implemented a
dynamic resizing of the hash tables by doubling the size of the bucket
entries in the hash. Our initial approach to support concurrent tabling
was lock-based, which required synchronization between threads when
performing the hash expansion procedure (Areias and Rocha 2012b).
More recently, we proposed a lock-free design for concurrent table ac-
cesses that avoids thread synchronization, even when threads are ex-
panding the hash tables (Areias and Rocha 2014). In this work, we present a simpler and
efficient lock-free design based on hash tries to implement the hash mechanism inside the
subgoal and answer tries.

hash
trie

subgoal/answer trie

table entry

subgoal trie

answer trie

subgoal frame

Fig. 2. Trie hierarchical levels overview

To put our proposal in perspective,
Fig. 2 shows a schematic representa-
tion of the trie hierarchical levels we
are proposing to implement Yap’s table
space. For each predicate being tabled,
Yap implements tables using two lev-
els of tries together with the table entry
and subgoal frame auxiliary data struc-
tures (Rocha et al. 2005). The first level,
the subgoal trie, stores the tabled subgoal calls and the second level, the answer trie,
stores the answers for a given call. Then, for each particular subgoal/answer trie, we
have as many trie levels as the number of parent/child relationships (for example, the
trie in Fig. 1 has 4 trie levels). Finally, to implement hashing inside the subgoal/answer
tries, we use another trie-based data structure, the hash trie, which is the focus of the
current work. In a nutshell, a hash trie is composed by internal hash arrays and leaf
nodes. The leaf nodes store key values and the internal hash arrays implement a hier-
archy of hash levels of fixed size 2w. To map a key into this hierarchy, we first compute
the hash value h for key and then use chunks of w bits from h to index the entry in the
appropriate hash level. Hash collisions are solved by simply walking down the tree as we
consume successive chunks of w bits from the hash value h.

3 Our Proposal By Example

We will use three examples to illustrate the different configurations that the hash trie
assumes for one, two and three levels (for more levels, the same idea applies). We begin
with Fig. 3 showing a small example that illustrates how the concurrent insertion of
nodes is done in a hash level.

Figure 3(a) shows the initial configuration for a hash level. Each hash level Hi is
formed by a bucket array of 2w entries and by a backward reference to the previous
level (represented as Prev in the figures that follow). For the root level, the backward
reference is Nil. In Fig. 3(a), Ek represents a particular bucket entry of the hash level.

4 M. Areias and R. Rocha

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

Fig. 3. Insert procedure in a hash level

Ek and the remaining entries are all initialized with a reference to the current level Hi.
During execution, each bucket entry stores either a reference to a hash level or a reference
to a separate chaining mechanism, using a chain of internal nodes, that deals with the
hash collisions for that entry. Each internal node holds a key value and a reference to the
next-on-chain internal node. Figure 3(b) shows the hash configuration after the insertion
of node K1 on the bucket entry Ek and Fig. 3(c) shows the hash configuration after the
insertion of nodes K2 and K3 also in Ek. Note that the insertion of new nodes is done at
the end of the chain and that any new node being inserted closes the chain by referencing
back the current level.

During execution, the different memory locations that form a hash trie are considered
to be in one of the following states: black, white or gray. A black state represents a mem-
ory location that can be updated by any thread (concurrently). A white state represents
a memory location that can be updated only by one (specific) thread (not concurrently).
A gray state represents a memory location used only for reading purposes. As the hash
trie evolves during time, a memory location can change between black and white states
until reaching the gray state, where it is no further updated.

The initial state for Ek is black, because it represents the next synchronization point
for the insertion of new nodes. After the insertion of node K1, Ek moves to the white
state and K1 becomes the next synchronization point for the insertion of new nodes. To
guarantee the property of lock-freedom, all updates to black states are done using CAS
operations. Since we are using single word CAS operations, when inserting a new node
in the chain, first we set the node with the reference to the current level and only then
the CAS operation is executed to insert the new node in the chain.

When the number of nodes in a chain exceeds a MAX_NODES threshold value, then
the corresponding bucket entry is expanded with a new hash level and the nodes in the
chain are remapped in the new level. Thus, instead of growing a single monolithic hash
table, the hash trie settles for a hierarchy of small hash tables of fixed size 2w. To map our
key values into this hierarchy, we use chunks of w bits from the hash values computed by
our hash function. For example, consider a key value and the corresponding hash value h.
For each hash level Hi, we use the w ∗ i least significant bits of h to index the entry in the
appropriate bucket array, i.e., we consume h one chunk at a time as we walk down the
hash levels. Starting from the configuration in Fig. 3(c), Fig. 4 illustrates the expansion
mechanism with a second level hash Hi+1 for the bucket entry Ek.

The expansion procedure is activated whenever a thread T meets the following two
conditions: (i) the key at hand was not found in the chain and (ii) the number of nodes in
the chain is equal to the threshold value (in what follows, we consider a threshold value
of three nodes). In such case, T starts by pre-allocating a second level hash Hi+1, with
all entries referring the respective level (Fig. 4(a)). At this stage, the bucket entries in

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling 5

Ek

(b)

K1 K2 K3

.
.
.

Hi+1

(c)

.
.
.

Hi+1

K3

Em

En

Em

En

Ek

.
.
.

Hi

.
.
.

Ek

.
.
.

Hi

.
.
.

K1 K2

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

(a)

(d)

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1 K2

(e)

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1

K4 K2

(f)

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1

K4 K2

(g)

Hi+1

K3

Em

En

.
.
.

Hi

.
.
. K5

K4 K2

.
.
.

Hi+1

K3

Em

En

EkEk

.
.
.

Hi
.
.
. K5

K4 K2

K1

(h)

.
.
.K1

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Fig. 4. Expanding a bucket entry with a second level hash

Hi+1 can be considered white memory locations, because the hash level is still not visible
for the other threads. The new hash level is then used to implement a synchronization
point with the last node on the chain (node K3 in the figure) that will correspond to a
successful CAS operation trying to update Hi to Hi+1 (Fig. 4(b)). From this point on,
the insertion of new nodes on Ek will be done starting from the new hash level Hi+1.

If the CAS operation fails, that means that another thread has gained access to the
expansion procedure and, in such case, T aborts its expansion procedure. Otherwise, T
starts the remapping process of placing the internal nodes K1, K2 and K3 in the correct
bucket entries in the new level. Figures 4(c) to 4(h) show the remapping sequence in detail.
For simplicity of illustration, we will consider only the entries Em and En on level Hi+1

and assume that K1, K2 and K3 will be remapped to entries Em, En and En, respectively.
In order to ensure lock-free synchronization, we need to guarantee that, at any time, all
threads are able to read all the available nodes and insert new nodes without any delay
from the remapping process. To guarantee both properties, the remapping process is thus
done in reverse order, starting from the last node on the chain, initially K3.

Figure 4(c) then shows the hash trie configuration after the successful CAS operation
that adjusted node K3 to entry En. After this step, En moves to the white state and K3

becomes the next synchronization point for the insertion of new nodes on En. Note that
the initial chain for Ek has not been affected yet, since K2 still refers to K3. Next, on
Fig. 4(d), the chain is broken and K2 is updated to refer to the second level hash Hi+1.
The process then repeats for K2 (the new last node on the chain for Ek). First, K2 is

6 M. Areias and R. Rocha

remapped to entry En (Fig. 4(e)) and then it is removed from the original chain, meaning
that the previous node K1 is updated to refer to Hi+1 (Fig. 4(f)). Finally, the same idea
applies to the last node K1. Here, K1 is also remapped to a bucket entry on Hi+1 (Em

in the figure) and then removed from the original chain, meaning in this case that the
bucket entry Ek itself becomes a reference to the second level hash Hi+1 (Fig. 4(h)). From
now on, EK is also a gray memory location since it will be no further updated.

Concurrently with the remapping process, other threads can be inserting nodes in the
same bucket entries for the new level. This is shown in Fig. 4(e), where a new node K4

is inserted before K2 in En and, in Fig. 4(g), where a node K5 is inserted before K1 in
Em. As mentioned before, lock-freedom is ensured by the use of CAS operations when
updating black state memory locations.

To ensure the correctness of the remapping process, we also need to guarantee that
the nodes being remapped are not missed by any other thread traversing the hash trie.
Please remember that any chaining of nodes is closed by the last node referencing back
the hash level for the node. Thus, if when traversing a chain of nodes, a thread U ends in
a second level hash Hi+1 different from the initial one Hi, this means that U has started
from a bucket entry Ek being remapped, which includes the possibility that some nodes
initially on Ek were not seem by U. To guarantee that no node is missed, U simply needs
to restart its traversal from Hi+1.

We conclude the description of our proposal with a last example that shows a expansion
procedure involving three hash levels. Starting from the configuration on Fig. 4(b), Fig. 5
assumes a scenario where a set of nodes (K4, K5, K6 and K7 in the figure) are inserted in
the bucket entries Em and En before the beginning of the remapping process of nodes K1,
K2 and K3. Again, we will consider only the entries Em and En on level Hi+1 and assume
that K1, K2 and K3 will be remapped to entries Em, En and En, respectively.

Figure 5(a) shows the situation where K3 is scheduled to be remapped to entry En

on level Hi+1 but, since the number of nodes on En is equal to the threshold value, a
preliminary expansion procedure for En should be done, which leads to the pre-allocation
of a third level hash Hi+2. Figure 5(b) then shows the hash trie configuration after the
remapping of the nodes on En to the level Hi+2. Please note that En became a gray state
memory location since it is now referring the third level hash Hi+2, which means that
any operation scheduled to En should be rescheduled to Hi+2. This is the case shown
in Fig. 5(c), where K3 and K2 were both rescheduled to entry Ez on Hi+2. Despite this
third level remapping, the chaining reference of the last node on the chain (for example,
K1 in Fig. 5(c)) is still made to refer to the second level hash Hi+1. To conclude the
example, Fig. 5(d) shows the configuration at the end of the remapping process. Here,
K1 is remapped to the bucket entry Em on Hi+1 and removed from the initial chain,
meaning that Ek itself becomes a reference to Hi+1 and moves to a gray state.

For each configuration shown, the reader is encourage to verify that, at any moment,
all threads are able to access all available nodes. Consider, for example, the configuration
shown in Fig. 5(c) and a thread entering on level Hi searching for a node with the key
K7. The thread would begin by hashing the key K7 on level Hi and obtain the bucket
entry Ek. Then, it would follow the chain of nodes (K1 in this case) and reach level Hi+1.
At level Hi+1, it would hash again the key K7, obtain the bucket entry En and follow the
reference to level Hi+2. Finally, it would hash one more time the key K7, now for level
Hi+2, obtain the entry Ex and follow the chain until reaching node K7.

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling 7

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

(a)

.
.
.

Hi+2

Ex

EzK4 K6 K7

K5

K1 K2Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

.
.
.

Hi+2

Ex

Ez

K5 K6 K7

K4

K1Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em K5

K3

Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

.
.
.

Hi+2

Ex

Ez

K5 K6 K7

K4 K3

K1

K2

(b)

(c)

(d)

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

En

En

.
.
.

Hi+2

Ex

Ez

K6 K7

K4 K3 K2

Prev

Fig. 5. Remapping nodes on a third level hash

We argue that a key design decision in our approach is thus the combination of hash
tries with the use of a separate chaining (with a threshold value) to resolve hash collisions
(the original hash trie design expands a bucket entry when a second key is mapped to
it). Also, to ensure that nodes being remapped are not missed by any other thread
traversing the hash trie, any chaining of nodes is closed by the last node referencing back
the hash level for the node, which allows to detect the situations where a node changes
level. This is very important because it allows to implement a clean design to resolve
hash collisions by simply moving nodes between the levels. In our design, updates and
expansions of the hash levels are never done by using replacement of data structures
(i.e., create a new one to replace the old one), which also avoids the complex mechanisms
necessary to support the recovering of the unused data structures. Another important
design decision which minimizes the low-level synchronization problems leading to false
sharing or cache memory side-effects, is the insertion of nodes done at the end of the
separate chain. Inserting nodes at the end of the chain allows for dispersing as much
as possible the memory locations being updated concurrently (the last node is always
different) and, more importantly, reduces the updates for the memory locations accessed
more frequently, like the bucket entries for the hash levels (each bucket entry is at most
only updated twice).

8 M. Areias and R. Rocha

4 Performance Evaluation

To put our results in perspective, we compared our new lock-free hash trie design (LFHT)
against all the previously implemented Yap’s lock-based and lock-free strategies for con-
current tabling. For the sake of simplicity, here we will only consider Yap’s best lock-based
strategy (LB) and the lock-free design (LF) presented in (Areias and Rocha 2014). For
benchmarking, we used the set of tabling benchmarks from (Areias and Rocha 2012a)
which includes 19 different programs in total. We choose these benchmarks because they
have characteristics that cover a wide number of scenarios in terms of trie usage. The
benchmarks create different trie configurations with lower and higher number of nodes
and depths, and also have different demands in terms of trie traversing.

Since the system’s performance is highly dependent on the available concurrency that
a particular program might have, our initial goal was to evaluate the robustness of our
implementation when exposed to worst case scenarios and, for that, we ran the bench-
marks with all threads executing the same query goal. By doing that, we avoid the
peculiarities of the program at hand and we try to focus on measuring the real value
of our new design. Since, all threads are executing the same query goal, it is expected
that all threads will access the table space, to check/insert for subgoals and answers, at
similar times, thus stressing the synchronization on common memory locations, which
can increase the aforementioned problems of false sharing and cache memory side-effects
and thus penalize the less robust designs.

 0

 50

 100

 150

 200

 8 16 24 32

#threads (p)

Execution Time by Design (TD(p))

 1

 2

 3

 4

 5

 8 16 24 32

#threads (p)

Overhead by Design (TD(p) / TD(1))

Fig. 6. Average execution time,
in seconds, and average over-
head, against the execution time
with one thread, for the set
of tabling benchmarks with
all threads executing the same
query goal

The environment for our experiments was a machine
with 2x16 (32) Core AMD Opteron (tm) Processor 6274
@ 2.2 GHz with 32 GBytes of memory and running the
Linux kernel 3.8.3-1.fc17.x86_64 with Yap Prolog 6.3.
We experimented with intervals of 8 threads up to 32
threads and all results are the average of 5 runs for
each benchmark. Figure 6 shows the average execution
time, in seconds, and the average overhead, compared
against the respective execution time with one thread, for
the LFHT, LF and LB designs when running the set of
tabling benchmarks with all threads executing the same
query goal.

The results clearly show that the new LFHT design
achieves the best performance for both the execution
time and the overhead. As expected, LF is the second
best and LB is the worst. In general, our design clearly
outperforms the other designs with a overhead of at most
1.74 for 32 threads (the number of cores in the ma-
chine). Another important observation is that both LF
and LB show an initial high overhead in the execution
time in most experiments, mainly when going from 1 to
8 threads, in contrast to LFHT that shows more smooth
curves. The difference between LFHT and LF/LB for the
overhead ratio in these benchmarks clearly shows the dis-
tinct potential of the LFHT design.

A Simple and Efficient Lock-Free Hash Trie Design for Concurrent Tabling 9

 0

 20

 40

 60

 8 16 24 32

#threads (p)

Execution Time by Benchmark (TB(p))

 5

 10

 15

 20

 8 16 24 32

#threads (p)

Speedup by Benchmark (TB(1) / TB(p))

Fig. 7. Execution time, in
seconds, and speedup, against
the execution time with one
thread, for running the naive
scheduler program with the

LFHT design

Besides measuring the value of our new design through
the use of worst case scenarios, we conclude the pa-
per by showing the potential of our work to speedup
the execution of tabled programs. Other works have al-
ready showed the capabilities of the use of multithreaded
tabling to speedup tabled execution (Marques and Swift
2008; Marques et al. 2010). Here, for each program, we
considered a set of different queries and then we ran this
set with different number of threads. To do that, we im-
plemented a naive scheduler in Prolog code that initially
launches the number of threads required and then uses a
mutex to synchronize access to the pool of queries. We
experimented with a Path program using a grid-like con-
figuration and with two well-known ILP data-sets, the
Carcinogenesis and Mutagenesis data-sets. We used the
same 32 Core AMD machine, experimented with inter-
vals of 8 threads up to 32 threads and the results that
follow are the average of 5 runs. Figure 7 shows the aver-
age execution time, in seconds, and the average speedup,
compared against the respective execution time with one
thread, for running the naive scheduler on top of these
three programs with the LFHT design.

The results show that our design has potential to
speedup the execution of tabled programs. For the Path benchmark, the speedup in-
creases up to 10.24 with 16 threads, but then it starts to slow down. We believe that
this behavior is related with the large number of tabled dependencies in the program.
For the Carcino and Muta benchmarks, the speedup increases up to a value of 16.68
and 18.84 for 32 threads, respectively. Note that our goal with these experiments was
not to achieve maximum speedup because this would require to take into account the
peculiarities of each program and eventually develop specialized schedulers for each one,
which is orthogonal to the focus of this work.

5 Conclusions

We have presented a novel, simple and efficient lock-free design for concurrent tabling.
A key design decision in our approach is the combination of hash tries with the use of
a separate chaining closed by the last node referencing back the hash level for the node.
This allows us to implement a clean design to solve hash collisions by simply moving
nodes between the levels. In our design, updates and expansions of the hash levels are
never done by using replacement of data structures (i.e., create a new one to replace the
old one), which also avoids the need for memory recovery mechanisms. Another important
design decision which minimizes the bottlenecks and performance problems leading to
false sharing or cache memory side-effects, is the insertion of nodes done at the end of
the separate chain. This allows for dispersing as much as possible the memory locations
being updated concurrently and, more importantly, reduces the updates for the memory
locations accessed more frequently, like the bucket entries for the hash levels.

10 M. Areias and R. Rocha

Experimental results in the context of Yap’s concurrent tabling environment, showed
that our design clearly achieved the best results for the execution time, speedups and
overhead ratios. In particular, for worst case scenarios, our design clearly outperformed
the previous designs with a superb overhead always below 1.74 for 32 threads or less.
We thus argue that our design is the best proposal to support concurrency in general
purpose multithreaded tabling applications.

Acknowledgments

This work is partially funded by the ERDF (European Regional Development Fund)
through the COMPETE Programme and by FCT (Portuguese Foundation for Science
and Technology) within project SIBILA (NORTE-07-0124-FEDER-000059). Miguel Areias
is funded by the FCT grant SFRH/BD/69673/2010.

References

Areias, M. and Rocha, R. 2012a. An Efficient and Scalable Memory Allocator for Multithreaded
Tabled Evaluation of Logic Programs. In International Conference on Parallel and Distributed
Systems. IEEE Computer Society, 636–643.

Areias, M. and Rocha, R. 2012b. Towards Multi-Threaded Local Tabling Using a Common Table
Space. Journal of Theory and Practice of Logic Programming, International Conference on
Logic Programming, Special Issue 12, 4 & 5, 427–443.

Areias, M. and Rocha, R. 2014. On the Correctness and Efficiency of Lock-Free Expandable Tries
for Tabled Logic Programs. In International Symposium on Practical Aspects of Declarative
Languages. Number 8324 in LNCS. Springer-Verlag, 168–183.

Bagwell, P. 2001. Ideal Hash Trees. Es Grands Champs 1195.
Chen, W. and Warren, D. S. 1996. Tabled Evaluation with Delaying for General Logic Programs.

Journal of the ACM 43, 1, 20–74.
Fredkin, E. 1962. Trie Memory. Communications of the ACM 3, 490–499.
Marques, R. and Swift, T. 2008. Concurrent and Local Evaluation of Normal Programs. In

International Conference on Logic Programming. Number 5366 in LNCS. Springer-Verlag,
206–222.

Marques, R., Swift, T., and Cunha, J. C. 2010. A Simple and Efficient Implementation of
Concurrent Local Tabling. In International Symposium on Practical Aspects of Declarative
Languages. Number 5937 in LNCS. Springer-Verlag, 264–278.

Moura, P. 2008. ISO/IEC DTR 13211–5:2007 Prolog Multi-threading Predicates.
Prokopec, A., Bronson, N. G., Bagwell, P., and Odersky, M. 2012. Concurrent Tries with

Efficient Non-Blocking Snapshots. In ACM Symposium on Principles and Practice of Parallel
Programming. ACM, 151–160.

Rocha, R., Silva, F., and Santos Costa, V. 2005. On applying or-parallelism and tabling to logic
programs. Theory and Practice of Logic Programming 5, 1 & 2, 161–205.

Santos Costa, V., Rocha, R., and Damas, L. 2012. The YAP Prolog System. Journal of Theory
and Practice of Logic Programming 12, 1 & 2, 5–34.

Shalev, O. and Shavit, N. 2006. Split-Ordered Lists: Lock-Free Extensible Hash Tables. Journal
of the ACM 53, 3, 379–405.

Triplett, J., McKenney, P. E., and Walpole, J. 2011. Resizable, Scalable, Concurrent Hash
Tables via Relativistic Programming. In USENIX Annual Technical Conference. USENIX
Association, 11–11.

Supplementary material: Technical Communication c© 2003 [R.A. Aziz and G. Chu and P. J. Stuckey] 1

Grounding Bound Founded Answer Set Programs

Rehan Abdul Aziz, Geoffrey Chu and Peter J. Stuckey

National ICT Australia, Victoria Laboratory,†
Department of Computing and Information Systems,

University of Melbourne, Australia

Email: raziz@student.unimelb.edu.au, gchu@csse.unimelb.edu.au, pjs@csse.unimelb.edu.au

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Bound Founded Answer Set Programming (BFASP) is an extension of Answer Set Programming (ASP)

that extends stable model semantics to numeric variables. While the theory of BFASP is defined on ground

rules, in practice BFASP programs are written as complex non-ground expressions. Flattening of BFASP

is a technique used to simplify arbitrary expressions of the language to a small and well defined set of

primitive expressions. In this paper, we first show how we can flatten arbitrary BFASP rule expressions,

to give equivalent BFASP programs. Next, we extend the bottom-up grounding technique and magic set

transformation used by ASP to BFASP programs. Our implementation shows that for BFASP problems,

these techniques can significantly reduce the ground program size, and improve subsequent solving.

KEYWORDS: Answer Set Programming, Grounding, Flattening, Constraint ASP, Magic Sets

1 Introduction

Many problems in the areas of planning or reasoning can be efficiently expressed using An-

swer Set Programming (ASP) (Baral 2003). ASP enforces stable model semantics (Gelfond and

Lifschitz 1988) on the program, which disallows solutions representing circular reasoning. For

example, given only rules b ← a and a ← b, the assignment a = true, b = true would be

a solution under the logical semantics normally used by Boolean Satisfiability (SAT) (Mitchell

2005) solvers or Constraint Programming (CP) (Marriott and Stuckey 1998) solvers, but would

not be a solution under the stable model semantics used by ASP solvers.

Bound Founded Answer Set Programming (BFASP) (Aziz et al. 2013) is an extension of ASP

to allow founded integer and real variables. This makes it possible to concisely express and

efficiently solve problems involving inductive definitions of numeric variables where we want to

disallow circular reasoning. As an example consider the Road Construction problem (RoadCon).

We wish to decide which roads to build such that the shortest paths between various cities are

acceptable, with the minimal total cost. This can be modeled as:

A complete version of this paper that includes examples can be found at http://arxiv.org/abs/1405.3362
† NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications

and the Digital Economy and the Australian Research Council through the ICT Centre of Excellence program.

2 R. A. Aziz and G. Chu and P. J. Stuckey

minimize
∑

e∈Edge built [e]× cost [e]

∀y ∈ Node : sp[y, y] 6 0

∀y ∈ Node, e ∈ Edge : sp[from[e], y] 6 len[e] + sp[to[e], y]← built [e]

∀y ∈ Node, e ∈ Edge : sp[to[e], y] 6 len[e] + sp[from[e], y]← built [e]

∀p ∈ Demand : sp[d from[p], d to[p]] 6 demand[p]

The decisions are which edges e are built (built[e]). The aim is to minimize the total cost of the

edges cost [e] built. The first rule is a base case that says that shortest path from a node to itself is

0. The second constraint defines the shortest path sp[x, y] from x to y: the path from x to y is no

longer than from x to z along edge e if it is built plus the shortest path from z to y; and the third

constraint is similar for the other direction of the edge. The last constraint ensures that the shortest

path for each of a given set of paths p ∈ Demand is no longer than its maximal allowed distance

demand[p]. The above model has a trivial solution with cost 0 by setting sp[x, y] = 0 for all

x, y. In order to avoid this, we require that the sp variables are (upper-bound) founded variables,

that is they take the largest possible justified value. The first three constraints are actually rules

which justify upper bounds on sp, the last constraint is a restriction that needs to be met and

cannot be used to justify upper bounds. Solving such a BFASP is challenging, mapping to CP

models leads to inefficient solving, and hence we need a BFASP solver which can reason directly

about unfounded sets (Van Gelder et al. 1988) of numeric assumptions. Note that Constraint ASP

(CASP) and hybrid systems such as those given by (Mellarkod et al. 2008; Gebser et al. 2009;

Drescher and Walsh 2012; Liu et al. 2012; Balduccini 2009; Aziz et al. 2013a) cannot solve the

above problem without grounding the numeric domain to propositional variables and running

into the grounding bottleneck. BFASP has been shown to subsume CP, ASP, CASP and Fuzzy

ASP (Nieuwenborgh et al. 2006; Blondeel et al. 2013), see (Aziz et al. 2013) for details.

The above encoding for Road Construction problem is a non-ground BFASP since it is para-

metric in the data: Node, Edge, Demand , cost , from, to, len , d from, d to and demand . In this

paper we consider how to efficiently create a ground BFASP from a non-ground BFASP given the

data. This is analogous to flattening (Stuckey and Tack 2013) of constraint models and ground-

ing (Syrjanen 2009; Gebser et al. 2007; Perri et al. 2007) of ASP programs. The contributions

of this paper are: a flattening algorithm that transforms complex expressions to primitive forms

while preserving the stable model semantics, a generalization of bottom-up grounding for normal

logic programs to BFASPs and a generalization of the magic set transformation (Bancilhon et al.

1985; Beeri and Ramakrishnan 1991) for normal logic programs to BFASPs.

2 Preliminaries

2.1 Constraints and Answer Set Programming

We consider three types of variables: integer, real, and Boolean. Let V be a set of variables.

A domain D maps each variable x ∈ V to a set of constant values D(x). A valuation (or as-

signment) θ over variables vars(θ) ⊆ V maps each variable x ∈ vars(θ) to a value θ(x). A

restriction of assignment θ to variables V , θ|V , is the the assignment θ′ over V ∩ vars(θ) where

θ
′(v) = θ(v). A constraint c is a set of assignments over the variables vars(c), representing

the solutions of the constraint. A constraint c is monotonically increasing (resp. decreasing)

w.r.t. a variable y ∈ vars(c) if for all solutions θ that satisfy c, increasing (resp. decreasing)

the value of y also creates a solution, that is θ
′ where θ

′(y) > θ(y) (resp. θ′(y) < θ(y)), and

Grounding Bound Founded Answer Set Programs 3

θ
′(x) = θ(x), x ∈ vars(c)−{y}, is also a solution of c. A constraint program (CP) is a collection

of variables V and constraints C on those variables (vars(c) ⊆ V, c ∈ C). A positive-CP P

is a CP where each constraint is increasing in exactly one variable and decreasing in the rest.

The minimal solution of a positive-CP is an assignment θ that satisfies P s.t. there is no other

assignment θ′ that also satisfies P and there exists a variable v for which θ
′(v) < θ(v). Note that

for Booleans, true > false. A positive-CP P always has a unique minimal solution. If we have

bounds consistent propagators for all the constraints in the program, then this unique minimal

solution can be found simply by performing bounds propagation on all constraints until a fixed

point is reached, and then setting all variables to their lowest values.

A normal logic programP is a collection of rules of the form: b0 ← b1∧. . .∧bn∧¬b′1∧. . .∧¬b
′
m

where {b0, b1, . . . , bn, b
′
1, . . . , b

′
m
} are Boolean variables. b0 is the head of the rule while the RHS

of the reverse implication is the body of the rule. A rule without any negative literals is a positive

rule. A positive program is a collection of positive rules. The least model of a positive program

is an assignment θ that assigns true to the minimum number of variables. The reduct of P w.r.t.

an assignment θ is written P
θ and is a positive program obtained by transforming each rule r

of P as follows: if there exists an i for which θ(b′
i
) = true, discard the rule, otherwise, discard

all negative literals {b′1, . . . , b
′
m
} from the rule. The stable models of P are all assignments θ

for which the least model of P θ is equal to θ. Note that if we consider a logic program as a

constraint program, then a positive program is a positive-CP and the least model of that program

is equivalent to the minimal solution defined above.

2.2 Bound Founded Answer Set Programs (BFASP)

BFASP is an extension of ASP that extends its semantics over integer and real variables. In

BFASP, the set of variables is a union of two disjoint sets: standardS and founded variablesF.1

A rule r is a pair (c, y) where c is a constraint, y ∈ F is the head of the rule and it is increasing in

c. A bound founded answer set program (BFASP) P is a tuple (S,F, C, R) where C and R are

sets of constraints and rules respectively (also accessed as constraints(P) and rules(P) resp.).

Given a variable y ∈ F, rules(y) is the set of rules with y as their heads. Each standard variable

s is associated with a lower and an upper bound, written lb(s) and ub(s) respectively.

The reduct of a BFASP P w.r.t. an assignment θ is a positive-CP made from each rule r = (c, y)

by replacing in c every variable x ∈ vars(c)−{y} s.t. x is a standard variable or c is not decreasing

in x, by its value θ(x) to create a positive-CP constraint c′. Let rθ denote this constraint. If rθ is

not a tautology, it is included in the reduct P θ. An assignment θ is a stable solution of P iff i) it

satisfies all the constraints in P and ii) it is the minimal solution that satisfies P θ. For a variable

y ∈ F, the unconditionally justified bound of y, written ujb(y), is a value that is unconditionally

justified by the rules of the program regardless of what the standard variables are fixed to. E.g. if

we have a rule: (y > 3 + x, y) where x is a standard variable with domain [0, 10], then we can

set ujb(y) = 3. For any Boolean, we assume that ujb is fixed to false.

The focus of this paper is BFASPs where every rule is written in the form (y > f(x1, . . . , xn), y).

Recall that we consider the domains of Boolean variables to be ordered such that true > false.

So for example, an ASP rule such as a← b∧ c can equivalently be written as: a > f(b, c) where

1 For the rest of this paper we only consider lower bound founded variables, analogous to founded Booleans. Upper
bound founded variables can be implemented as negated lower bound founded variables, e.g. replace sp[x, y] in the
Road Construction example by −nsp[x, y] where nsp[x, y] is lower bound founded.

4 R. A. Aziz and G. Chu and P. J. Stuckey

f is a Boolean that returns the value of b∧ c. f(x1, . . . , xn) is essentially an expression tree where

the leaf nodes are the variables x1, . . . , xn.

The local dependency graph for a BFASP P is defined over founded variables. For each rule

r = (y > f(x1, . . . , xn), y), there is an edge from y to all founded xi. Each edge is marked

increasing, decreasing, or non-monotonic, depending on whether f is increasing, decreasing,

or non-monotonic in xi. A BFASP is locally valid iff no edge within an SCC is marked non-

monotonic. A program is locally stratified if all the edges between any two nodes in the same

component are marked increasing.

2.3 Non-ground BFASPs

A non-ground BFASP is a BFASP where sets of variables are grouped together in variable ar-

rays, and sets of ground rules are represented by non-ground rules via universal quantification

over index variables. For example, if we have arrays of variables a, b, c, then we can represent the

ground rules: (a[1] > b[1] + c[1], a[1]), (a[2] > b[2] + c[2], a[2]), (a[3] > b[3] + c[3], a[3]) by

∀i ∈ [1, 3] : (a[i] > b[i] + c[i], a[i]). Variables can be grouped together in arrays of any dimen-

sion and non-ground BFASP rules have the following form: ∀̄i ∈ D̄ where con(̄i) : (y[l0(̄i)] >

f(x1[l1(̄i)], . . . , xn[ln(̄i)]), y[l0(̄i)]), where ī is a set of index variables i1, . . . , im, D̄ is a set of do-

mains D1, . . . , Dm, con is a constraint over the index variables which constrains these variables,

l0, . . . , ln are functions over the index variables which return a tuple of array indices, y, x1, . . . , xn

are arrays of variables and f is a function over the xi variables. Let gen(r) ≡ ī ∈ D̄∧con(̄i) denote

the generator constraint for a non-ground rule r. Note that we require the generator constraint in

each rule to constrain the index variables so that f is always defined.

Variable arrays can contain either founded variables, standard variables, or parameters (which

can simply be considered fixed standard variables), although all variables in a variable array must

be of the same type. Note that the array names in our notation correspond to predicate names in

standard ASP syntax, and our index variables correspond to ASP “local variables.” Given a non-

ground rule r, let grnd(r) be the set of ground rules obtained by substituting all possible values

of the index variables that satisfy gen(r) into the quantified expression. Similarly given a non-

ground BFASP P , let grnd(P) be the grounded BFASP that contains the grounding of all its rules

and constraints. The predicate dependency graph, validity and stratification are defined similarly

for array variables and non-ground rules as the local dependency graph, local validity and local

stratification respectively are defined for ground variables and ground rules. All our subsequent

discussion is restricted to valid BFASPs.

3 Flattening

A ground BFASP may contain constraints and rules whose expressions are not flat, i.e., they are

expression trees with height greater than one. Such expressions are not supported by constraint

solvers and we need to flatten these expressions to primitive forms. We omit consideration of

flattening constraints since this is the same as in standard CP (Stuckey and Tack 2013). It can

be shown that the standard CP flattening approach in which a subexpression is replaced with a

standard variable and a constraint is added that equates the introduced variable with the subex-

pression, does not preserve stable model semantics. To preserve the stable model semantics, it

is necessary to use introduced founded variables to represent subexpressions containing founded

variables. We now describe the central result used in our flattening algorithm.

Grounding Bound Founded Answer Set Programs 5

flat(P)
Pflat := ∅
R := rules(P)
T := constraints (P)
for(r ∈ R)

R := R \ {r}
flatRule(r, R, T)
r := simplify(r)
Pflat ∪={r}

for(c ∈ T) Pflat ∪= cp flat(c)
return Pflat

flatRule(r = (y > f(e1 , . . . , en), y), R, T)
for(each non-terminal ei)

if(ei does not contain founded vars)
replace ei with standard var y′ in r

T ∪={y′ = ei}
elif(f is increasing in ei)

replace ei with founded var y′ in r

R ∪={(y′ > ei , y
′)}

elif(f is decreasing in ei)
replace ei with founded var −y′ in r

R ∪={(y′ > −ei , y′)}

Theorem 1

Let P be a BFASP containing a rule r = (y > f1(x1, . . . , xk , f2(xk+1, . . . , xn)), y) where f1

is increasing in the argument where f2 appears, and where if a variable occurs among both

x1, . . . , xk and xk+1, . . . , xn, then f1 and f2 have the same monotonicity w.r.t. it. Let P ′ be P with

r replaced by the two rules: r1 = (y > f1(x1, . . . , xk , y
′), y) and r2 = (y′ > f2(xk+1, . . . , xn), y

′)

where y
′ is an introduced founded variable. Then the stable solutions of P

′ restricted to the

variables of P are equivalent to the stable solutions of P .

As a corollary, if f1 is decreasing in the argument where f2 appears, we can replace f2 by a foun-

ded variable −y′ and add the rule (y′ > −f2(xk , . . . , xn), y
′) instead. Not all valid rule forms are

supported by Theorem 1, because we require that multiple occurrences of the same variable in

the expression must have the same monotonicity w.r.t. the root expression. Note that if a subex-

pression does not contain any founded variables at all, i.e., only contains standard variables,

parameters or constants, then a standard CP flattening step is sufficient. Let us now describe

our flattening algorithm flat for ground BFASPs and later extend it to non-ground BFASPs. We

put all the rules and constraints of the program in sets R and T respectively. For every rule

r = (y > f(e1, . . . , en), y) ∈ R, where f is the top level function in that rule, and e1, . . . , en are the

expressions which form f’s arguments, we call flatRule which works as follows. If there is some

ei which is not a terminal, i.e., not a constant, parameter or variable, then we have two cases.

If ei does not contain any founded variables, we simply replace it with standard variable y
′ and

add the constraint y′ = ei to T . Otherwise, we apply the transformation described in Theorem 1.

After flatRule, we simplify r as much as possible through the subroutine simplify, e.g., by get-

ting rid of double negations, pushing negations inside the expressions as much as possible etc.

Finally, we flatten all the constraints in T using the standard CP flattening algorithm cp flat as

described in (Stuckey and Tack 2013). Since we replace all decreasing subexpressions by neg-

ated introduced variables and simplify expressions by pushing negations towards the variables,

we handle negation through simple rule forms like (y > −x, y), (y > ¬x, y) etc.

The algorithm can be extended to non-ground rules by defining the index set of the introduced

variables to be equal to the domain of index variables as given in the generator of the rule in

which they replace an expression. Moreover, the generator expression of an intermediate rule

stays the same as that of the original rule from which it is derived.

4 Grounding

ASP grounders keep track of variables that have been created and instantiate further rules based

on that. For example, if the variables b and c have been created, then the rule a← b∧c justifies a

bound on a and therefore, must be included in the final program. The justification of all positive

literals in a rule potentially justify its head. However, for a rule, if any one positive variable in its

body does not have any rule supporting it, then that rule can safely be ignored until a justification

6 R. A. Aziz and G. Chu and P. J. Stuckey

c φr

y > sum(x1 , . . . , xn) (
∑

i
ujb(xi) > ujb(y))∨

((∧iujb(xi) > −∞ ∨ cr(xi)) ∧ (∨icr(xi)))
y > max (x1 , . . . , xn) ∨i(ujb(xi) > ujb(y) ∨ cr(xi))
y > min(x1 , . . . , xn) ∧i(ujb(xi) > ujb(y) ∨ cr(xi))
y > product(x1 , . . . , xn) where ∧ixi > 0

∏
i
ujb(xi) > ujb(y) ∨ (∨icr(xi)))

y > x← r cr(r) ∧ (ujb(x) > ujb(y) ∨ cr(x))
y ← x > 0 ujb(x) > 0 ∨ cr (x)
y ← ∧ixi ∧icr(xi)
y ← ∨ixi ∨icr(xi)
y > −x −ub(x) > ujb(y)
y ← ¬x true
y > 1/x where x > 0 1/− ub(x) > ujb(y)

Table 1. Grounding conditions for rule r = (c, y)

for that variable has been found. In case a justification is never found for that variable, then the

rule is useless, i.e., excluding the rule from the program does not change its stable solutions.

We propose a simple grounding algorithm for non-ground BFASPs which can be implemented

by simply maintaining a set of ground rules and variables as done in ASP grounders, but which

may generate useless rules in addition to all the useful ones. The idea is that for each variable

v, we only keep track of whether v can potentially be justified above its ujb value, rather than

keeping track of whether it can be justified above each value in its domain. If it can be justified

above its ujb, then when v appears in the body of a rule, we assume that v can be justified to any

possible bound for the purpose of calculating what bound can be justified on the head.

We refer to a variable x as being created, written cr(x), if it can go above its ujb value. More

formally, cr(x) is a founded Boolean with a rule: cr(x) ← x > ujb(x). While that is how we

define cr (x), we do not explicitly have a variable cr(x) or the above rule in our implementation.

Instead, we implement it by maintaining a set Q of variables that have been created. Initially,

Q is empty. We recursively look at each non-ground rule to see if the newly created variables

make it possible for more head variables to be justified above their ujb values. If so, we create

those variables and add them to Q. In order to do this, we need to find necessary conditions under

which the head variable can be justified above its ujb. In order to simplify the presentation, we

are going to define ujb for constants, standard variables and parameters as well. For a constant

x, we define ujb(x) to be the value of x. For parameters and standard variables x, we define

ujb(x) = ub(x).4 Note that for soundness, the ujb values of founded variables only have to be

correct (e.g. −∞ for all variables) although tighter ujb values can improve the efficiency of our

algorithm. Table 1 gives a non-exhaustive list of necessary conditions for the head variable to be

justified above its ujb value for different rule forms.

Let us now make a few observations about the conditions given in Table 1. A key point is

that for many rule forms φr can evaluate to true, even without any variable in the body getting

created. All such rules that evaluate to true give us a starting point for initializing Q in our

implementation. The linear case (sum) deserves some explanation. It is made up of two disjuncts,

the first of which is an evaluation of the initial condition, i.e., whether the sum of ujb values of

all variables is greater than the ujb of the head. If this condition is true, then the rule needs

to be grounded unconditionally. If this is false, then the second disjunct becomes important. The

second disjunct itself is a conjunction of two more conditions. The first one says that all variables

must be greater than −∞ in order for the rule to justify a finite value on the head. In the case

4 Upper and lower bounds for a parametric array can be established by simply parsing the array.

Grounding Bound Founded Answer Set Programs 7

createCPs(P)

for(r ∈ rules(P) : φr =
n∧

i=1

cr(xi[l̄i]))

cp[r] := true % new constraint program
cp[r] := cp[r] ∧ gen(r)
for(i ∈ 1 . . . n)

set[r, i] := ∅
cp[r] := cp[r] ∧ l̄i ∈≪set[r, i]≫

for(r ∈ rules(P) : φr =
n∨

i=1

cr(xi[l̄i]))

for(i ∈ 1 . . . n)
cp[r, i] := true % new constraint program
cp[r, i] := cp[r, i] ∧ gen(r)
set[r, i] := ∅
cp[r, i] := cp[r, i] ∧ l̄i ∈≪set[r, i]≫

ground(P)
C := {groundAll(c) : c ∈ constraints (P)}
R
′ := {groundAll(r) : r ∈ rules(P) : φr = true}

while(R′ 6= ∅)
H := heads(R′)
Q∪=H

R
′ := ∅

for(r ∈ rules(P) : H ∩ vars(φr) 6= ∅)

if(φr =
n∧

i=1

cr (xi[l̄i]) ∨ φr =
n∨

i=1

cr(xi[l̄i]))

for(i ∈ 1 . . . n)
dom := {m̄ | x[m̄] ∈ Q}
set[r, i] := dom \ set[r, i]
if(φr is conj) R′ ∪= search(cp[r]) \ R
if(φr is disj) R′ ∪= search(cp[r,i]) \ R
R ∪=R

′

set[r, i] := dom

for(y ∈ vars(R) ∩F) R ∪=(y > ujb(y), y)

where all variables already have a finite ujb, the second conjunct says that at least one of them

must be created for the rule to be grounded . Finally, observe that after plugging all values of

ujb, all conditions given in the table simplify to one of the following four forms: true, false,

∨icr(xi) or ∧icr (xi). Note that the grounding conditions are significantly more sophisticated than

the simple conjunctive condition for normal rules. More specifically, after simplification, we can

get a disjunctive condition which has no analog in ASP.

We are now ready to present the main bottom-up grounding algorithm. Logically, our ground-

ing algorithm starts with ujb(x) for all x, adds (x > ujb(x), x) to the program and then finds all

the ground rules that are not made redundant by these rules. createCPs is a preprocessing step

that creates constraint programs for rules in a BFASP P whose conditions are either conjunctions

or disjunctions. For a rule with a conjunctive condition, it only creates one program, while for

one with a disjunctive condition, it creates one constraint program for each variable in the con-

dition. Each program is initialized with the gen(r) which defines the variables and some initial

constraints given in the where clause in the generator of non-ground rule. Furthermore, for each

array literal in φr, a constraint is posted on its literal (which is a function of index variables in the

rule), to be in the domain given by the current value of the set variable (the reason for the Quine

quotes) which is initially set to empty. ground is called after preprocessing. Q and R are sets of

ground variables and rules respectively. groundAll is a function that grounds a non-ground rule

or constraint completely, and returns the set of all rules and constraints respectively. Initially, we

ground all constraints in P and rules for which φr evaluates to true. R′ is a temporary variable

that represents the set of new ground rules from the last iteration. In each iteration, we only look

for non-ground rules that have some variable in their conditions that is created in the previous

iteration. heads takes a set of ground rules as its input and returns their heads. In each iteration,

through Q, we manipulate the set constraint to get new rule instantiations. For each variable in

the clause, we make set equal to the new index values created for that variable. For both the

conjunctive and the disjunctive case, this optimization only tries out new values of recently cre-

ated variables to instantiate new rules. search takes a constraint program as its input, finds all its

solutions, instantiates the non-ground rule for each solution, and returns the set of these ground

rules. After creating new rules due to the new values in set , we make it equal to all values of the

variable in Q. The fixed point calculation stops when no new rules are created. Finally, for every

founded variable y, we add (y > ujb(y), y) as a rule so that if the ujb relied on some rules that

were ignored during grounding, then this ensures that ujb(y) is always justified.

8 R. A. Aziz and G. Chu and P. J. Stuckey

5 Magic set transformation

Let us first define the query of a BFASP. To build the query Q for a BFASP P , we ground all its

constraints and its objective function, and put all the variables that appear in them in Q.5 Note

that our query does not have any free variables and only contains ground variables. Therefore,

we do not need adornment strings to propagate binding information as in the original magic set

technique. The original magic set technique has three stages: adorn, generate and modify. For the

reason described above, we only describe the latter two.

The purpose of the magic set technique is to simulate a top-down computation through bottom-

up grounding. For every variable a in the original program, we create a magic variable m a that

represents whether we care about a. Additionally, there are magic rules that specify when a magic

variable should be created. Consider a simple rule (a > b + c, a) where ujb of all variables is

equal to −∞. Suppose we are interested in computing a, we model this by setting m a to true.

Since b is required to compute the value of a, we add a magic rule m b ← m a. We do not care

about c until a finite bound on b is justified (until b is created), so we generate a tighter magic

rule for c: m c← m a ∧ cr(b).

We can utilize the necessary conditions for a useful grounding of a rule r as given by φr.

Recall that after evaluating the initial conditions, φr reduces to true, false, a conjunction or a

disjunction. The above generation of magic rules for the rule (a > b + c, a) is an example of

the conjunctive case. For a disjunction, the magic rules are even simpler. For every cr(x) in the

disjunction, we create the magic rule m x ← m a. Note that not all variables in the original rule

appear in the condition; some might get removed in the simplification or not be included in the

original condition at all. We can ignore them for grounding, but we are interested in their values

as soon as we know that the rule can be useful. Therefore, as soon as the magic variable for

the head is created, and φr is satisfied, we are interested in all the variables in the rule that do

not appear in φr. Finally, we define the modification step for a rule r = (y > f(x̄), y), written

modify(r), as changing it to r = (y > f(x̄) ← my , y). The pseudo-code for generation of magic

rules and modification of the original rule is given as the function magic that takes a rule as its

input. It adds magic rules for a rule to a set P . The first two if conditions handle the disjunctive

and conjunctive case respectively. The for loop that follows generates magic rules for variables

that are not in φr.

The entire bottom-up calculation with magic sets is as follows. First, create magic variables

for all the variables in the program and call magic for every rule in the program. If the magic

rules generated and/or the original rule after modification are not primitive expressions, flatten

them. Then, call ground on the resulting program. While grounding the constraints, build the

query by including m v in Q for every ground variable v that is in some ground constraint. After

grounding, filter all the magic variables from Q, and magic rules from R.

If a given BFASP program is unstratified, then the algorithm described above is not sound.

There might be parts of the program that are unreachable from the founded atoms appearing in

the query but are inconsistent. We refer the reader to (Faber et al. 2007) for further details. We

overcome this by including in the query all ground magic variables of all array variables that are

part of a component in the dependency graph in which there is some decreasing (negative) edge

between any two of its nodes. The following result establishes correctness of our approach.

5 Technically if the problem has output variables, whose value will be printed, they too need to be added to Q.

Grounding Bound Founded Answer Set Programs 9

magic(r)
a := head (r)

if(φr =
n∨

i=1

cr(xi))

for(i ∈ 1 . . . n) P ∪=gen(r) : (m xi ← m a, m xi)

if(φr =
n∧

i=1

cr(xi))

for(i ∈ 1 . . . n)
b := m a

P ∪= gen(r) : (m xi ← b, m xi)
b := b ∧ cr(xi)

for(v ∈ vars(r) \ (vars (φr) ∪ {a}))
P ∪=gen(r) : (m v ← m a ∧ φr , m v)

modify(r)

Theorem 2

Given a BFASP P , let G be equal to grnd(P) and M be a ground BFASP produced by running

the magic set transformation after including the unstratified parts of the program in the initial

query for a given non-ground BFASP P . The stable solutions of G restricted to the variables

vars(M) are equivalent to the stable solutions of M. That is, if θ′ is a stable solution of G, then

θ
′|vars(M) is a stable solution of M and if θ is a stable solution of M, then there exists θ′ s.t. θ′ is

a stable solution of G and θ
′|vars(M) = θ.

6 Experiments

We show the benefits of bottom-up grounding and magic sets for computing with BFASPs on a

number of benchmarks: RoadCon, UtilPol and CompanyCon.7 In utilitarian policies (UtilPol),

a government decides a set of policies to enact while minimizing the cost. Additionally, there

are different citizens and each citizen’s happiness depends on the enacted policies and happiness

of other citizens. There is a citizen t whose happiness should be above a given value. Company

controls (CompanyCon) is a problem related to stock markets. The parameters of the problem are

the number of companies, each company’s ownership of stocks in other companies, and a source

company that wants to control a destination company. The decision variables are the number of

stocks that the source company buys in every other company. A company c controls a company

d if the number of stocks that c owns in d plus the number of stocks that other companies that

c controls own in d is greater than 50 percent of total number of stocks of company d. The

objective is to minimize the total cost of stocks bought. All experiments were performed on a

machine running Ubuntu 12.04.1 LTS with 8 GB of physical memory and Intel(R) Core(TM)

i7-2600 3.4 GHz processor. Our implementation extends MiniZinc 2.0 (LIBMZN) and uses the

solver CHUFFED extended with founded variables and rules as described in our previous work

(Aziz et al. 2013). Each time in the tables is the median time in seconds of 10 different instances.

Table 2 shows the results for RoadCon. N is the number of nodes, and SCCs is the min-

imum number of strongly connected components in the graph. We compare exhaustive grounding

(simply creating grnd(P)) against bottom-up grounding, and bottom-up grounding with magic

set transformation. A — represents either the flattener/solver did not finish in 10 minutes or that

it ran out of memory. Using bottom-up grounding, the founded variables representing shortest

paths between two nodes that are not in the same SCC and the corresponding useless rules are

not created. Clearly bottom-up grounding is far superior to naively grounding everything, and

magic sets substantially improves on this. Tables 3 and 4 show the results for utilitarian policies

7 All problem encodings and instances can be found at: www.cs.mu.oz.au/˜pjs/bound founded/

10 R. A. Aziz and G. Chu and P. J. Stuckey

Exhaustive Bottom-up Magic
N SCCs Flat Solve Flat Solve Flat Solve

100 5 4.25 3.34 1.37 .64 .27 .04

300 15 39.02 — 4.19 1.25 .41 .07

600 20 237.97 — 19.70 22.56 .83 .96

900 30 — — 30.44 127.90 1.17 4.74

1400 45 — — 56.99 398.29 1.79 25.66

Table 2. Road Construction RoadCon

Instance Bottom-up Magic
C P Cr Pr Flat Solve Flat Solve

50 100 5 5 2.02 1.90 .48 .01

100 300 10 30 16.62 91.66 2.97 .07

100 500 10 30 24.78 — 4.39 .09

250 350 105 105 83.45 — 35.16 18.40

250 400 110 110 88.61 — 39.32 452.17

300 400 125 150 140.36 — 57.09 —

Table 3. UtilPol

Instance Bottom-up Magic
C Cr Flat Solve Flat Solve

1000 15 24.27 5.20 .79 .70

1500 25 53.66 17.52 1.39 2.07

2000 35 94.38 66.81 2.31 8.75

3000 50 209.70 86.35 1.71 17.87

3500 60 — — 5.58 19.18

5000 80 — — 9.63 51.45

Table 4. CompanyCon

and company controls respectively. The running time for exhaustive and bottom-up for these

benchmark are similar, therefore, the comparison is only given for bottom-up vs. magic sets. For

UtilPol, C and P represent the number of citizens and policies respectively, Cr represents the

maximum number of relevant citizens on which the happiness of t directly or indirectly depends

and Pr is the maximum number of policies on which the happiness of t and other citizens in Cr

depends. This is the part of the instance that is relevant to the query and the rest is ignored when

magic sets are enabled. It can be seen that magic sets outperform regular bottom-up grounding,

especially when the relevant part of the instance is small compared to the entire instance. Note

that when Pr is small, the flattening time for magic sets is greater that the solving time since

the resulting set of rules is actually simple. This changes, however, as Pr is increased. For Com-

panyCon, C is the number of total companies while Cr is the maximum number of companies

reachable from the destination in the given ownership graph. The table shows that if Cr is small

compared to C, magic sets can give significant advantages.

7 Conclusion

Bound Founded Answer Set Programming extends ASP to disallow circular reasoning over nu-

meric entities. In this paper, we show how we can flatten and ground a non-ground BFASP

while preserving its semantics, thus creating an executable specification of the BFASP problem.

We show that using bottom-up grounding and magic sets transformation we can significantly im-

prove the efficiency of computing BFASPs. The existing magic set techniques are only defined

for the normal rule form, involving only founded Boolean variables. We have extended magic

sets to BFASP, a formalism that has significantly more sophisticated rule forms and has both

standard and founded variables, that can moreover be Boolean or numeric.

Grounding Bound Founded Answer Set Programs 11

References

AZIZ, R. A., CHU, G., AND STUCKEY, P. J. 2013. Stable model semantics for founded bounds. Theory

and Practice of Logic Programming 13, 4–5, 517–532. Proceedings of the 29th International Conference

on Logic Programming.

AZIZ, R. A., STUCKEY, P. J., AND SOMOGYI, Z. 2013a. Inductive definitions in constraint programming.

In Proceedings of the Thirty-Sixth Australasian Computer Science Conference, B. Thomas, Ed. CRPIT,

vol. 135. ACS, 41–50.

BALDUCCINI, M. 2009. Representing constraint satisfaction problems in answer set programming. In In

ICLP09 Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP09).

BANCILHON, F., MAIER, D., SAGIV, Y., AND ULLMAN, J. D. 1985. Magic sets and other strange ways to

implement logic programs. In Proceedings of the fifth ACM SIGACT-SIGMOD symposium on Principles

of database systems. ACM, 1–15.

BARAL, C. 2003. Knowledge representation, reasoning and declarative problem solving. Cambridge

University Press.

BEERI, C. AND RAMAKRISHNAN, R. 1991. On the power of magic. The Journal of Logic Program-

ming 10, 255 – 299.

BLONDEEL, M., SCHOCKAERT, S., VERMEIR, D., AND DE COCK, M. 2013. Fuzzy answer set program-

ming: An introduction. In Soft Computing: State of the Art Theory and Novel Applications. Springer,

209–222.

DRESCHER, C. AND WALSH, T. 2012. Answer set solving with lazy nogood generation. In Technical

Communications of the 28th International Conference on Logic Programming. 188–200.

FABER, W., GRECO, G., AND LEONE, N. 2007. Magic sets and their application to data integration.

Journal of Computer and System Sciences 73, 4, 584–609.

GEBSER, M., OSTROWSKI, M., AND SCHAUB, T. 2009. Constraint answer set solving. In Proceedings of

the 25th International Conference on Logic Programming. Springer, 235–249.

GEBSER, M., SCHAUB, T., AND THIELE, S. 2007. Gringo : A new grounder for answer set programming.

In LPNMR. 266–271.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In Proceed-

ings of the Fifth International Conference on Logic Programming. MIT Press, 1070–1080.

LIU, G., JANHUNEN, T., AND NIEMELA, I. 2012. Answer set programming via mixed integer program-

ming. In Proceedings of the 13th International Conference on Principles of Knowledge Representation

and Reasoning. AAAI Press, 32–42.

MARRIOTT, K. AND STUCKEY, P. 1998. Programming with Constraints: an Introduction. MIT Press.

MELLARKOD, V. S., GELFOND, M., AND ZHANG, Y. 2008. Integrating answer set programming and

constraint logic programming. Annals of Mathematics and Artificial Intelligence 53, 1-4, 251–287.

MITCHELL, D. G. 2005. A SAT solver primer. Bulletin of the EATCS 85, 112–132.

NIEUWENBORGH, D. V., COCK, M. D., AND VERMEIR, D. 2006. Fuzzy answer set programming. In

Proceedings of Logics in Artificial Intelligence, 10th European Conference, JELIA 2006. Springer Berlin

Heidelberg, 359–372.

PERRI, S., SCARCELLO, F., CATALANO, G., AND LEONE, N. 2007. Enhancing DLV instantiator by

backjumping techniques. Annals of Mathematics and Artificial Intelligence 51, 2-4, 195–228.

STUCKEY, P. J. AND TACK, G. 2013. Minizinc with functions. In Proceedings of the 10th International

Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR) techniques in

Constraint Programming. Number 7874 in LNCS. Springer, 268–283.

SYRJANEN, T. 2009. Logic programs and cardinality constraints – theory and practice. Ph.D. thesis,

Faculty of Information and Natural Sciences, Aalto University.

VAN GELDER, A., ROSS, K. A., AND SCHLIPF, J. S. 1988. Unfounded sets and well-founded semantics

for general logic programs. In Proceedings of the ACM Symposium on Principles of Database Systems.

ACM, 221–230.

12 R. A. Aziz and G. Chu and P. J. Stuckey

Appendix A Proofs of theorems

Theorem 1

Let P be a BFASP containing a rule r = (y > f1(x1, . . . , xk , f2(xk+1, . . . , xn)), y) where f1

is increasing in the argument where f2 appears, and where if a variable occurs among both

x1, . . . , xk and xk+1, . . . , xn, then f1 and f2 have the same monotonicity w.r.t. it. Let P ′ be P with

r replaced by the two rules: r1 = (y > f1(x1, . . . , xk , y
′), y) and r2 = (y′ > f2(xk+1, . . . , xn), y

′)

where y
′ is an introduced founded variable. Then the stable solutions of P

′ restricted to the

variables of P are equivalent to the stable solutions of P .

Proof

For a rule s = (c, head), let con(s) = c. By construction, con(r) ⇔ ∃y′(con(r1) ∧ con(r2)) and

all the other constraints in P and P
′ are identical. Also, given any assignment θ′ of P ′, since

f1 is increasing in the argument where f2 appears, y′ will be left as a variable in r1
θ. Consider

an assignment θ′ over vars(P ′), and let θ = θ
′|vars(P). Recall that the reduct of a program with

respect to an assignment replaces all the standard variables and founded variables that are not

decreasing in any rule’s constraint with its value in that assignment. Since f1 and f2 have the

same monotonicity w.r.t. any variable common in {x1, . . . , xk} and {xk+1, . . . , xn}, it will either

be replaced by its assignment value in both f1 and f2 or not be replaced at all. Therefore, the

relation r
θ ⇔ ∃y′ (r1θ

′
∧ r2

θ
′
) is also valid. Furthermore, all other constraints in P

θ and P
′θ′ are

identical.

Suppose θ is a stable solution of P . Let θ′ be the extension of θ to variable y
′ s.t. θ′(y′) =

f2(θ(xk), . . . , θ(xn)). Clearly, this choice of θ′(y′) allows θ
′ to satisfy all the constraints of P ′

and allows θ
′|
vars(P ′θ

′
) to satisfy all the constraints of P ′θ

′
. To prove that θ′ is a stable solution

of P ′, we just need to show that there is no smaller solution of P ′θ
′

than θ
′|
vars(P ′θ

′
). Since r

θ ⇔

∃y′(r1θ
′
∧r2θ

′
) and all other constraints in P

θ and P
′θ′ are identical, P ′θ

′
must force the same lower

bounds on the variables in vars(P θ) as P θ does. Hence, none of those values can go any lower.

Also, r2
θ
′
forces y′ > f2(θ(xk), . . . , θ(xn)), and so f2(θ(xk), . . . , θ(xn)) is the lowest possible value

for y′. Hence θ′|
vars(P ′θ

′
) is the minimal solution of P ′θ

′
and θ

′ is a stable solution of P ′.

Suppose θ′ is a stable solution of P ′. Let θ = θ
′|vars(P). Since con(r)⇔ ∃y′(con(r1) ∧ con(r2))

and all the other constraints in P and P
′ are identical, θ satisfies all the constraints in P . Since

r
θ ⇔ ∃y′(r1θ

′
∧ r2

θ
′
) and all other constraints in P

θ and P
′θ′ are identical, θ|vars(P θ) satisfies all

the constraints in P
θ. To prove that θ is a stable solution of P , we just need to show that there is

no smaller solution of P θ than θ|vars(P θ). Since r
θ ⇔ ∃y′(r1θ

′
∧ r2

θ
′
) and all other constraints in

P
θ and P

′θ′ are identical, P θ must force the same lower bounds on the variables in vars(P θ) as

P
′θ′ does. Hence, none of those values can go any lower, θ|vars(P θ) is the minimal solution of P θ

and θ is a stable solution of P . q

Theorem 2

Given a BFASP P , let G be equal to grnd(P) and M be a ground BFASP produced by running

the magic set transformation after including the unstratified parts of the program in the initial

query for a given non-ground BFASP P . The stable solutions of G restricted to the variables

vars(M) are equivalent to the stable solutions of M. That is, if θ′ is a stable solution of G, then

θ
′|vars(M) is a stable solution of M and if θ is a stable solution of M, then there exists θ′ s.t. θ′ is

a stable solution of G and θ
′|vars(M) = θ.

Grounding Bound Founded Answer Set Programs 13

Proof

Let us first argue about the correctness of our grounding approach presented in Section 4. We

can analyze each row in Table 1 and reason that until the condition is satisfied, the rule can be

ignored without changing the stable solutions of the program. We only provide a brief sketch

and do not analyze each case in the table. Say, e.g. for y > max(x1, . . . , xn), if the condition is

not satisfied, this means that no xi has a rule in the program that justifies a value higher than its

ujb, and no xi initially justifies a bound on y that is greater than ujb(y). If we include a ground

version of this rule in the program, then after taking the reduct w.r.t. any assignment, the rule can

never justify any bound on the head, and hence can safely be eliminated.

Let Pi be part of grnd (P) that is not included in M. It can be seen from the description of

magic set transformation that any variable in Pi either cannot be reached from any variable in M

in the dependency graph of P , or can only be reached through useless rules. Since useless rules

can be eliminated as argued above, we conclude that no variable in M can reach any variable in Pi

in the dependency graph. This obviously also holds for dependency graph of respective reduced

program w.r.t. some assignment. This means that for a given assignment θ′, the minimal order

computation can first be performed on M
θ
′

which fixes all the variables in vars(M), and then

on P
θ
′

i
which fixes all the remaining variables, i.e., variables in vars(P)− vars(M). Combining

both the minimal solutions would be the same as computing the minimal solution for Gθ
′
. This

proves the first result.

For the second result, since all unstratified parts in P are included inM, all the intra-component

edges in the dependency graph of Pi are marked increasing (positive). It can be shown that for

such a program, once we fix all the standard variables appearing in any rule in Pi, there is a

unique stable solution that can be computed as the iterated least fixpoint of Pi. This is similar to

the well known result for logic programs that states that for a stratified program, the unique stable

solution can be computed as the iterated least fixpoint of the program (Corollary 2 in (Gelfond

and Lifschitz 1988)). Therefore, if we are given a stable solution θ for M, we can extend it to

θ
′ by fixing all the unfixed standard variables to any value, and then computing the iterated least

fixpoint, which will extend θ
′ over founded variables of Pi, and will be a unique stable solution

given the values of all standard variables. q

Supplementary material: Technical Communication c© 2014 [M. Balduccini, W. Regli and D. Nguyen] 1

Towards an ASP-Based Architecture for Autonomous
UAVs in Dynamic Environments (Extended Abstract)

Marcello Balduccini, William C. Regli, Duc N. Nguyen
Applied Informatics Group

Drexel University
Philadelphia, PA, USA

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Traditional AI reasoning techniques have been used successfully in many domains, including logistics,
scheduling and game playing. This paper is part of a project aimed at investigating how such techniques
can be extended to coordinate teams of unmanned aerial vehicles (UAVs) in dynamic environments. Specif-
ically challenging are real-world environments where UAVs and other network-enabled devices must com-
municate to coordinate – and communication actions are neither reliable nor free. Such network-centric
environments are common in military, public safety and commercial applications, yet most research (even
multi-agent planning) usually takes communications among distributed agents as a given. We address this
challenge by developing an agent architecture and reasoning algorithms based on Answer Set Programming
(ASP). Although ASP has been used successfully in a number of applications, to the best of our knowledge
this is the first practical application of a complete ASP-based agent architecture. It is also the first practical
application of ASP involving a combination of centralized reasoning, decentralized reasoning, execution
monitoring, and reasoning about network communications.

1 Introduction

Unmanned Aerial Vehicles (UAVs) promise to revolutionize the way in which we use our airspace.
From talk of automating the navigation for major shipping companies to the use of small heli-
copters as ”deliverymen” that drop your packages at the door, it is clear that our airspaces will
become increasingly crowded in the near future. This increased utilization and congestion has
created the need for new and different methods of coordinating assets using the airspace. Cur-
rently, airspace management is the job for mostly human controllers. As the number of entities
using the airspace vastly increases—many of which are autonomous—the need for improved
autonomy techniques becomes evident.

The challenge in an environment full of UAVs is that the world is highly dynamic and the com-
munications environment is uncertain, making coordination difficult. Communicative actions in
such setting are neither reliable nor free.

The work discussed here is in the context of the development of a novel application of network-
aware reasoning and of an intelligent mission-aware network layer to the problem of UAV coor-
dination. Typically, AI reasoning techniques do not consider realistic network models, nor does
the network layer reason dynamically about the needs of the mission plan. With network-aware
reasoning, a reasoner (either centralized or decentralized) factors in the communications network
and its conditions.

In this paper we provide a general overview of the approach, and then focus on the aspect

2 M. Balduccini, W. Regli and D. Nguyen

of network-aware reasoning. We address this challenge by developing an agent architecture and
reasoning algorithms based on Answer Set Programming (ASP, (Gelfond and Lifschitz 1991;
Marek and Truszczynski 1999; Baral 2003)). ASP has been chosen for this task because it enables
high flexibility of representation, both of knowledge and of reasoning tasks. Although ASP has
been used successfully in a number of applications, to the best of our knowledge this is the first
practical application of a complete ASP-based agent architecture. It is also the first practical
application of ASP involving a combination of centralized reasoning, decentralized reasoning,
execution monitoring, and reasoning about network communications.

The next section describes relevant systems and reasoning techniques, and is followed by a
motivating scenario that applies to UAV coordination. The Technical Approach section describes
network-aware reasoning and demonstrates the level of sophistication of the behavior exhibited
by the UAVs using an example problem instance. Finally, we draw conclusions and discuss future
work.

2 Related Work

Incorporating network properties into planning and decision-making has been investigated in (Us-
beck et al. 2012). The authors’ results indicate that plan execution effectiveness and performance
is increased with the increased network-awareness during the planning phase. The UAV coor-
dination approach in this current work combines network-awareness during the reasoning pro-
cesses with a plan-aware network layer.

The problem of mission planning for UAVs under communication constraints has been ad-
dressed in (Kopeikin et al. 2013), where an ad-hoc task allocation process is employed to engage
under-utilized UAVs as communication relays. In our work, we do not separate planning from the
engagement of under-utilized UAVs, and do not rely on ad-hoc, hard-wired behaviors. Our ap-
proach gives the planner more flexibility and finer-grained control of the actions that occur in the
plans, and allows for the emergence of sophisticated behaviors without the need to pre-specify
them.

The architecture adopted in this work is an evolution of (Balduccini and Gelfond 2008), which
can be viewed as an instantiation of the BDI agent model (Rao and Georgeff 1991; Wooldridge
2000). Here, the architecture has been extended to include a centralized mission planning phase,
and to reason about other agents’ behavior. Recent related work on logical theories of intentions
(Blount et al. 2014) can be further integrated into our approach to allow for a more systematic
hierarchical characterization of actions, which is likely to increase performance.

Traditionally, AI planning techniques have been used (to great success) to perform multi-
agent teaming, and UAV coordination. Multi-agent teamwork decision frameworks such as the
ones described in (Pynadath and Tambe 2002) may factor communication costs into the decision-
making. However, the agents do not actively reason about other agent’s observed behavior, nor
about the communication process. Moreover, policies are used as opposed to online reasoning
about models of domains and of agent behavior.

The reasoning techniques used in the present work have already been successfully applied to
domains ranging from complex cyber-physical systems to workforce scheduling. To the best of
our knowledge, however, they have never been applied to domains combining realistic commu-
nications and multiple agents.

Finally, high-fidelity multi-agent simulators (e.g., AgentFly (David Sislak and Pechoucek
2012)) do not account for network dynamism nor provide a realistic network model. For this

Towards an ASP-Based Architecture for Autonomous UAVs in Dynamic Environments 3

reason, we base our simulator on the Common Open Research Emulator (CORE) (Ahrenholz
2010). CORE provides network models in which communications are neither reliable nor free.

3 Motivating Scenario

To motivate the need for network-aware reasoning and mission-aware networking, consider a
simple UAV coordination problem, depicted in Figure 2, in which two UAVs are tasked with
taking pictures of a set of three targets, and with relaying the information to a home base.

Fixed relay access points extend the communications range of the home base. The UAVs can
share images of the targets with each other and with the relays when they are within radio range.
The simplest solution to this problem consists in entirely disregarding the networking component
of the scenario, and generating a mission plan in which each UAV flies to a different set of targets,
takes pictures of them, and flies back to the home base, where the pictures are transferred. This
solution, however, is not satisfactory. First of all, it is inefficient, because it requires that the UAVs
fly all the way back to the home base before the images can be used. The time it takes for the
UAVs to fly back may easily render the images too outdated to be useful. Secondly, disregarding
the network during the reasoning process may lead to mission failure — especially in the case of
unexpected events, such as enemy forces blocking transit to and from the home base after a UAV
has reached a target. Even if the UAVs are capable of autonomous behavior, they will not be able
to complete the mission unless they take advantage of the network.

Another common solution consists of acknowledging the availability of the network, and as-
suming that the network is constantly available throughout plan execution. A corresponding mis-
sion plan would instruct each UAV to fly to a different set of targets, and take pictures of them,
while the network relays the data back to the home base. This solution is optimistic in that it
assumes that the radio range is sufficient to reach the area where the targets are located, and that
the relays will work correctly throughout the execution of the mission plan.

This optimistic solution is more efficient than the previous one, since the pictures are received
by the home base soon after they are taken. Under realistic conditions, however, the strong as-
sumptions it relies upon may easily lead to mission failure—for example, if the radio range does
not reach the area where the targets are located.

In this work, the reasoning processes take into account not only the presence of the network,
but also its configuration and characteristics, taking advantage of available resources whenever
possible. The mission planner is given information about the radio range of the relays and deter-
mines, for example, that the targets are out of range. A possible mission plan constructed by this
information into account consists in having one UAV fly to the targets and take pictures, while
the other UAV remains in a position to act as a network bridge between the relays and the UAV
that is taking pictures. This solution is as efficient as the optimistic solution presented earlier, but
is more robust, because it does not rely on the same strong assumptions.

Conversely, when given a mission plan, an intelligent network middleware service capable
of sensing conditions and modifying network parameters (e.g., modify network routes, limit
bandwidth to certain applications, and prioritize network traffic) is able to adapt the network to
provide optimal communications needed during plan execution. A relay or UAV running such a
middleware is able to interrupt or limit bandwidth given to other applications to allow the other
UAV to transfer images and information toward home base. Without this traffic prioritization,
network capacity could be reached prohibiting image transfer.

4 M. Balduccini, W. Regli and D. Nguyen

4 Technical Approach

In this section, we formulate the problem in more details, discuss the design of the agent architec-
ture and of the reasoning modules, and demonstrate the sophistication of the resulting behavior
of the agents in two scenarios. We assume familiarity with ASP, and refer the reader to (Gelfond
and Lifschitz 1991; Niemelä and Simons 2000; Baral 2003) for an introduction on the topic.

4.1 Problem Formulation

A problem instance for coordinating UAVs to observe targets and deliver information (e.g., im-
ages) to a home base is defined by a set of UAVs, u1,u2, . . ., a set of targets, t1, t2, . . ., a (possibly
empty) set of fixed radio relays, r1,r2, . . ., and a home base. The UAVs, the relays, and the home
base are called radio nodes (or network nodes). Two nodes are in radio contact if they are within
a distance ρ from each other, called radio range1, or if they can relay information to each other
through intermediary radio nodes that are themselves within radio range. The UAVs are expected
to travel from the home base to the targets to take pictures of the targets and deliver them to the
home base. A UAV will automatically take a picture when it reaches a target. If a UAV is within
radio range of a radio node, the pictures are automatically shared. From the UAVs’ perspective,
the environment is only partially observable. Features of the domain that are observable to a UAV
u are (1) which radio nodes u can and cannot communicate with by means of the network, and
(2) the position of any UAV that is near u .

The goal is to have the UAVs take a picture of each of the targets so that (1) the task is
accomplished as quickly as possible, and (2) the total “staleness” of the pictures is as small as
possible. Staleness is defined as the time elapsed from the moment a picture is taken, to the
moment it is received by the home base. While the UAVs carry on their tasks, the relays are
expected to actively prioritize traffic over the network in order to ensure mission success and
further reduce staleness.

4.2 Agent Architecture

The architecture used in this project follows the BDI agent model (Rao and Georgeff 1991;
Wooldridge 2000), which provides a good foundation because of its logical underpinning, clear
structure and flexibility. In particular, we build upon ASP-based instances of this model (Baral
and Gelfond 2000; Balduccini and Gelfond 2008) because they employ directly-executable log-
ical languages featuring good computational properties while at the same time ensuring elabora-
tion tolerance (McCarthy 1998) and elegant handling of incomplete information, non-monotonicity,
and dynamic domains.

A sketch of the information flow throughout the system is shown in Figure 1a.2 Initially, a
centralized mission planner is given a description of the domain and of the problem instance,
and finds a plan that uses the available UAVs to achieve the goal.

Next, each UAV receives the plan and begins executing it individually. As plan execution un-
folds, the communication state changes, potentially affecting network connectivity. For example,

1 For simplicity, we assume that all the radio nodes use comparable network devices, and that thus ρ is unique throughout
the environment.

2 The tasks in the various boxes are executed only when necessary.

Towards an ASP-Based Architecture for Autonomous UAVs in Dynamic Environments 5

the UAVs may move in and out of range of each other and of the other network nodes. Un-
expected events, such as relays failing or temporarily becoming disconnected, may also affect
network connectivity. When that happens, each UAV reasons in a decentralized, autonomous
fashion to overcome the issues. As mentioned earlier, the key to taking into account, and hope-
fully compensating for, any unexpected circumstances is to actively employ, in the reasoning
processes, realistic and up-to-date information about the communications state.

The control loop used by each UAV is shown in Figure 1b. In line with (Gelfond and Lifschitz
1991; Marek and Truszczynski 1999; Baral 2003), the loop and the I/O functions are imple-
mented procedurally, while the reasoning functions (Goal Achieved , Unexpected Observations ,
Explain Observations , Compute Plan) are implemented in ASP. The loop takes in input the
mission goal and the mission plan, which potentially includes courses of actions for multiple
UAVs. Functions New Observations, Next Action, Tail, Execute, Record Execution perform ba-
sic manipulations of data structures, and interface the agent with the execution and perception
layers. Functions Next Action and Tail are assumed to be capable of identifying the portions
of the mission plan that are relevant to the UAV executing the loop. The remaining functions
occurring in the control loop implement the reasoning tasks. Central to the architecture is the
maintenance of a history of past observations and actions executed by the agent. Such history is
stored in variable H and updated by the agent when it gathers observations about its environment
and when it performs actions. It is important to note that variable H is local to the specific agent
executing the loop, rather than shared among the UAVs (which would be highly unrealistic in a
communication-constrained environment). Thus, different agents will develop differing views of
the history of the environment as execution unfolds. At a minimum, the difference will be due to
the fact that agents cannot observe each other’s actions directly, but only their consequences, and
even those are affected by the partial observability of the environment.

Details on the control loop can be found in (Balduccini and Gelfond 2008). With respect to
that version of the loop, the control loop used in the present work does not allow for the selection
of a new goal at run-time, but it extends the earlier control loop with the ability to deal with,
and reason about, an externally-provided, multi-agent plan, and to reason about other agents’
behavior. We do not expect run-time selection of goals to be difficult to embed in the control
loop presented here, but doing so is out of the scope of the current phase of the project.

4.3 Network-Aware Reasoning

The major reasoning tasks (centralized mission planning, as well as anomaly detection, expla-
nation and planning within each agent) are reduced to finding models of answer-set based for-
malizations of the corresponding problems. Central to all the reasoning tasks is the ability to
represent the evolution of the environment over time. Such evolution is conceptualized into a
transition diagram (Gelfond and Lifschitz 1993), a graph whose nodes correspond to states of
the environment, and whose arcs describe state transitions due to the execution of actions. Let
F be a collection of fluents, expressions representing relevant properties of the domain that may
change over time, and let A be a collection of actions. A fluent literal l is a fluent f ∈F or its
negation ¬f . A state σ is a complete and consistent set of fluent literals.

The transition diagram is formalized in ASP by rules describing the direct effects of actions,
their executability conditions, and their indirect effects (also called state constraints). The succes-
sion of moments in the evolution of the environment is characterized by discrete steps, associated
with non-negative integers. The fact that a certain fluent f is true at a step s is encoded by an

6 M. Balduccini, W. Regli and D. Nguyen

Mission	 Planner	

Domain	 and	
Problem	 Info	

Mission	 Plan	

Observe	

Explain	

Local	 Planner	

Observa9ons	

Observa9ons	 +	
Explana9ons	

Plan	

Execute	

UAV	 1	

Observe	

Explain	

Local	 Planner	

Observa9ons	

Observa9ons	 +	
Explana9ons	

Plan	

Execute	

UAV	 n	

Network	 Node	 1	

Plan-‐Aware	 Networking	
Component	

Networking	
Decisions	

Network	
State	

Network	 Node	 k	

Plan-‐Aware	 Networking	
Component	

Networking	
Decisions	

Network	
State	

Input: M : mission plan;
G : mission goal;

Vars: H : history;
P : current plan;

P := M ;
H := New Observations();
while ¬Goal Achieved(H ,G) do

if Unexpected Observations(H) then
H := Explain Observations(H);
P := Compute Plan(G ,H ,P);

end if
A := Next Action(P);
P := Tail(P);
Execute(A);
H := Record Execution(H ,A);
H := H ∪ New Observations();

loop

Fig. 1: (a) Information flow (left) ; (b) Agent Control Loop (right).

atom h(f ,s). If f is false, this is expressed by ¬h(f ,s). The occurrence of an action a ∈ A at
step s is represented as o(a,s).

The history of the environment is formalized in ASP by two types of statements: obs(f , true,s)

states that f was observed to be true at step s (respectively, obs(f , false,s) states that f was false);
hpd(a,s) states that a was observed to occur at s . Because in the this paper other agents’ actions
are not observable, the latter expression is used only to record an agent’s own actions.

Objects in the UAV domain discussed in this paper are the home base, a set of fixed relays,
a set of UAVs, a set of targets, and a set of waypoints. The waypoints are used to simplify the
path-planning task, which we do not consider in the present work. The locations that the UAVs
can occupy and travel to are the home base, the waypoints, and the locations of targets and fixed
relays. The current location, l , of UAV u is represented by a fluent at(u, l). For each location,
the collection of its neighbors is defined by relation next(l , l ′). UAV motion is restricted to occur
only from a location to a neighboring one. The direct effect of action move(u, l), intuitively
stating that UAV u moves to location l , and its executability condition are described by the
following rules:

h(at(U ,L2),S +1)←
o(move(U ,L2),S),
h(at(U ,L1),S),
next(L1,L2)·

← o(move(U ,L2),S),
h(at(U ,L1),S),
not next(L1,L2)·

Towards an ASP-Based Architecture for Autonomous UAVs in Dynamic Environments 7

The fact that two radio nodes are in radio contact is encoded by fluent in contact(r1,r2). The next
two rules provide a recursive definition of the fluent, represented by means of state constraints:

h(in contact(R1,R2),S)←
R1 6= R2, ¬h(down(R1),S), ¬h(down(R2),S),
h(at(R1,L1),S), h(at(R2,L2),S), range(Rg), dist2(L1,L2,D), D 6 Rg2·

h(in contact(R1,R3),S)←
R1 6= R2, R2 6= R3, R1 6= R3, ¬h(down(R1),S), ¬h(down(R2),S),
h(at(R1,L1),S), h(at(R2,L2),S),
range(Rg), dist2(L1,L2,D), D 6 Rg2,

h(in contact(R2,R3),S)·

The first rule defines the base case of two radio nodes that are directly in range of each other. Re-
lation dist2(l1, l2,d) calculates the square of the distance between two locations. Fluent down(r)

holds if radio r is known to be out-of-order, and a suitable axiom (not shown) defines the closed-
world assumption on it. In the formalization, in contact(R1,R2) is a defined positive fluent,
i.e., a fluent whose truth value, in each state, is completely defined by the current value of other
fluents, and is not subject to inertia. The formalization of in contact(R1,R2) is thus completed
by a rule capturing the closed-world assumption on it:

¬h(in contact(R1,R2),S)←
R1 6= R2,
not h(in contact(R1,R2),S)·

Functions Goal Achieved and Unexpected Observations, in Figure 1a, respectively check if the
goal has been achieved, and whether the history observed by the agent contains any unexpected
observations. Following the definitions from (Balduccini and Gelfond 2003), observations are
unexpected if they contradict the agent’s expectations about the corresponding state of the envi-
ronment. This definition is captured by the reality-check axiom, consisting of the constraints:

← obs(F , true,S), ¬h(F ,S)·
← obs(F , false,S), h(F ,S)·

Function Explain Observations uses a diagnostic process along the lines of (Balduccini and Gel-
fond 2003) to identify a set of exogenous actions (actions beyond the control of the agent that
may occur unobserved), whose occurrence explains the observations. To deal with the complexi-
ties of reasoning in a dynamic, multi-agent domain, the present work extends the previous results
on diagnosis by considering multiple types of exogenous actions, and preferences on the resulting
explanations. The simplest type of exogenous action is break(r), which occurs when radio node
r breaks. This action causes fluent down(r) to become true. Actions of this kind may be used to
explain unexpected observations about the lack of radio contact. However, the agent must also
be able to cope with the limited observability of the position and motion of the other agents. This
is accomplished by encoding commonsensical statements (encoding omitted) about the behavior
of other agents, and about the factors that may affect it. The first such statement says that a UAV
will normally perform the mission plan, and will stop performing actions when its portion of the
mission plan is complete. Notice that a mission plan is simply a sequence of actions. There is no
need to include pre-conditions for the execution of the actions it contains, because those can be
easily identified by each agent, at execution time, from the formalization of the domain.

8 M. Balduccini, W. Regli and D. Nguyen

The agent is allowed to hypothesize that a UAV may have stopped executing the mission
plan (for example, if the UAV malfunctions or is destroyed). Normally, the reasoning agent will
expect a UAV that aborts execution to remain in its latest location. In certain circumstances,
however, a UAV may need to deviate completely from the mission plan. To accommodate for
this situation, the agent may hypothesize that a UAV began behaving in an unpredictable way
(from the agent’s point of view) after aborting plan execution. The following choice rule allows
an agent to consider all of the possible explanations:

{ hpd(break(R),S),hpd(aborted(U ,S)),hpd(unpredictable(U ,S)) }·

A constraint ensures that unpredictable behavior can be considered only if a UAV is believed to
have aborted the plan. If that happens, the following choice rule is used to consider all possible
courses of actions from the moment the UAV became unpredictable to the current time step.

{hpd(move(U ,L),S ′) : S ′ > S : S ′ < currstep}← hpd(unpredictable(U ,S))·

In practice, such a thought process is important to enable coordination with other UAVs when
communications between them are impossible, and to determine the side-effects of the inferred
courses of actions and potentially take advantage of them (e.g., “the UAV must have flown by
target t3. Hence, it is no longer necessary to take a picture of t3”). A minimize statement ensures
that only cardinality-minimal diagnoses are found:

#minimize[hpd(break(R),S),hpd(aborted(U ,S)),hpd(unpredictable(U ,S))]·

An additional effect of this statement is that the reasoning agent will prefer simpler expla-
nations, which assume that a UAV aborted the execution of the mission plan and stopped, over
those hypothesizing that the UAV engaged in an unpredictable course of actions.

Function Compute Plan, as well as the mission planner, compute a new plan using a rather
traditional approach, which relies on a choice rule for generation of candidate sequences of ac-
tions, constraints to ensure the goal is achieved, and minimize statements to ensure optimality of
the plan with respect to the given metrics.

Next, we outline a scenario demonstrating the features of our approach, including the ability
to work around unexpected problems autonomously.
Example Instance. Consider the environment shown in in Figure 2. Two UAVs, u1 and u2 are
initially located at the home base in the lower left corner. The home base, relays and targets are
positioned as shown in the figure, and the radio range is set to 7 grid units.

The mission planner finds a plan in which the UAVs begin by traveling toward the targets.
While u1 visits the first two targets, u2 positions itself so as to be in radio contact with u1 (Fig-
ure 2a). Upon receipt of the pictures, u2 moves within range of the relays to transmit the pictures
to the home base. At the same time, u1 flies toward the final target, where it will be reached by
u2 to exchange the final picture.

Now let us consider the impact of unexpected events during mission execution: while u2 is
flying back to re-connect with the relays, it observes (“Observe” step of the architecture from
Figure 1) that the home base is unexpectedly not in radio contact (Figure 2b). Hence, u2 uses
the available observations to determine plausible causes (“Explain” step of the architecture). In
this instance, u2 observes that relays r5, r6, r7 and all the network nodes South of them are not
reachable via the network. Based on knowledge of the layout of the network, u2 determines that
the simplest plausible explanation is that those three relays must have stopped working while

Towards an ASP-Based Architecture for Autonomous UAVs in Dynamic Environments 9

Step 5: u1 transmitting to u2. Step 6: Nodes 5-7 have failed. Step 7: u2 re-plans, moves
closer to home base.

Step 8: u2 moves toward u1. Step 9: u2 and u1 reconnect and
move back toward home base.

Fig. 2: Re-planning after relay node failure between steps 5 and 6 forcing the UAVs to re-plan.

u2 was out of radio contact (e.g., started malfunctioning or have been destroyed). Next, u2 re-
plans (“Local Planner” step of the architecture). The plan is created based on the assumption that
u1 will continue executing the mission plan. This assumption can be later withdrawn if obser-
vations prove it false. Following the new plan, u2 moves further South towards the home base
(Figure 2c). Simultaneously, u1 continues with the execution of the mission plan, unaware that
the connectivity has changed and that u2 has deviated from the mission plan. After successfully
relaying the pictures to the home base, u2 moves back towards u1. UAV u1, on the other hand,
reaches the expected rendezvous point, and observes that u2 is not where expected (Figure 2d).
UAV u1 does not know the actual position of u2, but its absence is evidence that u2 must have
deviated from the plan at some point in time. Thus, u1’s must now replan. Not knowing u2’s
state, u1’s plan is to fly South to relay the missing picture to the home base on its own. This
plan still does not deal with the unavailability of r5, r6, r7, since u1 has not yet had a chance to
get in radio contact with the relays and observe the current network connectivity state. The two
UAVs continue with the execution of their new plans and eventually meet, unexpectedly for both

10 M. Balduccini, W. Regli and D. Nguyen

(Figure 2e). At that point, they automatically share the final picture. Both now determine that the
mission can be completed by flying South past the failed relays, and execute the corresponding
actions.

5 Conclusion and Future Work

This paper discussed a novel application of an ASP-based intelligent agent architecture to the
problem of UAV coordination while taking into account network communications. Our work
demonstrates the advantages deriving from such network-aware reasoning. In on-going experi-
mental evaluations, our approach yielded a reduction in mission length of up to 30% and in total
staleness between 50% and 100%. We expect that, in more complex scenarios, the advantage of
a realistic networking model will be even more evident.

References

AHRENHOLZ, J. 2010. Comparison of CORE network emulation platforms. In IEEE Military Communi-
cations Conf.

BALDUCCINI, M. AND GELFOND, M. 2003. Diagnostic reasoning with A-Prolog. Journal of Theory and
Practice of Logic Programming (TPLP) 3, 4–5 (Jul), 425–461.

BALDUCCINI, M. AND GELFOND, M. 2008. The AAA Architecture: An Overview. In AAAI Spring
Symp.: Architectures for Intelligent Theory-Based Agents.

BARAL, C. 2003. Knowledge Representation, Reasoning, and Declarative Problem Solving. Cambridge
University Press.

BARAL, C. AND GELFOND, M. 2000. Reasoning Agents In Dynamic Domains. In Workshop on Logic-
Based Artificial Intelligence. Kluwer Academic Publishers, 257–279.

BLOUNT, J., GELFOND, M., AND BALDUCCINI, M. 2014. Towards a Theory of Intentional Agents. In
Knowledge Representation and Reasoning in Robotics. AAAI Spring Symp. Series.

DAVID SISLAK, PREMYSL VOLF, S. K. AND PECHOUCEK, M. 2012. AgentFly: Scalable, High-Fidelity
Framework for Simulation, Planning and Collision Avoidance of Multiple UAVs. Wiley Inc., Chapter 9,
235–264.

GELFOND, M. AND LIFSCHITZ, V. 1991. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing 9, 365–385.

GELFOND, M. AND LIFSCHITZ, V. 1993. Representing Action and Change by Logic Programs. Journal
of Logic Programming 17, 2–4, 301–321.

KOPEIKIN, A. N., PONDA, S. S., JOHNSON, L. B., AND HOW, J. P. 2013. Dynamic Mission Planning for
Communication Control in Multiple Unmanned Aircraft Teams. Unmanned Systems 1, 1, 41–58.

MAREK, V. W. AND TRUSZCZYNSKI, M. 1999. The Logic Programming Paradigm: a 25-Year Perspective.
Springer Verlag, Berlin, Chapter Stable Models and an Alternative Logic Programming Paradigm, 375–
398.

MCCARTHY, J. 1998. Elaboration Tolerance.
NIEMELÄ, I. AND SIMONS, P. 2000. Logic-Based Artificial Intelligence. Kluwer Academic Publishers,

Chapter Extending the Smodels System with Cardinality and Weight Constraints.
PYNADATH, D. V. AND TAMBE, M. 2002. The Communicative Multiagent Team Decision Problem:

Analyzing Teamwork Theories and Models. JAIR 16, 389–423.
RAO, A. S. AND GEORGEFF, M. P. 1991. Modeling Rational Agents within a BDI-Architecture. In Proc.

of the Int’l Conf. on Principles of Knowledge Representation and Reasoning.
USBECK, K., CLEVELAND, J., AND REGLI, W. C. 2012. Network-centric ied detection planning.

IJIDSS 5, 1, 44–74.
WOOLDRIDGE, M. 2000. Reasoning about Rational Agents. MIT Press.

Supplementary material: Technical Communication c© 2003 [Bi] 1

A Well-Founded Semantics for FOL-Programs

Yi Bi1, Jia-Huai You2, Zhiyong Feng1

1Tianjin University, Tianjin China
2University of Alberta, Edmonton T6G 2E8, Canada

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

An FOL-program consists of a background theory in a decidable fragment of first-order logic and a

collection of rules possibly containing first-order formulas. The formalism stems from recent approaches

to tight integrations of ASP with description logics. In this paper, we define a well-founded semantics for

FOL-programs based on a new notion of unfounded sets on consistent as well as inconsistent sets of literals,

and study some of its properties. The semantics is defined for all FOL-programs, including those where it

is necessary to represent inconsistencies explicitly. The semantics supports a form of combined reasoning

by rules under closed world as well as open world assumptions, and it is a generalization of the standard

well-founded semantics for normal logic programs. We also show that the well-founded semantics defined

here approximates the well-supported answer set semantics for normal DL programs.

KEYWORDS: Logic Programs, Well-Founded Semantics, First-Order Logic.

1 Introduction

Recent literature has shown extensive interests in combining ASP with fragments of classical

logic, such as description logics (DLs) (see, e.g., (de Bruijn et al. 2008; de Bruijn et al. 2007;

Eiter et al. 2008; Lukasiewicz 2010; Motik and Rosati 2010; Rosati 2005; Rosati 2006; Shen

and Wang 2011; Yang et al. 2011)). A program in this context is a combined knowledge base

KB = (L,Π), where L is a knowledge base of a decidable fragment of first-order logic and Π

a set of rules possibly containing first-order formulas or interface facilities. In this paper, we

use FOL-program as an umbrella term for approaches that allow first-order formulas to appear

in rules (the so-called tight integration), for generality. The goal of this paper is to formulate a

well-founded semantics for these programs with the following features.

• The class of all FOL-programs are supported.

• Combined reasoning with closed world as well as open world assumptions is supported.

Under the first feature, we shall allow an atom with its predicate shared in the first-order

theory L to appear in a rule head. This can result in two-way flow of information and enable

inferences within each component automatically. For example, assume L contains a formula that

says students are entitled to educational discount, ∀x St(x) ⊃ EdDiscount(x). Using the notation

of DL, we would write St ⊑ EdDiscount. Suppose in an application anyone who is not employed

full time but registered for an evening class is given the benefit of a student. We can write a rule

St(X)← EveningClass(X), not HasJob(X).

2 Y. Bi. J. You. Z. Feng.

Thus, that such a person enjoys educational discount can be inferred directly from the underlying

knowledge base L.

To support all FOL-programs, we need to consider the possibility of inconsistencies arising

in the construction of the intended well-founded semantics. For example, consider an FOL-

program, KB = (L,Π), where L = {∀xA(x) ⊃ C(x),¬C(a)} and Π = {A(a)← not B(a);

B(a) ← B(a)}. Suppose the Herbrand base is {A(a), B(a)}. In an attempt to compute the well-

founded semantics of KB by an iterative process, we begin with the empty set; while L entails

¬A(a), since B(a) is false by closed world reasoning, we derive A(a) resulting in an inconsist-

ency. This reasoning process suggests that during an iterative process a consistent set of literals

may be mapped to an inconsistent one and, in general, whether inconsistencies arise or not is not

known a priori without actually performing the computation.

That the well-founded semantics of an FOL-program is defined by an inconsistent set can be

useful on its own, or in the computation of (suitably defined) answer sets of the program. If we

have computed the well-founded semantics which is inconsistent, we need not pursue the task of

computing answer sets of the same program, because they do not exist.

In complex real world reasoning by rules, it is sometimes desirable that not all predicates are

reasoned with under the closed world assumption. Some conditions may need to be established

under the open world assumption. We call this combined reasoning. For example, we may write

a rule

PrescribeTo(X,Q)← Effective(X,Z), Contract(Q,Z),¬AllergicTo(Q,X)

to describe that an antibiotic is prescribed to a patient who contracted a bacterium, if the antibi-

otic against that bacterium is effective and patient is not allergic to it. Though Effective can be

reasoned with under the closed world assumption, it may be preferred to judge whether a patient

is not allergic to an antibiotic under the open world assumption, e.g., it holds if it can be proved

classically. This is in contrast with closed world reasoning whereas one may infer nonallergic

due to lack of evidence for allergy.

To our knowledge, there has been no well-founded semantics defined for all FOL-programs.

The closest that one can find is the definition for a subset of FOL-programs (Lukasiewicz 2010),

which relies on syntactic restrictions so that the least fixpoint is computed over consistent sets

of literals. To ensure that the construction is well-defined, it is assumed that DL axioms must

be, or can be converted to, tuple generating dependencies (which are essentially Horn rules)

plus constraints. Thus, the approach cannot be lifted to handle first-order formulas in general.

In addition, to the best of our knowledge, no combined reasoning is ever supported under any

well-founded semantics.

As motivated above, in this paper we first define a well-founded semantics for FOL-programs

based on a new notion of unfounded sets. We show that the semantics generalizes the well-

founded semantics for normal logic programs. Also, we prove that the well-founded semantics

defined here approximates the well-supported answer set semantics for the language of (Shen and

Wang 2011); namely, all well-founded atoms (resp. unfounded atoms) of a program remain to be

true (resp. false) in any well-supported answer set. This makes it possible to use the mechanism

of constructing the well-founded semantics as constraint propagation in an implementation of

computing well-supported answer sets.

The paper is organized as follows. The next section introduces the language and notations. In

Section 3 we define the well-founded semantics. Section 4 studies some properties and relates

Theory and Practice of Logic Programming 3

to the well-supported answer set semantics, followed by related work in Section 5. Section 6

concludes the paper and points to future directions.

2 Language and Notation

We assume a language of a decidable fragment of first-order logic, denoted LΣ, where Σ =

〈Fn;P n〉, called a signature, and F
n and P

n are disjoint countable sets of n-ary function and n-

ary predicate symbols, respectively. Constants are 0-ary functions. Terms are variables, constants,

or functions in the form f(t1, . . . , tn), where each ti is a term and f ∈ F
n. First-order formulas,

or just formulas, are defined as usual, so are the notions of satisfaction, model, and entailment.

Let ΦP be a finite set of predicate symbols and ΦC a nonempty finite set of constants such that

ΦC ⊆ F
n. An atom is of the form P (t1, . . . , tn) where P ∈ ΦP and each ti is either a constant from

ΦC or a variable. A negated atom is of the form ¬A where A is an atom. We do not assume any

other restriction on the vocabularies, that is, ΦP and P
n may have predicate symbols in common.

An FOL-program is a combined knowledge base KB = (L,Π), where L is a first-order theory

ofLΣ and Π a rule base, which is a finite collection of rules of the form

H ← A1, . . . , Am, not B1, . . . , not Bn (1)

where H is an atom, and Ai and Bi are atoms or formulas. By abuse of terminology, each Ai is

called a positive literal and each not Bi is called a negative literal.

For any rule r, we denote by head(r) the head of the rule and body(r) its body, and we define

pos(r) = {A1, . . . , Am} and neg(r) = {B1, . . . , Bn}.
A ground instance of a rule r in Π is obtained by replacing every free variable with a constant

from ΦC . In this paper, we assume that a rule base Π is already grounded if not said otherwise.

When we refer to an atom/literal/formula, by default we mean it is a ground one.

Given an FOL-program KB = (L,Π), the Herbrand base of Π , denoted HBΠ , is the set of all

ground atoms P (t1, . . . , tn), where P ∈ ΦP occurs in KB and ti ∈ ΦC .

We denote by Ω the set of all predicate symbols appearing in HBΠ such that Ω ⊆ P
n. For

distinction, we call atoms whose predicate symbols are not in Ω ordinary, and all the other

formulas FOL-formulas. If L = ∅ and Π only contains rules of the form (1) where all H , Ai and

Bj are ordinary atoms, then KB is called a normal logic program.

Any subset I ⊆ HBΠ is called an interpretation of Π . It is also called a total interpretation or

a 2-valued interpretation. If I is an interpretation, we define Ī = HBΠ\I .

Let Q be a set of atoms. We define ¬.Q = {¬A | A ∈ Q}. For a set of atoms and negated

atoms S , we define S+ = {A |A ∈ S}, S− = {A | ¬A ∈ S}, and S |Ω = {A ∈ S | pred(A) ∈ Ω},
where pred(A) is the predicate symbol of A. Let LitΠ = HBΠ ∪ ¬.HBΠ . A subset S ⊆ LitΠ is

consistent if S+ ∩ S
− = ∅. For a first-order theory L, we say that S ⊆ LitΠ is consistent with L

if the first-order theory L ∪ S |Ω is consistent (i.e., the theory is satisfiable). Note that when we

say S is consistent with L, both S and L must be consistent. Similarly, a (2-valued) interpretation

I is consistent with L if L∪ I |Ω ∪¬.Ī|Ω is consistent. We denote by Lit
c

Π
the set of all consistent

subsets of LitΠ . For any S ∈ Lit
c

Π
, S ′ is called a consistent extension of S if S ⊆ S

′ ∈ Lit
c

Π
.

Definition 1

Let KB = (L,Π) be an FOL-program and I ⊆ HBΠ an interpretation. Define the satisfaction

relation under L, denoted |=L, as follows (the definition extends to conjunctions of literals):

4 Y. Bi. J. You. Z. Feng.

1. For any ordinary atom A ∈ HBΠ , I |=L A if A ∈ I and I |= not A if A 6∈ I .

2. For any FOL-formula A, I |=L A if L ∪ I |Ω ∪ ¬.Ī|Ω |= A, and I |=L not A if I 6|=L A.

Let KB = (L,Π) be an FOL-program. For any r ∈ Π and I ⊆ HBΠ , I |=L r if I 6|=L body(r)

or I |=L head(r). I is a model of KB if I is consistent with L and I satisfies all rules in Π .

Example 1

To illustrate the flexibility provided by the parameterΩ, suppose we have a program KB = (L,Π)

where Π contains a rule that says any unemployed with disability receives financial assistance,

with an FOL-formula in the body

Assist(X)← Disabled(X), not Employed(X)

Assume Ω = ΦP = {Assist, Employed}. Then, Employed is interpreted under the closed world

assumption and Disabled under the open world assumption. Indeed, unemployment can be es-

tablished by closed world reasoning for lack of evidence of employment, but disability requires

a direct proof.

3 Well-Founded Semantics

We first define the notion of unfounded set. Intuitively, the atoms in an unfounded set can be

safely assigned to false, due to persistent inability to derive their positive counterparts.

Definition 2

(Unfounded set) Let KB = (L,Π) be an FOL-program and I ⊆ LitΠ . If I ∪L is consistent, then

a set U ⊆ HBΠ is an unfounded set of KB relative to I iff for every H ∈ U and r ∈ Π , both of

the following conditions are satisfied

(a) If head(r) = H , then

(i) ¬A ∈ I ∪ ¬.U for some ordinary atom A ∈ pos(r), or

(ii) B ∈ I for some ordinary atom B ∈ neg(r), or

(iii) for some FOL-formula A ∈ pos(r), it holds that L∪ S |Ω 6|= A, for all S ∈ Lit
c

Π
with

I ∪ ¬.U ⊆ S , or

(iv) for some FOL-formula A ∈ neg(r), L ∪ I |Ω |= A.

(b) L ∪ S |Ω 6|= H for all S ∈ Lit
c

Π
with I ∪ ¬.U ⊆ S .

If I ∪ L is inconsistent, the unfounded set of KB relative to I is HBΠ .

That H is unfounded relative to I if both conditions (a) and (b) are satisfied when I ∪ L is

consistent; in particular, condition (a.iii) ensures that a positive occurrence of an FOL-formula in

the rule body is not entailed, for all consistent extensions of I ∪ ¬.U; and condition (b) ensures

the inability to infer its positive counterpart, independent of any rules.

An FOL-formula may contain shared predicates in Ω, and those not in Ω hence not shared. The

latter are supposed to be interpreted under open world assumption. Continuing with Example 1

above, let KB = (L,Π), where

L = {∀x Certified(x) ⊃ Disabled(x)}
Π = {Assist(a)← Disabled(a), not Employed(a)}

Assume Assist, Employed ∈ Ω while Certified and Disabled are not. Let ΦC = {a}, and thus

HBΠ = {Assist(a), Employed(a)}. Clearly, {Assist(a), Employed(a)} is an unfounded set relat-

Theory and Practice of Logic Programming 5

ive to I = ∅, in particular because Disabled(a) is not derivable under all consistent extensions of

I . Note that, since Disabled(a) is not in HBΠ , it is not part of an unfounded set.1

Lemma 1

Let KB = (L,Π) be an FOL-program and I ⊆ LitΠ . A set of unfounded sets of KB relative to

I is closed under union, and the greatest unfounded set of KB relative to I exists, which is the

union of all unfounded sets of KB relative to I .

Proof

If I is inconsistent, the claims hold trivially. For a consistent I , suppose U1, U2 ⊆ HBΠ are

unfounded sets (of KB relative to I), we show that U1∪U2 is also an unfounded set. Let A ∈ U1.

Since both (a) and (b) in Definition 2 hold for U1 and U2 separately, in particular, each consistent

extension of I∪¬.(U1∪U2) is a consistent extension of I∪¬.U1, (a) and (b) also hold forU1∪U2.

Thus A ∈ U1 ∪ U2. By symmetry, the same argument applies to U2. Therefore, the union of all

unfounded sets is an unfounded set, which is the greatest among all unfounded sets. q

We define the operators which will be used to define the well-founded semantics.

Definition 3

Let KB = (L,Π) be an FOL-program. Define TKB, UKB, ZKB as mappings of 2LitΠ → HBΠ , and

WKB as a mapping of 2LitΠ → 2LitΠ , as follows:

(i) If I ∪ L is inconsistent, then TKB(I) = HBΠ ; otherwise, H ∈ TKB(I) iff H ∈ HBΠ and

either (a) or (b) below holds

(a) some r ∈ Π with head(r) = H exists such that

(1) for any ordinary atom A, A ∈ I if A ∈ pos(r) and ¬A ∈ I if A ∈ neg(r),

(2) for any FOL-formula A ∈ pos(r), L ∪ I |Ω |= A, and

(3) for any FOL-formula B ∈ neg(r), L ∪ S |Ω 6|= B, for all S ∈ Lit
c

Π
with I ⊆ S .

(b) L ∪ I |Ω |= H .

(ii) UKB(I) is the greatest unfounded set of KB relative to I .

(iii) ZKB(I) = {A ∈ HBΠ | L ∪ I |Ω |= ¬A}.
(iv) WKB(I) = TKB(I) ∪ ¬.UKB(I) ∪ ¬.ZKB(I).

The operator TKB is a consequence operator. An atom is a consequence, either due to a deriv-

ation via a rule (case (i.a)), or because it is entailed by L, given I (case (i.b)). In the first case,

the body of such a rule should be satisfied not only by I , but by all consistent extensions of I . In

the case (i.a.1) or (i.a.2), it is sufficient that the body is satisfied by I only because the classical

entailment relation is monotonic. For the case (i.a.3) the condition needs to be stated explicitly.

There are two features in this definition that are non-conventional. The first is the operator ZKB

- interacting an FOL knowledge base with rules may result in direct negative consequences. In

the second, all operators here are defined on all subsets of LitΠ , including inconsistent ones.2

Lemma 2

The operators TKB, UKB, ZKB, and WKB are all monotonic.

1 Placed under the context of 2-valued logic, the reasoning here is analogue to parallel circumscription (McCarthy 1980),
where the predicates Employed and Assist are minimized with predicates Certified and Disabled varying.

2 When inconsistency arises, the fixpoint operator here leads to triviality. This is the most common treatment when the
underlying entailment relation is the classical one. However, we remark that this is only one possible choice.

6 Y. Bi. J. You. Z. Feng.

Proof

Let I1 ⊆ I2 ⊆ LitΠ and H ∈ TKB(I1). Since any condition in part (i) of Definition 3 that applies

under I1 applies under I2 (including the case where one of them, or both, are inconsistent with

L), thus the set of all consistent extensions of I2 is a subset of all consistent extensions of I1,

and therefore we have TKB(I1) ⊆ TKB(I2). The same argument applies to UKB and ZKB. Since

TKB, UKB, and ZKB are monotonic, it follows from the definition that the operator WKB is also

monotonic. q

As WKB is monotone on the complete lattice 〈2LitΠ ,⊆〉, according to the Knaster-Tarski fix-

point theorem (Tarski 1955), its least fixpoint, lfp(WKB), exists.

Definition 4

Let KB = (L,Π) be an FOL-program. The well-founded semantics of KB (relative to Ω) is

defined by lfp(WKB).

We allow the well-founded semantics of an FOL-program to be defined by an inconsistent

set, independent of how the semantics may be used. This may be utilized in the computation of

answer sets. Suppose under a suitable definition of answer sets for an FOL-program KB, lfp(WKB)

approximates all answer sets of KB.3 If the computed lfp(WKB) is inconsistent then we know KB

has no answer sets.

Example 2

Let KB = ({¬A(a)}, Π) where Π = {A(a) ← not B(a), B(a) ← B(a)}. Let Ω = ΦP = {A,B}
and ΦC = {a}. lfp(WKB) is constructed as follows (where W 0

KB = ∅ and W
i+1
KB = WKB(W i

KB), for

all i > 0):

W
0
KB = ∅,

W
1
KB = {¬A(a),¬B(a)},

W
2
KB = {¬A(a),¬B(a), A(a)},

W
3
KB = LitΠ ,

W
4
KB = W

3
KB.

As a result, the well-founded semantics of KB is inconsistent. It is interesting to note that KB

has a model, {B(a)}. This means that we cannot determine whether the well-founded semantics

for an FOL-program is consistent or not, based on the existence of a model; when an iterative

process is carried out, we have to deal with the possibility that inconsistencies may arise.

Example 3

Consider KB = (L,Π) where L = {∀xB(x) ⊃ A(x),¬A(a)∨ C(a)} and Π consists of

B(a)← B(a).

A(a)← (¬C(a) ∧ B(a)).

R(a)← not C(a), not A(a).

Let ΦP = {A,B, R}, Ω = {A,B}, and ΦC = {a}. Hence HBΠ = {A(a), B(a), R(a)}. For I0 = ∅,
we have TKB(I0) = ∅, UKB(I0) = {B(a), A(a)}, and ZKB = ∅. B(a) is in UKB(I0) because B(a) is

not derivable by any rule based on I0, and L∪S |Ω 6|= B(a) for all S ∈ Lit
c

Π
with I0∪¬.UKB(I0) ⊆

S (condition (b) in Definition 2). Similarly, A(a) is in UKB(I0). Since C(a) is not derivable under

3 We will show later in this paper that the well-supported answer sets of (Shen and Wang 2011) fall into this category.

Theory and Practice of Logic Programming 7

all consistent extensions, we derive R(a). Therefore, lfp(WKB) = {¬B(a),¬A(a), R(a)}. Note

that since C(a) 6∈ HBΠ its truth value is not part of the well-founded semantics.

4 Properties and Relations

We first show that the well-founded semantics is a generalization of the well-founded semantics

for normal logic programs.

Theorem 1

Let KB = (∅, Π) be a normal logic program. Then, the WFS of KB coincides with the WFS of Π .

Proof

The WFS of a normal program Π is defined by the least fixpoint of a monotone operator WΠ on

the set of consistent subsets of HBΠ ∪ ¬.HBΠ :

• TΠ (S) = {head(r) | r ∈ Π, pos(r) ∪ ¬.neg(r) ⊆ S}
• WΠ (S) = TΠ (S) ∪ ¬.UΠ (S)

where UΠ (S) is the greatest unfounded set of Π w.r.t. S . A set U ⊆ HBΠ is an unfounded set of

Π w.r.t. S , if for every a ∈ U and every rule r ∈ Π with head(r) = a, either (i) ¬b ∈ S ∪ ¬.U
for some b ∈ pos(r), or (ii) b ∈ S for some atom b ∈ neg(r).

Then, it is immediate that the notion of unfounded set and the greatest unfounded set for

normal logic program KB = (∅, Π) coincide with those for Π , respectively. Note that ZKB(I) ⊆
UKB(I) when L = ∅. It is easy to see that the operator TKB for normal program KB = (∅, Π)

reduces to TΠ for normal program Π . q

The well-supported answer set semantics is defined for what are called normal DL logic pro-

grams (Shen and Wang 2011), which applies to FOL-programs. There is however a subtle dif-

ference: in the definition of the entailment relation, the WKB operator uses 3-valued evaluation

while the well-supported semantics is based on the notion of 2-valued up to satisfaction.

Definition 5

(Up to satisfaction) Let KB = (L,Π), l a literal, and E and I two interpretations with E ⊆ I ⊆
HBΠ . The relation E up to I satisfies l under L, denoted (E, I) |=L l, is defined as: (E, I) |=L l

if ∀F, E ⊆ F ⊆ I , F |=L l. The definition extends to conjunctions of literals.

The entailment relation, F |=L l, is based 2-valued satisfiability (cf. Def. 1), i.e., F |=L l is

L ∪ F |Ω ∪ ¬.F̄ |Ω |= l, while in 3-valued satisfiability, S |=L l is L ∪ S |Ω |= l.

Given an FOL-program KB = (L,Π), an immediate consequence operator is defined as:

TKB(E, I) = {head(r) | r ∈ Π, (E, I) |=L body(r)}. (2)

The operatorTKB is monotonic on its first argument E with I fixed (Shen and Wang 2011).

Thus, for any model I of KB, we can compute a fixpoint, denotedTα

KB(∅, I).

Definition 6

Let KB = (L,Π) be an FOL-program and I a model of KB. I is an answer set of KB if for every

A ∈ I , either A ∈ Tα

KB(∅, I) or L ∪Tα

KB(∅, I)|Ω ∪ ¬.Ī|Ω |=A.

The next theorem shows that the well-founded semantics of an FOL-program approximates its

well-supported answer set semantics.

8 Y. Bi. J. You. Z. Feng.

Theorem 2

Let KB = (L,Π) be an FOL-program. Then every well-supported answer set of KB includes all

atoms H ∈ HBΠ that are well-founded and no atoms H ∈ HBΠ that are unfounded or are in

ZKB(lfp(WKB)).

Proof

To prove the assertion, it is sufficient to show that if lfp(WKB) is consistent, then for every well-

supported answer set I , all atoms in lfp(WKB) are in I and all negated atoms in lfp(WKB) are in

¬.Ī .

We consider the fixpoint construction by the operatorsTKB(·, I) and WKB. Let us use a short

notation for the respective sequences by

T0
KB = ∅, . . . ,Tk+1

KB =TKB(Tk

KB, I), . . . (3)

W
0
KB = ∅, . . . ,W k+1

KB = W (W k

KB), . . . (4)

for all k > 0. Define E0 = ∅ and Ei = {H | (Ti−1
KB , I) |=L H} for all i > 1. We show that

W
i

KB ⊆ Ei ∪ Ti

KB ∪ ¬.Ī , for all i > 0. The base case is trivial. For the inductive step, assume

for any k > 0 the subset relation holds and we show it holds for k + 1. The proof is conducted

on two cases: (I) Assume an atom H ∈ W
k+1
KB and show H ∈ Ek+1 ∪T

k+1
KB , and (II) Assume a

negated atom ¬H ∈W
k+1
KB and show ¬H ∈ ¬.Ī .

By definition and monotonicity of the operatorTKB, (Ti

KB, I) |=L Ei, and it follows from the

first-order entailment that for any atom H ∈ HBΠ ,

(Ti

KB, I) |=L H iff (Ei ∪T
i

KB, I) |=L H. (5)

By definition,

W
k+1
KB = TKB(W k

KB) ∪ ¬.UKB(W k

KB) ∪ ¬.ZKB(W k

KB)

By Proposition 1 of (Shen 2011), for any FOL-formula H ,

(E, I) |=L H iff L ∪ E|Ω ∪ ¬.Ī|Ω |= H. (6)

By Proposition 2 (Shen 2011), for any ordinary atom H ,

(E, I) |=L H iff H ∈ E; (E, I) |=L not H iff H 6∈ I. (7)

(I) For any atom H ∈W
k+1
KB , we have H ∈ TKB(W k

KB). If condition (i.b) in Definition 3 holds,

we have L ∪W
k

KB|Ω |= H . By induction hypothesis, L ∪ (Ek ∪Tk

KB)|Ω ∪ ¬.Ī|Ω |= H . Then by

(6) and (5), (Tk

KB, I) |=L H . Thus H ∈ Ek+1. If condition (i.a) in Definition 3 holds, we consider

the following four cases:

1. For any ordinary atom A ∈ pos(r), A ∈W
k

KB, thus (Tk

KB, I) |=L A by (7) and (5).

2. For any ordinary atom A ∈ neg(r), ¬A ∈W
k

KB, thus (Tk

KB, I) |=L not A.

3. For any FOL-formula A ∈ pos(r), L ∪W
k

KB|Ω |= A, then (Tk

KB, I) |=L A.

4. For any FOL-formula A ∈ neg(r), L ∪ (W k

KB)′|Ω 6|= A for every (W k

KB)′ such that W k

KB ⊆
(W k

KB)′ ∈ Lit
c

Π
, we have (Tk

KB, I) 6|=L A, since every total interpretation is a partial one.

Hence H ∈ Tk+1
KB .

(II) For any negated atom ¬H ∈ W
k+1
KB , either H ∈ UKB(W k

KB) or H ∈ ZKB(W k

KB). For the

case H ∈ UKB(W k

KB), if condition (b) in Definition 2 holds, we have (Tk

KB, I) 6|=L H by (5), (6)

and induction hypothesis, in addition to the fact that every total interpretation is a partial one.

Then H 6∈ Ek+1. For condition (a) in Definition 2, we also consider the following four situations:

Theory and Practice of Logic Programming 9

1. For any ordinary atom A ∈ pos(r),¬A ∈W
k

KB∪¬.U, thus (Tk

KB, I) 6|=L A, by a similar argument

above.

2. For any ordinary atom A ∈ neg(r), A ∈W
k

KB, thus (Tk

KB, I) |=L A.

3. For any FOL-formula A ∈ pos(r), L ∪ (W k

KB)′|Ω 6|= A, for every W
k

KB ⊆ (W k

KB)′ ∈ Lit
c

Π
, then

(Tk

KB, I) 6|=L A, since every total interpretation is a partial one.

4. For any FOL-formula A ∈ neg(r), L ∪W
k

KB|Ω |= A, we have (Tk

KB, I) |=L A.

We have H 6∈ Tk+1
KB . Hence H 6∈ Ek+1 ∪T

k+1
KB

For any ¬H ∈ W
k

KB, ¬H ∈ ¬.Ī , since the operator E andTKB only generate positive atoms.

We then have H 6∈ Ek∪Tk

KB. As k is arbitrary, we have H ∈ UKB(lfp(WKB)) and H 6∈ Eα∪Tα

KB,

where Eα and Tα

KB are the respective fixpoints. Since Eα ∪ Tα

KB = I (cf. definition 6), we

get H ∈ Ī . Similarly, if H ∈ ZKB(W k

KB), then H ∈ Ī . We thus have proved that W k+1
KB ⊆

Ek+1 ∪T
k+1
KB ∪ ¬.Ī . q

5 Related Work

The most relevant work in defining well-founded semantics for combing rules with DLs are

(Eiter et al. 2011; Lukasiewicz 2010). The former embeds dl-atoms in rule bodies to serve as

queries to the underlying ontology, and it does not allow the predicate in a rule head to be shared

in the ontology. In both approaches, syntactic restrictions are posted so that the least fixpoint is

always constructed over sets of consistent literals. It is also a unique feature in our approach that

combined reasoning with closed world and open world is supported.

A program in FO(ID) has a clear knowledge representation “task” - the rule component is used

to define concepts, whereas the FO component may assert additional properties of the defined

concepts. All formulas in FO(ID) are interpreted under closed world assumption. Thus, FOL-

programs and FO(ID) have fundamental differences in basic ideas. On semantics, FOL-formulas

can be interpreted under open world and closed world flexibly. On modeling, the rule set in

FO(ID) is built on ontologies, thus information can only flow from a first order theory to rules.

But in FOL-programs, the first order theory and rules are tightly integrated, and thus information

can flow from each other bilaterally.

6 Conclusion and Future Directions

In this paper we have defined a new well-founded semantics for FOL-programs, where arbitrary

FOL-formulas are allowed to appear in rule bodies and an atom with its predicate shared with

first-order theory to appear in a rule head. Combined reasoning with closed world as well as

open world is supported. Moreover, inconsistencies are dealt with explicitly, and thus the task of

computing answer sets can be prejudged in case that the well-founded semantics is an inconsist-

ent set. We have shown that the well-founded semantics is an appropriate approximation of the

well-supported answer set semantics defined in (Shen and Wang 2011).

As future work, we will study the approximation fixpoint theory (AFT) (Denecker et al. 2000;

Denecker et al. 2004), and investigate whether and how well-founded and stable semantics of

FOL-programs can be defined uniformly under an extended approximation fixpoint theory. We

are also interested in possible different approximating operators for alternative semantics of FOL-

programs. In (Denecker et al. 2004) the authors show that the theory of consistent approximations

can be applied to the entire bilatticeL2 (including inconsistent elements), under the assumption

10 Y. Bi. J. You. Z. Feng.

that an approximating operatorA is symmetric. This symmetry assumption guarantees that no

transition from a consistent state to an inconsistent one may take place. As argued at the outset

of this paper, this is precisely what we cannot assume for a definition of well-founded semantics

for all FOL-programs.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) grants

61373035 and 61373165, and by National High-tech R&D Program of China (863 Program)

grant 2013AA013204.

References

DE BRUIJN, J., EITER, T., AND TOMPITS, H. 2008. Embedding approaches to combining rules and

ontologies into autoepistemic logic. In Proc. KR 2008. 485–495.

DE BRUIJN, J., PEARCE, D., POLLERES, A., AND VALVERDE, A. 2007. Quantified equilibrium logic and

hybrid rules. In Proc. RR 2007. 58–72.

DENECKER, M., MAREK, V., AND TRUSZCZYŃSKI, M. 2000. Approximations, stable operators, well-

founded fixpoints and applications in nonmonotonic reasoning. In Logic-based Artificial Intelligence.

127–144.

DENECKER, M., MAREK, V., AND TRUSZCZYNSKI, M. 2004. Ultimate approximation and its application

in nonmonotonic knowledge representation systems. Information and Computation 192, 1, 84–121.

EITER, T., IANNI, G., LUKASIEWICZ, T., SCHINDLAUER, R., AND TOMPITS, H. 2008. Combining

answer set programming with description logics for the semantic web. Artifical Intelligence 172, 12-13,

1495–1539.

EITER, T., LUKASIEWICZ, T., IANNI, G., AND SCHINDLAUER, R. 2011. Well-founded semantics for

description logic programs in the semantic web. ACM Transactions on Computational Logic 12, 2.

Article 3.

LUKASIEWICZ, T. 2010. A novel combination of answer set programming with description logics for the

semantic web. IEEE TKDE 22, 11, 1577–1592.

MCCARTHY, J. 1980. Circumscription - a form of non-monotonic reasoning. Artifical Intelligence 13, 27-

39, 171–172.

MOTIK, B. AND ROSATI, R. 2010. Reconciling description logics and rules. Journal of the ACM 57, 5,

1–62.

ROSATI, R. 2005. On the decidability and complexity of integrating ontologies and rules. Journal of Web

Semantics 3, 1, 61–73.

ROSATI, R. 2006. DL+log: Tight integration of description logics and disjunctive datalog. In Proc. KR’06.

68–78.

SHEN, Y.-D. 2011. Well-supported semantics for description logic programs. In Proc. IJCAI-11. 1081–

1086.

SHEN, Y.-D. AND WANG, K. 2011. Extending logic programs with description logic expressions for the

semantic web. In Proc. International Semantic Web Conference. 633–648.

TARSKI, A. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathemat-

ics 5:2, 285–309.

YANG, Q., YOU, J.-H., AND FENG, Z. 2011. Integrating rules and description logics by circumscription.

In Proc. AAAI-11.

Supplementary material: Technical Communication c© 2014 [Bogaerts, et al.] 1

FO(C): A Knowledge Representation Language of
Causality

Bart Bogaerts, Joost Vennekens, Marc Denecker

Department of Computer Science, KU Leuven

E-Mail: firstname.lastname@cs.kuleuven.be

Jan Van den Bussche

Hasselt University & transnational University of Limburg

E-Mail: jan.vandenbussche@uhasselt.be

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Cause-effect relations are an important part of human knowledge. In real life, humans often reason

about complex causes linked to complex effects. By comparison, existing formalisms for representing

knowledge about causal relations are quite limited in the kind of specifications of causes and effects

they allow. In this paper, we present the new language C-Log, which offers a significantly more

expressive representation of effects, including such features as the creation of new objects. We show

how C-Log integrates with first-order logic, resulting in the language FO(C). We also compare

FO(C) with several related languages and paradigms, including inductive definitions, disjunctive

logic programming, business rules and extensions of Datalog.

1 Introduction

Cause-effect relations are an important part of human knowledge. There exist a number

of knowledge representation languages (McCain and Turner 1996; Vennekens et al. 2009;

Cabalar 2012) in which logic programming style rules are used to represent such relations.

The basic idea in all these approaches is that the head of such a rule represents an

effect that is caused by its body. In this paper, we are particularly concerned with

CP-logic (Vennekens et al. 2009). More specifically, we consider the variant of CP-logic

without probabilities, and we will extend this language with three features: dynamic non-

determinsitic choice; object creation; and recursive nesting of cause-effect relations. We call

the resulting language C-Log. In this paper, we present C-Log and its informal semantics.

For the formal semantics, we refer to an accompanying technical report (Bogaerts et al.

2014a). We also present the integration of C-Log with first-order logic, and thus show

that C-Log fits in the FO(·) Knowledge Base System project (Denecker 2012).

Let us begin by recalling the guiding principles behind CP-logic. When compared to

predecessors, such as the causal logic of McCain and Turner (1996), one of the important

contributions of this languages is to add two modelling principles that are common in

causal modelling. The first is the distinction between endogenous and exogenous properties,

i.e., those whose value is determined by the causal laws in the model and those whose

value is not, respectively (Pearl 2000). The second is the default-deviant assumption, used

also by, e.g., Hall (2004) and Hitchcock (2007). The idea here is to assume that each

2 Bart Bogaerts, et al.

endogenous property of the domain has some “natural” state, that it will be in whenever

nothing is acting upon it. For ease of notation, CP-logic identifies the default state with

falsity, and the deviant state with truth. For example, consider the following simplified

model of a bicycle, in which a pair of gear wheels can be put in motion by pedalling:

Turn(BigGear)← Pedal. (1)

Turn(BigGear)← Turn(SmallGear). (2)

Turn(SmallGear)← Turn(BigGear). (3)

Here, Pedal is exogenous, while Turn(BigGear) and Turn(SmallGear) are endogenous.

The semantics of this causal model is given by a straightforward “execution” of the rules.

The domain starts out in an initial state, in which all endogenous atoms have their default

value false and the exogenous atom Pedal has some fixed value. If Pedal is true, then the

first rule is applicable and may be fired (“Pedal causes Turn(BigGear)”) to produce a new

state of the domain in which Turn(BigGear) now has its deviant value true. In this way,

we construct the following sequence of states (we abbreviate symbols by their first letter):

{P}
(1)
→ {P,T(B)}

(3)
→ {P,T(B),T(S)}

(2)
→ {P,T(B),T(S)} (4)

Note that firing rule (2) does not change the state of the world, because its effect is

already true. Moreover, it is obvious that this will always be the case, so this rule may

seem redundant. However, many interesting applications of causal models require the use

of interventions (Pearl 2000), e.g., to evaluate counterfactuals or to predict the effects of

actions. As shown by Vennekens et al. (2010), rule (2) allows CP-logic to represent this

example in a way that produces the correct results for all conceivable interventions in

a manner that is more modular and more concise than, among others, Pearl’s structural

models (Pearl 2000).

After rules (1), (3) and (2) have all fired, there are no more rules left whose body is

satisfied and that have not yet fired. At this point, the process is at an end and the domain

has reached a final state. It is this final state, rather than the details of the intermediate

process, that we are really interested in. One of the most important properties of CP-logic

is that, while there may be any number of different processes derived from a causal theory,

the final state that is eventually reached is unique for any given interpretation for the

exogenous predicates—at least, for examples such as this one. In general, CP-logic also

allows rules with a non-deterministic effect, such as:

(Turn(SmallGear) : 0.99) Or (ChainBreaks : 0.01)← Turn(BigGear).

Now, the cause Turn(BigGear) produces one of two possible effects, and there is an

associated probability distribution over these two possibilities. The effect on the semantics

is that, instead of a linear progression of states as in (4), we get a tree structure in

which each firing of a non-deterministic rule introduces a branching of possibilities. When

considering also the probabilities associated to non-deterministic choices, the tree defines

a probability distribution over its leaves, i.e., over the final states that may be reached. It

was shown in (Vennekens et al. 2009) that, given a specific interpretation for the exogenous

atoms, this distribution is unique, even though there may exists many probability trees

that produce it.

FO(C): A Knowledge Representation Language of Causality 3

In many circumstances, the precise values of the probabilities are not of interest. In such

cases, a non-probabilistic variant of CP-logic may be used, in which these are omitted.

The head of a rule is then simply a disjunction:

Turn(SmallGear) Or ChainBreaks← Turn(BigGear).

The trees then no longer produce a probability distribution over final states, but they

describe the set of all final states that may be reached. In other words, this formalism

has a possible world semantics. It is this non-probabilistic variant that concerns us in this

paper.

Like other rule-based approaches to causality, CP-logic uses a very simple way of

specifying the possible effects of some cause, namely, as a disjunction of ground atoms.

Clearly, this does not—or, at least, not directly—cover many interesting phenomena that

may occur in practice:

• A robot enters a room, opens some of the doors in this room, and then leaves by one

of the doors that are open. The robot’s leaving corresponds to a non-deterministic

choice between a dynamic set of alternatives, which is determined by the robot’s own

actions, and therefore cannot be hard-coded into the head of a rule. A language

construct for representing such choices is present in P-log (Baral et al. 2004).

• A stallion and a mare that are put in the same field may cause the birth of a foal.

Therefore, not only the properties of these horses are governed by causal laws, but

also their very existence.

• A horse being the parent of a foal is itself a cause for its own height to have a

causal link to the height of the foal. Therefore, causal laws may be nested, in the

sense that an effect can itself again consist of an entire causal law.

The goal of this paper is to develop an expressive knowledge representation language

that is able to represent these more complex effects, and others like them, in a direct

way. Moreover, we want to do this in a way that extends the approach of CP-logic. To

summarise, the formal semantics of the language should consist of a set of possible worlds,

each of which can be constructed by a non-deterministic causal process. This process will

take place in the context of a fixed interpretation for the exogenous atoms. It will start

from an initial state in which each of the endogenous atoms is at its default value false.

The causal laws of our language will then “fire” and flip atoms to their deviant value,

until no more such flips are possible. Whereas in CP-logic these flips happen one atom

at a time, our extended language will flip sets of atoms at the same time. Moreover, our

logic will present syntax and semantics for object-creation, as is needed in the second of

the above examples.

The rest of this paper is structured as follows: we start by introducing causal effect

expressions (CEEs) and their informal semantics in Section 2. In Section 3, we explain

how C-Log is integrated with first-order logic, resulting in FO(C), a member of the FO(·)
family of extensions of first-order logic. We conclude in Section 4 by comparing C-Log

with various other paradigms, including inductive definitions (Denecker and Ternovska

2008), disjunctive logic programming with existential quantifications (You et al. 2013),

Business Rules systems (Business Rules Group 2000) and Datalog extensions (Green et al.

2012).

4 Bart Bogaerts, et al.

2 Syntax and Informal Semantics

We assume familiarity with basic concepts of first-order logic (FO). Vocabularies, formulas,

and terms are defined as usual. A Σ-structure I interprets all symbols (including variable

symbols) in a vocabulary Σ; DI denotes the domain of I and σ
I, with σ a symbol

in Σ, denotes the interpretation of σ in I. We use I[σ : v] for the structure J that

equals I, except on σ: σJ = v. Domain atoms are atoms of the form P (d) where the di
are domain elements. We use restricted quantifications (Preyer and Peter 2002), e.g., in

FO, these are formulas of the form ∀x[ψ] : ϕ or ∃x[ψ] : ϕ, meaning that ϕ holds for all

(resp. for a) x such that ψ holds. The above expressions are syntactic sugar for ∀x : ψ ⇒ ϕ

and ∃x : ψ ∧ ϕ, but such a reduction is not possible for other restricted quantifiers that

we will define below. We call ψ the qualification and ϕ the assertion of the restricted

quantifications. From now on, let Σ be a relational vocabulary, i.e., Σ consists only of

predicate, constant and variable symbols.

2.1 Syntax

Definition 2.1

Causal effect expressions (CEE) are defined inductively as follows:

• if P (t) is an atom, then P (t) is a CEE,

• if ϕ is a first-order formula and C ′ is a CEE, then C ′ ← ϕ is a CEE,

• if C1 and C2 are CEEs, then C1 AndC2 is a CEE,

• if C1 and C2 are CEEs, then C1 OrC2 is a CEE,

• if x is a variable, ϕ is an FO formula and C ′ is a CEE, then All x[ϕ] : C ′ is a CEE,

• if x is a variable, ϕ an FO formula and C ′ a CEE, then Select x[ϕ] : C ′ is a CEE,

• if x is a variable and C ′ is a CEE, then New x : C ′ is a CEE.

We call a CEE an atom-expression (respectively rule-, And-, Or-, All-, Select- or New-

expression) if it is of the corresponding form. We call a predicate symbol P endogenous in

C if P occurs as the symbol of a (possibly nested) atom-expression in C , i.e., if P occurs in

C but not only in first-order formulas, i.e., not only in qualifications of restricted C-Log

quantifications (All and Select) or conditions of rule-expressions. All other symbols are

called exogenous in C . This is a straightforward generalisation of the same notions in

CP-logic. An occurrence of a variable x is bound in a CEE if it occurs in the scope of a

quantification over that variable (∀x, ∃x, Allx, Select x, or New x) and free otherwise. A

variable is free in a CEE if it has free occurrences. A causal theory, or C-Log theory is a

CEE without free variables. By abuse of notation, we often represent a causal theory as a

set of CEEs; the intended causal theory is the And-conjunction of these CEEs. We often

use ∆ for a causal theory and C , C ′, C1 and C2 for its subexpressions.

2.2 Informal Semantics of CEEs

We now present the informal semantics of CEEs, due to space restrictions, the formalisa-

tion of this semantics is lacking in this paper. For a complete description of the formal

semantics, we refer to an accompanying technical report (Bogaerts et al. 2014a). A CEE

is a description of a set of causal laws. In the context of a state of affairs—which we

represent, as usual, by a structure—a CEE non-deterministically describes a set of effects,

FO(C): A Knowledge Representation Language of Causality 5

i.e., a set of events that take place and change the state of affairs. We call such a set the

effect set of the CEE. From a CEE C , we can derive causal processes similar to (4); a

causal process is a sequence of intermediate states, starting from the default state, such

that, at each state, the effects described by C take place. The process ends if the effects no

longer cause changes to the state. A structure is a model of a CEE if it is the final result

of such a process. We now explain in a compositional way what the effect set of a CEE

is in a given state of affairs.

The effect of an atom-expression A is that A is flipped to its deviant state. A conditional

effect, i.e., a rule expression, causes the effect set of its head if its body is satisfied in

the current state, and nothing otherwise. The effect set described by an And-expression

is the union of the effect sets of its two subexpressions; an All-expression All x[ϕ] : C ′

causes the union of all effect sets of C ′(x) for those x’s that satisfy ϕ. An expression

C1 OrC2 non-deterministically causes either the effect set of C1 or the effect set of C2;

a Select-expression Select x[ϕ] : C ′ causes the effect set of C ′ for a non-deterministically

chosen x that satisfies ϕ. An object-creating CEE New x : C ′ causes the creation of a new

domain element n and the effect set of C ′(n).

Example 2.2

Permanent residence in the United States can be obtained in several ways. One way is

passing the naturalisation test. Another way is by playing the “Green Card Lottery”,

where each year a number of lucky winners are randomly selected and granted permanent

residence. We model this as follows:

All p[Applied(p) ∧ PassedTest(p)] : PermRes(p)

(Select p[Applied(p)] : PermRes(p))← Lottery.

The first CEE describes the “normal” way to obtain permanent residence; the second rule

expresses that one winner is selected among everyone who applies. If I is a structure in

which Lottery holds, due to the non-determinism, there are many possible effect sets of

the above CEE, namely all sets {PermRes(p) | p ∈ DI ∧ p ∈ AppliedI ∧ PassedTest(p)I}
∪ {PermRes(d)} for some d ∈ AppliedI. The two CEEs are considered independent: the

winner could be one of the people that obtained it through standard application, as well

as someone else. Note that in the above, there is a great asymmetry between Applied(p),

which occurs as a qualification of Select-expression, and PermRes(p), which occurs as a

caused atom, in the sense that the effect will never cause atoms of the form Applied(p),

but only atoms of the form PermRes(p). This is one of the cases where the qualification

of an expression cannot simply be eliminated.

Example 2.3

Hitting the “send” button in your mail application causes the creation of a new package

containing a specific mail. That package is put on a channel and will be received some

(unknown) time later. As long as the package is not received, it stays on the channel. In

C-Log, we model this as follows:

Allm, t[Mail(m) ∧HitSend(m, t)] : New p : Pack(p) AndCont(p, m) AndOnCh(p, t+ 1)

AndSelect d[d > 0] : Received(p, t+ d)

All p, t[Pack(p) ∧OnCh(p, t) ∧ ¬Received(p, t)] : OnCh(p, t+ 1)

6 Bart Bogaerts, et al.

Suppose an interpretation HitSendI = {(MyMail, 0)} is given. A causal process then

unfolds as follows: it starts in the initial state, where all endogenous predicates are false.

The effect set of the above causal effect in that state consists of 1) the creation of one new

domain element, say p, and 2) the caused atoms Pack(p), Cont(p,MyMail), OnCh(p, 1)

and Received(p, 7), where instead of 7, we could have chosen any number greater than

zero. Next, it continues, and in every step t, before receiving the package, an extra atom

OnCh(p, t+1) is caused. Finally, in the seventh step, no more atoms are caused; the causal

process ends. The final state is a model of the causal theory.

3 FO(C): Integrating FO and C-Log

First-order logic and C-Log have a straightforward integration, FO(C). Theories in this

logic are sets of FO sentences and CEEs. A model of such a theory is a structure that

satisfies each of its expressions (each of its CEEs and formulas). An illustration is the mail

protocol from Example 2.3, which we can extend with the “observation” that at at some

time point, two packages are on the channel: ∃t, p1, p2 : OnCh(p1, t)∧OnCh(p2, t)∧p1 6= p2.

Models of this theory represent states of affairs where at least once two packages are on

the channel simultaneously. This entirely differs from And-conjoining our CEE with

Select t, p1, p2[p1 6= p2] : OnCh(p1, t) AndOnCh(p2, t).

The resulting CEE would have unintended models in which two packages suddenly appear

on the channel for no reason.

In FO(C), New-expressions can be simulated with Select-expressions together with FO

axioms expressing the unicity of the newly “created” objects. E.g.,

New x : P (x, a) AndNew x : Q(x)

is simulated by introducing auxiliary unary predicates N1 and N2 that identify the objects

created by the expressions and writing:

{(Select x[t] : (N1(x) AndP (x, a))) AndSelect x[t] : (N2(x) AndQ(x))}

∀x : ¬(N1(x) ∧N2(x))

It is clear that New-expressions are more natural and more modular than this simulation.

Despite the syntactical correspondence between CEEs and FO formulas (And corre-

sponds to ∧, All to ∀, . . .), it is obvious that they have an entirely different meaning,

and that both are useful. This is why we chose to introduce new connectives rather than

overloading the ones of FO. The logic FO(C) has further interesting extensions, e.g., by

adding aggregates in FO formulas, including in qualifications and conditions of CEEs.

4 Comparison and Future Work

In this section, we compare FO(C) to other existing paradigms. This comparison is only

an initial study. By the time of publishing, a more extended version of a comparison

between FO(C) and other paradigms has appeared (Bogaerts et al. 2014b).

Due to its simple recursive syntax, FO(C) is a very general logic that generalises several

existing logics and shows overlaps with many others in different areas of computational

logic. C-Log is an extension of (the non-probabilistic version of) CP-logic. FO(C) is an

FO(C): A Knowledge Representation Language of Causality 7

extension of the logic FO(ID) (Denecker and Ternovska 2008). An FO(ID) theory is a

set of FO sentences and inductive definitions (ID), which are sets of rules of the form

∀x : P (t)← ϕ,

where ϕ is an FO formula. Such a rule corresponds to a CEE

Allx[ϕ] : P (t)

or equivalently,

All x[t] : (P (t)← ϕ)

and a definition corresponds to the And-conjunction of its rules. The semantics of FO(ID)

corresponds exactly to the semantics of the corresponding FO(C) theory (Bogaerts et al.

2014a). Denecker et al. (1998) already pointed to the correspondence between causality

and inductive definitions and exploited it for solving the causal ramification problem of

temporal reasoning (McCarthy and Hayes 1969). The CEEs presented here can be seen

as a non-deterministic extension of inductive definitions with an informal semantics based

on causal processes.

FO(C) shows similarity to extensions of disjunctive logic programming (DLP) such

as DLP with existential quantification in rule heads (You et al. 2013) and the stable

semantics for FO as defined by Ferraris et al. (2011). Here constraints correspond to FO

sentences in FO(C) and other rules correspond to C-Log expressions. However, there is

an important semantical difference. Suppose we want to express Example 2.2, where all

people passing a test and one random person are given permanent residence in the United

States. The E-disjunctive program

∃X : permres(X) :- lottery

∀X : permres(X) :- passtest(X)

is similar to

(Select x[t] : permres(x))← lottery

AndAllx[passtest(x)] : permres(x)

Semantically, the E-disjunctive program imposes a minimality condition: the lottery is

always won by a person succeeding the test, if there exists one. On the other hand, in

FO(C) the two rules execute independently, and models might not be minimal. In this

example, it is the latter that is intended. We believe that one advantage of C-Log is

its clear causal informal semantics. On the other hand, there are ways to simulate the

causal semantics and the New operator of C-Log in E-disjunctive programs while it

follows from complexity arguments that not all E-disjunctive programs can be expressed

in FO(C) (Bogaerts et al. 2014c).

Other semantics than the stable semantics for DLP have been developed. For example,

Brass and Dix (1996) defined D-WFS, a well-founded semantics for DLP. This semantics

has the property that if a program contains two identical lines, one of them can be

removed. However, in our context, a duplicate effect means that a same causal effect

happens twice (maybe for different reasons), independently, and hence different choices

might be made in each of these rules.

8 Bart Bogaerts, et al.

The logic of cause and change (McCain and Turner 1996) differs from C-Log in several

important aspects; in McCain & Turner’s logic both true and false atoms need a cause.

In C-Log on the other hand, endogenous predicates can be false (the default value)

without reason but can only be true (the deviant value) if caused. Moreover, we rule out

unfounded “cyclic” causation. For instance, if Pedal is false, in C-Log, Turn(BigGear) and

Turn(SmallGear) are false but in McCain and Turner’s logic they may be true and caused

by each other. We call this “spontaneous generation” and do not admit it in C-Log.

We find operators similar to those of C-Log in several other formalisms. For example,

Select-, All-, Or- and rule-expressions are present in the subformalism of the language

Event-B that serves to specify effects of actions (Abrial 2010). The New operator is found

in various other rule based paradigms, for example in Business Rules systems (Business

Rules Group 2000). The JBoss manual (Browne 2009) contains the following rule:

when Order (customer == nu l l) then i n s e r t L o g i c a l (new

Va l ida t i onRe su l t (v a l i d a t i o n . customer . m i s s i n g)) ;

meaning that if an order is created without customer, a new ValidationResult is created

with the message that the customer is missing. This can be translated to C-Log as follows:

All y[Order(y) ∧NoCustumer(y)] : New x : ValidationR(x) AndMessage(x, “. . . ”).

Another field in which related language constructions have been developed is the

field of deductive databases. Abiteboul and Vianu (1991) considered various exten-

sions of Datalog, resulting in non-deterministic semantics for queries and updates.

One of the studied extensions is object creation. Such an extension is present in the

LogicBlox system (Green et al. 2012). An example from the latter paper is the rule:

President(p), presidentOf[c] = p ← Country(c) which means that for every country c, a

new (anonymous) “derived entity” of type President is created. Of course, this president is

not a new person, but it is new with respect to a given database. Such rules with implicit

existentially quantified head variables correspond with New-expressions in C-Log.

Other Datalog extensions with other forms of object creation exist. For example Van den

Bussche and Paredaens (1995) discuss a version with creation of sets and compare its

expressivity with simple object creation.

Non-deterministic choices have been studied intensively in the context of deductive

databases. Krishnamurthy and Naqvi (1988) introduced a non-deterministic choice in

Datalog. This choice was static: choice models are constructed in three steps. First,

models are calculated while ignoring choices (choosing everything); second, this model is

used to select a number of choices for all occurrences of choice goals and third, models are

recalculated with respect to these choice goals. In other work (Saccà and Zaniolo 1990;

Giannotti et al. 1991), it is argued that static choices do not behave well in the presence

of recursion; hence dynamic choices were introduced. Saccà and Zaniolo (1990) use stable

models to provide a model-theoretic description of these dynamic choices. Weidong and

Jinghong (1996) introduced an alternative choice principle on predicates P . There, the

values in certain argument positions in the tuples of P are chosen non-deterministically

in function of the values at the other argument positions. The semantics of that logic

is based on the well-founded semantics; this choice principle is very different from the

principle in C-Log. Compared to these, C-Log resembles most the language of Saccà and

FO(C): A Knowledge Representation Language of Causality 9

Zaniolo (1990); the difference is that C-Log supports a recursive syntax and is based on

the well-founded semantics, whereas Saccà and Zaniolo (1990) use stable semantics.

The above similarities suggest that FO(C) is a promising language to study and unify

many existing logical paradigms and to provide a clear informal semantics for them. An

in-depth semantical analysis of the exact relationship between FO(C) and the languages

described above is an interesting topic for future work. Another research challenge is

extending FO(C) with types, function symbols, arithmetic, etc. in order to make it useful

as a KR-language. We need to study the complexity of various inference tasks in FO(C),

and develop and implement algorithms for these various tasks. By the time of publication,

a first study of complexity and inference in FO(C) has appeared (Bogaerts et al. 2014c).

Another research question is to add probabilities to C-Log to obtain an extension of the

probabilistic CP-logic, and possibly also of other related logics such as BLOG (Milch

et al. 2005) and P-Log (Baral et al. 2004).

References

Abiteboul, S. and Vianu, V. 1991. Datalog extensions for database queries and updates. J. Comput.

Syst. Sci. 43, 1, 62–124.

Abrial, J.-R. 2010. Modeling in Event-B - System and Software Engineering. Cambridge University

Press.

Baral, C., Gelfond, M., and Rushton, N. 2004. Probabilistic reasoning with answer sets. In Proc.

Logic Programming and Non Monotonic Reasoning, LPNMR’04. Springer-Verlag, 21–33.

Bogaerts, B., Vennekens, J., Denecker, M., and Van den Bussche, J. 2014a. C-Log: A knowledge

representation language of causality. Tech. Rep. CW 656, Departement of Computer Science,

Katholieke Universiteit Leuven.

Bogaerts, B., Vennekens, J., Denecker, M., and Van den Bussche, J. (in press) 2014b. FO(C)

and related modelling paradigms. In Proceedings of the Fifteenth International Workshop on

Non-Monotonic Reasoning, NMR 2014, Vienna, Austria, September 17-19.

Bogaerts, B., Vennekens, J., Denecker, M., and Van den Bussche, J. (in press) 2014c. Inference in

the FO(C) modelling language. In ECAI 2014 - 21th European Conference on Artificial Intelligence,

Prague, Czech Republic, August 18-22, 2014, Proceedings.

Brass, S. and Dix, J. 1996. Characterizing D-WFS: Confluence and iterated GCWA. In Logics

in Artificial Intelligence, J. J. Alferes, L. M. Pereira, and E. Orlowska, Eds. Lecture Notes in

Computer Science, vol. 1126. Springer Berlin Heidelberg, 268–283.

Browne, P. 2009. JBoss Drools Business Rules. From technologies to solutions. Packt Publishing,

Limited.

Business Rules Group. 2000. Defining Business Rules ∼ What Are They Really? Tech. rep.

Cabalar, P. 2012. Causal logic programming. In Correct Reasoning, E. Erdem, J. Lee, Y. Lierler,

and D. Pearce, Eds. Lecture Notes in Computer Science, vol. 7265. Springer, 102–116.

Denecker, M. 2012. The FO(·) knowledge base system project: An integration project (invited

talk). In ASPOCP.

Denecker, M. and Ternovska, E. 2008. A logic of nonmonotone inductive definitions. ACM

Transactions on Computational Logic (TOCL) 9, 2 (Apr.), 14:1–14:52.

Denecker, M., Theseider-Dupré, D., and Van Belleghem, K. 1998. An inductive definition

approach to ramifications. Linkoping Electronic Articles in Computer and Information Science 3, 7

(Jan.), 1–43.

Ferraris, P., Lee, J., and Lifschitz, V. 2011. Stable models and circumscription. Artificial

Intelligence 175, 236–263.

Giannotti, F., Pedreschi, D., Saccà, D., and Zaniolo, C. 1991. Non-determinism in deductive

10 Bart Bogaerts, et al.

databases. In Deductive and Object-Oriented Databases, C. Delobel, M. Kifer, and Y. Masunaga,

Eds. Lecture Notes in Computer Science, vol. 566. Springer Berlin Heidelberg, 129–146.

Green, T. J., Aref, M., and Karvounarakis, G. 2012. Logicblox, platform and language: A

tutorial. In Datalog, P. Barceló and R. Pichler, Eds. LNCS, vol. 7494. Springer, 1–8.

Hall, N. 2004. Two concepts of causation. In Causation and Counterfactuals.

Hitchcock, C. 2007. Prevention, preemption, and the principle of sufficient reason. Philosophical

review 116, 4.

Krishnamurthy, R. and Naqvi, S. A. 1988. Non-deterministic choice in datalog. In JCDKB

(2002-01-03). 416–424.

McCain, N. and Turner, H. 1996. Causal theories of action and change. In AAAI/IAAI. AAAI

Press, 460–465.

McCarthy, J. and Hayes, P. J. 1969. Some philosophical problems from the standpoint of artificial

intelligence. In Machine Intelligence 4, B. Meltzer and D. Michie, Eds. Edinburgh University

Press, 463–502.

Milch, B., Marthi, B., Russell, S. J., Sontag, D., Ong, D. L., and Kolobov, A. 2005. Blog:

Probabilistic models with unknown objects. In IJCAI, L. P. Kaelbling and A. Saffiotti, Eds.

Professional Book Center, 1352–1359.

Pearl, J. 2000. Causality: Models, Reasoning, and Inference. Cambridge University Press.

Preyer, G. and Peter, G. 2002. Logical Form and Language. Clarendon Press.

Saccà, D. and Zaniolo, C. 1990. Stable models and non-determinism in logic programs with

negation. In Proceedings of the Ninth ACM Symposium on Principles of Database Systems. ACM

Press, 205–217.

Van den Bussche, J. and Paredaens, J. 1995. The expressive power of complex values in object-

based data models. Information and Computation 120, 220–236.

Vennekens, J., Bruynooghe, M., and Denecker, M. 2010. Embracing events in causal modelling:

Interventions and counterfactuals in CP-logic. In Logics in Artificial Intelligence, T. Janhunen

and I. Niemelä, Eds. Lecture Notes in Computer Science, vol. 6341. Springer Berlin Heidelberg,

313–325.

Vennekens, J., Denecker, M., and Bruynooghe, M. 2009. CP-logic: A language of causal

probabilistic events and its relation to logic programming. Theory and Practice of Logic Program-

ming 9, 3, 245–308.

Weidong, C. and Jinghong, Z. 1996. Nondeterminism through well-founded choice. The Journal

of Logic Programming 26, 3, 285–309.

You, J.-H., Zhang, H., and Zhang, Y. 2013. Disjunctive logic programs with existential quantifi-

cation in rule heads. Theory and Practice of Logic Programming 13, 563–578.

Supplementary material: Technical Communication c© 2014 [Brass] 1

A Framework for Bottom-Up Simulation of
SLD-Resolution

STEFAN BRASS

Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik,

Von-Seckendorff-Platz 1, D-06099 Halle (Saale), Germany

(e-mail: brass@informatik.uni-halle.de)

submitted 14 February 2014; revised —; accepted —

Abstract

This paper introduces a framework for the bottom-up simulation of SLD-resolution based on

partial evaluation. The main idea is to use database facts to represent a set of SLD goals. For

deductive databases it is natural to assume that the rules defining derived predicates are known at

“compile time”, whereas the database predicates are known only later at runtime. The framework

is inspired by the author’s own SLDMagic method, and a variant of Earley deduction recently

introduced by Heike Stephan and the author. However, it opens a much broader perspective.

KEYWORDS: deductive databases, Datalog, bottom-up evaluation, partial evaluation, optimization

1 Introduction

Deductive databases use logic programming for data intensive applications. For example,

database queries are written in a Prolog-like language called Datalog. Basic Datalog is

pure Prolog without structured terms. The data stored e.g. in a relational database can

be seen as a large set of facts. Of course, many extensions of this basic language have

been investigated and implemented in prototype systems. While in the beginning, the

main achievement of deductive databases was seen in the possibility to write recursive

queries, e.g. for hierarchical and graph-structured data, the more general goal is to support

database queries and application programming in one declarative language.

For efficient query evaluation, it is important to distinguish between predicates defined

by rules in a logic program, and predicates defined by facts in the database. The logic

program is known at “compile time”, while the facts are known only at “runtime”.

I.e. the database facts form the input to the logic program. Because the program might

be executed several times with different database states, it pays off to invest time for

optimization by precomputing as much as possible given the logic program, while the

database facts are not yet known. Time might be saved even in a single execution of the

program, because the logic program is usually small, while the database state is big.

Deductive databases use bottom-up evaluation, i.e. apply the TP -operator to derive

facts from already known facts to get logically implied instances of the query. Of course,

many optimizations are added to this basic method. Especially, there are a lot of methods

for making bottom-up evaluation goal-oriented, i.e. to derive only facts that are in some

2 S. Brass

sense needed for computing answers to the query. Most well-known in this area is the

“magic set” method (Bancilhon et al. 1986), where magic sets simply encode subqueries.

François Bry had the idea to explain magic sets with a meta-interpreter, which describes

top-down evaluation, but runs on a bottom-up machine (Bry 1990). When this meta-

interpreter is partially evaluated with respect to the given rules, one gets exactly the result

of the magic set transformation. This might be the first case of partial evaluation for strict

bottom-up evaluation, other applications of partial evaluation for deductive databases

are, e.g. (Sakama and Itoh 1988; Lei et al. 1990; Han 1995). Of course, partial evaluation

for top-down evaluation (Prolog) was well investigated (see, e.g., (Gallagher 1993)), but

the methods for partial evaluation depend crucially on the execution model.

It turned out that magic sets do not exactly correspond to SLD-resolution, and that in

the case of tail recursions, SLD-resolution has a big advantage, because it does not need

to materialize every proven “lemma” (Ross 1991; Brass 1995).

The author then proposed a meta-interpreter that describes SLD-resolution exactly

and runs on a bottom-up machine. In this way, set-oriented evaluation techniques can be

used, and termination can be guaranteed for Datalog, e.g. a rule like p(X) ← p(X) does

not cause an infinite loop. In contrast to magic sets and tabling techniques, tail-recursion

runs much faster, e.g. consider the following logic program P:

path(X,Y) ← edge(X,Y)·
path(X,Z) ← edge(X,Y) ∧ path(Y,Z)·

Suppose the database is D := {edge(i − 1, i) | 1 6 i 6 n}, i.e. the graph is a single path

of length n . For the query path(0,X), the SLD-tree has 4n + 3 nodes, i.e. a number that is

linear in n , whereas magic sets derive all facts of the form path(i , j) with 0 6 i < j 6 n ,

which is quadratic in n . While a tail-recursion optimization for magic sets has already

been studied in (Ross 1991), our “SLDMagic”-method (Brass 2000) had other advantages

as well by simulating SLD-resolution bottom-up. It passes also non-equality conditions

on parameters to called predicates, and avoids joins when a predicate “returns”.

However, the possibilities for bottom-up simulation of SLD-resolution extend much

farther if we allow a single fact to represent multiple nodes in the SLD-tree. Already

when the SLDMagic method was implemented, it was noted that it produces a lot of

“copy” rules, which only copy tuples from one predicate to another predicate. These rules

were then eliminated by a postprocessing step, which merged the predicates. This can be

understood as allowing facts to represent a set of goals in the SLD tree.

Recently, Heike Stephan and the author developed a variant of Earley deduction

(Pereira and Warren 1983; Porter III 1986), also tabling (Tamaki and Sato 1986; Chen

and Warren 1996; Nguyen and Cao 2012) can be seen as developing the Earley method

further. Our Earley deduction variant uses states describing a relatively big part of

deduction using only program rules, but no database facts (Brass and Stephan 2013).

While there are differences in the technical details, this can be seen as representing a

whole set of SLD goals in a single “state”, which is encoded a a database fact.

The purpose of this paper is to introduce an abstract framework for simulating SLD-

resolution on a bottom-up machine, improve the understanding of the mentioned methods

and their similarities, and discuss options for improving the efficiency of program execution

in deductive databases.

A Framework for Bottom-Up Simulation of SLD-Resolution 3

2 Basic Definitions

A logic program P is a finite set of rules of the form A ← B1 ∧ · · · ∧ Bn where A and

Bi , i = 1, . . . , n (with n > 0) are positive literals, i.e. have the form p(t1, . . . , tm) with

a predicate p and terms tj , j = 1, . . . ,m . Terms are variables or constants. We assume

that the rules are range-restricted (safe), i.e. every variable appearing in the head A also

appears in the body B1 ∧ · · · ∧ Bn . In this paper, we do not consider negation.

A subset of the predicates are selected as EDB predicates (“extensional database”).

These are the database relations. The EDB predicates can appear in the logic program

only in the body (i.e. in the Bi), but not in the head (A). Besides the logic program, a

database state D is given, which is a finite set of facts (positive ground literals) in which

only EDB predicates appear (it follows that P and D are disjoint). We write B for the set

of all positive ground literals with EDB predicate (the Herbrand base restricted to EDB

predicates). This set will usually be infinite (because it permits arbitrary strings, integers,

etc. as arguments). Of course, D ⊆ B.

The predicates which do appear in rule heads are called IDB predicates (“intensional

database”). These predicates are defined by means of rules, not by enumerating facts. It is

possible that an IDB predicate has only rules with empty body (i.e. facts), then the only

difference to an EDB predicate is that we assume that the program is given for partial

evaluation (“compile time”), whereas the database is only known at runtime.

In practice, one also needs “built-in predicates” like <, which are defined by procedures

inside the system. Such predicates raise interesting questions of range restriction and

safety, see, e.g., (Ramakrishnan et al. 1987; Kifer et al. 1988; Brass 2009). However, to

simplify the presentation, we exclude them here.

A query (goal) Q is a conjunction A1 ∧ · · · ∧ An of positive literals (like a rule body).

The variables appearing in the query are called the answer variables. The purpose of

query evaluation is to find ground substitutions for the answer variables such that the

corresponding instance of the query is true in the minimal model of P ∪ D.

To simplify the presentation, we assume the first literal selection rule for SLD-resolution

(as applied in Prolog). In SLD-resolution, the computed answer substitution is normally

defined by looking at an entire SLD-derivation leading to the empty clause:

Q −→ g1 −→ g2 −→ · · · −→ gn −→ .

But it suffices to consider only single goals at a time, if we start with an “extended query”,

which has a literal with all answer variables and a special predicate answer at the very

end: B1 ∧ · · · ∧ Bn ∧ answer(X1, . . . ,Xm). The predicate answer is not otherwise used in

the program or the database. It only does the bookkeeping of the current values of the

answer variables (since all substitutions done during the SLD derivation are also applied

to this literal). Therefore, if we reach a goal consisting of a single literal answer(c1, . . . , cm),

we know that the answer substitution {X1/c1, . . . ,Xm/cm} has been computed.

It might seem at first that it is a restriction that we assume a completely given

query. One might want to consider also “parameterized queries”, containing constants

not yet known at “compile time”. For instance, one might want to do query optimization

(partial evaluation) for any query of the form path(c,X), with an arbitrary constant c.

This corresponds to “binding pattern” bf (mode +−) as used in the magic set method.

However, we can simply use the query input(C)∧path(C,X) with a database predicate input

which is filled with the parameter value before query evaluation starts.

4 S. Brass

3 States Representing Sets of Goals

3.1 Definition of SLDDB-Systems

We first define an abstract system with states representing sets of goals in the SLD tree,

and a transition relation between these states. The states will later be encoded as facts,

and the transition relation corresponds to rules which permit to derive these facts.

A SLDDB-System T consists of

• S, a (usually infinite) set of states,

• G(S), a non-empty set of goals for every S ∈ S,

• S0 ∈ S, an initial state,

• 7→ǫ ⊆ S×S, a relation between states (ǫ-transitions),

• 7→F ⊆ S×S, a relation between states for every possible database fact F ∈ B.

Given an SLDDB-System T as above, and a database state D ⊆ B (set of facts),

an answer tuple (c1, . . . , cm) is computed iff there is a finite sequence S0 . . . Sn ∈ S∗

of states, starting with the initial state S0, containing the answer in the final state,

i.e. answer(c1, . . . , cm) ∈ G(Sn), and such that for i = 1, . . . , n ,

• Si−1 7→ǫ Si or

• Si−1 7→F Si for some F ∈ D.

The states will later be encoded as facts, and the reachable states will be computed

bottom-up, therefore repeated states in a state sequence can be detected in order to

improve termination. Of course, if an analysis shows that this cannot happen, one can

save the effort for duplicate detection. Another useful property is that for certain states,

there is only one possible successor state (if D satisfies integrity constraints such as keys).

3.2 Correctness of SLD-Simulation

An SLDDB-System should correspond to SLD-resolution for a given program and query.

First we define the correctness, i.e. that all goals occurring in a state sequence are really

derivable from the query, the program, and the database facts used in state transitions.

Let a logic program P and a query Q be given. An SLDDB-System T is correct with

respect to P and Q iff

• For every g ∈ G(S0), there is an SLD-derivation of g from the extended query

Q ∧ answer(X1, . . . ,Xm) using rules in P (this includes the case that the derivation is

empty, i.e. g is the extended query).

• Whenever S1 7→ǫ S2, then for every g2 ∈ G(S2) there is g1 ∈ G(S1) such that there is

a non-empty SLD-derivation g1 −→ g ′ −→∗ g2 of g2 from g1, using rules in P, and

the first step g ′ in this derivation is contained in G(S2), i.e. g ′ ∈ G(S2).

• Whenever S1 7→F S2, then for every g2 ∈ G(S2) there is g1 ∈ G(S1) such that there is

a non-empty SLD-derivation g1 −→ g ′ −→∗ g2 of g2 from g1, where the first step

uses the fact F, other steps use rules in P, and g ′ ∈ G(S2).

If this condition is satisfied, then for every computed answer tuple (c1, . . . , cm) there

is an SLD-derivation of answer(c1, . . . , cm) from Q ∧ answer(X1, . . . ,Xm). This obviously

means that there is also an SLD-derivation of the empty clause from Q , where the

substitution θ := {X1/c1, . . . ,Xm/cm} is applied to the variables in Q . Therefore, by the

correctness of SLD-resolution, it follows that Q θ is a logical consequence of P ∪ D.

A Framework for Bottom-Up Simulation of SLD-Resolution 5

3.3 Completeness of SLD-Simulation

In the opposite direction, we need that every SLD-derivation is indeed represented in

the states and the transition relation. Note that the SLDDB-System is independent of a

concrete database state, i.e. it represents derivations using any possible database facts. Of

course, when a state sequence is constructed to answer a query in a concrete database

state D, only facts in D can be used.

Let a logic program P and a query Q be given. An SLDDB-SystemT is complete with

respect to P and Q iff

• The extended query Q ∧ answer(X1, . . . ,Xm) is contained in G(S0).

• For every state S ∈ S and every goal g ∈ G(S) and every g ′ which can be derived

from g and a rule in P by an SLD-resolution step, there is a variant g ′′ of g ′ with

g ′′ ∈ G(S) or g ′′ ∈ G(S ′) for some state S ′ with S 7→ǫ S ′.

• For every state S ∈ S, every goal g ∈ G(S) and every g ′ which can be derived

from g and a fact F ∈ B by an SLD-resolution step, there is a variant g ′′ of g ′ and

state S ′ with S 7→F S ′ such that g ′′ ∈ G(S ′).

This condition ensures that every SLD-derivation of the empty clause from Q using

rules in P and facts in DB can indeed be represented by a state sequence.

It would actually suffice to require the completeness not for all SLD resolution steps,

but only for steps in successful derivations where the set of facts used in the state sequence

satisfies given integrity constraints. In this way, “dead ends” could be cut off early.

3.4 Example: SLD-Resolution

Of course, one would expect that SLD-resolution itself fits in this framework.

If one wants to simulate SLD-resolution exactly, including the non-termination for

p(X)← p(X), one uses SLD-derivations as states. I.e., given a program P and a query Q ,

the set of states S is the set of SLD-derivations Q ∧ answer(X1, . . . ,Xm) −→∗ gn and the

set of goals for the above state S is G(S) := {gn}, i.e. a singleton set consisting of the last

(or current) goal in the derivation. The transition relations extend the derivation by one

goal, i.e. lead from S to the following state S ′:

Q ∧ answer(X1, . . . ,Xm) −→∗ gn −→ gn+1 .

If in the last SLD resolution step a program rule was used, S 7→ǫ S ′. If instead a fact F

with EDB-predicate was used, S 7→F S ′.

3.5 Example: SLD-Resolution Without Duplicate Nodes

Of course, it is more in the spirit of bottom-up evaluation to eliminate duplicate nodes,

and this is what SLDMagic (Brass 2000) did. In the above framework, this simply means

that the states are single goals, i.e. conjunctions of the form

B1 ∧ · · · ∧ Bn ∧ answer(t1, . . . , tm).

Furthermore, we have to exclude goals which differ only in a variable renaming. We do

this by requiring that variables are named V1,V2, . . . in the order of first occurrence in

the goal. Let norm(g) be a mapping from goals to goals which normalizes variables in

6 S. Brass

this way. Of course, when states are single goals, we can simply let G(S) := {S }. The

transition relation is simply SLD-resolution plus the normalization. I.e. S 7→ǫ S ′ holds

iff S ′ is derivable from S by a single SLD resolution step (using a rule in P), followed

by variable normalization. Correspondingly, S 7→F S ′ holds when fact F ∈ B is used in

the resolution step. Obviously, the set of computed answers is not changed by merging

nodes in the SLD-tree with the same goal. The number of duplicate answers is changed

(every distinct answer is computed only once). However, if one considers duplicates as

important, one probably wants a more declarative specification. Duplicates in deductive

databases have been considered e.g. in (Mumick et al. 1990).

Note also that this works only because in SLD-resolution there is no need to return

to the “caller” — otherwise the same subgoal could appear in different contexts, and it

might be important to distinguish between them. This was one of the difficulties in our

variant of Earley deduction. In SLD-resolution, the entire continuation of the proof is

built into the goal. With the answer-literal at the end of the goal, even for determining

the answer substitution, we do not have to look at an entire path in the tree.

Termination can be guaranteed if duplicate states in state sequences are excluded and

the program is at most tail-recursive, i.e. only the last literal of a rule can be a recursive

call. This property ensures that the length of goals is bounded (Brass 2000).

3.6 Maximal States

So far, states contained only single goals. But we want to compute as much as possible

at “compile time”, i.e. when query and program are known, but the facts in the database

are not yet known. Therefore, we do the following closure operation on sets of goals:

clP(G) := {norm(g ′) | there is g ∈ G and an SLD-derivation g −→∗ g ′ using only rules in P}.

Now, given program P and query Q with answer variables X1, . . . ,Xm , the initial state is

the closure of the extended version of Q :

S0 := clP

(
{Q ∧ answer(X1, . . . ,Xm)}

)
.

Given a state S and a fact F with EDB-predicate, the successor state S ′ (with S 7→F S ′)

is defined as follows:

S ′ := clP

(
{g ′ | there is g ∈ S such that a single SLD-resolution step of g and F gives g ′}

)
.

The other transition relation 7→ǫ is empty, i.e. state transitions occur only when EDB-facts

are used, other deductions (with program rules) are done within the states.

Of course, it is possible that states become infinite. For instance, consider the left

recursive version of the transitive closure example:

path(X,Y) ← edge(X,Y)·
path(X,Z) ← path(X,Y) ∧ edge(Y,Z)·

Let the query be path(0,X). Then the initial state contains

path(0,V1) ∧ answer(V1)·
edge(0,V1) ∧ answer(V1)·
path(0,V1) ∧ edge(V1,V2) ∧ answer(V2)·
edge(0,V1) ∧ edge(V1,V2) ∧ answer(V2)·
path(0,V1) ∧ edge(V1,V2) ∧ edge(V2,V3) ∧ answer(V3)·
edge(0,V1) ∧ edge(V1,V2) ∧ edge(V2,V3) ∧ answer(V3)·
. . .

A Framework for Bottom-Up Simulation of SLD-Resolution 7

However, this is not necessarily a problem if one can work with finite representations of

this infinite set. For instance, the left recursive transitive closure works well in our variant

of Earley deduction (Brass and Stephan 2013), and the graphs of partially processed rules

used there can be seen as encoding an infinite set of SLD goals (if there are cycles in the

“called by” relation). Furthermore, we have the following theorem, which shows that for

programs without left recursions, the closure operation will not lead to infinite states:

Theorem 1

Suppose that P contains no IDB facts (i.e. all rules have a non-empty body), and no left

recursions, i.e. the predicate of the first body literal of each rule does not depend on the

predicate defined by the rule (i.e. it does not call — possibly indirectly — that predicate).

Then clP(G) is finite for every finite G .

Suppose for the moment that we can precompute all states (with parameters for the

constants from database facts only known at runtime). Then working with maximal states

is in some sense as efficent as it can get (when we look only at a single, successful

derivation): One of the previously unknown database facts is processed in each step.

If none of them is redundant (that depends on the program, e.g. there should be no

repeated subgoals), any other query evaluation method must touch the same facts. But

methods like “magic sets” also generate a lot of rules which do not contain EDB literals

in the body. These rules are applied in addition to the necessary deductions with EDB

literals. Furthermore, only a comparison with the magic set version with “supplementary

predicates” would be fair (otherwise there are repeated accesses to the same fact in a

derivation of a single answer). But then even more intermediate literals derived.

So, where is the hitch? At the moment, we can do the precomputation of states only

for certain programs. Extending this set of programs is an interesting research problem.

Furthermore, there is a fundamental difference between SLD resolution and magic sets,

namely, SLD resolution proves IDB literals always in the context of a concrete call (the

goal contains everything that has to be done after the literal is proven), whereas magic

sets derive ID predicates in isolation. Both has sometimes advantages: SLD resolution

saves joins to get the proven literal back into the context of the caller, and with a more

interesting selection function, conditions on the result can be checked at the best moment,

and sometimes this is before the call is fully finished, see (Brass 2000). However, when

magic sets have proven an IDB literal, they can use it several times in different contexts.

SLD resolution (and thus our approach) has to prove it repeatedly. In the computation of

a single answer this probably does not occur often, but when all answers are needed as in

deductive databases, this might sometimes lead to suboptimal behaviour. In (Brass 2000)

we proposed to mix both approaches, by doing explicit subproofs for certain literals. The

same technique would work here. Ideally, we would have an automatic decision which of

the two methods is better for a concrete call. This remains a research problem, too.

4 Encoding States as Facts

Our goal now is to study possibilities for encoding states as facts, such that the transition

relation can be computed with standard Datalog rules. In this way, the approach becomes

a source-to-source transformation like magic sets. However, the resulting rules have a very

8 S. Brass

simple structure, such that other implementations, like a direct translation to C++, are an

interesting option.

Such an encoding is also required because there is normally an infinite number of states:

The SLDDB-system models deductions with all possible database facts, e.g. containing

arbitrary strings as arguments. Often constants from the facts will be contained in the

goals for continuing the proof, and therefore, the number of states is infinite. But for the

precomputation at compile time, we need a finite representation of the set of states.

This is done by introducing parameterized states, which are mappings from a certain

number of data values (the parameter values or arguments) to states. If we introduce a

predicate for a parameterized state (with the arity equal to the number of parameters),

we only have to define which concrete state is represented by a fact with this predicate.

Another way to see this is that at “compile time”, we do not know the concrete

constants from the database (only constants occurring in the program). Therefore, we

represent these unknown values by “parameters”. Later, at “runtime”, we have values for

the parameters, and can fill in the “holes” to get a fully specified state.

However, simply replacing parameters in the goals by constants is not the only way

how states can be encoded. As explained below, the counting method can be understood

as encoding the length of a part of a goal (of very regular structure) in a parameter

value. This permits to handle (at least some) cases where the length of the occurring goals

depends on the data, therefore, we cannot precompute them at compile time. Note that

this is different from the left recursive version of the transitive closure discussed above:

There, we had goals of arbitrary length in a single state, and therefore did not need

to store any concrete length. In the programs, for which the counting method is made

(especially the same generation example), the exact length is important.

4.1 Parameters for Constants Known Only at Runtime

Let us first consider the case where the parameters are simply replaced by constants.

We assume that there are special variables C1,C2, . . . for the parameters (disjoint from

the variables V1,V2, . . . used for normalization). Now a parameterized state with n para-

meters is defined by a set of goals in which the variables C1, . . . ,Cn can occur, and

the variables V1,V2, . . ., but no other variables. Furthermore, each goal must satisfy the

normalization requirement, i.e. if the variable Vi , i > 1, occurs somewhere in a goal,

all variables V1, . . . ,Vi−1 must occur to the left in the same goal. Whereas the scope of

standard variables V1,V2, . . . is only a single goal, i.e. they are a kind of “local variables”,

parameters are “global” in the parameterized state (set of goals). Therefore, a normal-

ization is more difficult (we must use a standard order of goals), but of course, we do

not construct distinct states which differ only in a renaming of the parameters. Now,

if a parameterized state G with n parameters is encoded as predicate p, then the fact

p(c1, . . . , cn) represents
{
g θ

∣∣ g ∈ G , θ = {C1/c1, . . . ,Cn/cn}
}
.

The unification procedure must be changed in order to respect the parameters. We

must keep in mind that at runtime, there will be constants for them. The first change

is that if we need to unify a parameter and a standard variable, we replace the variable

by the parameter. The second change is that when we need to unify two parameters, or

a parameter and a constant, unification produces a condition for the parameter values,

e.g. Ci = a . Thus, the unification procedure does not only yield a substitution for the

A Framework for Bottom-Up Simulation of SLD-Resolution 9

standard variables, but also a (consistent) conjunction of conditions for the parameters.

For each call to the unification procedure, we must make a case distinction. Either the

actual parameter values satisfy the condition (e.g. Ci = a), and the unification succeeds, or

they do not (Ci 6= a), and the unification fails. Note that when we work with sets of goals,

some failed unifications do not necessarily lead to the empty result set. If the computation

of the successor state needs k unifications, there could be 2k cases to distinguish, but

usually it will be much less, because we can stop as soon as the condition which describes

the case becomes inconsistent. Each case might yield a different parameterized state.

In the rule that describes the state transition, we have to check the conditions on the

parameters, and also the non-equality conditions in order to avoid computing the same

SLD derivation twice. See also (Brass and Stephan 2013).

4.2 Other Encodings: Counting

For general recursions, goals might become larger and larger depending on the data,

thus it is not possible to precompute them explicitly at compile time (even if we replace

unknown constants by parameters). E.g., this happens in the “same generation” example:

sg(X,X) ← person(X)·
sg(X,Y) ← parent(X,X′) ∧ sg(X′,Y′) ∧ parent(Y,Y′)·

However, other types of encodings are possible. For instance, when applying the counting

method (Bancilhon et al. 1986; Greco and Zaniolo 1992) to the same generation example,

one can view c sg(C, I) as representing

sg(C,Y1) ∧ parent(Y2,Y1) ∧ · · · ∧ parent(YI+1,YI) ∧ answer(YI+1)·

5 Conclusions

This paper offers a different view on some previous methods for query evaluation, such

as SLDmagic, counting, and a variant of Earley deduction. By introducing a common

framework for them, one can compare and combine their features, and this also opens a

space for thinking about new, improved methods.

Obviously, there are currently still many (interesting) research questions, and few

readymade methods beyond what was already there. Nevertheless, the understanding ist

improved, and the potential of the presented ideas seems promising.

Currently, a prototype implementation for the method sketched in Sections 3.6 and 4.1

is being developed (for the class of programs which are at most tail recursive). See

http://www.informatik.uni-halle.de/~brass/slddb/.

As a further generalization of the framework, one could start subproofs for certain

literals and and possibly reuse their results multiple times, in order to get magic sets,

see (Brass 2000). It might also be possible to split goals in pieces and link them together

by references to previous states, somewhat similar to (Greco and Zaniolo 1992).

Acknowledgements

I would like to thank Heike Stephan for starting the research on Earley deduction, which

inspired the abstraction presented here. I would also like to thank Marcus Lehmann for

doing performance tests with the SLDmagic method.

10 S. Brass

References

Bancilhon, F., Maier, D., Sagiv, Y., and Ullman, J. D. 1986. Magic sets and other strange ways

to implement logic programs. In Proc. of the 5th ACM Symp. on Principles of Database Systems
(PODS’86). ACM Press, 1–15.

Brass, S. 1995. Magic sets vs. SLD-resolution. In Advances in Databases and Information Systems
(ADBIS’95), J. Eder and L. A. Kalinichenko, Eds. Springer, 185–203.

Brass, S. 2000. SLDMagic — the real magic (with applications to web queries). In First International

Conference on Computational Logic (CL’2000/DOOD’2000), W. Lloyd et al., Eds. Number 1861

in LNCS. Springer, Heidelberg, Berlin, 1063–1077.

Brass, S. 2009. Range restriction for general formulas. In 23rd Workshop on (Constraint) Logic
Programming (WLP’09), A. Wolf and U. Geske, Eds. Universitätsverlag Potsdam, 125–137.

Brass, S. and Stephan, H. 2013. A variant of earley deduction with partial evaluation. In Datalog
ieasoning and Rule Systems - 7th International Conference, RR 2013, W. Faber and D. Lembo,

Eds. LNCS, vol. 7994. Springer-Verlag, 35–49.

Bry, F. 1990. Query evaluation in recursive databases: bottom-up and top-down reconciled. Data
& Knowledge Engineering 5, 289–312.

Chen, W. and Warren, D. S. 1996. Tabled evaluation with delaying for general logic programs.

Journal of the ACM 43, 1, 20–74.

Gallagher, J. P. 1993. Tutorial on specialisation of logic programs. In Proceedings of the 1993

ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manipulation
(PEPM’93). ACM, 88–98.

Greco, S. and Zaniolo, C. 1992. Optimization of linear logic programs using counting methods.

In Advances in Database Technology — EDBT’92, 3rd Int. Conf., A. Pirotte, C. Delobel, and

G. Gottlob, Eds. Number 580 in LNCS. Springer-Verlag, 72–87.

Han, J. 1995. Chain-split evaluation in deductive databases. IEEE Transactions on Knowledge and

Data Engineering 7, 2, 261–273.

Kifer, M., Ramakrishnan, R., and Siberschatz, A. 1988. An axiomatic approach to deciding

query safety in deductive databases. In Proc. of the Seventh ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS’88). 52–60.

Lei, L., Moll, G.-H., and Kouloumdjian, J. 1990. A deductive database architecture based on

partial evaluation. SIGMOD Record 19, 3, 24–29.

Mumick, I. S., Pirahesh, H., and Ramakrishnan, R. 1990. The magic of duplicates and aggregates.

In Proc. of the 16th International Conf. on Very Large Data Bases (VLDB’90), D. McLeod,

R. Sacks-Davis, and H.-J. Schek, Eds. Morgan Kaufmann, 264–277.

Nguyen, L. A. and Cao, S. T. 2012. Query-subquery nets. In Computational Collective Intelligence.
Technologies and Applications. 4th International Conference, ICCCI 2012, Proceedings, Part I,

N.-T. Nguyen et al., Eds. Number 7653 in LNCS. Springer, 239–248.

Pereira, F. C. N. and Warren, D. H. D. 1983. Parsing as deduction. In Proceedings of the 21st
Annual Meeting of the Association for Computational Linguistics (ACL). 137–144.

Porter III, H. H. 1986. Earley deduction. http://web.cecs.pdx.edu/~harry/earley/.

Ramakrishnan, R., Bancilhon, F., and Siberschatz, A. 1987. Safety of recursive horn clauses

with infinite relations. In Proc. of the Sixth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS’87). 328–339.

Ross, K. A. 1991. Modular acyclicity and tail recursion in logic programs. In Proc. of the Tenth

ACM SIGACT-SIGMOD-SIGART Symp. on Princ. of Database Systems (PODS’91). 92–101.

Sakama, C. and Itoh, H. 1988. Partial evaluation of queries in deductive databases. New Generation
Computing 6, 249–258.

Tamaki, H. and Sato, T. 1986. OLD resolution with tabulation. In Proc. Third Int. Conf. on Logic
Programming (ICLP), E. Shapiro, Ed. Number 225 in LNCS. Springer, 84–98.

Supplementary material: Technical Communication c© 2014 [Sergio Castro, Kim Mens and Paulo

Moura]

1

Customisable Handling of Java References
in Prolog Programs

SERGIO CASTRO, KIM MENS and PAULO MOURAã
ICTEAM Institute, Université catholique de Louvain, Belgium

CRACS & INESC TEC, Faculty of Sciences, University of Porto

(e-mail: {sergio.castro,kim.mens}@uclouvain.be,pmoura@inescporto.pt)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Integration techniques for combining programs written in distinct language paradigms facilitate

the implementation of specialised modules in the best language for their task. In the case of

Java-Prolog integration, a known problem is the proper representation of references to Java objects

on the Prolog side. To solve it adequately, multiple dimensions should be considered, including

reference representation, opacity of the representation, identity preservation, reference life span, and

scope of the inter-language conversion policies. This paper presents an approach that addresses all

these dimensions, generalising and building on existing representation patterns of foreign references

in Prolog, and taking inspiration from similar inter-language representation techniques found in

other domains. Our approach maximises portability by making few assumptions about the Prolog

engine interacting with Java (e.g., embedded or executed as an external process). We validate our

work by extending JPC, an open-source integration library, with features supporting our approach.

Our JPC library is currently compatible with three different open source Prolog engines (SWI, YAP

and XSB) by means of drivers.

KEYWORDS: Multi-Paradigm Programming, Language Interoperability, Logic Programming, Object-

Oriented Programming, Prolog, Java

1 Introduction

Writing program modules in the language best suited for their task can greatly facilitate

their implementation (Mernik et al. 2005). However, integrating modules written in

different languages is not trivial when such languages belong to different paradigms

(Gybels 2003). This is especially the case for Prolog programs integrated with an object-

oriented language such as Java (Denti et al. 2005). One of the main problems of this

integration is the proper representation of foreign language artefacts in the logic language,

such that they can be conveniently manipulated and interpreted (Gybels 2003).

The scope of this work concerns a portable approach to simplify the management

and representation of Java object references in Prolog. Studying existing solutions to this

problem in Prolog, similar logic languages (e.g., Soul (Roover et al. 2011)) and even

inter-language conversion libraries in other domains (e.g., Google’s Gson library (Google

Inc. 2012)), we have identified the following dimensions to be tackled: 1) reference

ã This work is partially funded by ERDF through the CMPETE Programme and by FCT within project
FCOMP-01-0124-FEDER-037281).

2 Sergio Castro, Kim Mens and Paulo Moura

representation; 2) opacity of the representation; 3) identity preservation; 4) reference life

span and 5) scope of the inter-language conversion policies. To maximise portability, our

approach does not make any simplifying assumption regarding the architecture of the

Prolog engine (e.g., such as it being embedded in the JVM). We validate our work by

extending our Java Prolog Connectivity (JPC)1 integration library (Castro et al. 2013)

with customisable support for managing Java references in Prolog.

This paper is structured as follows. Section 2 discusses the main Java reference rep-

resentation issues in Prolog. Section 3 presents an overview of JPC’s architecture. JPC’s

approach for custom management of Java references in Prolog is discussed in section 4.

Section 5 discusses related work. Section 6 summarizes our conclusions and future work.

2 The Problem of Representing Java References in Prolog

In this section, we identify the different dimensions to be taken into consideration when

looking at the problem of representing Java references in Prolog (figure 1). These dimen-

sions have been extracted and generalised from existing solutions to this problem both in

Prolog and other inter-language representation domains.

Context -Dependent

Explicit
Management vs.

Garbage
Collection

Life Span

Strong vs.
Weak (or Soft)

References

Identity
Preservation

Identity

Identity vs.
EqualitySymbolic

Opacity

Object
Reference

Constant vs.
Open

Unification

White vs.
Black Box

Representation

Property

(A)

(B)

(C)

(D) (F)
{ {Any

architecture
Engine

embedded
in JVM

(E)

Fig. 1. Reference Management Dimensions

2.1 Reference Representation

A first important dimension is how Java objects are represented on the logic side.

Several integration libraries allow to reify Java objects in Prolog using a symbolic term

representation (Singleton et al. 2004; Carlsson et al. 1995; Calejo 2004). As show in

figure 1, such approach has the advantage of not relying on any specific Prolog engine

architecture.

Alternatively, Prolog implementations running in the JVM may support the storage

of direct object references (e.g., Jinni (Tarau 2004) and LeanProlog (Tarau 2011)). An

advantage of this representation scheme is that there are no performance penalties

associated to the marshalling/unmarshalling of Java objects to/from the Prolog engine.

2.2 Opacity of the Representation

A second important dimension is the degree of opacity of the representation (i.e., the

degree of data exposed). For symbolic term representations (A), frequently a fine-grained

reification of the internal object structure (i.e., a white box representation) is desired. For

1 https://github.com/java-prolog-connectivity

https://github.com/java-prolog-connectivity

Customisable Handling of Java References in Prolog Programs 3

example, JTransformer (Kniesel et al. 2007) allows to reason over the structure of terms

reifying objects modelling a Java abstract syntax tree. However, if inspecting the object’s

structure on the Prolog side is not required, having an opaque reference (i.e., a black box

representation) to the corresponding Java object is preferable (e.g., an opaque reference to

a GUI component on the Java side). In those cases, an automatic mechanism to generate

opaque term representations of Java objects is desirable.

When the Prolog engine is embedded in a JVM, a more direct kind of reference to

Java objects can be established (B). In the simplest case, the object reference can be

considered and unified as a special constant term. In spite of the more direct mapping

(no automated mapping to generate the reference is required; the term wraps the object

‘as is’), this case is conceptually equivalent to mapping the object reference to an opaque

term representation. But we may want to combine the best of both worlds and have

direct references to the actual Java objects, while still allowing Prolog programs to reason

over the internal structure of such objects. Approaches such as Soul (Roover et al. 2011)

have achieved this through the mechanism of open unification (Brichau et al. 2007). This

approach consists in allowing the programmer to customise not the term representation of

an object, but rather its unification mechanism. In a nutshell, the unification mechanism

is opened up so that Java objects are not regarded as constants but can be unified with

structured logic terms of the right form.

2.3 Object Identity Preservation

For logic engines running in the JVM (D) object references are preserved automatically

since the term wraps the object ‘as is’. For engines not embedded in the JVM, a programmer

needs to decide if an object reified as a term should preserve its identity when the term is

translated back to a Java object (C). In many situations, it is not important to preserve

such identity (e.g., instances of String) and a different reference, considered equivalent

to the original object (e.g., by means of the equals method), is acceptable. However, in

certain cases, keeping track of the original reference is required to guarantee the expected

behaviour of the program (e.g., if the reference points to a GUI component). Furthermore,

passing around symbolic representations of object references is often more efficient than

marshalling and unmarshalling large Java objects. Note that the need for preserving the

original object identity is orthogonal to the required opacity of the representation. I.e.,

independently if the reference should be preserved or not, the programmer should still be

able to decide on the best representation of the object on the Prolog side.

2.4 Reference Life Span

A fourth dimension is the life span of Prolog references to Java objects. For a symbolic

term representation, a programmer should decide on a mechanism for delimiting the life

span of a mapping between a Java reference and a Prolog term (E). This mechanism can

be explicit (e.g., an API allowing to request to ‘forget’ a mapping) or rely on JVM garbage

collection mechanisms. An explicit mechanism enables a fine-grained control over the life

span of a reference. For example, a symbolic term representation of an object that is not

explicitly referenced in a program (i.e., normally to be scheduled for garbage collection)

can still remain valid until explicitly discarded. Alternatively, a reference life span may be

automatically delimited by the JVM garbage-collection mechanism (e.g., a reference to the

application main window). For an object reference representation (F), the programmer

4 Sergio Castro, Kim Mens and Paulo Moura

may want to keep the reference alive as long as it is present in the Prolog database (i.e., a

strong reference). However, in certain scenarios a Java reference stored in Prolog should

not prevent it from being garbage collected (e.g., the reference points to a disposed GUI

component). In that case, the reference should be invalidated when it is reclaimed by the

garbage collector. A programmer may also want to define customisable cleaning tasks

to be automatically executed when a reference is garbage collected. For example, clauses

containing dead references may be automatically retracted from the Prolog database to

avoid unexpected behaviours (e.g., null pointer exceptions). Furthermore, references that

may be reclaimed by the garbage collector should be classified according to the Java

(garbage-collected) reference types: Weak for eagerly collected references (discarded at

the next garbage collection cycle) and Soft for references not aggressively reclaimed (only

collected when the memory is tight).2

2.5 Scope of the Inter-Language Conversion Policies

We claim that it is useful for a programmer to be able to choose different reference

management policies in different parts of the program. To achieve that, it is needed

a simple mechanism for scoping and encapsulating the best reference handling policy

for certain objects. Besides greater flexibility, this facilitates performance tuning and

testing (e.g., generating mocking representations of references). Next, we will introduce

the architecture of a library that supports a customisable management of all these

dimensions.

3 Architecture

JPC is an integration library supporting the development of hybrid Java–Prolog programs.

It provides different levels of abstractions, simplifying the implementation of common

inter-operability tasks. To set the ground for discussing the JPC features for Java reference

management in Prolog, this section overviews its main components (figure 2).

3.1 Prolog VM Abstraction

Several integration libraries rely on the notion of a Prolog engine as a convenient

abstraction for interacting with a Prolog virtual machine from Java (Tarau 2004; Rho

et al. 2004; Calejo 2004). In JPC, a programmer interacts with a Prolog engine abstraction

that communicates with concrete Prolog engines using drivers. With portability in mind,

when modelling such an abstract Prolog engine we tried to find a compromise between

(1) offering convenient features facilitating the interaction from Java programs and (2)

not assuming a specific implementation architecture of the underlying Prolog engine. Our

Prolog engine abstraction provides a general purpose API for interacting with Prolog.

However, as illustrated in section 4, JPC also supplies a higher level API that simplifies

certain tasks (e.g., inter-language conversions). JPC defines a set of classes reifying Prolog

data types: Term, Atom, Compound, IntegerTerm, FloatTerm, Var, JRef (a Java reference term; a special

kind of term wrapping a Java reference).
3.2 Embedded Prolog Database

JPC uses an embedded Prolog database running on the JVM and supporting the storage

of Java object references in addition to standard Prolog terms. Several JPC interoperability

2 http://docs.oracle.com/javase/7/docs/api/java/lang/ref/Reference.html

http://docs.oracle.com/javase/7/docs/api/java/lang/ref/Reference.html

Customisable Handling of Java References in Prolog Programs 5

Concrete Prolog engines

Engine-specific drivers

JPC library

Java-Prolog
applications

High-level API

Prolog VM
abstraction

(layer coupling denoted
by the direction of the arrows)

Embedded Prolog
database

JPLPDT InterProlog

SWI XSBYAP

Fig. 2. The JPC architecture

features rely on this component, which maintains mappings between Prolog terms and

arbitrary Java objects (represented as JRef terms).

4 Reference Management with JPC

This section describes JPC’s support for the different dimensions related to the manage-

ment of Java references in Prolog (figure 1).

4.1 Symbolic Representation

To illustrate the properties of symbolic references (identified by the first row of figure 1),

we start by defining a Person class (listing 1) declaring name as its only instance variable.

1 public class Person implements Serializable {

2 private final String name;

3 public Person(String name) {this.name = name;}

4 ...

5 @Override

6 public boolean equals(Object obj) {

7 ... return ((Person)obj).name.equals(name); //simplified implementation

8 }

9 }

Listing 1. The Person class

The PersonConverter class (listing 2) defines how instances of class Person are translated to

a Prolog compound term (lines 5–7) and back (lines 8–10). According to our classification

in section 2.2, the term reification of a person, according to this converter, corresponds to

a white box representation since it exposes its internal data.

1 public class PersonConverter implements FromTermConverter<Compound, Person>,

2 ToTermConverter<Person, Compound> {

3 public static final String PERSON_FUNCTOR_NAME = "person";

4

5 @Override public Compound toTerm(Person person, Class<Compound> termClass, Jpc context) {

6 return new Compound(PERSON_FUNCTOR_NAME, asList(new Atom(person.getName())));

7 }

8 @Override public Person fromTerm(Compound personTerm, Type targetType, Jpc context) {

9 return new Person(((Atom)((Compound)personTerm).arg(1)).getName());

10 }

11 }

Listing 2. The PersonConverter class

6 Sergio Castro, Kim Mens and Paulo Moura

Listing 3 illustrates a white box term representation of a Java object, without object

identity preservation (the first three lines are common to most examples; we will not

repeat them). A central artefact in our approach is a conversion context, instantiated in

line 4 using a builder class and configured with the PersonConverter converter. With this

context we obtain the conversion of a person in line 5 (person(mary)). Next, we assert the fact

student(person(mary)) (line 6). A student(A) goal is instantiated in line 7 passing the context

defined before. A person is queried in line 8 using a deterministic query. The selectObject()

method adapts each solution to the query as an object whose term reification is given

as a string. This adaptation corresponds to the conversion as a Java object of the term

that has been bound to the Person variable in the solution. Lines 9 and 10 verify that the

queried and the original persons are equal, although with different identities.

1 final String STUDENT_FUNCTOR_NAME = "student";

2 PrologEngine prologEngine = getPrologEngine();

3 Person mary = new Person("Mary");

4 Jpc ctx = JpcBuilder.create().register(new PersonConverter()).build();

5 Term personTerm = ctx.toTerm(mary);

6 prologEngine.assertz(new Compound(STUDENT_FUNCTOR_NAME, asList(personTerm)));

7 Query query = prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME, asList(new Var("Person"))), ctx);

8 Person queriedPerson = query.<Person>selectObject("Person").oneSolutionOrThrow();

9 assertEquals(mary, queriedPerson);

10 assertFalse(mary == queriedPerson);

Listing 3. White Box without Identity Preservation

Listing 4 illustrates the mapping of a reference to a term representation (line 2) in the

scope of a context. The newRefTerm() method associates a person reference (first argument)

to an arbitrary (compound) term representation (second argument). In this example, the

term corresponds to the term conversion of the reference according to a given conversion

context (obtained by the toTerm() method of the context instance). We verify that this time

the queried person corresponds to the original person reference in line 6.

1 Jpc ctx = JpcBuilder.create().register(new PersonConverter()).build();

2 Term personTerm = ctx.newRefTerm(person, ctx.<Compound>toTerm(mary));

3 prologEngine.assertz(new Compound(STUDENT_FUNCTOR_NAME, asList(personTerm)));

4 Query query = prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME, asList(new Var("Person"))), ctx);

5 Person queriedPerson = query.<Person>selectObject("Person").oneSolutionOrThrow();

6 assertTrue(mary == queriedPerson);

Listing 4. White Box and Identity Preservation

An example of a black box representation is shown in listing 5. Here, we assert a term

of the form student(serialisation), where the compound argument corresponds to the term

representation of the serialisation of a Person instance. No converter is passed to the query

in line 2. This is because the default conversion context (employed by the query if no

context is explicitly passed) includes a converter able to deserialize a Java object from the

term representation of its serialisation. Finally, we verify that our queried person is equal

to the original person (line 4) although having different identities (line 5).

Although in the context of this example we have presented this term reification as a

black box representation, note that in other contexts this may be considered as a white

box. This would be the case if the Prolog side is intended to interpret such representation

(e.g., if it reasons over the serialised bytes of the object (Calejo 2004)).

Customisable Handling of Java References in Prolog Programs 7

1 prologEngine.assertz(new Compound(STUDENT_FUNCTOR_NAME, asList(SerializedTerm.serialize(mary))));

2 Query query = prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME, asList(new Var("Person"))));

3 Person queriedPerson = query.<Person>selectObject("Person").oneSolutionOrThrow();

4 assertEquals(mary, queriedPerson);

5 assertFalse(mary == queriedPerson);

Listing 5. Black Box without Identity Preservation

A programmer can also associate an automatically generated term to a reference. An

example is given in listing 6. This time we invoke the method newRefTerm() passing as

only argument the reference to reify as a term (line 2). A (black box) term representa-

tion is generated behind the curtains. Our library guarantees that such generated term

representations are identical for the same object even across different contexts.

1 Jpc ctx = JpcBuilder.create().build();

2 Term personTerm = ctx.newRefTerm(mary);

3 prologEngine.assertz(new Compound(STUDENT_FUNCTOR_NAME, asList(personTerm)));

4 Query query = prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME, asList(new Var("Person"))), ctx);

5 Person queriedPerson = query.<Person>selectObject("Person").oneSolutionOrThrow();

6 assertTrue(mary == queriedPerson);

Listing 6. Black Box and Identity Preservation

As discussed in section 2.4, a programmer should also be able to control the life span of

term–reference mappings. Listing 7 shows an example. We use the newRefTerm() method (line

2) to associate a reference to its (context dependent) term reification. But afterwards we

delete this association using the forgetRefTerm() method (line 5). Thus, although the queried

person is equal to the original person (line 7) since the term is translated according to the

conversion context (line 1), they do not have the same identity (line 8) as the association

between the term and the original reference was eliminated.

1 Jpc ctx = JpcBuilder.create().register(new PersonConverter()).build();

2 Term personTerm = ctx.newRefTerm(person, ctx.<Compound>toTerm(mary));

3 prologEngine.assertz(new Compound(STUDENT_FUNCTOR_NAME, asList(personTerm)));

4 assertTrue(mary == prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME, asList(new Var("Person"))),

ctx).selectObject("Person").oneSolutionOrThrow());

5 ctx.forgetRefTerm((Compound)personTerm);

6 Person queriedPerson = prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME, asList(new

Var("Person"))), ctx).<Person>selectObject("Person").oneSolutionOrThrow();

7 assertEquals(mary, queriedPerson);

8 assertFalse(mary == queriedPerson);

Listing 7. Explicit Management of Associations Life Span

A programmer can also rely on the Java garbage collection mechanism for delimiting

the life span of an association as shown in listing 8. The newWeakRefTerm() method (line 2)

is equivalent to the newRefTerm() method discussed earlier. But in this case the association

between a term and a reference persists as long as the reference is not reclaimed in the

next garbage collection cycle. To prove it, we assign null to the only variable keeping a

reference to the person (line 4) and give a hint to the garbage collector to start a cycle

(line 5). Note that the query is not instantiated with a conversion context (line 7). Thus,

an exception is raised when we try to convert the term (bound to the variable Person) to an

object as no converter is found and no reference is associated to such term. Our framework

also provides the newSoftRefTerm() method with similar semantics than newWeakRefTerm(), with

8 Sergio Castro, Kim Mens and Paulo Moura

the only difference that an association between a term and a reference may persist some

time after a garbage collection cycle, and will be deleted only if the memory gets tight.

1 Jpc ctx = JpcBuilder.create().register(new PersonConverter()).build();

2 Term personTerm = ctx.newWeakRefTerm(mary, ctx.<Compound>toTerm(mary));

3 prologEngine.assertz(new Compound(STUDENT_FUNCTOR_NAME, asList(personTerm)));

4 mary = null;

5 System.gc();

6 try {

7 prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME, asList(new

Var("Person")))).<Person>selectObject("Person").oneSolutionOrThrow();

8 fail();

9 } catch(ConversionException e) {}

Listing 8. Garbage Collection Management of Associations Life Span

4.2 Object Reference Representation

This section focuses on the properties of object references (identified by the second row

of figure 1). Although our library currently only has drivers for non-embedded Prolog

engines, as a proof of concept we implement the examples in this section using the JPC

embedded Prolog database described in section 3.1. With the exception of open unification,

all the other properties are supported by our implementation.

We start with an example of constant unification of references in listing 9. As mentioned

in section 3.1, a JPCJRef term wrapps an object reference. In our current version, they

are unified as constants (i.e., unifying tow JRef terms succeeds if their referred objects are

equal). In line 1 we assert that mary (wrapped in a JRef term) is a student. In line 2 we

query if a different person object with the same name is a student, which succeeds.

1 prologEngine.assertz(new Compound(STUDENT_FUNCTOR_NAME, asList(JRef.jRef(mary))));

2 assertTrue(prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME, asList(JRef.jRef(new

Person("mary"))))).hasSolution());

3 Solution solution = prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME, asList(new

Var("X")))).oneSolutionOrThrow();

4 JRef<Person> jRef = (JRef<Person>) solution.get("X");

5 assertTrue(mary == jRef.getReferent());

Listing 9. Constant Unification of JRef terms

Thanks to our embedded Prolog database, the identity of a reference is trivially

preserved. To illustrate this, we execute a deterministic query (line 3) with goal student(X).

We verify that the obtained referent has the same identity as mary in line 5.

Listing 10 shows how to create JRef instances that may be garbage collected. We first

create two objects equal to mary and assert them, using two kind of references: strong (line

3) and weak (line 4). When we query for students unifying with mary (line 5) using a strong

reference, we get two results instead of one. This is because the unification semantics of

JRef terms evaluates the referents, not the actual JRef term wrapper. Afterwards we assign

to null the variable person2 (line 6) and give a hint to the garbage collector to execute a

cycle (line 7). Since the referent of the JRef term asserted in line 4 has been invalidated,

the number of students unifying with mary is now only 1 (line 8). Note that weak or soft

references should be used with care: they may require non-monotonic reasoning as the

referent of a JRef term may be invalidated during the query execution.

Customisable Handling of Java References in Prolog Programs 9

1 Person person2 = new Person("Mary");

2 Person person3 = new Person("Mary");

3 prologEngine.assertz(new Compound(STUDENT_FUNCTOR_NAME, asList(JRef.jRef(mary))));

4 prologEngine.assertz(new Compound(STUDENT_FUNCTOR_NAME, asList(JRef.weakJRef(person2))));

5 assertEquals(2, prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME,

asList(JRef.jRef(mary)))).allSolutions().size());

6 person2 = null;

7 System.gc();

8 assertEquals(1, prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME,

asList(JRef.jRef(mary)))).allSolutions().size());

Listing 10. Life Span of JRef terms

The previous example motivates the need of a cleaning mechanism. Listing 11 illustrates

such mechanism using a user-defined cleaning task. To keep our example simple, this

cleaning task retracts all the asserted students (lines 1–5) when a reference is invalidated.

A more sophisticated example would retract only the invalidated reference. Our cleaning

task is associated with a weak reference in line 6. In line 9 we verify that no students are

in the database after the reference to mary has been invalidated (lines 7–8).

1 Runnable cleaningTask = new Runnable() {

2 @Override public void run() {

3 prologEngine.retractAll(new Compound(STUDENT_FUNCTOR_NAME, asList(Var.ANONYMOUS_VAR)));

4 }

5 };

6 prologEngine.assertz(new Compound(STUDENT_FUNCTOR_NAME, asList(JRef.weakJRef(mary, cleaningTask))));

7 mary = null;

8 System.gc();

9 assertFalse(prologEngine.query(new Compound(STUDENT_FUNCTOR_NAME,

asList(Var.ANONYMOUS_VAR))).hasSolution());

Listing 11. Cleaning Tasks

5 Related Work

Most related work has already been overviewed in sections 2 and 3.1 so we do not repeat it

here. InterProlog inspired the serialisation mechanism illustrated in listing 5. It provides

a more structured representation of a serialised object on the Prolog side using a definite

clause grammar. Currently we represent serialised bytes as an atom using a raw base-64

encoding. InterProlog has limited support, however, for customising the reification as a

term of arbitrary Java objects (even not serialisable ones) as in our approach. Concerning

our mechanisms for custom two-way conversions between inter-language artefacts, this

was inspired by Google’s Gson library, which aims to provide a high-level tool for

conversions between Java objects and their JSON representation.

6 Conclusions and Future Work

This work discusses different dimensions that should be taken into consideration when

dealing with Java references in Prolog programs. These dimensions have been extracted

from many sources, including our own experience, a study of existing approaches, and even

existing solutions in other domains. At the moment, JPC does not implement a mechanism

for interacting with Java from the Prolog side. In line with our portability goal, we plan

to implement our Prolog side API using Logtalk (Moura 2003), a portable object-oriented

layer for Prolog. As in the current Java side API, we expect to prototype a first version by

10 Sergio Castro, Kim Mens and Paulo Moura

reusing existing bridge libraries. We will also continue improving our embedded Prolog

database so that it can be released as a stand-alone embedded Prolog engine. We hope

that our work will benefit not only implementors of Java–Prolog integration libraries, but

also integrators of similar object-oriented and logic languages.

References

Brichau, J., De Roover, C., and Mens, K. 2007. Open Unification for Program Query Languages.

In Proceedings of the XXVI International Conference of the Chilean Computer Science Society

(SCCC 2007).

Calejo, M. 2004. InterProlog: Towards a Declarative Embedding of Logic Programming in

Java. In Logics in Artificial Intelligence, 9th European Conference, JELIA 2004, Lisbon, Portugal,

September 27-30, 2004, Proceedings, José Júlio Alferes and João Alexandre Leite, Ed. Lecture

Notes in Computer Science, vol. 3229. Springer, 714–717.

Carlsson, M. et al. 1995. SICStus Prolog User’s Manual , Release 3 ed. Swedish Institute of

Computer Science. ISBN 91-630-3648-7.

Castro, S., Mens, K., and Moura, P. 2013. JPC: A Library for Modularising Inter-Language

Conversion Concerns between Java and Prolog. In International Workshop on Advanced Software

Development Tools and Techniques (WASDeTT).

Denti, E., Omicini, A., and Ricci, A. 2005. Multi-paradigm Java–Prolog Integration in tuProlog.

Science of Computer Programming 57, 2, 217 – 250.

Google Inc. 2012. Gson 2.2.2: A Java library to convert JSON strings to Java objects and

vice-versa. http://code.google.com/p/google-gson/.

Gybels, K. 2003. SOUL and Smalltalk — Just Married: Evolution of the Interaction Between a

Logic and an Object-Oriented Language Towards Symbiosis. In Proceedings of the Workshop on

Declarative Programming in the Context of Object-Oriented Languages.

Kniesel, G., Hannemann, J., and Rho, T. 2007. A Comparison of Logic-Based Infrastructures

for Concern Detection and Extraction. In Proceedings of the 3rd workshop on Linking aspect

technology and evolution. LATE’07. ACM, New York, NY, USA.

Mernik, M., Heering, J., and Sloane, A. M. 2005. When and How to Develop Domain-specific

Languages. ACM Comput. Surv. 37, 4 (Dec.), 316–344.

Moura, P. 2003. Logtalk – Design of an Object-Oriented Logic Programming Language. Ph.D.

thesis, Department of Computer Science, University of Beira Interior, Portugal.

Rho, T., Degener, L., Günter Kniesel, Frank Mühlschlegel, Eva Stöwe, Noth, F., Becker,

A., and Alyiev, I. 2004. The Prolog Development Tool – A Prolog IDE for Eclipse. http:

//sewiki.iai.uni-bonn.de/research/pdt/.

Roover, C. D., Noguera, C., Kellens, A., and Jonckers, V. 2011. The SOUL Tool Suite for

Querying Programs in Symbiosis with Eclipse. In International Conference on Principles and

Practices of Programming on the Java Platform. 71–80.

Singleton, P., Dushin, F., and Wielemaker, J. 2004. JPL 3.0: A Bidirectional Interface Between

Prolog and Java. http://www.swi-prolog.org/packages/jpl/java_api/.

Tarau, P. 2004. Agent Oriented Logic Programming Constructs in Jinni 2004. In International

Conference of Logic Programming, B. Demoen and V. Lifschitz, Eds. Lecture Notes in Computer

Science, vol. 3132. Springer, 477–478.

Tarau, P. 2011. Integrated Symbol Table, Engine and Heap Memory Management in Multi-engine

Prolog. In Proceedings of the 10th International Symposium on Memory Management. ACM, 129–

138.

http://code.google.com/p/google-gson/
http://sewiki.iai.uni-bonn.de/research/pdt/
http://sewiki.iai.uni-bonn.de/research/pdt/
http://www.swi-prolog.org/packages/jpl/java_api/

Supplementary material: Technical Communication c© 2014 [John P. Gallagher and Bishoksan Kafle] 1

Analysis and Transformation Tools for
Constrained Horn Clause Verificationã

John P. Gallagher

Roskilde University, Denmark and IMDEA Software Institute, Madrid, Spain

(e-mail: jpg@ruc.dk)

Bishoksan Kafle

Roskilde University, Denmark

(e-mail: kafle@ruc.dk)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Several techniques and tools have been developed for verification of properties expressed as Horn

clauses with constraints over a background theory (CHC). Current CHC verification tools implement

intricate algorithms and are often limited to certain subclasses of CHC problems. Our aim in this

work is to investigate the use of a combination of off-the-shelf techniques from the literature

in analysis and transformation of Constraint Logic Programs (CLPs) to solve challenging CHC

verification problems. We find that many problems can be solved using a combination of tools

based on well-known techniques from abstract interpretation, semantics-preserving transformations,

program specialisation and query-answer transformations. This gives insights into the design of

automatic, more general CHC verification tools based on a library of components.

KEYWORDS: Constraint Logic Program, Constrained Horn Clause, Abstract Interpretation, Soft-

ware Verification.

1 Introduction

CHCs provide a suitable intermediate form for expressing the semantics of a variety

of programming languages (imperative, functional, concurrent, etc.) and computational

models (state machines, transition systems, big- and small-step operational semantics,

Petri nets, etc.). As a result it has been used as a target language for software verification.

Recently there is a growing interest in CHC verification from both the logic programming

and software verification communities, and several verification techniques and tools have

been developed for CHC.

Pure CLPs are syntactically and semantically the same as CHC. The main difference

is that sets of constrained Horn clauses are not necessarily intended for execution, but

rather as specifications. From the point of view of verification, we do not distinguish

ã The research leading to these results has received funding from the European Union 7th Framework Pro-
gramme under grant agreement no. 318337, ENTRA - Whole-Systems Energy Transparency and the Danish
Natural Science Research Council grant NUSA: Numerical and Symbolic Abstractions for Software Model
Checking.

2 John P. Gallagher and Bishoksan Kafle

between CHC and pure CLP. Much research has been carried out on the analysis and

transformation of CLP programs, typically for synthesising efficient programs or for

inferring run-time properties of programs for the purpose of debugging, compile-time

optimisations or program understanding. In this paper we investigate the application of

this research to the CHC verification problem.

In Section 2 we define the CHC verification problem. In Section 3 we define basic

transformation and analysis components drawn from or inspired by the CLP literature.

Section 4 discusses the role of these components in verification, illustrating them on an

example problem. In Section 5 we construct a tool-chain out of these components and test

it on a range of CHC verification benchmark problems. The results reported represent

one of the main contributions of this work. In Section 6 we propose possible extensions

of the basic tool-chain and compare them with related work on CHC verification tool

architectures. Finally in Section 7 we summarise the conclusions from this work.

2 Background: The CHC Verification Problem

A CHC is a first order predicate logic formula of the form ∀(φ ∧ B1(X1)∧ . . . ∧ Bk(Xk)→
H(X)) (k > 0), where φ is a conjunction of constraints with respect to some background

theory, Xi, X are (possibly empty) vectors of distinct variables, B1, . . . , Bk , H are predicate

symbols, H(X) is the head of the clause and φ ∧ B1(X1) ∧ . . . ∧ Bk(Xk) is the body.

Sometimes the clause is written H(X)← φ ∧ B1(X1), . . . , Bk(Xk) and in concrete examples

it is written in the form H :- φ, B1(X1),. . .,Bk(Xk). In examples, predicate symbols start

with lowercase letters while we use uppercase letters for variables.

We assume here that the constraint theory is linear arithmetic with relation symbols

6, >, >, < and = and that there is a distinguished predicate symbol false which is

interpreted as false. In practice the predicate false only occurs in the head of clauses;

we call clauses whose head is false integrity constraints, following the terminology of

deductive databases. Thus the formula φ1 ← φ2 ∧ B1(X1), . . . , Bk(Xk) is equivalent to the

formula false← ¬φ1∧φ2∧B1(X1), . . . , Bk(Xk). The latter might not be a CHC but can be

converted to an equivalent set of CHCs by transforming the formula ¬φ1 and distributing

any disjunctions that arise over the rest of the body. For example, the formula X=Y :-

p(X,Y) is equivalent to the set of CHCs false :- X>Y, p(X,Y) and false :- X<Y,

p(X,Y). Integrity constraints can be viewed as safety properties. If a set of CHCs encodes

the behaviour of some system, the bodies of integrity constraints represent unsafe states.

Thus proving safety consists of showing that the bodies of integrity constraints are false

in all models of the CHC clauses.

The CHC verification problem. To state this more formally, given a set of CHCs P , the

CHC verification problem is to check whether there exists a model of P . We restate this

property in terms of the derivability of the predicate false.

Lemma 2.1

P has a model if and only if P 6|= false.

Tools for Constrained Horn Clause Verification 3

Proof

Let us write I(F) to mean that interpretation I satisfies F (I is a model of F).

P 6|= false ≡ ∃I.(I(P) and ¬I(false))

≡ ∃I.I(P) (since ¬I(false) is true by defn. of false)

≡ P has a model.

q

Obviously any model of P assigns false to the bodies of integrity constraints.

The verification problem can be formulated deductively rather than model-theoretically.

Let the relation P ⊢ A denote that A is derivable from P using some proof procedure.

If the proof procedure is sound and complete then P 6|= A if and only if P 6⊢ A. So

the verification problem is to show (using CLP terminology) that the computation of

the goal ← false in program P does not succeed using a complete proof procedure.

Although in this work we follow the model-based formulation of the problem, we exploit

the equivalence with the deductive formulation, which underlies, for example, the query-

answer transformation and specialisation techniques to be presented.

2.1 Representation of Interpretations

An interpretation of a set of CHCs is represented as a set of constrained facts of the form

A← C where A is an atomic formula p(Z1, . . . , Zn) where Z1, . . . , Zn are distinct variables

and C is a constraint over Z1, . . . , Zn. If C is true we write A← or just A. The constrained

fact A ← C is shorthand for the set of variable-free facts Aθ such that Cθ holds in the

constraint theory, and an interpretation M denotes the set of all facts denoted by its

elements; M assigns true to exactly those facts. M1 ⊆ M2 if the set of denoted facts of

M1 is contained in the set of denoted facts of M2.

Minimal models. A model of a set of CHCs is an interpretation that satisfies each

clause. There exists a minimal model with respect to the subset ordering, denoted M[[P]]

where P is the set of CHCs. M[[P]] can be computed as the least fixed point (lfp) of

an immediate consequences operator, T
C
P

, which is an extension of the standard TP

operator from logic programming, extended to handle constraints (Jaffar and Maher

1994). Furthermore lfp(TC
P

) can be computed as the limit of the ascending sequence of

interpretations ∅, TC
P

(∅), TC
P

(TC
P

(∅)), For more details, see (Jaffar and Maher 1994).

This sequence provides a basis for abstract interpretation of CHC clauses.

Proof by over-approximation of the minimal model. It is a standard theorem of CLP that

the minimal model M[[P]] is equivalent to the set of atomic consequences of P . That

is, P |= p(v1, . . . , vn) if and only if p(v1, . . . , vn) ∈ M[[P]]. Therefore, the CHC verification

problem for P is equivalent to checking that false 6∈M[[P]]. It is sufficient to find a set of

constrained facts M
′ such that M[[P]] ⊆ M

′, where false 6∈ M
′. This technique is called

proof by over-approximation of the minimal model.

3 Relevant tools for CHC Verification

In this section, we give a brief description of some relevant tools borrowed from the

literature in analysis and transformation of CLP.

4 John P. Gallagher and Bishoksan Kafle

Unfolding. Let P be a set of CHCs and c0 ∈ P be H(X)← B1, p(Y),B2 where B1,B2 are

possibly empty conjunctions of atomic formulas and constraints. Let {c1, . . . , cm} be the

set of clauses of P that have predicate p in the head, that is, ci = p(Zi) ← Di, where the

variables of these clauses are standardised apart from the variables of c0 and from each

other. Then the result of unfolding c0 on p(Y) is the set of CHCs P ′ = P \{c0}∪{c′1, . . . , c
′
m
}

where c
′
i
= H(X) ← B1, Y = Zi,Di,B2. The equality Y = Zi stands for the conjunction

of the equality of the respective elements of the vectors Y and Zi. It is a standard result

that unfolding a clause in P preserves P ’s minimal model (Pettorossi and Proietti 1999).

In particular, P |= false ≡ P
′ |= false.

Specialisation. A set of CHCs P can be specialised with respect to a query. Assume A is

an atomic formula; then we can derive a set PA such that P |= A ≡ PA |= A. PA could be

simpler than P , for instance, parts of P that are irrelevant to A could be omitted in PA. In

particular, the CHC verification problem for Pfalse and P are equivalent. There are many

techniques in the CLP literature for deriving a specialised program PA. Partial evaluation

is a well-developed method (Gallagher 1993; Leuschel 1999).

We make use a form of specialisation know as forward slicing, more specifically

redundant argument filtering (Leuschel and Sørensen 1996), in which predicate arguments

can be removed if they do not affect a computation. Given a set of CHCs P and a query A,

denote by P
raf
A

the program obtained by applying the RAF algorithm from (Leuschel and

Sørensen 1996) with respect to the goal A. We have the property that P |= A ≡ P
raf
A
|= A

and in particular that P |= false ≡ P
raf
false |= false.

Query-answer transformation. Given a set of CHCs P and an atomic query A, the query-

answer transformation of P with respect to A is a set of CHCs which simulates the

computation of the goal ← A in P , using a left-to-right computation rule. Query-answer

transformation is a generalisation of the magic set transformations for Datalog. For

each predicate p, two new predicates pans and pquery are defined. For an atomic formula

A, Aans and Aquery denote the replacement of A’s predicate symbol p by pans and pquery

respectively. Given a program P and query A, the idea is to derive a program P
qa
A

with

the following property P |= A iff P
qa
A
|= Aans. The Aquery predicates represent calls in the

computation tree generated during the execution of the goal. For more details see (Debray

and Ramakrishnan 1994; Gallagher and de Waal 1993; Codish and Demoen 1993). In

particular, P
qa
false |= falseans ≡ P |= false, so we can transform a CHC verification problem

to an equivalent CHC verification problem on the query-answer program generated with

respect to the goal ← false.

Predicate splitting. Let P be a set of CHCs and let {c1, . . . , cm} be the set of clauses in

P having some given predicate p in the head, where ci = p(X) ← Di. Let C1, . . . , Ck be

some partition of {c1, . . . , cm}, where Cj = {cj1 , . . . , cjnj }. Define k new predicates p1 . . . pk ,

where pj is defined by the bodies of clauses in partition Cj , namely Q j = {pj(X) ←
Dj1

, . . . , pj(X) ← Djnj
}. Finally, define k clauses Cp = {p(X) ← p1(X), . . . , p(X) ← pk(X)}.

Then we define a splitting transformation as follows.

1. Let P ′ = P \ {c1, . . . , cm} ∪ Cp ∪ Q1 ∪ . . . ∪Q k .

2. Let P
split be the result of unfolding every clause in P

′ whose body contains p(Y)

with the clauses Cp.

Tools for Constrained Horn Clause Verification 5

In our applications, we use splitting to create separate predicates for clauses for a

given predicate whose constraints are mutually exclusive. For example, given the clauses

new3(A,B) :- A=<99, new4(A,B) and new3(A,B) :- A>=100, new5(A,B), we produce

two new predicates, since the constraints A=<99 and A>=100 are disjoint. The new pre-

dicates are defined by clauses new31(A,B) :- A=<99, new4(A,B) and new32(A,B) :-

A>=100, new5(A,B), and all calls to new3 throughout the program are unfolded using

these new clauses. Splitting has been used in the CLP literature to improve the precision

of program analyses, for example in (Serebrenik and De Schreye 2001). In our case it

improves the precision of the convex polyhedron analysis discussed below, since separate

polyhedra will be maintained for each of the disjoint cases. The correctness of splitting can

be shown using standard transformations that preserve the minimal model of the program

(with respect to the predicates of the original program) (Pettorossi and Proietti 1999).

Assuming that the predicate false is not split, we have that P |= false ≡ P
split |= false.

Convex polyhedron approximation. Convex polyhedron analysis (Cousot and Halbwachs

1978) is a program analysis technique based on abstract interpretation (Cousot and

Cousot 1977). When applied to a set of CHCs P it constructs an over-approximation M
′

of the minimal model of P , where M
′ contains at most one constrained fact p(X) ← C

for each predicate p. The constraint C is a conjunction of linear inequalities, representing

a convex polyhedron. The first application of convex polyhedron analysis to CLP was

by Benoy and King (1996). Since the domain of convex polyhedra contains infinite

increasing chains, the use of a widening operator is needed to ensure convergence of

the abstract interpretation. Furthermore much research has been done on improving the

precision of widening operators. One technique is known as widening-upto, or widening

with thresholds (Halbwachs et al. 1994).

Recently, a technique for deriving more effective thresholds was developed (Lakhdar-

Chaouch et al. 2011), which we have adapted and found to be effective in experimental

studies. The thresholds are computed by the following method. Let T
C
P

be the standard

immediate consequence operator for CHCs, that is, TC
P

(I) is the set of constrained facts

that can be derived in one step from a set of constrained facts I . Given a constrained

fact p(Z̄) ← C, define atomconstraints(p(Z̄) ← C) to be the set of constrained facts

{p(Z̄)← Ci | C = C1 ∧ . . . ∧ Ck , 1 6 i 6 k)}. The function atomconstraints is extended to

interpretations by atomconstraints(I) =
⋃

p(Z̄)←C∈I{atomconstraints(p(Z̄)← C)}.

Let I⊤ be the interpretation consisting of the set of constrained facts p(Z̄) ← true

for each predicate p. We perform three iterations of T
C
P

starting with I⊤ (the first three

elements of a “top-down” Kleene sequence) and then extract the atomic constraints. That

is, thresholds is defined as follows.

thresholds(P) = atomconstraints(T
C(3)
P

(I⊤))

A difference from the method in (Lakhdar-Chaouch et al. 2011) is that we use the

concrete semantic function T
C
P

rather than the abstract semantic function when computing

thresholds. The set of threshold constraints represents an attempt to find useful predicate

properties and when widening they help to preserve invariants that might otherwise be

lost during widening. See (Lakhdar-Chaouch et al. 2011) for further details. Threshold

constraints that are not invariants are simply discarded during widening.

6 John P. Gallagher and Bishoksan Kafle

new6(A,B) :- B=<99. new4(A,B) :- C=1+A,D=1+B,A>=50,new3(C,D).

new5(A,B) :- B>=101. new3(A,B) :- A=<99, new4(A,B).

new5(A,B) :- B=<100, new6(A,B). new3(A,B) :- A>=100, new5(A,B).

new4(A,B) :- C=1+A, A=<49, new3(C,B). false :- A=0, B=50, new3(A,B).

Fig. 1. The example program MAP-disj.c.map.pl

4 The role of CLP tools in verification

The techniques discussed in the previous section play various roles. The convex polyhedron

analysis, together with the helper tool to derive threshold constraints, constructs an

approximation of the minimal model of a CHC theory. If false (or falseans) is not in

the approximate model, then the verification problem is solved. Otherwise the problem is

not solved; in effect a “don’t know” answer is returned. We have found that polyhedron

analysis alone is seldom precise enough to solve non-trivial CHC verification problems;

in combination with the other tools, it is very effective.

Unfolding can improve the structure of a program, removing some cases of mutual

recursion, or propagating constraints upwards towards the integrity constraints, and can

improve the precision and performance of convex polyhedron analysis.

Specialisation can remove parts of theories not relevant to the verification problem, and

can also propagate constraint downwards from the integrity constraints. Both of these

have a beneficial effect on performance and precision of polyhedron analysis.

Analysis of a query-answer program (with respect to false) is in effect the search for a

derivation tree for false. Its effectiveness in CHC verification problems is variable. It can

sometimes worsen performance since the query-answer transformed program is larger and

contains more recursive dependencies than the original. On the other hand, one seldom

loses precision and it is often more effective in allowing constraints to be propagated

upwards (through the ans predicates) and downwards (through the query predicates).

4.1 Application of the tools

We illustrate the tools on a running example (Figure 1), one of the benchmark suite of the

VeriMAP system De Angelis et al. (2014). The result of applying unfolding is shown in

Figure 2 (omitting the definitions of the unfolded predicates new4, new5 and new6, which

are no longer reachable from false). The unfolding strategy we adopt is the following:

the predicate dependency graph of a program consists of the set of edges (p, q) such that

there is clause where p is the predicate of the head and q is a predicate occurring in the

body. We perform a depth-first search of the predicate dependency graph, starting from

false, and identify the backward edges, namely those edges (p, q) where q is an ancestor

of p in the depth-first search. We then unfold every body call whose predicate is not at

the end of a backward edge. In Figure 1, we thus unfold calls to new4, new5 and new6.

The query-answer transformation is applied to the program in Figure 2, with respect to

the goal false resulting in the program shown in Figure 3. The model of the predicate

new3 query corresponds to those calls to new3 that are reachable from the call in the

integrity constraint. Explicit representation of the query predicates permits more effective

propagation of constraints from the integrity clauses during model approximation.

The splitting transformation is now applied to the program in Figure 3. We do not

Tools for Constrained Horn Clause Verification 7

false :- A=0, B=50, new3(A,B).

new3(A,B) :- A=<99, C = 1+A, A=<49, new3(C,B).

new3(A,B) :- A=<99, C = 1+A, D = 1+B, A>=50, new3(C,D).

new3(A,B) :- A>=100, B>=101.

new3(A,B) :- A>=100, B=<100, B=<99.

Fig. 2. Result of unfolding MAP-disj.c.map.pl

false ans :- false query, A=0, B=50, new3 ans(A,B).

new3 ans(A,B) :- new3 query(A,B), A=<99, C = 1+A, A=<49, new3 ans(C,B).

new3 ans(A,B) :- new3 query(A,B),A=<99,C is 1+A,D is 1+B, A>=50, new3 ans(C,D).

new3 ans(A,B) :- new3 query(A,B), A>=100, B>=101.

new3 ans(A,B) :- new3 query(A,B), A>=100, B=<100, B=<99.

new3 query(A,B) :- false query, A=0, B=50.

new3 query(A,B) :- new3 query(C,B), C=<99, A = 1+C, C=<49.

new3 query(A,B) :- new3 query(C,D), C=<99, A = 1+C, B = 1+D, C>=50.

false query.

Fig. 3. The query-answer transformed program for program of Figure 2

show the complete program, which contains 30 clauses. Figure 4 shows the split definition

of new3 query, which is split since the last two clauses for new3 query in Figure 3 have

mutually disjoint constraints, when projected onto the head variables.

A convex polyhedron approximation is then computed for the split program, after

computing threshold constraints for the predicates. The resulting approximate model is

shown in Figure 5 as a set of constrained facts. Since the model does not contain any

constrained fact for false ans we conclude that false ans is not a consequence of the

split program. Hence, applying the various correctness results for the unfolding, query-

answer and splitting transformations, false is not a consequence of the original program.

Discussion of the example. Application of the convex polyhedron tool to the original, or

the intermediate programs, does not solve the problem; all the transformations are needed

in this case, apart from redundant argument filtering, which only affects efficiency. The

ordering of the tool-chain can be varied somewhat, for instance switching query-answer

transformation with splitting or unfolding. In our experiments we found the ordering in

Figure 6 to be the most effective.

The model of the query-answer program is finite for this example. However, the problem

is essentially the same if the constants are scaled; for instance we could replace 50 by 5000,

49 by 4999, 100 by 10000 and 101 by 10001, and the problem is essentially unchanged.

We noted that some CHC verification tools applied to this example solve the problem,

but essentially by enumeration of the finite set of values encountered in the search. Such

new3 query 1(A,B) :- false query 1, A=0, B=50.

new3 query 1(A,B) :- new3 query 1(C,B), C=<99, A = 1+C, C=<49.

new3 query 1(A,B) :- new3 query 2(C,B), C=<99, A = 1+C, C=<49.

new3 query 2(A,B) :- new3 query 1(C,D), C=<99, A = 1+C, B = 1+D, C>=50.

new3 query 2(A,B) :- new3 query 2(C,D), C=<99, A = 1+C, B = 1+D, C>=50.

Fig. 4. Part of the split program for the program in Figure 3

8 John P. Gallagher and Bishoksan Kafle

false query 1 :- []

new3 query 1(A,B) :- [1*A>=0,-1*A>= -50,1*B=50]

new3 query 2(A,B) :- [1*A>=51,-1*A>= -100,1*A+ -1*B=0]

Fig. 5. The convex polyhedral approximate model for the split program

a solution does not scale well. On the other hand the polyhedral abstraction shown above

is not an enumeration; an essentially similar polyhedron abstraction is generated for the

scaled version of the example, in the same time. The VeriMAP tool (De Angelis et al.

2014) also handles the original and scaled versions of the example in the same time.

RAF – Redundant Argument Filtering

FU – Forward Unfolding

QA – Query Answer Transformation

PS – Predicate Splitting

TC – Threshold Constraint
CHA – Convex Hull Analyzer

CHC Program P

RAF FU QA PS TC
Safe

unknown

CHA

Fig. 6. The basic tool chain for CHC verification.

5 Combining off-the-shelf tools: Experiments

The motivation for our tool-chain, summarised in Figure 6, comes from our example pro-

gram, which is a simple yet challenging program. We applied the tool-chain to a number of

benchmarks from the literature, taken mainly from the repository of Horn clause bench-

marks in SMT-LIB2 (https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/)

and other sources including (Gange et al. 2013) and some of the VeriMap bench-

marks (De Angelis et al. 2014). We selected these examples because many of them are

considered challenging because they cannot be solved by one or more of the state-of-the-

art-verification tools discussed below. Programs taken from the SMT-LIB2 repository are

first translated to CHC form. The results are summarised in Table 1.

In Table 1, columns Program and Result respectively represent the benchmark program

and the results of verification using our tool combination. Problems marked with (*) could

not be handled by our tool-chain since they contain numbers which do not fit in 32 bits, the

limit of our Ciao Prolog implementation. whereas problems marked with (**) are solvable

by simple ad hoc modification of the tool-chain, which we are currently investigating

(see Section 7). Problems such as systemc-token-ring.01-safeil.c contain complicated loop

structure with large strongly connected components in the predicate dependency graph

and our convex polyhedron analysis tool is unable to derive the required invariant.

However overall results show that our simple tool-chain begins to compete with advanced

tools like HSF (Grebenshchikov et al. 2012), VeriMAP (De Angelis et al. 2014), TRACER

(Jaffar et al. 2012), etc. We do not report timings, though all these results are obtained in a

Tools for Constrained Horn Clause Verification 9

matter of seconds, since our tool-chain is not at all optimised, relying on file input-output

and the individual components are often prototypes.

Table 1. Experiments results on CHC benchmark program

SN Program Result SN Program Result

1 MAP-disj.c.map.pl verified 17 MAP-forward.c.map.pl verified

2 MAP-disj.c.map-scaled.pl verified 18 tridag.smt2 verified

3 t1.pl verified 19 qrdcmp.smt2 verified

4 t1-a.pl verified 20 choldc.smt2 verified

5 t2.pl verified 21 lop.smt2 verified

6 t3.pl verified 22 pzextr.smt2 verified

7 t4.pl verified 23 qrsolv.smt2 verified

8 t5.pl verified 24 INVGEN-apache-escape-absolute verified

9 pldi12.pl verified 25 TRACER-testabs15 verified

10 INVGEN-id-build verified 26** amebsa.smt2 verified

11 INVGEN-nested5 verified 27** DAGGER-barbr.map.c verified

12 INVGEN-nested6 verified 28* sshsimpl-s3-srvr-1a-safeil.c NOT

13 INVGEN-nested8 verified 29 sshsimpl-s3-srvr-1b-safeil.c NOT

14 INVGEN-svd-some-loop verified 30* bandec.smt2 NOT

15 INVGEN-svd1 verified 31 systemc-token-ring.01-safeil.c NOT

16 INVGEN-svd4 verified 32* crank.smt2 NOT

PA – Predicate AbstractionCHC Program P

RAF

FU QA PS TC CHA
Safe

CEx.

props

unknown

PA

Fig. 7. Future extension of our tool-chain.

6 Discussion and Related Work

The most similar work to ours is by De Angelis et al. (2013) which is also based on CLP

program transformation and specialisation. They construct a sequence of transformations

of P , say, P , P1, P2, . . . , Pk; if Pk contains no clause with head false then the verification

problem is solved. A proof of unsafety is obtained if Pk contains a clause false ←.

Both our approach and theirs repeatedly apply specialisations preserving the property

to be proved. However the difference is that their specialisation techniques are based on

unfold-fold transformations, with a sophisticated control procedure controlling unfolding

10 John P. Gallagher and Bishoksan Kafle

and generalisation. Our specialisations are restricted to redundant argument filtering and

the query-answer transformation, which specialises predicate answers with respect to a

goal. Their test for success or failure is a simple syntactic check, whereas ours is based on

an abstract interpretation to derive an over-approximation. Informally one can say that

the hard work in their approach is performed by the specialisation procedure, whereas

the hard work in our approach is done by the abstract interpretation. We believe that our

tool-chain-based approach gives more insight into the role of each transformation.

Work by Gange et al. (2013) is a top-town evaluation of CLP programs which re-

cords certain derivations and learns only from failed derivations. This helps to prune

further derivations and helps to achieve termination in the presence of infinite executions.

Duality (http://research.microsoft.com/en-us/projects/duality/) and HSF(C) (Greben-

shchikov et al. 2012) are examples of the CEGAR approach (Counter-Example-Guided

Abstraction Refinement). This approach can be viewed as property-based abstract inter-

pretation based on a set of properties that is refined on each iteration. The refinement

of the properties is the key problem in CEGAR; an abstract proof of unsafety is used

to generate properties (often using interpolation) that prevent that proof from arising

again. Thus, abstract counter-examples are successively eliminated. The relatively good

performance of our tool-chain, without any refinement step at all, suggests that finding

the right invariants is aided by a tool such as the convex polyhedron solver and the

pre-processing steps we applied. In Figure 7 we sketch possible extensions of our basic

tool-chain, incorporating a refinement loop and property-based abstraction.

It should be noted that the query-answer transformation, predicate splitting and un-

folding may all cause an blow-up in the program size. The convex polyhedron analysis

becomes more effective as a result, but for scalability we need more sophisticated heuristics

controlling these transformations, especially unfolding and splitting, as well as lazy or

implicit generation of transformed programs, using techniques such as a fixpoint engine

that simulates query-answer programs (Codish 1999).

7 Concluding remarks and future work

We have shown that a combination of off-the-shelf tools from CLP transformation and

analysis, combined in a sensible way, is surprisingly effective in CHC verification. The

component-based approach allowed us to experiment with the tool-chain until we found

an effective combination. This experimentation is continuing and we are confident of

making improvements by incorporating other standard techniques and by finding bet-

ter heuristics for applying the tools. Further we would like to investigate the choice of

chain suitable for each example since more complicated problems can be handled just

by altering the chain. We also suspect from initial experiments that an advanced partial

evaluator such as ECCE (Leuschel et al. 2006) will play a useful role. Our results give

insights for further development of automatic CHC verification tools. We would like to

combine our program transformation techniques with abstraction refinement techniques

and experiment with the combination.

Tools for Constrained Horn Clause Verification 11

References

Benoy, F. and King, A. 1996. Inferring argument size relationships with CLP(R). In Logic-

Based Program Synthesis and Transformation (LOPSTR’96), J. P. Gallagher, Ed. Lecture Notes

in Computer Science, vol. 1207. Springer, 204–223.

Codish, M. 1999. Efficient goal directed bottom-up evaluation of logic programs. J. Log. Pro-

gram. 38, 3, 355–370.

Codish, M. and Demoen, B. 1993. Analysing logic programs using “Prop”-ositional logic programs

and a magic wand. In Proceedings of the 1993 International Symposium on Logic Programming,

Vancouver, D. Miller, Ed. MIT Press.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: A unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In POPL, R. M. Graham, M. A.

Harrison, and R. Sethi, Eds. ACM, 238–252.

Cousot, P. and Halbwachs, N. 1978. Automatic discovery of linear restraints among variables

of a program. In Proceedings of the 5th Annual ACM Symposium on Principles of Programming

Languages. ACM Press, 84–96.

De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M. 2013. Verifying programs via

iterated specialization. In PEPM, E. Albert and S.-C. Mu, Eds. ACM, 43–52.

De Angelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M. 2014. Verimap: A tool for

verifying programs through transformations. In TACAS, E. Ábrahám and K. Havelund, Eds.

Lecture Notes in Computer Science, vol. 8413. Springer, 568–574.

Debray, S. and Ramakrishnan, R. 1994. Abstract Interpretation of Logic Programs Using Magic

Transformations. Journal of Logic Programming 18, 149–176.

Gallagher, J. P. 1993. Specialisation of logic programs: A tutorial. In Proceedings PEPM’93,

ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation.

ACM Press, Copenhagen, 88–98.

Gallagher, J. P. and de Waal, D. 1993. Deletion of redundant unary type predicates from

logic programs. In Logic Program Synthesis and Transformation, K. Lau and T. Clement, Eds.

Workshops in Computing. Springer-Verlag, 151–167.

Gange, G., Navas, J. A., Schachte, P., Søndergaard, H., and Stuckey, P. J. 2013. Failure tabled

constraint logic programming by interpolation. TPLP 13, 4-5, 593–607.

Grebenshchikov, S., Gupta, A., Lopes, N. P., Popeea, C., and Rybalchenko, A. 2012. HSF(C):

A software verifier based on Horn clauses - (competition contribution). In TACAS, C. Flanagan

and B. König, Eds. LNCS, vol. 7214. Springer, 549–551.

Halbwachs, N., Proy, Y. E., and Raymound, P. 1994. Verification of linear hybrid systems by means

of convex approximations. In Proceedings of the First Symposium on Static Analysis. Lecture Notes

in Computer Science, vol. 864. Springer, 223–237.

Jaffar, J. and Maher, M. 1994. Constraint Logic Programming: A Survey. Journal of Logic

Programming 19/20, 503–581.

Jaffar, J., Murali, V., Navas, J. A., and Santosa, A. E. 2012. TRACER: A symbolic execution

tool for verification. In CAV, P. Madhusudan and S. A. Seshia, Eds. Lecture Notes in Computer

Science, vol. 7358. Springer, 758–766.

Lakhdar-Chaouch, L., Jeannet, B., and Girault, A. 2011. Widening with thresholds for programs

with complex control graphs. In ATVA 2011, T. Bultan and P.-A. Hsiung, Eds. Lecture Notes in

Computer Science, vol. 6996. Springer, 492–502.

Leuschel, M. 1999. Advanced logic program specialisation. In Partial Evaluation - Practice and

Theory, J. Hatcliff, T. Æ. Mogensen, and P. Thiemann, Eds. Lecture Notes in Computer Science,

vol. 1706. Springer, 271–292.

Leuschel, M., Elphick, D., Varea, M., Craig, S.-J., and Fontaine, M. 2006. The Ecce and Logen

partial evaluators and their web interfaces. In PEPM 2006, J. Hatcliff and F. Tip, Eds. ACM,

88–94.

12 John P. Gallagher and Bishoksan Kafle

Leuschel, M. and Sørensen, M. H. 1996. Redundant argument filtering of logic programs. In Logic

Programming Synthesis and Transformation, 6th International Workshop, LOPSTR’96, Stockholm,

Sweden, August 28-30, 1996, Proceedings, J. P. Gallagher, Ed. Lecture Notes in Computer Science,

vol. 1207. Springer, 83–103.

Pettorossi, A. and Proietti, M. 1999. Synthesis and transformation of logic programs using

unfold/fold proofs. J. Log. Program. 41, 2-3, 197–230.

Serebrenik, A. and De Schreye, D. 2001. Inference of termination conditions for numerical loops

in Prolog. In LPAR 2001, R. Nieuwenhuis and A. Voronkov, Eds. Lecture Notes in Computer

Science, vol. 2250. Springer, 654–668.

Supplementary material: Technical Communication c© 2014 [M. Gavanelli et al.] 1

Multi-Criteria Optimal Planning for Energy
Policies in CLP

MARCO GAVANELLI

EnDiF - Università di Ferrara, Italy

(e-mail: marco.gavanelli@unife.it)

STEFANO BRAGAGLIA

Department of Computer Science, University of Bristol, UK

(e-mail: stefano.bragaglia@bristol.ac.uk)

MICHELA MILANO, FEDERICO CHESANI

DISI - Università di Bologna, Italy

(e-mail: {michela.milano | federico.chesani}@unibo.it)

ELISA MARENGO

Faculty of Computer Science - Free University of Bozen-Bolzano

(e-mail: elisa.marengo@unibz.it)

PAOLO CAGNOLI

ARPA Emilia-Romagna, Italy

(e-mail: PCagnoli@arpa.emr.it)

submitted 14 February 2014; revised 18 April 2014; accepted 15 May 2014

Abstract

In the policy making process a number of disparate and diverse issues such as economic development,

environmental aspects, as well as the social acceptance of the policy, need to be considered. A

single person might not have all the required expertises, and decision support systems featuring

optimization components can help to assess policies.

Leveraging on previous work on Strategic Environmental Assessment, we developed a fully-

fledged system that is able to provide optimal plans with respect to a given objective, to perform

multi-objective optimization and provide sets of Pareto optimal plans, and to visually compare

them. Each plan is environmentally assessed and its footprint is evaluated. The heart of the system

is an application developed in a popular Constraint Logic Programming system on the Reals sort.

It has been equipped with a web service module that can be queried through standard interfaces,

and an intuitive graphic user interface.

KEYWORDS: CLP applications, Strategic Environmental Assessment, Regional Energy Planning

1 Introduction

Policy making, in the current connected world, has to consider such a number of issues

that a single person cannot possibly consider without introducing vast approximations.

For example European regions should provide Regional Energy Plans to define strategic

objectives and political actions for the energy sector, considering:

2 M. Gavanelli et al.

• the current energy balance in the region (produced/consumed energy, imported/ex-

ported, electrical/thermal, etc.)

• forecasts for the following years, about energy request or production costs;

• existing and new directives, e.g. the EU 20-20-20 initiative that poses three chal-

lenging targets for 2020: 20% improvement of energy efficiency, 20% of the energy

produced from renewable sources, and 20% reduction of greenhouse gas emissions.

The policy contains strategic objectives on the energy share and energy efficiency,

measures and activities to cope with the increased energy needs, new regulations, etc.

Regional plans in particular are typically very high-level: they include activities such

as building new power plants for some total output power, the share of each fuel

type (nuclear, fossil fuels, biomasses, etc.) and the type of produced energy (electric or

thermal); but they lack information about, for example, the actual placement of the plants

in the region, since more detailed plans will be done at lower scale, like the province or

municipality levels. By EU directives, regional policies on the energy sector should also

include an environmental assessment of the plan. Being the plan so high-level, usually the

assessment is done only in a qualitative way.

In a previous work (Gavanelli et al. 2010), we proposed and compared two alternative

logic programming formulations for the strategic environmental assessment of regional

plans; one was based on probabilistic logic programming, the other on CLP! (CLP!) (Jaffar

and Maher 1994). We also developed four fuzzy-logic formulations of the assessment

problem (Gavanelli et al. 2011). All these programs consider a regional plan, given in

input, and provide its environmental assessment. In a following work (Gavanelli et al.

2013), the CLP! program was extended to generate plans together with their assessment,

and it was used during the definition of the Regional Energy Plan 2011-2013 of the

Emilia-Romagna region (Pilolli et al. 2011).

In this work, we show how the first prototype of the planner was extended to a

fully-fledged application. In particular, the current version of the software supports:

• plans that consider decommissioning obsolete power plants;

• computation of emissions of the power plants for various types of pollutants, in a

quantitative way;

• quantitative assessment of the effect of the plan on human health, global warming,

and acidification potential;

• multi-criteria optimization considering a variety of objective functions based on

qualitative and quantitative information;

• computation of the Pareto front, for two or more objective functions;

• a web service, providing access through a GUI! (GUI!) and APIs.

This work is one of the components of the EU ePolicy project1. The final application

will include also an opinion mining component, to assess the acceptance of the policies

from the public considering information coming from blogs and social networks; a social

simulator component, that will simulate how the population will react to the policies

adopted by the Region; a mechanism design component, that will include information

1 http://www.epolicy-project.eu

http://www.epolicy-project.eu

Multi-Criteria Optimal Planning for Energy Policies in CLP 3

from game theory to provide the best allocation schemes of regional subsidies to the

stakeholders; and an integrated visualization component.

The rest of the paper is organized as follows. We first introduce the planning and

environmental assessment as they are currently done by experts in the Emilia-Romagna

region of Italy, and recap the basic CLP! program of the first prototype (Section 2). In

Section 3, we extend it with new features. We show the design and features of the web

service and GUI! in Section 4. Finally, we conclude in Section 5.

2 Problem considered and CLP solution

The strategic environmental assessment, in the Emilia-Romagna region of Italy, is currently

performed by considering two matrices, called coaxial matrices (Cagnoli 2010). They are

a development of the network method (Sorensen and Moss 1973), and they contain

qualitative relations.

The first matrix,M, considers the activities that can be undertaken in a plan, and links

them with the environmental pressures. Pressures can be positive or negative, and they

account for the impact on the environment of human activities. Each element mij of the

matrix M can take values {high, medium, low, null}, and defines a qualitative dependency

between the activity i and the negative or positive pressure j.

The second matrix, N, relates the pressures with the environmental receptors, that

register the effect of the pressures on the environment. For example, the activity “coal-

fueled power plant” generates the pressure “emission of pollutants in the atmosphere”; on

its turn, this influences the receptor “air quality” (as well as other receptors, like e.g.

“human wellbeing”). Each element nij of the matrix can take the qualitative values: high,

medium, low or null, and defines the dependency between pressure i and receptor j.

Currently, the matrices relate 115 activities with 29 negative and 19 positive pressures,

and 23 receptors. They can be used to assess a variety of regional plans, including Agri-

culture, Forest, Fishing, Energy, Industrial, Transport, Waste, Water, Telecommunications,

Tourism, Urban plans. The environmental assessment is usually done using a spreadsheet

and deleting (by hand) those activities that do not belong to the given type of plan;

then pressures and receptors that are not influenced by remaining activities are removed

accordingly. The “reduced” matrices are evaluated by environmental experts, that state

which parts are most important, mainly considering clusters of High values.

Clearly, this process is very slow, experts might overlook important combinations of

medium or low values, and, most importantly, it can be done only after the plan has been

provided by the policy maker. At this stage, usually only minor modifications can be

back-propagated to the plan, and comparing a plan’s effects with alternative plans is not

possible without starting another planning phase.

2.1 A CLP solution

To overcome the limitations and improve on current practices, we devised a DSS! (DSS!)

able to provide optimal plans and environmental assessment (Gavanelli et al. 2013): the

planning problem was modelled as a linear program in CLP! on the Reals sort (CLP(R)).

Given a number Na of activities, we consider a vector A = (a1, . . . , aNa
) in which

we associate to each activity a variable ai that defines its magnitude. The domain of ai

4 M. Gavanelli et al.

depends on the availability of the resource on the given Region; for example some regions

are very windy, while others can exploit better biomasses or solar energy.

We distinguish primary from secondary activities: primary activities are directly related

to the given type of plan, while secondary ones are those supporting the primary activities

by providing the needed infrastructures. E.g. in an energy plan, primary activities are those

producing energy (e.g., power plants), and they may require other activities (e.g., power

lines, waste stocking, streets, etc.) that have an environmental impact too. Let AP be the

set of indexes of primary activities and AS that of secondary activities. The dependencies

between primary and secondary activities are considered by the constraint:

∀j ∈ AS aj =
∑
i∈AP

dijai (1)

Each activity ai has a cost ci; given a budget BP lan available for a given plan, we have:

Na∑
i=1

ai ci 6 BP lan (2)

Given an expected outcome outP lan of the plan, we also have:

Na∑
i=1

ai outi > outP lan. (3)

E.g. an energy plan outcome can be to increase available energy, so outP lan could be

the added availability of electrical power (in kilo-TOE, Tonnes of Oil Equivalent). Other

outcomes can be considered, e.g. increasing only renewable energies.

Concerning the impacts of the regional plan, an environmental expert suggested to

convert the qualitative values in the matrices into coefficients ranging from 0 to 1; we

sum up the contributions of all the activities to estimate the impact on each pressure:

∀j ∈ {1, . . . , Np} pj =

Na∑
i=1

mij ai. (4)

Similarly, given the pressures P = (p1, . . . , pNp
), the influence on the environmental receptor

ri is estimated through the matrix N, relating pressures with receptors:

∀j ∈ {1, . . . , Nr} rj =

Np∑
i=1

nijpi. (5)

Possible objective functions include maximizing/minimizing the produced energy, the

cost, or one of the receptors (e.g., “air quality”), or a linear combination of the above.

3 Extended solution

The CLP(R) program described in Section 2.1 was used in the development of the 2011-

13 Regional Energy plan of the Emilia-Romagna region of Italy: the plan objective was

to increase the share of renewable energy in the energy mix, and to fulfil the 20-20-20

directive. For the next years experts foresee the decommissioning of carbon-based power

plants, with a residual utilisation when renewable energy is unavailable or in peak hours.

Region experts asked us to extend the DSS! to consider also the closing of power plants.

Multi-Criteria Optimal Planning for Energy Policies in CLP 5

Power plants decomissioning implies that some activities have a negative magnitude:

e.g., the magnitude, in MW, of oil-based power plants could be reduced w.r.t. the previous

years. However, negative activities introduce non-linearities. For example, if building a

new plant i has a cost ci in e/MW , decommisioning it will not give a profit of ci e/MW .

Our implementation is based on the ECLiPSe CLP language (Apt and Wallace 2007;

Schimpf and Shen 2012), using the eplex library (Shen and Schimpf 2005). The eplex

library uses very fast solvers using linear programming or mixed-integer linear program-

ming algorithms, allowing the use of linear constraints on variables ranging either on

continuous or on integer domains. It is well known that linear programming is polyno-

mially solvable, while (mixed) integer linear programming is NP-hard; thus the efficiency

of the solution depends on whether there are integer variables or not. To address the

non-linearity, we introduced, for each activity ai that has negative values in its domain, a

real variable Posi defined as:

Posi =

{
ai if ai > 0

0 if ai < 0

The cost constraint (2) is now rewritten as:

Na∑
i=1

Posi ci 6 BP lan. (6)

Similarly, secondary activities should not be decommisisoned together with primary ones;

so we impose their relationship only with the positive part of primary activities.

Concerning the environmental assessment, we may notice that any new activity has

different types of impacts, some related to its initial implementation (e.g., land use for

building a coal power plant), and others due to the activity functioning (e.g., air pollution

for burning fuel). Equation (4) correctly accounts for both when dealing with “positive”

activities, while would be incorrect w.r.t. “negative” activities.

To cope with the activities decommissioning, the co-axial matrices have been extended

with new activities (e.g., “Reduced use of fossil fuelled power plants”). All the pressures

are now computed on positive activities only, and Equation (4) is substituted with

∀j ∈ {1, . . . , Np} pj =

Na∑
i=1

mij Posi. (7)

We considered the new activities as a new type of secondary activities: the “Reduced

use of fossil fuelled power plants” is a secondary activity that becomes positive only

when activities like “Coal-based power plant”, etc., has a negative value (i.e., in case of

decommissions). Hence, we now have two matrices of dependencies between activities: a

Na × Na square matrix D+ where each element d+
ij represents the magnitude of activity

j per unit of activity i; and another Na × Na square matrix D− where each element d−ij
represents the magnitude of activity j per unit of reduction of activity i. Equation (1) is

updated with

∀j ∈ AS aj =
∑

i∈AP Kij Kij =

{
d+
ij · ai if ai > 0

d−ij · (−ai) if ai < 0
(8)

6 M. Gavanelli et al.

3.1 Computing emissions

A further extension to the model presented in Section 2.1 has been about the evaluation

of emissions in quantitative terms. To this end, we rely on the data provided by two

databases: INEMAR (Caserini et al. 2002) and ISPRA (ISPRA): both databases provide

the various types of pollutants 2 emitted per fuel unit (in GJ). While ISPRA provides

the average emission for each plant type, INEMAR provides fine grained information, in

which also the type of boiler and the size of the plant (in MW) are considered.

Let NB the number of boiler types, and B = (b1, . . . , bNB
) a vector of constrained

variables where bi is the total output power of plants using boiler type i. Let O be the

matrix that relates power plants and the different kinds of boiler: each element oij of the

matrix is set to if the boiler bj ∈ B can be used for the power plant ai ∈ A, and zero

otherwise. The output power of each plant type is the sum of the power of its boilers:

∀i ∈ {1, . . . , Na} ai =
∑
j∈NB

oijbj (9)

Let E = (e1, . . . , eNe
) be the vector of emissions andT the matrix relating them with the

boilers. An element tij ∈ T represents the grams of pollutant ei ∈ E emitted when 1GJ of

fuel is provided to the boiler bj ∈ B. To calculate the emissions, we have to compute the

input energy for each boiler type j, provided the output power bj:

∀i ∈ {1, . . . , Ne} ei =
∑
j∈NB

tij

(
TU

η
bj

)
. (10)

TU is the average running time of a power plant per year (necessary to convert energy

into power) and η is the average efficiency (output power/input power) of power plants,

which is prescribed by law as 39% (Autorità per l’Energia Elettrica e il Gas 2008).

3.2 Indicators

Thanks to the extension presented in Section 3.1 it is possible to evaluate quantitatively

the emissions of some gases, metals, etc. Such data can be exploited to consider plans

aiming to minimize them; however, it is not clear how to compare the emissions. E.g., a

policy maker could know that NOx! are toxic for humans, but how does that compare

with heavy metal emissions?

The European Commission (2006) published a set of indicators quantifying the effect

of various substances on human toxicity, global warming and acidification: e.g., the Annex

1 contains 100 chemicals with their human toxicity factor, defined as the toxicity of the

substance compared to that of lead (Pb). By using the weights in the tables, one can

provide, e.g., the total human toxicity (in kg of equivalent emitted Pb), the global warming

effect (kg of equiv. CO2) and the acidification of the plan (kg of equiv. SO2). Moreover, a

policy maker may want to optimize on these indicators (by directly minimizing them or

any weighted sum).

2 Considered types of pollutants include SOx! (SOx!), NOx! (NOx!), methane, CO, CO2, N2O, ammonia,
HCB! (HCB!), various metals (Arsenic, Cadmium, Chromium, Copper, Mercury, Nickel, lead, Selenium, Zinc),
particulate matter (PM10), Dioxins, and some families of compounds, like PAH! (PAH!), PCB! (PCB!), and
NMVOC! (NMVOC!).

Multi-Criteria Optimal Planning for Energy Policies in CLP 7

�����������

�����������		

�����������

�����������

	
��������������������

��

������

(a) The Web service.

Ap
pl

ic
at

io
n

Se
rv

er

JEE Servlet
Controller

JSP Pages
View

Java Beans (BOM)
Model

Data sources
Persistence

1.�

2.�

3.�

4.�

5.�

Browser
User Interface

Web service
 Optimal planning

(b) The Web application.

Fig. 1: Software stack to deploy the CLP! program as a Web service and the typical MVC!

pattern to exploit it as a Web application.

However, the tables provided by the EC do not always have the same granularity

of the information available for emissions. For example, for each plant type we know

the emissions of NOx!, while in the EU report there are the single toxicity values of

NO and NO2 (and they are quite different: respectively, 95 and 300 times that of Pb).

Environmental experts suggested to provided as output, for each indicator, the best, worst,

and average cases, considering respectively the highest toxicity in the compound class, the

lowest and an average. If one of the indicators is in the objective function (e.g., one wants

to find the plan with minimum human toxicity), we optimize the worst case.

3.3 Computing the Pareto front

The approach presented in Section 2 allows to optimize w.r.t. a single function. However,

in the case of regional planning it is very hard (if not impossible) to devise a unique

function that includes all the objectives that are important for the user. Hence, we added

a further extension towards multi-objective optimization.

In a multi-objective optimization problem, a solution is Pareto optimal if it is not

possible to improve the result for one objective function, without worsening at least

another objective function. More precisely, in a multi-objective problem with n functions

to minimize, a solution µ∗ is Pareto-optimal if there does not exist another solution µ such

that µj 6 µ∗j for 1 6 j 6 n and there exists at least one i, 1 6 i 6 n such that µi < µ∗i . The

set of Pareto points is distributed on the so-called Pareto frontier.

We implemented the normalized normal constraint method (Messac et al. 2003), an

algorithm that works with any type of constraints (linear and nonlinear) and variables

(continuous and discrete), and that is able to find an evenly distributed set of Pareto

solutions. In this way, the policy maker is provided with a set of solutions that are a good

representation of the whole space of the Pareto frontier.

4 Graphical User Interface

Usually, policy makers are not IT-experts. To ease the access to the DSS, we deployed the

CLP! planner as a stateless Web service and access it by means of a stateful Web application.

The CLP! program is embedded inside a Java wrapper (Fig. 1a) that encodes the requests in

8 M. Gavanelli et al.

(a) Scenario comparison. (b) Costs summary.

Fig. 2: The views associated with the General overview entry for Scenarios comparison.

CLP! terms and decodes the results. This component provides a plethora of Java classes that

represent the BOM! (BOM!) of this domain. Any query addressed to this component and all

the returned results are expressed in terms of these objects. We adopted the Apache CXF

framework to support the Web Service imlpementation. The Web application that stands

as a GUI! for the Web service is a standard Java servlet (Fig. 1b) following the MVC! (MVC!)

pattern and can be accessed at: http://globalopt.epolicy-project.eu/Pareto/.

After a welcome page that introduces the software, there are an input page, and a

results page. As input the user can provide minimum and maximum bounds for each

energy source, constraints, and objective functions for the Pareto optimization (together

with a desired number of Pareto points). Constraints and objectives can include linear

combinations of cost, produced power, receptors, emissions, or indicators.

As a result, a set of graphs allow to inspect details on a specific plan (scenario), and/or

to compare the computed plans. Scenarios are divided into boundary scenarios, that are

those that optimize one of the objective functions, and intermediate scenarios, that try to

balance the various objectives.

Scenarios comparison. Scenarios can be compared through a spiderweb chart (Fig. 2a) that

has an axis for each objective function. Along each axis, the optimal values are far from

the origin, and each scenario is represented by a polygon. Roughly speaking, a bigger

polygon implies a better scenario (note that these solutions are Pareto optimal, so one

polygon cannot be completely included into another polygon).

Scenarios can also be compared through stacked bar chart, showing, for each scenario,

the distribution of costs per energy source (Fig. 2b), or the amount of electric/thermal

energy per source. Moreover, a further view provides scenarios comparison in terms of

pollutants (Heavy metals, Greenhouse gases, and Other pollutants), by means of basic

column charts.

Scenarios Details. For each scenario, the following views are available:

• Receptors. This composite view uses 7 VU-meter charts (Fig. 3a). The top part shows

the 3 receptors with the best normalised value, while the bottom one the 3 with the

http://globalopt.epolicy-project.eu/Pareto/

Multi-Criteria Optimal Planning for Energy Policies in CLP 9

(a) Receptors. (b) A tabular view.

Fig. 3: Details views for each scenario.

worst normalised value. The main chart allows the user to select any receptor and

appraise its normalised value. This specific view ensures fast access to the best and

worst receptors for the specific scenario.

• Other views. There are four interactive tabular views (Fig. 3b) showing respectively,

for the chosen scenario, the amount of produced energy per source, the total cost

for each energy source to be spent in primary and secondary activities, the detailed

costs for each activity, and the list of emissions.

5 Conclusions and Future Work

We presented a decision support system with optimization based on CLP! for the regional

planning, with particular emphasis on the environmental aspects. The program was

practically used to produce the energy plan 2011-2013 of the Emilia-Romagna region in

Italy (Pilolli et al. 2011), and it is foreseen to use it also for the forthcoming plans. The

CLP! program is included into a standard web service, and it has been equipped with an

intuitive GUI. The CLP! program will be the heart of the platform of the EU FP7 ePolicy

project, that will also include components like a social simulator, an opinion miner, and

a mechanism designer, all governed by the described CLP! program. Preliminary work has

been done on its integration with the mechanism designer (Milano et al. 2012), and a

social simulator (Borghesi et al. 2013).

Future work will be on extending the model at a more detailed level, e.g. taking into

account decommissioning fixed costs.

Acknowledgements. This work was partially supported by EU project ePolicy, FP7-ICT-

2011-7, grant agreement 288147.

References

Apt, K. R. and Wallace, M. 2007. Constraint logic programming using Eclipse. Cambridge

University Press.

10 M. Gavanelli et al.

Autorità per l’Energia Elettrica e il Gas. 2008. Aggiornamento del fattore di conversione dei

kWh in tonnellate equivalenti di petrolio connesso al meccanismo dei titoli di efficienza energetica.

Gazzetta Ufficiale n. 100 del 29.4.08 - SO n.107.

Borghesi, A., Milano, M., Gavanelli, M., and Woods, T. 2013. Simulation of incentive mechanisms

for renewable energy policies. In Proceedings of the 27th European Conference on Modeling and

Simulation, W. Rekdalsbakken, R. T. Bye, and H. Zhang, Eds. European Council for Modeling

and Simulation, 32–38.

Cagnoli, P. 2010. VAS valutazione ambientale strategica – Fondamenti teorici e tecniche operative,

Terza edizione ed. Dario Flaccovio, Palermo, Italy.

Caserini, S., Fraccaroli, A., Monguzzi, A. M., Moretti, M., Giudici, A., and Volpi, G. 2002.

The INEMAR database: a tool for regional atmospheric emission inventory. In iEMSs 2002

International Congress: ”Integrated Assessment and Decision Support”. Proceedings of the 1st bi-

ennial meeting of the International Environmental Modelling and Software Society, A. Rizzoli and

A. Jakeman, Eds. Lugano, Switzerland.

European Commission. 2006. Integrated pollution prevention and control reference document on

economics and cross-media effects. http://eippcb.jrc.ec.europa.eu/reference/.

Gavanelli, M., Riguzzi, F., Milano, M., and Cagnoli, P. 2010. Logic-Based Decision Support

for Strategic Environmental Assessment. Theory and Practice of Logic Programming, 26th Int’l.

Conference on Logic Programming (ICLP’10) Special Issue 10, 4-6 (July), 643–658.

Gavanelli, M., Riguzzi, F., Milano, M., and Cagnoli, P. 2013. Constraint and optimization

techniques for supporting policy making. In Computational Intelligent Data Analysis for Sustainable

Development, T. Yu, N. Chawla, and S. Simoff, Eds. Data Mining and Knowledge Discovery Series.

Chapman & Hall/CRC, Boca Raton, FL, USA, Chapter 12, 361–381.

Gavanelli, M., Riguzzi, F., Milano, M., Sottara, D., Cangini, A., and Cagnoli, P. 2011. An

application of fuzzy logic to strategic environmental assessment. In Artificial Intelligence Around

Man and Beyond - XIIth AIxIA Intl. Conf., R. Pirrone and F. Sorbello, Eds. LNCS, vol. 6934.

Springer, Berlin/Heidelberg, 324–335.

ISPRA. Inventario nazionale delle emissioni in atmosfera. Available at

http://www.sinanet.isprambiente.it/it/sia-ispra/serie-storiche-emissioni/

fattori-di-emissione-per-le-sorgenti-di-combustione-stazionarie-in-italia.

Jaffar, J. and Maher, M. J. 1994. Constraint logic programming: A survey. Journal of Logic

Programming 19/20, 503–581.

Messac, A., Ismail-Yahaya, A., and Mattson, C. A. 2003. The normalized normal constraint

method for generating the Pareto frontier. Structural and Multidisciplinary Optimization 25, 2,

86–98.

Milano, M., Gavanelli, M., O’Sullivan, B., and Holland, A. 2012. What-if analysis through

simulation-optimization hybrids. In Proc. of European Conference on Modelling and Simulation

(ECMS). European Council for Modelling and Simulation, Dudweiler, Germany.

Pilolli, D., Raimondi, A., Scapinelli, D., Calò, C., and Cancila, E. 2011. Piano Energetico

Regionale, secondo piano attuativo 2011-2013. Regione Emilia-Romagna.

Schimpf, J. and Shen, K. 2012. ECLiPSe - from LP to CLP. Theory and Practice of Logic

Programming 12, 1-2, 127–156.

Shen, K. and Schimpf, J. 2005. Eplex: Harnessing mathematical programming solvers for constraint

logic programming. In Principles and Practice of Constraint Programming - CP 2005, P. van Beek,

Ed. LNCS, vol. 3709. Springer-Verlag, Berlin/Heidelberg, 622–636.

Sorensen, J. C. and Moss, M. L. 1973. Procedures and programs to assist in the impact statement

process. Tech. rep., Univ. of California, Berkely.

http://eippcb.jrc.ec.europa.eu/reference/
http://www.sinanet.isprambiente.it/it/sia-ispra/serie-storiche-emissioni/fattori-di-emissione-per-le-sorgenti-di-combustione-stazionarie-in-italia
http://www.sinanet.isprambiente.it/it/sia-ispra/serie-storiche-emissioni/fattori-di-emissione-per-le-sorgenti-di-combustione-stazionarie-in-italia

Supplementary material: Technical Communication c© 2014 [Gebser] 1

Clingo = ASP + Control: Preliminary Report

Martin Gebser1,2, Roland Kaminski2, Benjamin Kaufmann2, and Torsten Schaub2
ã

1Aalto University, Finland 2University of Potsdam, Germany

submitted [n/a]; revised [n/a]; accepted [n/a]

Abstract

We present the new ASP system clingo 4. Unlike its predecessors, being mere monolithic combinations of

the grounder gringo with the solver clasp, the new clingo 4 series offers high-level constructs for realiz-

ing complex reasoning processes. Among others, such processes feature advanced forms of search, as in

optimization or theory solving, or even interact with an environment, as in robotics or query-answering.

Common to them is that the problem specification evolves during the reasoning process, either because data

or constraints are added, deleted, or replaced. In fact, clingo 4 carries out such complex reasoning within

a single integrated ASP grounding and solving process. This avoids redundancies in relaunching grounder

and solver programs and benefits from the solver’s learning capacities. clingo 4 accomplishes this by com-

plementing ASP’s declarative input language by control capacities expressed via the embedded scripting

languages Lua and Python. On the declarative side, clingo 4 offers a new directive that allows for structur-

ing logic programs into named and parameterizable subprograms. The grounding and integration of these

subprograms into the solving process is completely modular and fully controllable from the procedural side,

viz. the scripting languages. By strictly separating logic and control programs, clingo 4 also abolishes the

need for dedicated systems for incremental and reactive reasoning, like iclingo and oclingo, respectively,

and its flexibility goes well beyond the advanced yet still rigid solving processes of the latter.

1 Introduction

Standard Answer Set Programming (ASP; (Baral 2003)) follows a one-shot process in comput-

ing stable models of logic programs. This view is best reflected by the input/output behavior of

monolithic ASP systems like dlv (Leone et al. 2006) and clingo (Gebser et al. 2011b). Internally,

however, both follow a fixed two-step process. First, a grounder generates a (finite) propositional

representation of the input program. Then, a solver computes the stable models of the proposi-

tional program. This rigid process stays unchanged when grounding and solving with separate

systems. In fact, up to now, clingo provided a mere combination of the grounder gringo and

the solver clasp. Although more elaborate reasoning processes are performed by the extended

systems iclingo (Gebser et al. 2008) and oclingo (Gebser et al. 2011a) for incremental and reac-

tive reasoning, respectively, they also follow a pre-defined control loop evading any user control.

Beyond this, however, there is substantial need for specifying flexible reasoning processes, for in-

stance, when it comes to interactions with an environment, as in assisted living, robotics, or with

users, advanced search, as in multi-objective optimization, planning, theory solving, or heuristic

search, or recurrent query answering, as in hardware analysis and testing or stream processing.

Common to all these advanced forms of reasoning is that the problem specification evolves dur-

ing the reasoning processes, either because data or constraints are added, deleted, or replaced.

ã Affiliated with the Simon Fraser University, Burnaby, Canada, and Griffith University, Brisbane, Australia.

2 M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub

The new clingo 4 series offers novel high-level constructs for realizing such complex reason-

ing processes. This is achieved within a single integrated ASP grounding and solving process in

order to avoid redundancies in relaunching grounder and solver programs and to benefit from the

learning capacities of modern ASP solvers. To this end, clingo 4 complements ASP’s declarative

input language by control capacities expressed via the embedded scripting languages Lua and

Python. On the declarative side, clingo 4 offers a new directive #program that allows for struc-

turing logic programs into named and parameterizable subprograms. The grounding and integra-

tion of these subprograms into the solving process is completely modular and fully controllable

from the procedural side, viz. the scripting languages embedded via the #script directive. For

exercising control, the latter benefit from a dedicated clingo library that does not only furnish

grounding and solving instructions but moreover allows for continuously assembling the solver’s

program in combination with the directive #external. Hence, by strictly separating logic and

control programs, clingo 4 abolishes the need for special-purpose systems for incremental and

reactive reasoning, like iclingo and oclingo, respectively, and its flexibility goes well beyond the

advanced yet still rigid solving processes of the latter.

2 Controlling grounding and solving in clingo 4

A key feature, distinguishing clingo 4 from its predecessors, is the possibility to structure (non-

ground) input rules into subprograms. To this end, the directive #program comes with a name

and an optional list of parameters. Once given in the clingo 4 input, it gathers all rules up to the

next such directive (or the end of file) within a subprogram identified by the supplied name and

parameter list. As an example, two subprograms base and acid(k) can be specified as follows:

1 a(1).

2 #program acid(k).

3 b(k).

4 #program base.

5 a(2).

Note that base, with an empty parameter list, is a dedicated subprogram that, in addition to rules

in the scope of a directive like the one in Line 4, gathers all rules not preceded by a #program

directive. Hence, in the above example, the base subprogram includes the facts a(1) and a(2).

Without further control instructions (see below), clingo 4 grounds and solves the base subpro-

gram only, essentially yielding the standard behavior of ASP systems. The processing of other

subprograms, such as acid(k) with the schematic fact b(k), is subject to scripting control.

For a customized control over grounding and solving, a main routine (taking a control object

representing the state of clingo 4 as argument) can be specified in either of the embedded

scripting languages Lua and Python. For illustration, let us consider two Python main routines:

6 #script(python)

7 def main(prg):

8 prg.ground("base",[])

9 prg.solve()

10 #end.

6 #script(python)

7 def main(prg):

8 prg.ground("acid",[42])

9 prg.solve()

10 #end.

While the control program on the left matches the default behavior of clingo 4, the one on the

right ignores all rules in the base program but rather, in Line 8, contains a ground instruction

for acid(k), where the parameter k is instantiated with the term 42. Accordingly, the schematic

fact b(k) is turned into b(42), and the solve command in Line 9 yields a stable model

consisting of b(42) only. Note that ground instructions apply to the subprograms given as

Clingo = ASP + Control: Preliminary Report 3

arguments, while solve triggers reasoning w.r.t. all accumulated ground rules. In fact, a solve

command makes clingo 4 instantiate pending subprograms and then perform reasoning. That

is, when Line 9 is replaced, e.g., by print ’Hello!’, clingo 4 merely writes out Hello! but

does neither ground any subprogram nor compute stable models.

In order to accomplish more elaborate reasoning processes, like those of iclingo and oclingo

or customized ones, it is indispensable to activate or deactivate ground rules on demand. For

instance, former initial or goal state conditions need to be relaxed or completely replaced when

modifying a planning problem, e.g., by extending its horizon. While the predecessors of clingo 4

relied on a #volatile directive to provide a rigid mechanism for the expiration of transient

rules, clingo 4 captures the respective functionalities and customizations thereof in terms of the

directive #external. This directive goes back to lparse (Syrjänen) and was also supported by

the predecessors of clingo 4 to exempt (input) atoms from simplifications fixing them to false.

The #external directive of clingo 4 provides a generalization that, in particular, allows for a

flexible handling of yet undefined atoms.

For continuously assembling ground rules evolving at different stages of a reasoning process,

#external directives declare atoms that may still be defined by rules added later on. As detailed

in (Gebser et al. 2014), such atoms correspond to inputs in terms of module theory (Oikarinen

and Janhunen 2006), which (unlike undefined output atoms) must not be simplified by fixing

their truth value to false. In order to facilitate the declaration of input atoms, clingo 4 supports

schematic #external directives that are instantiated along with the rules of their respective

subprograms. To this end, a directive like

#external p(X,Y) : q(X,Z), r(Z,Y).

is treated similar to the (virtual) rule p(X,Y) :- q(X,Z), r(Z,Y) during grounding. How-

ever, the head atoms of resulting ground instances are merely collected as (external) inputs,

whereas the ground rules as such are discarded. Given this, a subprogram from the clingo 4 input

consists of all rules within the scope of #program directives with the same name and number of

parameters, where base without parameters is used by default, along with virtual rules capturing

#external directives in the same scope (see (Gebser et al. 2014) for details).

The instantiation of a subprogram R with a list c1, . . . , ck of parameters, such as acid(k)

above, relies on a list t1, . . . , tk of terms to replace occurrences of c1, . . . , ck with, both in original

rules and virtual rules capturing #external directives in R. The parameter replacement yields

a subprogram R(c1/t1, . . . , ck/tk), which is instantiated relative to inputs. For instance, providing

the term 42 for parameter k leads to acid(k/42) consisting of the fact b(42). Control instruc-

tions guide the instantiation and assembly of subprograms, where ground instructions issued

before the first or in-between two solve commands determine rules to instantiate and join with

a module representing the previous state of clingo 4.

To sum up, schematic #external directives are embedded into the grounding process for

a convenient declaration of input atoms from other subprogram instances. Given that they do

not contribute ground rules, but merely qualify (undefined) atoms that should be exempted from

simplifications, #external directives address the signature of subprograms’ ground instances.

Hence, it is advisable to condition them by domain predicates1 (Syrjänen) only, as this pre-

cludes any interferences between signatures and grounder implementations. As long as input

atoms remain undefined, their truth values can be freely picked and modified in-between solve

1 Domain and built-in predicates have unique extensions that can be evaluated entirely by means of grounding.

4 M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub

1 #script(python)

2 from gringo import Fun, SolveResult

4 def init(val, default):

5 return val if val != None else default

7 def main(prg):

8 stop = str(init(prg.getConst("istop"), "SAT"))

9 step = int(init(prg.getConst("iinit"), 0))

11 prg.ground("base", [])

12 while True:

13 step += 1

14 prg.ground("cumulative", [step])

15 prg.assignExternal(Fun("query", [step]), True)

16 print ’STEP {0}’.format(step)

17 ret = prg.solve()

18 if (stop == "SAT" and ret == SolveResult.SAT) or \

19 (stop == "UNSAT" and ret == SolveResult.UNSAT): break

20 prg.releaseExternal(Fun("query", [step]))

21 #end.

Listing 1: Python script implementing iclingo functionality in clingo (iclingo.lp)

commands via assignExternal instructions, which thus allow for configuring the inputs to

modules representing clingo 4 states in order to select among their stable models. Unlike that,

the predecessors iclingo and oclingo of clingo 4 always assigned input atoms to false, so that the

addition of rules was necessary to accomplish switching truth values. However, for a well-defined

semantics, clingo 4 like its predecessors builds on the assumption that the modules induced by

subprograms’ instantiations are compositional, which essentially requires definitions of (head)

atoms and mutual positive dependencies to be local to evolving ground programs (cf. (Gebser

et al. 2008)).

3 Using clingo 4 in practice

As mentioned above, clingo 4 fully supersedes its special-purpose predecessors iclingo and

oclingo. To illustrate this, we give in Listing 1 a slightly simplified version of iclingo’s control

loop in Python. The full control loop (included in the release) mainly adds handling of further

iclingo options. Roughly speaking, iclingo offers a step-oriented, incremental approach to ASP

that avoids redundancies by gradually processing the extensions to a problem rather than repeat-

edly re-processing the entire extended problem (as in iterative deepening search). To this end, a

program is partitioned into a base part, describing static knowledge independent of the step pa-

rameter t, a cumulative part, capturing knowledge accumulating with increasing t, and a volatile

part specific for each value of t. These parts were delineated in iclingo by the directives #base,

#cumulative t, and #volatile t. In clingo 4, all three directives are captured by #program

declarations along with #external for volatile rules.

We illustrate this by adapting the Towers of Hanoi encoding from (Gebser et al. 2012) in Fig-

ure 1. The problem instance in Figure 1(a) as well as Line 2 in 1(b) constitute static knowledge

and thus belong to the base part. The transition function is described in the cumulative part in

Clingo = ASP + Control: Preliminary Report 5

1 #program base.

2 peg(a;b;c).

3 disk(1..4).

4 init_on(1..4,a).

5 goal_on(1..4,c).

(a) Towers of Hanoi instance

1 #program base.

2 on(D,P,0) :- init_on(D,P).

4 #program cumulative(t).

5 1 { move(D,P,t) : disk(D), peg(P) } 1.

7 move(D,t) :- move(D,P,t).

8 on(D,P,t) :- move(D,P,t).

9 on(D,P,t) :- on(D,P,t-1), not move(D,t).

10 blocked(D-1,P,t) :- on(D,P,t-1).

11 blocked(D-1,P,t) :- blocked(D,P,t), disk(D).

13 :- move(D,P,t), blocked(D-1,P,t).

14 :- move(D,t), on(D,P,t-1), blocked(D,P,t).

15 :- disk(D), not 1 { on(D,P,t) } 1.

17 #external query(t).

18 :- query(t), goal_on(D,P), not on(D,P,t).

(b) Towers of Hanoi incremental encoding

Fig. 1: Towers of Hanoi instance (tohI.lp) and incremental encoding (tohE.lp)

Line 5–15 of Figure 1(b). Finally, the query is expressed in Line 18; its volatility is realized

by making the actual goal condition goal_on(D,P), not on(D,P,t) subject to the truth as-

signment to the external atom query(t). Grounding and solving of the program in Figure 1(a)

and 1(b) is controlled by the Python script in Listing 1. Line 4–9 fix the stop criterion and initial

value of the step variable. Both can be supplied as constants istop and iinit when invoking

clingo 4. Once the base part is grounded in Line 11, the script loops until the stop criterion

is met in Line 18–19. In each iteration, the current value of step is used in Line 14 and 15 to

instantiate the subprogram cumulative(t) and to set the respective external atom query(t)

to true. If the stop condition is yet unfulfilled w.r.t. the result of solving the extended program,

the current query(t) atom is permanently falsified (cf. Line 17–20), thus annulling the corre-

sponding instances of the integrity constraint in Line 18 of Figure 1(b) before they are replaced

in the next iteration.

Another innovative feature of clingo 4 is its incremental optimization. This allows for adapting

objective functions along the evolution of a program at hand. A simple example is the search

for shortest plans when increasing the horizon in non-consecutive steps. To see this, recall that

literals in minimize statements (and analogously weak constraints) are supplied with a sequence

of terms of the form w@p,~t, where w and p are integers providing a weight and a priority level

and~t is a sequence of terms (cf. (Calimeri et al. 2012)). As an example, consider the subprogram:

#program cumulativeObjective(t).

#minimize{ W@P,X,Y,t : move(X,Y,W,P,t) }.

% or :˜ move(X,Y,W,P,t). [W@P,X,Y,t]

When grounding and solving cumulativeObjective(t) for successive values of t, the

solver’s objective function (per priority level P) is gradually extended with new atoms over

move/5, and all previous ones are kept.

Moreover, for enabling the removal of literals from objective functions, we can use externals:

6 M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub

#program volatileObjective(t).

#external activateObjective(t).

#minimize{ W@P,X,Y,t : move(X,Y,W,P,t), activateObjective(t) }.

The subprogram volatileObjective(t) behaves like cumulativeObjective(t) as long

as the external atom activateObjective(t) is true. Once it is set to false, all atoms over

move/5 with the corresponding term for t are dismissed from objective functions.

A reasoning process in clingo 4 is partitioned into a sequence of solver invocations. We have

seen how easily the solver’s logic program can be altered at each step. Sometimes it is useful

to do this in view of a previously obtained stable model. For this purpose, the solve command

can be equipped with an (optional) callback function onModel. For each stable model found

during a call to solve(onModel), an object encompassing the model is passed to onModel,

whose implementation can then access and inspect the model. A typical example is the addition

of constraints based on the last model that are then supplied to the solver before computing

the next one. An application is theory solving by passing (parts of) the last model to a theory

solver for theory-based consistency checking or for providing the value of an externally evaluated

objective function. Moreover, clingo 4 also furnishes an asynchronous solving function asolve

that launches an interruptable solving process in the background. This is particularly useful in

reactive settings in order to stop solving upon the arrival of new external information.

Similarly, the configuration of clasp can be changed at each step via the function setConf,

taking a string including command line options along with a flag indicating whether the previ-

ous configuration is updated or replaced as arguments. For instance, this allows for changing

search parameters, reasoning modes, number of threads, etc. Changing search parameters is of

interest when addressing computational tasks involving the generation of several models, like

optimal planning, multi-criteria optimization, or heuristic search. Apart from analyzing the pre-

vious model via the onModel callback, one can also monitor the search progress by means of

the function getStats, returning an object encapsulating up to 135 attributes of the previous

search process. Furthermore, clingo 4 allows for customizing the heuristic values of variables,

as described in (Gebser et al. 2013a). At a higher level, a user may simply want to explore the

set of models, and decide to compute first one, then all, and then the intersection or union of all

models. This can be interleaved with the addition of subprograms via the function add, which

may in turn include #external directives to declare temporary hypotheses. The experienced

reader may note that this can be done fully interactively by means of IPython. Practical examples

for the mentioned features can be found in the releases at (potassco).

4 Related work

Although clingo 3 (Gebser et al. 2011c) already featured Lua as an embedded scripting language,

its usage was limited to (deterministic) computations during grounding; neither were library

functions furnished by clingo 3.

Of particular interest is dlvhex (Fink et al. 2013), an ASP system aiming at the integration

of external computation sources. For this purpose, dlvhex relies on higher-order logic programs

using external higher-order atoms for software interoperability. Such external atoms should not

be confused with clingo’s #external directive because they are evaluated via procedural means

during solving. Given this, dlvhex can be seen as an ASP modulo Theory solver, similar to SAT

modulo Theory solvers (Nieuwenhuis et al. 2006). In fact, dlvhex uses gringo and clasp as back-

ends and follows the design of the ASP modulo CSP solver clingcon (Ostrowski and Schaub

Clingo = ASP + Control: Preliminary Report 7

2012) in communicating with external “oracles” through clasp’s post propagation mechanism.

In this way, theory solvers are tightly integrated into the ASP system and have access to the

solver’s partial assignments. Unlike this, the light-weighted theory solving approach offered by

clingo 4 can only provide access to total (stable) assignments. It is thus interesting future work to

investigate in how far dlvhex can benefit from lifting its current low-level integration into clasp

to a higher level in combination with clingo 4. Clearly, the above considerations also apply to

extensions of dlvhex, such as acthex (Fink et al. 2013). Furthermore, jdlv (Febbraro et al. 2012)

encapsulates the dlv system to facilitate one-shot ASP solving in Java environments by providing

means to generate and process logic programs, and to afterwards extract their stable models.

The procedural attachment to the idp system (De Pooter et al. 2013; De Cat et al. 2014) builds

on interfaces to C++ and Lua. Like clingo 4, it allows for evaluating functions during grounding,

calling the grounder and solver multiple times, inspecting solutions, and reacting to external input

after search. The emphasis, however, lies on high-level control blending in with idp’s modeling

language, while clingo 4 offers more fine-grained control over the grounding and solving process,

particularly aiming at a flexible incremental assembly of programs from subprograms.

In SAT, incremental solver interfaces from low-level APIs are common practice. Pioneering

work was done in minisat (Eén and Sörensson 2004), furnishing a C++ interface for solving

under assumptions. In fact, the clasp library underlying clingo 4 builds upon this functionality to

implement incremental search (see (Gebser et al. 2008)). Given that SAT deals with propositional

formulas only, solvers and their APIs lack support for modeling languages and grounding. Unlike

this, the SAT modulo Theory solver z3 (de Moura and Bjørner 2008) comes with a Python API

that, similar to clingo 4, provides a library for controlling the solver as well as language bindings

for constraint handling. In this way, Python can be used as a modeling language for z3.

5 Discussion

The new clingo 4 system complements ASP’s declarative input language by control capacities ex-

pressed by embedded scripting languages. This is accomplished within a single integrated ASP

grounding and solving process in which a logic program may evolve over time. The addition,

deletion, and replacement of programs is controlled procedurally by means of clingo’s dedi-

cated library. The incentives for evolving a logic program are manifold and cannot be captured

with the standard one-shot approach of ASP. Examples include unrolling a transition function,

as in planning, interacting with an environment, as in assisted living, robotics, or stream reason-

ing, interacting with a user exploring a domain, theory solving, and advanced forms of search.

Addressing these demands by embedded scripting languages provides us with a generic and

transparent approach. Unlike this, previous systems, like iclingo and oclingo, had a dedicated

purpose involving rigid control capacities buried in monolithic programs. Rather than that, the

basic technology of clingo 4 allows us to instantiate subprograms in-between solver invocations

in a fully customizable way. On the declarative side, the availability of program parameters and

the embedding of #external directives into the grounding process provide great flexibility in

modeling schematic subprograms. In addition, the possibility of assigning input atoms facilitates

the implementation of applications such as query answering or sliding window reasoning, as

truth values can now be switched without manipulating a logic program.

The semantic underpinnings of our framework in terms of module theory capture the dynamic

combination of logic programs in a generic way. It is interesting future work to investigate how

8 M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub

dedicated change operations whose interest was so far mainly theoretic, like updating (Alferes

et al. 2002) or forgetting (Zhang and Foo 2006), can be put into practice within this framework.

The input language of clingo 4 extends the ASP-Core-2 standard (Calimeri et al. 2012). Al-

though we have presented clingo 4 for normal logic programs, we mention that it accepts (ex-

tended) disjunctive logic programs, processed via the multi-threaded solving approach described

in (Gebser et al. 2013b). In version 4.3, clingo moreover embeds clasp 3, featuring domain-

specific heuristics (Gebser et al. 2013a) and optimization using unsatisfiable cores (Andres et al.

2012). clingo 4 is freely available at (potassco), and its releases include many best practice ex-

amples illustrating the aforementioned application scenarios.

Acknowledgments This work was partially funded by DFG grant SCHA 550/9-1.

References

ALFERES, J., PEREIRA, L., PRZYMUSINSKA, H., AND PRZYMUSINSKI, T. 2002. LUPS: A language for

updating logic programs. Artificial Intelligence 138, 1-2, 87–116.

ANDRES, B., KAUFMANN, B., MATHEIS, O., AND SCHAUB, T. 2012. Unsatisfiability-based optimization

in clasp. In Technical Communications of the Twenty-eighth International Conference on Logic Program-

ming (ICLP’12), A. Dovier and V. Santos Costa, Eds. Leibniz International Proceedings in Informatics,

vol. 17. Dagstuhl Publishing, 212–221.

BARAL, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge

University Press.

CALIMERI, F., FABER, W., GEBSER, M., IANNI, G., KAMINSKI, R., KRENNWALLNER, T., LEONE,

N., RICCA, F., AND SCHAUB, T. 2012. ASP-Core-2: Input language format. Available at https:

//www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.0.pdf.

DE CAT, B., BOGAERTS, B., BRUYNOOGHE, M., AND DENECKER, M. 2014. Predicate logic as a mod-

elling language: The IDP system. CoRR abs/1401.6312. Available at http://arxiv.org/abs/

1401.6312v1.

DE MOURA, L. AND BJØRNER, N. 2008. Z3: An efficient SMT solver. In Proceedings of the Four-

teenth International Conference on Tools and Algorithms for the Construction and Analysis of Sys-

tems (TACAS’08), C. Ramakrishnan and J. Rehof, Eds. Lecture Notes in Computer Science, vol. 4963.

Springer-Verlag, 337–340.

DE POOTER, S., WITTOCX, J., AND DENECKER, M. 2013. A prototype of a knowledge-based pro-

gramming environment. In Proceedings of the Nineteenth International Conference on Applications of

Declarative Programming and Knowledge Management (INAP’11) and the Twenty-fifth Workshop on

Logic Programming (WLP’11), H. Tompits, S. Abreu, J. Oetsch, J. Pührer, D. Seipel, M. Umeda, and

A. Wolf, Eds. Lecture Notes in Computer Science, vol. 7773. Springer-Verlag, 279–286.

DELGRANDE, J. AND FABER, W., Eds. 2011. Proceedings of the Eleventh International Conference on

Logic Programming and Nonmonotonic Reasoning (LPNMR’11). Lecture Notes in Artificial Intelligence,

vol. 6645. Springer-Verlag.

EÉN, N. AND SÖRENSSON, N. 2004. An extensible SAT-solver. In Proceedings of the Sixth International

Conference on Theory and Applications of Satisfiability Testing (SAT’03), E. Giunchiglia and A. Tac-

chella, Eds. Lecture Notes in Computer Science, vol. 2919. Springer-Verlag, 502–518.

FEBBRARO, O., LEONE, N., GRASSO, G., AND RICCA, F. 2012. JASP: A framework for integrating

answer set programming with Java. In Proceedings of the Thirteenth International Conference on Prin-

ciples of Knowledge Representation and Reasoning (KR’12), G. Brewka, T. Eiter, and S. McIlraith, Eds.

AAAI Press, 541–551.

FINK, M., GERMANO, S., IANNI, G., REDL, C., AND SCHÜLLER, P. 2013. ActHEX: Implementing

HEX programs with action atoms. In Proceedings of the Twelfth International Conference on Logic

Clingo = ASP + Control: Preliminary Report 9

Programming and Nonmonotonic Reasoning (LPNMR’13), P. Cabalar and T. Son, Eds. Lecture Notes in

Artificial Intelligence, vol. 8148. Springer-Verlag, 317–322.

GEBSER, M., GROTE, T., KAMINSKI, R., AND SCHAUB, T. 2011a. Reactive answer set programming.

See Delgrande and Faber (2011), 54–66.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., OSTROWSKI, M., SCHAUB, T., AND SCHNEIDER, M.

2011b. Potassco: The Potsdam answer set solving collection. AI Communications 24, 2, 107–124.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., OSTROWSKI, M., SCHAUB, T., AND THIELE, S. 2008.

Engineering an incremental ASP solver. In Proceedings of the Twenty-fourth International Conference on

Logic Programming (ICLP’08), M. Garcia de la Banda and E. Pontelli, Eds. Lecture Notes in Computer

Science, vol. 5366. Springer-Verlag, 190–205.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., AND SCHAUB, T. 2012. Answer Set Solving in Practice.

Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., AND SCHAUB, T. 2014. Clingo = ASP + Con-

trol: Extended report. Available at http://www.cs.uni-potsdam.de/wv/pdfformat/

gekakasc14a.pdf.

GEBSER, M., KAMINSKI, R., KÖNIG, A., AND SCHAUB, T. 2011c. Advances in gringo series 3. See

Delgrande and Faber (2011), 345–351.

GEBSER, M., KAUFMANN, B., OTERO, R., ROMERO, J., SCHAUB, T., AND WANKO, P. 2013a. Domain-

specific heuristics in answer set programming. In Proceedings of the Twenty-Seventh National Confer-

ence on Artificial Intelligence (AAAI’13), M. desJardins and M. Littman, Eds. AAAI Press, 350–356.

GEBSER, M., KAUFMANN, B., AND SCHAUB, T. 2013b. Advanced conflict-driven disjunctive answer

set solving. In Proceedings of the Twenty-third International Joint Conference on Artificial Intelligence

(IJCAI’13), F. Rossi, Ed. IJCAI/AAAI Press, 912–918.

LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S., AND SCARCELLO, F. 2006.

The DLV system for knowledge representation and reasoning. ACM Transactions on Computational

Logic 7, 3, 499–562.

NIEUWENHUIS, R., OLIVERAS, A., AND TINELLI, C. 2006. Solving SAT and SAT modulo theories:

From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM 53, 6,

937–977.

OIKARINEN, E. AND JANHUNEN, T. 2006. Modular equivalence for normal logic programs. In Proceed-

ings of the Seventeenth European Conference on Artificial Intelligence (ECAI’06), G. Brewka, S. Corade-

schi, A. Perini, and P. Traverso, Eds. IOS Press, 412–416.

OSTROWSKI, M. AND SCHAUB, T. 2012. ASP modulo CSP: The clingcon system. Theory and Practice

of Logic Programming 12, 4-5, 485–503.

POTASSCO. http://potassco.sourceforge.net.

SYRJÄNEN, T. Lparse 1.0 user’s manual. Available at http://www.tcs.hut.fi/Software/

smodels/lparse.ps.gz.

ZHANG, Y. AND FOO, N. 2006. Solving logic program conflict through strong and weak forgettings.

Artificial Intelligence 170, 8-9, 739–778.

Supplementary material: Technical Communication c© 20XX [A. S. Gomes and J. J. Alferes] 1

Transaction Logic with (Complex) Events

Ana Sofia Gomes and José Júlio Alferesã
CENTRIA - Dep. de Informática, Faculdade Ciências e Tecnologias

Universidade Nova de Lisboa

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

This work deals with the problem of combining reactive features, such as the ability to respond to events
and define complex events, with the execution of transactions over general Knowledge Bases (KBs).

With this as goal, we build on Transaction Logic (TR), a logic precisely designed to model and execute
transactions in KBs defined by arbitrary logic theories. In it, transactions are written in a logic-programming
style, by combining primitive update operations over a general KB, with the usual logic programming
connectives and some additional connectives e.g. to express sequence of actions. While TR is a natural
choice to deal with transactions, it remains the question whetherTR can be used to express complex events,
but also to deal simultaneously with the detection of complex events and the execution of transactions. In
this paper we show that the former is possible while the latter is not. For that, we start by illustrating how
TR can express complex events, and in particular, how SNOOP event expressions can be translated in the
logic. Afterwards, we show whyTR fails to deal with the two issues together, and to solve the intended
problem propose Transaction Logic with Events, its syntax, model theory and executional semantics. The
achieved solution is a non-monotonic extension ofTR, which guarantees that every complex event detected
in a transaction is necessarily responded.

KEYWORDS: reactivity, complex events, transaction logic

1 Introduction

Reactivity stands for the ability to detect complex changes (also denoted as events) in the environ-
ment and react automatically to them according to some pre-defined rules. This is a pre-requisite
of many real-world applications, such as web-services providing different services depending on
external information, multi-agent systems adapting their knowledge and actions according to the
changes in the environment, or monitoring systems reacting to information detected by their sen-
sors and issuing actions automatically in response to it. In reactive systems, e.g. in those based on
Event-Condition-Action (ECA) languages (Alferes et al. 2011; Bry et al. 2006; Chomicki et al.
2003), the reaction triggered by the detection of a complex event may itself be a complex ac-
tion, formed e.g. by the sequencial execution of several basic actions. Moreover, we sustain that
sometimes reactive systems are also required to execute transactions in response to events. For
example, consider an airline web-service scenario where an external event arrives stating that a
partner airline is on strike for a given time period. Then, the airline must address this event by e.g.
rescheduling flights with alternative partners or refund tickets for passengers who do not accept

ã The authors thank Michael Kifer for the valuable discussions in a preliminary version of this work. The first author
was supported by the grant SFRH/BD/64038/2009 and by project ERRO (PTDC/EIA-CCO/121823/2010). The second
author was supported by project ASPEN PTDC/EIA-CCO/110921/2009

2 Ana Sofia Gomes and José Júlio Alferes

the changes. Clearly, some transactional properties regarding these actions must be ensured: viz.
it can never be the case that a passenger is simultaneously not refunded nor have an alternative
flight; or that she is completely refunded and has a rescheduled flight.

Although the possibility of executing transactions is of crucial importance in many of today’s
systems, and a must e.g. in database systems, most reactive languages do not deal with it. Some
exceptions exist, but are either completely procedural and thus lack from a clear declarative
semantics (as e.g. in (Papamarkos et al. 2006)), or have a strong limitation on the expressivity of
either the actions or events (as e.g. in (Zaniolo 1995; Lausen et al. 1998)).

In this paper we propose Transaction Logic with Events,TRev , an extension ofTR (Bonner
and Kifer 1993) integrating the ability to reason and execute transactions over very general forms
of KBs, with the ability to detect complex events. For this, after a brief overview ofTR, we show
how it can be used to express and reason about complex events, and in particular, how it can
express most SNOOP event operators (Adaikkalavan and Chakravarthy 2006) (Section 2). We
proceed by showing whyTR alone is not able to deal with both the detection of complex events
and the execution of transactions, and, in particular, why it does not guarantee that all complex
events detected during the execution of a transaction are responded within that execution. For
solving this problem, we defineTRev , its language and model theory (Section 3.1), as well as
its executional semantics (Section 3.2).

2 UsingTR to express complex events

In this section we briefly recallTR’s syntax and semantics with minor syntactic changes from
the original, to help distinguish between actions and event occurrences, something that is useful
ahead in the paper when extendingTR to deal with reactive features and complex events.

Atoms in TR have the form p(t1, . . . , tn) where p is a predicate symbol and ti’s are terms
(variables, constants, function terms). For simplicity, and without loss of generality (Bonner and
Kifer 1998), we consider Herbrand instantiations, as usual. To build complex formulas,TR uses
the classical connectives ∧,∨,¬,← and the connectives ⊗,� denoting serial conjunction and
hypothetical execution. Informally, φ ⊗ ψ is an action composed of an execution of φ followed
by an execution of ψ; and �φ tests if φ can be executed without materializing the changes. In
general, formulas are viewed as (the execution of) transactions, where, φ∧ψ is the simultaneous
execution of φ and ψ; φ ∨ ψ the non-deterministic choice of executing φ or ψ. φ ← ψ is a
rule saying that one way to execute of φ is by executing ψ. As in classical logic, ∧ and← can
be written using ∨ and ¬ (e.g. φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ)). Finally, we also use the connective ;

as it is useful to express common complex events. φ;ψ says that ψ is true after φ but possibly
interleaved with other occurrences, and it can be written inTR syntax as: φ⊗ path⊗ψ where
path ≡ (ϕ ∨ ¬ϕ) is a tautology that holds in paths of arbitrary size (Bonner and Kifer 1998).

For making possible the separation between the theory of states and updates, from the logic
that combines them in transactions, TR considers a pair of oracles – Od (data oracle) and Ot
(transition oracle) – as a parameter of the theory. These oracles are mappings that assume a set
of state identifiers. Od is a mapping from state identifiers to a set of formulas that hold in that
state, and Ot is a mapping from pairs of state identifiers to sets of formulas that hold in the
transition of those states. These oracles can be instantiated with a wide variety of semantics,
as e.g. relational databases, well-founded semantics, action languages, etc. (Bonner and Kifer
1993). For example, a relational database can be modeled by having states represented as sets of
ground atomic formulas. Then, the data oracle simply returns all these formulas, i.e., Od(D) = D,

Transaction Logic with (Complex) Events 3

and for each predicate p in the KB, the transition oracle defines p.ins and p.del, representing the
insertion and deletion of p, respectively. Formally, p.ins ∈ Ot(D1, D2) iff D2 = D1 ∪ {p} and,
p.del ∈ Ot(D1, D2) iff D2 = D1\{p}. SQL-style bulk updates can also be defined by Ot.
Example 1 (Moving objects -TR)
As aTR’s illustration, assume the prior relational database oracles and the actionmove(O,X, Y)

defining the relocation of object O from position X into position Y . In such a KB, states are
defined using the predicates location(O, P) saying that object O is in position P , and clear(X)

stating that X is clear to receive an object. InTR, the move (trans)action can be expressed by:

move(O,X, Y)← location(O,X)⊗ clear(Y)⊗ localUpdt(O,X, Y)

localUpdt(O,X, Y)← location(O,X).del ⊗ location(O, Y).ins⊗ clear(Y).del ⊗ clear(X).ins

TR’s theory is built upon the notion of sequences of states denoted as paths. Formulas are
evaluated over paths, and truth in TR means execution: a formula is said to succeed over a
path, if that path represents a valid execution for that formula. Although not part of the original
TR, here paths’ state transitions are labeled with information about what (atomic occurrences)
happen in the transition of states. Precisely, paths have the form 〈D0

O1→ D2
O2→ . . . Ok→ Dk〉,

where Di’s are states and Oi’s are labels (used later to annotate atomic event occurrences).
As usual, satisfaction of complex formulas is based on interpretations. These define what

atoms are true in what paths, by mapping every path to a set of atoms. However, only the map-
pings compliant with the specified oracles are interpretations:

Definition 1 (Interpretation)
An interpretation is a mappingM assigning a set of atoms (or>1) to every path, with the follow-
ing restrictions (where Dis are states, and ϕ a formula):

1. ϕ ∈M(〈D〉) if ϕ ∈ Od(D)

2. {ϕ, o(ϕ)} ⊆M(〈D1
o(ϕ)→D2〉) if ϕ ∈ Ot(D1, D2)

In point 2 we additionally (i.e., when compared to the original definition) force o(ϕ) to belong
to the same path where the primitive action ϕ is made true by the oracle, something that later (in
Section 3) will help detect events associated with primitive actions, like “on insert/delete”.

Next, we define operations on paths, and satisfaction of complex formulas over general paths.

Definition 2 (Path Splits, Subpaths and Prefixes)
Let π be a k-path, i.e. a path of length k of the form 〈D1

O1→ . . .Ok−1→Dk〉. A split of π is any pair
of subpaths, π1 and π2, such that π1 = 〈D1

O1→ . . .Oi−1→Di〉 and π2 = 〈Di Oi→ . . .Ok−1→Dk〉 for
some i (1 6 i 6 k). In this case, we write π = π1 ◦ π2.
A subpath π′ of π is any subset of states and annotations of π where both the order of the states
and their annotations is preserved. A prefix π1 of π is any subpath of π sharing the initial state.

Definition 3 (TR Satisfaction of Complex Formulas)
Let M be an interpretation, π a path and φ a formula. If M(π) = > then M,π |=TR φ; else:

1. Base Case: M,π |=TR φ iff φ ∈M(π) for every event occurrence φ
2. Negation: M,π |=TR ¬φ iff it is not the case that M,π |=TR φ
3. Disjunction: M,π |=TR φ ∨ ψ iff M,π |=TR φ or M,π |=TR ψ.

1 For not having to consider partial mappings, besides formulas, interpretations can also return the special symbol >.
The interested reader is referred to (Bonner and Kifer 1993) for details.

4 Ana Sofia Gomes and José Júlio Alferes

4. Serial Conjunction:M,π |=TR φ⊗ψ iff there exists a split π1 ◦π2 of π s.t.M,π1 |=TR φ
and M,π2 |=TR ψ

5. Executional Possibility: M,π |=TR �φ iff π is a 1-path of the form 〈D〉 for some state D
and M,π′ |=TR φ for some path π′ that begins at D.

Models and logical entailment are defined as usual. An interpretation models/satisfies a set of
rules if each rule is satisfied in every possible path, and an interpretation models a rule in a path,
if whenever it satisfies the antecedent, it also satisfies the consequent.
Definition 4 (Models, and Logical Entailment)
An interpretation M is a model of a formula φ iff for every path π, M,π |=TR φ. M is a model
of a set of rules P (denoted M |=TR P) iff it is a model of every rule in P .
φ is said to logically entail another formula ψ iff every model of φ is also a model of ψ.

Logical entailment is useful to define general equivalence and implication of formulas that
express properties like “transaction φ is equivalent to transaction ψ” or “whenever transaction ψ
is executed, ψ′ is also executed”. Moreover, if instead of transactions, we view the propositions
as representing event occurrences, this entailment can be used to express complex events. For
instance, imagine we want to state a complex event alarm, e.g. triggered whenever event ev1
occurs after both ev2 and ev3 occur simultaneously. This can be expressed inTR as:

o(alarm)← (o(e2) ∧ o(e3)); o(e1) (1)

In every model of this formula, whenever there is a (sub)path where both o(e2) and o(e3) are true,
followed by a (sub)path where o(e1) holds, then o(alarm) is true in the whole path.

Other complex event definitions are possible, and in fact we can encode most of SNOOP
(Adaikkalavan and Chakravarthy 2006) operators in TR. This is shown in Theorem 1 where,
for a given history of past event occurrences, we prove that if an event expression is true in
SNOOP, then there is a translation into a TR formula which is also true in that history. Since
a SNOOP history is a set of atomic events associated with discrete points in time, the first step
is to build aTR path expressing such history. We construct it as a sequence of state identifiers
labeled with time, where time point i takes place in the transition of states 〈si, si+1〉, and only
consider interpretations M over such a path that are compatible with SNOOP’s history, i.e. such
that, for every atomic event that is true in a time i, M makes the same event true in the path
〈si, si+1〉.
Theorem 1 (SNOOP Algebra andTR)
Let E be a SNOOP algebra expression without periodic and aperiodic operators, H be a history
containing the set of all SNOOP primitive events eij[t1] that have occurred over the time interval
t1, tmax, and 〈s1, . . . smax+1〉 be a path with size tmax − t1 + 1. Let τ be the following function:

Primitive: τ(E) = o(E) where E is a primitive event
Sequence: τ(E1;E2) = τ(E1)⊗ path⊗ τ(E2)

Or: τ(E1OE2) = τ(E1) ∨ τ(E2)

AND: τ(E14E2) = [(τ(E1)⊗ path) ∧ (path⊗ τ(E2))] ∨ [(τ(E2)⊗ path) ∧ (path⊗ τ(E1))]

NOT: τ(¬(E3)[E1, E2]) = τ(E1)⊗¬τ(E3)⊗ τ(E2)

Then, [ti, tf] ∈ E[H] ⇒ ∀M compatible with H , M, 〈sti , . . . , stf+1
〉 |=TR τ(E), where, cf.

(Adaikkalavan and Chakravarthy 2006), E[H] is the set of time intervals (ti, tf) where E occurs
over H in an unrestricted context, and where M is compatible with H if, for each eij[ti] ∈ H:
M, 〈sti , sti+1

〉 |=TR o(ej).

Besides the logical entailment, TR also provides the notion of executional entailment for
reasoning about properties of a specific execution path.

Transaction Logic with (Complex) Events 5

Definition 5 (Executional Entailment)
Let P be a set of rules, φ a formula, and D0

O1→ . . .On→Dn a path.
P , (D0

O1→ . . .On→Dn) |= φ (?) iff for every model M of P , M, 〈D0
O1→ . . .On→Dn〉 |= φ.

Additionally, P ,D0– |= φ holds, if there is a path D0
O1→ . . .On→Dn that makes (?) true.

P , (D0
O1→ . . .On→Dn) |= φ says that a successful execution of transaction φ respecting the

rules in P , can change the KB from state D0 into Dn with a sequence of occurrences O1, . . . , On.
E.g., in the Example 1 (with obvious abbreviations), the statement P , ({cl(t), l(c, o)} o(l(c,o).del)→
{cl(t)} o(l(c,t).ins)→ {cl(t), l(c, t)} o(cl(t).del)→ {l(c, t)} o(cl(o).ins)→ {l(c, t), cl(o)}) |= move(c, o, t)

means that a possible result of executing the transaction move(c, oven, table) starting in the state
{clear(table), loc(c, oven)} is the path with those 5 states, ending in {loc(c, table), clear(oven)}.

This entailment has a corresponding proof theory (Bonner and Kifer 1993) which, for a subset
of TR, is capable of constructing such a path given a program, a TR formula, and an initial
state. I.e. a path where the formula can be executed. If no such path exists, then the transaction
fails, and nothing is built after the initial state.

3 TRev: combining the execution of transactions with complex event detection

Reactive languages need to express behaviors like: “on alarm do action a1 followed by action
a2”, where the actions a1 ⊗ a2 may define a transaction, and alarm is e.g. the complex event in
(1). Clearly,TR can individually express and reason about transaction a1 ⊗ a2, and its complex
event. So, the question is whether it can deal with both simultaneously. For that, two important
issues must be tackled: 1) how to model the triggering behavior of reactive systems, where the
occurrence of an event drives the execution of a transaction in its response; 2) how to model the
transaction behavior that prevents transactions to commit until all occurring events are responded.

Regarding 1), (Bonner et al. 1993) shows that simple events can be triggered inTR as:

p← body ⊗ ev
ev ← r(ev)

(2)

With such rules, in all paths that make p true (i.e., in all executions of transaction p) the event ev is
triggered/fired (after the execution of some arbitrary body), and ev’s response, r(ev), is executed.
Note that, both r(ev) and body can be defined as arbitrary formulas.

But, this is just a very simple and specific type of event: atomic events that are explicitly
triggered by a transaction defined in the program. In general, atomic events can also arrive as
external events, or because some primitive action is executed in a path (e.g. as the database
triggers - “on insert/on delete”). Triggering external events inTR can be done by considering
the paths that make the external event true. E.g., if one wants to respond to an external event ev
from an initial state, all we need to do is find the paths π starting in that state, s.t. P , π |= ev,
where P includes the last rule from (2) plus the rules defining ev’s response.

The occurrences of primitive actions can be tackled by Point 2 of Def. 1, and the occurrence
of complex events can be defined as prescribed in Section 2. However, the above approach of
(Bonner et al. 1993) does not help for driving the execution of an event response when such
occurrences become true. For instance, the ECA-rule before could be stated as:

o(alarm)← (o(e2) ∧ o(e3)); o(e1)

r(alarm)← a1 ⊗ a2

But this does not drive the execution of r(alarm) when o(alarm) holds; one has further to force
that whenever o(alarm) holds, r(alarm) must be made true subsequently. Of course, adding a
rule r(alarm) ← o(alarm) would not work: such rule would only state that, one alternative way

6 Ana Sofia Gomes and José Júlio Alferes

to satisfy the response of alarm is to make its occurrence true. And for that, it would be enough
to satisfy o(alarm) to make r(alarm) true, which is not what is intended.

Clearly, this combination implies two different types of formulas with two very different be-
haviors: the detection of events which are tested for occurrence w.r.t. a past history; and the
execution of transactions as a response to them, which intends to construct paths where formu-
las can succeed respecting transactional properties. This has to be reflected in the semantics and
these formulas should be evaluated differently accordingly to their nature.

Regarding 2), as in database triggers, transaction’s execution must depend on the events trig-
gered. Viz., an event occurring during a transaction execution can delay that transaction to com-
mit/succeed until the event response is successfully executed, and the failure of such response
should imply the failure of the whole transaction. Encoding this behavior requires that, if an event
occurs during a transaction, then its execution needs to be expanded with the event response. Ad-
ditionally, this also precludes transactions to succeed in paths where an event occurs and is not
responded (even if the transaction would succeed in that path if the event did not existed).

For addressing these issues, below we define TRev . This extension of TR evaluates event
formulas and transaction formulas differently, using two distinct relations (respectively |=TR
and |=), and occurrences and responses are syntactic represented w.r.t. a given event name e, as
o(e) and r(e), respectively. In this context, |= requires transactions to be satisfied in expanded
paths, where every occurring event (made true by |=TR) is properly responded.

3.1 TRev Syntax and Model Theory

To make possible a different evaluation of events and transactions, predicates inTRev are par-
titioned into transaction names (Pt), event names (Pe), and oracle primitives (PO) and, as with
TR, we work with the Herbrand instantiation of the language.

Formulas inTRev are partitioned into transaction formulas and event formulas. Event formu-
las denote formulas meant to be detected and are either an event occurrence, or an expression
defined inductively as ¬φ, φ ∧ ψ, φ ∨ ψ, φ⊗ ψ, or φ;ψ where φ and ψ are event formulas. An
event occurrence is of the form o(ϕ) s.t. ϕ ∈ Pe or ϕ ∈ PO. Note that, we preclude the usage
of � in event formulas, as it would make little sense to detect occurrences based on what could
possibly be executed.

Transaction formulas are formulas that can be executed, and are either a transaction atom, or
an expression defined inductively as ¬φ, �φ, φ ∧ ψ, φ ∨ ψ, or φ ⊗ ψ. A transaction atom is
either a transaction name (in Pt), an oracle defined primitive (in PO), the response to an event
(r(ϕ) where ϕ ∈ PO ∪ Pe), or an event name (in Pe) The latter corresponds to the (trans)action
of explicitly triggering an event directly in a transaction as in (2) or as an external event. As we
shall see (Def. 7) explicitly triggering an event changes the path of execution (by asserting the
information that the event has happened in the current state) and, as such, is different from simply
inferring (or detecting) what events hold given a past path.

Finally, rules have the form ϕ ← ψ and can be transaction or (complex) event rules. In a
transaction rule ϕ is a transaction atom and ψ a transaction formula; in an event rule ϕ is an
event occurrence and ψ is a event formula. A program is a set of transaction and event rules.

Importantly, besides the data and transition oracles,TRev is also parametric on a choice func-
tion defining what event should be selected at a given time in case of conflict. Since defining
what event should be picked from the set of occurring events depends on the application in mind,
TRev does not commit to any particular definition, encapsulating it in function choice.

Transaction Logic with (Complex) Events 7

As a reactive system,TRev receives a series of external events which may cause the execution
of transactions in response. This is defined as P ,D0– |= e1 ⊗ . . .⊗ ek, where D0 is the initial KB
state and e1 ⊗ . . .⊗ ek is the sequence of external events that arrive to the system. Here, we want
to find the path D0

O1→ . . .On→Dn encoding a KB evolution that responds to e1 ⊗ . . .⊗ ek.
As mentioned, triggering explicit events is a transaction formula encoding the action of making

an occurrence explicitly true. This is handled by the definition of interpretation, in a similar way
to how atomic events defined by oracles primitives are made true:

Definition 6 (TRev interpretations)
ATRev interpretation is aTR interpretation that additionally satisfies the restriction: 3) o(e) ∈
M(〈D o(e)→D〉) if e ∈ Pe

We can now define the satisfaction of complex formulas, and then models of a program. Event
formulas are evaluated w.r.t. the relation |=TR specified in Def. 3. Transaction formulas are
evaluated w.r.t. the relation |= which requires formulas to be true in expanded paths, in which
every occurring event is responded (something dealt by expM(π), defined below).

Definition 7 (Satisfaction of Transaction Formulas and Models)
Let M be an interpretation, π a path, φ transaction formula. If M(π) = > then M,π |= φ; else:

1. Base Case: M,π |= p iff ∃π′ prefix of π s.t. p ∈ M(π′) and π = expM(π′), for every
transaction atom p where p 6∈ Pe.

2. Event Case: M,π |= e iff e ∈ Pe, ∃π′ prefix of π s.t. M,π′ |=TR o(e) and π = expM(π′).
3. Negation: M,π |= ¬φ iff it is not the case that M,π |= φ

4. Disjunction: M,π |= φ ∨ ψ iff M,π |= φ or M,π |= ψ.
5. Serial Conjunction: M,π |= φ ⊗ ψ iff ∃π′ prefix of π and some split π1 ◦ π2 of π′ such

that M,π1 |= φ and M,π2 |= ψ and π = expM(π′).
6. Executional Possibility: M,π |= �φ iff π is a 1-path of the form 〈D〉 for some state D and
M,π′ |= φ for some path π′ that begins at D.

An interpretation M is a model of a transaction formula (resp. event formula) φ iff for every
path π, M,π |= φ (resp. M,π |=TR φ). M is a model of a program P (denoted M |= P) iff it is
a model of every (transaction and complex event) rule in P .

expM(π) is a function that, given a path with possibly unanswered events, expands it with the
result of responding to those events. Its definition must perforce have some procedural nature: it
must start by detecting which are the unanswered events; pick one of them, according to a given
choice function; then expand the path with the response of the chosen event. The response to this
event, computed by operator RM defined below, may, in turn, generate the occurrence of further
events. So, RM must be iterated until no more unanswered events exist.

Definition 8 (Expansion of a Path)
For a path π1 and an interpretation M, the response operator RM(π1) is defined as follows:

RM(π1) =

{
π1 ◦ π2 if choice(M,π1) = e and M,π2 |= r(e)

π1 if choice(M,π1) = ε

The expansion of a path π is expM(π) =↑ RM(π).

In general it may not be possible to address all events in a finite path, and thus, RM may not
have a fixed-point. In fact, non-termination is a known problem of reactive systems, and is often
undecidable for the general case (Bailey et al. 2004). However, if termination is possible, then a
fixed-point exists and each iteration ofRM is an approximation of the expansion operator expM .

8 Ana Sofia Gomes and José Júlio Alferes

This definition leaves open the choice function, that is taken as a further parameter ofTRev,
and specifies how to choose the next unanswered event to respond to. For its instantiation one
needs to decide: 1) in which order should events be responded and 2) how should an event be
responded. The former defines the handling order of events in case of conflict, e.g. based on when
events have occurred (temporal order), on a priority list, or any other criteria. The latter defines
the response policy of an ECA-language, i.e. when is an event considered to be responded. E.g.,
if an event occurs more than once before the system can respond to it, this specifies if such
response should be issued only once or equally to the amount of occurrences. Choosing the
appropriate operational semantics depends on the application in mind. In the following definition
we exemplify how this choice function can be instantiated, for a case when events are responded
in the (temporal) order in which they occurred, and events for which there was already a response
are not responded again.

Definition 9 (Temporal choice function)
Let M be an interpretation and π be a path. The temporal choice function is choice(M,π) =

firstUnans(M,π, order(M,π)) where:

• order(M,π) = 〈e1, . . . , en〉 iff ∀ei 1 6 i 6 n, ∃πi subpath of π where M,π |=TR o(ei) and
∀ej s.t. i < j then ej occurs after ei

• e2 occurs after e1 w.r.t. π and M iff there exists π1, π2 subpaths of π such that π1 = 〈Di
Oi→ . . .Oj−1→Dj〉, π2 = 〈DnOn→ . . .Om−1→Dm〉, M,π1 |= o(e1), M,π2 |= o(e2) and Dj 6 Dm
w.r.t. the ordering in π.

• firstUnans(M,π, 〈e1, . . . , en〉) = ei iff ei is the first event in 〈e1, . . . , en〉 where given π′

subpath of π and M,π′ |=TR o(e) then ¬∃π′′ s.t. π′′ is also a subpath of π, π′′ is after π′

and M,π′′ |= r(e).

We continue by exemplifying the semantics in examples.

Example 2
p← a.ins

r(e1)← c.ins
(P3)

p← a.ins

r(e1)← c.ins

o(e1)← o(a.ins)

(P4)

Consider the programs2 P3 and P4. In P3, p holds in the path 〈{} o(a.ins)→{a}〉. This is true since
all interpretations must comply with the oracles and thus ∀M: a.ins ∈ M(〈{} o(a.ins)→ {a}〉)
implyingM, 〈{}o(a.ins)→{a}〉 |= a.ins. Assuming thatM is a model of P3, then it satisfies the rule
p← a.ins, which means that p ∈M(〈{}o(a.ins)→{a}〉) and M, 〈{}o(a.ins)→{a}〉 |= p.

However, since o(e1) ← o(a.ins) ∈ P4 and ∀M.o(a.ins) ∈ M(〈{} o(a.ins)→{a}〉), for M to be
a model of P4, then o(e1) ∈ M(〈{} o(a.ins)→{a}〉). Since e1 has a response defined, then in path
〈{} o(a.ins)→ {a}〉 the occurrence e1 is unanswered and both the transactions p and a.ins cannot
succeed in that path. Namely, o(e1) constrains the execution of every transaction in the path 〈{}
o(a.ins)→{a}〉 and, for transaction formulas to succeed, such path needs to be expanded with e1’s
response. Since, expM(〈{} a.ins→{a}〉) = 〈{} o(a.ins)→{a} o(c.ins)→{a, c}〉 then, both transactions
p and a.ins succeed in the longer path 〈{} o(a.ins)→{a} o(c.ins)→{a, c}〉, i.e. for an M model of P4:
M, 〈{} o(a.ins)→ {a} o(c.ins)→ {a, c}〉 |= p and M, 〈{} o(a.ins)→ {a} o(c.ins)→ {a, c}〉 |= a.ins. Notice
the non-monotonicity ofTRev, viz. that adding a new event rule to P3 falsifies the transaction
formulas p and a.ins in paths where they were previously true.

2 For brevity, in this and the following examples we assume the rule r(p)← true to appear in every program for every
primitive action p defined in the signature of the oracles, unless when stated otherwise. I.e., we assume the responses
of events inferred from primitive actions to hold trivially whenever their rules do not appear explicitly in the program.

Transaction Logic with (Complex) Events 9

As in TR, in TRev every formula that is meant to be executed, is meant to be executed as
a transaction. As such, the primitive a.ins in example P4 cannot succeed in the path 〈{} o(a.ins)→
{a}〉 since there are unanswered events in that path. However, note that a.ins belongs to every
interpretation M of that path (due to the restrictions in Def. 1). Thus the primitive a.ins is true in
〈{}o(a.ins)→{a}〉 although the transaction a.ins is not.

Example 3

p← a.ins

q ← b.ins

r(ex)← p⊗ q
r(e1)← d.ins

r(a.ins)← c.ins

o(e1)← o(a.ins)⊗ o(b.ins)
{a}

p

{a, c}

r(e1)

{} {a, b, c} {a, b, c, d}

q

o(e1)

o(a.ins) o(c.ins) o(b.ins)

r(a.ins)

o(d.ins)

a.ins

c.ins
b.ins

d.ins

e
x

o(e
x

)

p⌦ q

{}

The right-hand side figure illustrates a satisfaction of the external event ex. The occurrence of ex
forces the satisfaction of the transaction p⊗q, which is true if both its “subformulas” (p and q) are
satisfied over smaller paths. Note that, by definition of the relation |=, all occurrences detected
over the independent paths that satisfy p and q are already responded in those paths. Thus, we
need only to cater for the events triggered due to the serial conjunction. Here, for a model M
of the program, M, 〈{} o(a.ins)→ {a} o(c.ins)→ {a, c}〉 |= p and M, 〈{a, c} o(b.ins)→ {a, b, c}〉 |= q.
Further, the rule o(e1) ← o(a.ins) ⊗ o(b.ins) defines one pattern for the occurrence of e1 which
constrains the execution of transaction p⊗ q and forces the expansion of the path to satisfy r(e1).
Consequently, M, 〈{} o(a.ins)→{a} o(c.ins)→{a, c} o(b.ins)→{a, b, c} o(d.ins)→{a, b, c, d}〉 |= p ⊗ q, and
M, 〈{}o(ex)→{}o(a.ins)→{a}o(c.ins)→{a, c}o(b.ins)→{a, b, c}o(d.ins)→{a, b, c, d}〉 |= ex

3.2 Entailment and Properties

The logical entailment defined in Def. 4 can be used to reason about properties of transaction
and event formulas that hold for every possible path of execution. In TRev, similarly to TR,
we further define executional entailment, to talk about properties of a particular execution path.
But, to reason about the execution of transactions over a specific path, care must be taken since,
as described above, the satisfaction of a new occurrence in a path may invalidate transaction
formulas that were previously true.

To deal with a similar behavior, non-monotonic logics rely on the concept of minimal or pre-
ferred models: instead of considering all possible models, non-monotonic theories restrict to the
most skeptical ones. Likewise,TRev uses the minimal models of a program to define entailment,
whenever talking about a particular execution of a formula. As usual, minimality is defined by
set inclusion on the amount of predicates that an interpretation satisfies, and a minimal model is
a model that minimizes the set of formulas that an interpretation satisfies in a path.

Definition 10 (Minimal Model)
Let M1 and M2 be interpretations. Then M1 6 M2 if ∀π: M2(π) = > ∨M1(π) ⊆M2(π)

Let φ be a TRev formula, and P a program. M is a minimal model of φ (resp. P) if M is a
model of φ (resp. P) and M 6 M ′ for every model M ′ of φ (resp. P).

Thus, to know if a formula succeeds in a particular path, we need only to consider the event
occurrences supported by that path, either because they appear as occurrences in the transition
of states, or because they are a necessary consequence of the program’s rules given that path.
Because of this, executional entailment inTRev is defined w.r.t. minimal models (cf. Def. 5).

10 Ana Sofia Gomes and José Júlio Alferes

Definition 11 (TRev Executional Entailment)

Let P be a program, φ a transaction formula and D1
O0→ . . .On→Dn a path. Then P , (D1

O0→ . . .
On→Dn) |= φ (?) iff for every minimal model M of P , M, 〈D1

O0→ . . .On→Dn〉 |= φ. P ,D1– |= φ

is said to be true, if there is a path D1
O0→ . . .On→Dn that makes (?) true.

Interestingly, as in logic programs, formulas satisfied by this entailment have some support.

Lemma 1 (Support)

Let P be a program, π a path, φ a transaction atom. Then, if P , π |= φ one of the following
holds:

1. φ is an elementary action and either φ ∈ Od(π) or φ ∈ Ot(π);

2. φ is the head of a transaction rule in P (φ← body) and P , π |= body;

As expected,TRev extendsTR. Precisely, if a program P has no complex event rules, and
for every elementary action a defined by the oracles the only rule for r(a) in P is r(a) ← true,
then executional entailment inTRev can be recast inTR if,TR executional entailment is also
restricted to minimal models. It is worth noting that, for a large class ofTR theories, and namely
for the so-called serial-Horn theories, executional entailment in general coincides with that only
using minimal models (cf. (Bonner and Kifer 1993)). As an immediate corollary, it follows that
if P is event-free and serial-Horn, then executional entailment inTRev and inTR coincide.

4 Discussion and Related Work

Several solutions exist to reason about complex events. Complex event processing (CEP) sys-
tems as (Adaikkalavan and Chakravarthy 2004; Wu et al. 2006) can reason efficiently with large
streams of data and detect (complex) events. These support a rich specification of events based
on event pattern rules combining atomic events with some temporal constructs. As shown in
Theorem 1, TR and TRev can express most event patterns of SNOOP and, ETALIS (Anicic
et al. 2012) CEP system even uses TR’s syntax and connectives, although abandoning TR’s
model theory and providing a different satisfaction definition. However, in contrast to TRev,
CEP systems do not deal with the execution of actions in reaction to the events detected.

Extensions of Situation Calculus, Event Calculus, Action Languages, etc. exist with the ability
to react to events, and have some transactional properties (Baral et al. 1997; Bertossi et al. 1998).
However, as in database triggers, these events are restricted to detect simple actions like “on
insert/delete” and thus have a very limited expressivity that fails to encode complex events, as
defined in CEP systems and in TRev . To simultaneously reason about actions and complex
events, ECA (following the syntax “on event if condition do action”) languages (Alferes et al.
2011; Bry et al. 2006; Chomicki et al. 2003) and logic programming based languages (Kowalski
and Sadri 2012; Costantini and Gasperis 2012) exist. These languages normally do not allow the
action component of the language to be defined as a transaction, and when they do, they lack from
a declarative semantics as (Papamarkos et al. 2006); or they are based on active databases and
can only detect atomic events defined as insertions/deletes (Zaniolo 1995; Lausen et al. 1998).

In contrast,TRev can deal with arbitrary atomic and complex events, and make these events
trigger transactions. This is done by a logic-programming like declarative language. We have
also defined a procedure to execute these reactive transactions, which is built upon the complex
event detection algorithm of ETALIS and the execution algorithm ofTR, but is omitted for lack
of space.

Transaction Logic with (Complex) Events 11

References

ADAIKKALAVAN, R. AND CHAKRAVARTHY, S. 2004. Formalization and detection of events over a sliding
window in active databases using interval-based semantics. In ADBIS. 241–256.

ADAIKKALAVAN, R. AND CHAKRAVARTHY, S. 2006. Snoopib: Interval-based event specification and
detection for active databases. Data Knowl. Eng. 59, 1, 139–165.

ALFERES, J. J., BANTI, F., AND BROGI, A. 2011. Evolving reactive logic programs. Intelligenza Artifi-
ciale 5, 1, 77–81.

ANICIC, D., RUDOLPH, S., FODOR, P., AND STOJANOVIC, N. 2012. Stream reasoning and complex event
processing in etalis. Semantic Web 3, 4, 397–407.

BAILEY, J., DONG, G., AND RAMAMOHANARAO, K. 2004. On the decidability of the termination problem
of active database systems. Theor. Comput. Sci. 311, 1-3, 389–437.

BARAL, C., LOBO, J., AND TRAJCEVSKI, G. 1997. Formal characterizations of active databases: Part ii.
In DOOD. LNCS, vol. 1341. Springer, 247–264.

BERTOSSI, L. E., PINTO, J., AND VALDIVIA, R. 1998. Specifying active databases in the situation calcu-
lus. In SCCC. IEEE Computer Society, 32–39.

BONNER, A. J. AND KIFER, M. 1993. Transaction logic programming. In ICLP. 257–279.

BONNER, A. J. AND KIFER, M. 1998. Results on reasoning about updates in transaction logic. In Trans-
actions and Change in Logic Databases. 166–196.

BONNER, A. J., KIFER, M., AND CONSENS, M. P. 1993. Database programming in transaction logic. In
DBPL. 309–337.

BRY, F., ECKERT, M., AND PATRANJAN, P.-L. 2006. Reactivity on the web: Paradigms and applications
of the language xchange. J. Web Eng. 5, 1, 3–24.

CHOMICKI, J., LOBO, J., AND NAQVI, S. A. 2003. Conflict resolution using logic programming. IEEE
Trans. Knowl. Data Eng. 15, 1, 244–249.

COSTANTINI, S. AND GASPERIS, G. D. 2012. Complex reactivity with preferences in rule-based agents.
In RuleML. 167–181.

KOWALSKI, R. A. AND SADRI, F. 2012. A logic-based framework for reactive systems. In RuleML. 1–15.

LAUSEN, G., LUDÄSCHER, B., AND MAY, W. 1998. On active deductive databases: The statelog approach.
In Transactions and Change in Logic Databases. 69–106.

PAPAMARKOS, G., POULOVASSILIS, A., AND WOOD, P. T. 2006. Event-condition-action rules on rdf
metadata in p2p environments. Comp. Networks 50, 10, 1513–1532.

WU, E., DIAO, Y., AND RIZVI, S. 2006. High-performance complex event processing over streams. In
SIGMOD Conference. ACM, 407–418.

ZANIOLO, C. 1995. Active database rules with transaction-conscious stable-model semantics. In DOOD.
55–72.

Supplementary material: Technical Communication c© 2014 [Heras, Komendantskaya, and Schmidt] 1

(Co)recursion in Logic Programming: Lazy vs

Eagerã

JÓNATHAN HERAS

School of Computing, University of Dundee, UK

(e-mail: jonathanheras@computing.dundee.ac.uk)

EKATERINA KOMENDANTSKAYA

School of Computing, University of Dundee, UK

(e-mail: katya@computing.dundee.ac.uk)

MARTIN SCHMIDT

Institute of Cognitive Science, University of Osnabrück, Germany

(e-mail: martisch@uos.de)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

CoAlgebraic Logic Programming (CoALP) is a dialect of Logic Programming designed to bring a more

precise compile-time and run-time analysis of termination and productivity for recursive and corecursive

functions in Logic Programming. Its second goal is to introduce guarded lazy (co)recursion akin to func-

tional theorem provers into logic programming. In this paper, we explain lazy features of CoALP, and

compare them with the loop-analysis and eager execution in Coinductive Logic Programming (CoLP). We

conclude by outlining the future directions in developing the guarded (co)recursion in logic programming.

KEYWORDS: Logic Programming, Recursion, Corecursion, Termination, Productivity, Guardedness.

1 Introduction

Logic Programming (LP) was conceived as a recursive programming language for first-order

logic. Prolog and various other implementations of LP feature eager derivations, and therefore

termination has been central for logic programming (de Schreye and Decorte 1994). However,

unlike e.g. functional languages, LP has not developed an operational semantics supporting ex-

plicit analysis of termination. In typed programming languages like Coq or Agda, it is possible

to introduce syntactic (static) checks that ensure structural recursion, and hence termination of

programs at run-time. In Prolog, there is no support of this kind.

Example 1.1 (BitList) Consider the following recursive program that defines lists of bits.

1.bit(0) ←

2.bit(1) ←

3.bitlist([]) ←

4.bitlist([X|Y]) ← bit(X),bitlist(Y)

ã The work of the first two authors was supported by EPSRC Grant EP/K031864/1.

2 J. Heras, E. Komendantskaya, and M. Schmidt

Recursion

Terminating76 5401 23 Non-terminating76 5401 23

Corecursion

Productive76 5401 23 Non-productive76 5401 23
sssss

99LLLLL

ff LLLLL

ee rrrrr

99

Fig. 1. Distinguishing well-founded and non-well-founded cases of recursion and corecursion.

It is a terminating program, however, if the order of clauses (3) and (4), or the order of atoms in

clause (4) is accidentally swapped, the program would run into an infinite loop.

This example illustrates that non-terminating (co)recursion is distinguished only empirically

at run-time in LP. This distinction is not always accurate, and may depend on searching strategies

of the compiler, rather than semantic meaning of the program.

Coinductive Logic Programming (CoLP) (Gupta et al. 2007; Simon et al. 2007) has been

introduced as a means of supporting corecursion in LP. A representative example of coinductive

programming is to reason about an infinite data structure, for example an infinite stream of bits.

Example 1.2 (BitStream) Given the definition of bits as in Example 1.1, an infinite stream of

bits is defined as:

1.stream([X|Y]) ← bit(X),stream(Y)

Note that unlike BitList, we no longer have the base case for recursion on stream.

The tradition (Coquand 1994) has a dual notion to termination for well-behaving corecursion

– and that is productivity. If termination imposes the condition that any call to an inductively

defined predicate like bit must terminate, then productivity requires that every call to a coin-

ductive predicate like stream must produce some partially observed structure in a finite number

of steps. E.g. calling stream(X)?, the program must compute an answer [0|Y] observing the

component 0 in finite time. Moreover, the productivity imposes a second condition: the compu-

tation must be able to proceed corecursively, e.g. in our example, the condition is for Y to be an

infinite productive datastructure. This situation is explained in e.g. (Abel et al. 2013; Bertot and

Komendantskaya 2008).

CoLP deals with programs like BitStream by using a combination of eager evaluation, SLD-

resolution and loop analysis. In simplified terms, for a goal stream(X)? the resolvent loop detec-

tion would allow to return an answer X=[0|X]; by observing the “regular” pattern in resolvents

involving Clause (1) in the derivations. Similarly to standard (recursive) LP, non-terminating

cases of corecursion (where no regular loop can be found) are not formally analysed in CoLP.

Example 1.3 (BadStream) BadStream is not productive; that is, it would be executed infinitely

without actually constructing a stream.

1.badstream([X|Y]) ← badstream([X|Y])

A different case of corecursion is the below example, which is productive, but cannot be han-

dled by CoLP loop detector, as the stream it defines is not regular.

Example 1.4 (TakeFirstN) The program TakeFirstN defines the stream of natural numbers,

(Co)recursion in Logic Programming: Lazy vs Eager 3

and allows to construct a list with the first n elements of the stream by calling taken.

1.from(X,[X|Y]) ← from(s(X),Y)

2.take(0,Y,[]) ←

3.take(s(X),[Y|Z],[Y|R]) ← take(X,Z,R)

4.taken(N,X) ← from(0,Y),take(N,Y,X)

In CoLP, calls to e.g. taken(s(s(0)),X)? fall into infinite computations that are not handled

by the loop detection procedure. Similar to how Prolog would be unable to handle BitList with

swapped atoms in clause (4) though in principle the program describes a well-founded inductive

structure, CoLP would not be able to handle TakeFirstN although it is a perfectly productive

stream. For the query taken, it is intuitively clear that, the construction of the first n elements of

the stream should take a finite number of derivation steps.

Coalgebraic Logic Programming (CoALP) (Komendantskaya and Power 2011; Komendantskaya

et al. 2014a) gives a new (coalgebraic) operational semantics for LP; and in particular it of-

fers new methods to analyse termination and productivity of logic programs. Using CoALP, we

present here a coherent operational treatment of recursion and corecursion in LP, and discuss new

methods to distinguish well-founded and non-well-founded cases of (co)recursion in LP, as out-

lined in Figure 1. Unlike Prolog or CoLP, CoALP is a first lazy dialect of logic programming; and

it features guarded (co)recursion akin to structural recursion and guarded corecursion in e.g. Coq

or Agda (Coquand 1994; Abel et al. 2013). The current implementation of CoALP in the parallel

language Go is available in (Komendantskaya et al. 2014b); and is tested on a few benchmarks

in this paper. Here, we abstract from some of the technical details available in (Komendantskaya

et al. 2014a) and from implementation details available in (Komendantskaya et al. 2014c) and

give a higher-level discussion of the issues of termination and productivity in LP.

The rest of the paper is structured as follows. In Section 2, we explain the role of laziness in

semantics and implementation of CoALP; in Section 3, we discuss the effect of guarded corecur-

sion. Section 4 is devoted to discussion of our current work on soundness properties for corecur-

sive logic programming.

2 Lazy Corecursion in Logic Programming

CoALP uses the standard syntax of Horn-clause logic programming (Lloyd 1987), but offers a

new derivation algorithm in place of the SLD-resolution. One of the main distinguishing features

of CoALP is its laziness. To our knowledge, it is the first lazy dialect of logic programming. The

issue is best explained using the following example:

Example 2.1 Given the program BitList and the query bitlist([X|Y]), the standard algo-

rithm of SLD-resolution (Lloyd 1987) will eagerly attempt to find a derivation, e.g.:

bitlist([X|Y])−→ bit(X),bitlist(Y)
X=0
−→ bitlist(Y)

Y=[]
−→ 2

For the program BitStream this will give rise to an infinite SLD-derivation:

stream([X|Y])−→ bit(X),stream(Y)
X=0
−→ stream(Y)

Y=[X1|Y 1]
−→ stream([X1|Y1]). . .

In the above setting, there is no natural place for laziness, as ultimately the strong side of the

procedure is a fully automated proof search. Fibrational coalgebraic operational semantics of LP

4 J. Heras, E. Komendantskaya, and M. Schmidt

1. stream(X)

θ1→
stream([X1|Y])

bit(X1) stream(Y)

θ2→ . . .
θ3→

stream([0|[X1|Y2]])

bit(0)

2

bitlist([X1|Y2])

bit(X1) stream(Y2)

→ . . .→ ∞

2. bitlist(X)

θ
1
1→

bitlist([])

2

3. bitlist(X)

θ
2
1→

bitlist([X1|Y])

bit(X1) list(Y)

θ
2
2→ . . .

θ
2
3→

bitlist([0|[]])

bit(0)

2

bitlist([])

2

Fig. 2. 1: Three coinductive trees representing a coinductive derivation for the goal G = stream(X) and the program

BitStream, with θ1 = X/[X1|Y], θ2 = X1/0 and θ3 = Y/[X1|Y2]. 2-3: Coinductive trees representing two coinductive

derivations for the goal G = bitlist(X) and the program BitList, with θ
1
1 = X/[], θ

2
1 = X/[X1|Y], θ

2
2 = X1/0, and

θ
2
3 = Y/[].

presented in (Komendantskaya et al. 2014a) inspired us to introduce a structure which we call

coinductive tree; we use it as a measure for the size of lazy steps in derivations:

Definition 2.1 Let P be a logic program and G =← A be an atomic goal. The coinductive tree

for A is a (possibly infinite) tree T satisfying the following properties.

• A is the root of T .

• Each node in T is either an and-node (labelled by an atom) or an or-node (labelled by “•”). The

root of the tree is an and-node.

• For every and-node A′ occurring in T , if there exist exactly m > 0 distinct clauses C1, . . . ,Cm in

P (a clause Ci has the form Bi ← Bi
1, . . . ,B

i
ni

, for some ni), such that A′ = B1θ1 = ... = Bmθm,

for mgus θ1, . . . ,θm, then A′ has exactly m children given by or-nodes, such that, for every i ∈

{1, . . . ,m}, the ith or-node has ni children given by and-nodes Bi
1θi, . . . ,B

i
ni

θi.

In such a case, we say Ci and θi are internal resolvents of A′.

Coinductive trees resemble an-or parallel trees (Gupta and Costa 1994), see (Komendantskaya

et al. 2014a; Komendantskaya et al. 2014c) for discussion of their parallel features. However, they

restrict mgus used to form nodes to term-matching. Given two first order atomic formulae A and

B, an mgu θ for A and B is called a term-matcher if A = Bθ . In Definition 2.1, note the condition

A′ = B1θ1 = . . . = Bmθm.

Example 2.2 Figure 2 shows coinductive trees for various goals in BitStream and BitList; com-

pare with SLD-derivations in Example 2.1. Note that each of those trees is finite by construction

of Definition 2.1; and we do not impose any additional conditions. The size of coinductive trees

varies, but it is automatically determined by construction of the definition.

We now define derivations between coinductive trees – a lazy analogue of SLD-derivations.

Definition 2.2 Let G = 〈A,T 〉 be a goal given by an atom ← A and the coinductive tree T

(Co)recursion in Logic Programming: Lazy vs Eager 5

induced by A, and let C be a clause H ← B1, . . . ,Bn. Then, the goal G′ is coinductively derived

from G and C using the mgu θ if the following conditions hold:

F Q(t̄) is a node in T .

FF θ is an mgu of Q(t̄) and H.

FFF G′ is given by the (coinductive) tree T θ with the root Aθ .

Definition 2.3 A coinductive derivation of P∪{G} consists of a sequence of goals G = G0,G1, . . .

and a sequence θ1,θ2, . . . of mgus such that each Gi+1 is derived from a node A ∈ Ti (where Ti

is the coinductive tree of Gi) and a clause C using a non-empty substitution θi+1. In this case,

〈A,C,θi+1〉 is called a resolvent.

Coinductive derivations resemble tree rewriting. They produce the “lazy” corecursive effect:

derivations are given by potentially infinite number of steps, where each individual step is exe-

cuted in finite time.

Example 2.3 Figure 2 shows three possible coinductive derivations for BitStream and BitList.

Note that two derivations for BitList terminate (with 2 closing all branches). Note also, that

this time, due to the and-or parallel nature of coinductive trees, changing the order of atoms or

clauses in the program BitList will not change the result.

For terminating coinductive derivations, we require at least one or-subtree of the coinductive

tree to be closed (with 2 leaves). We also say in such cases that the coinductive tree contains

a success subtree. The last coinductive trees in the second and third derivation of Figure 2 are

themselves success subtrees.

Due to its and-or parallel properties (Komendantskaya et al. 2014c), CoALP is more robust

than eager sequential SLD-resolution when it comes to reflecting program’s operational mean-

ing; and mere change in the clause order would not place a terminating recursive function into

a non-terminating class, cf. Figure 1. Yet more importantly, this new coinductive derivation pro-

cedure allows us to characterise productive and non-productive programs with better precision.

In Introduction, we have seen that according to eager interpreter of CoLP, both programs Bad-

Stream and TakeFirstN are non-terminating; despite of one being productive, and another –

non-productive. Next example shows that under lazy execution, productive programs with irreg-

ular pattern of resolvents can be handled more naturally.

Example 2.4 Figure 3 shows the first steps in the derivation for the program TakeFirstN and

the goal taken(s(s(0)),X). Unlike CoLP, CoALP is able to compute the second element of

the stream in finite time.

There will be classes of non-terminating and non-productive programs for which coinductive

trees grow infinite, and lazy derivations fail being ”lazy”. The program BadStream is one such

example. We will consider this issue in the next section.

3 Guarding (Co)recursion

The previous section introduced coinductive trees, which allowed us to distinguish terminating

and productive programs like BitStream, BitList, TakeFirstN from non-productive programs

like BadStream, by simply observing that coinductive trees remain finite for the former, while

6 J. Heras, E. Komendantskaya, and M. Schmidt

taken(s2
(0),X)

from(0,Y) take(s2
(0),Y,X)

θ1−→

→

taken(s2
(0),[X1|R1])

from(0,[X1|Y1]) take(s2
(0),[X1|Y1],[X1|R1])

take(s(0),Y1,R1)

θ2−→

→

taken(s2
(0),[X1,X2|R2])

from(0,[X1, X2|Y2]) take(s2
(0),[X1,X2|Y2],[X1,X2|R2])

take(s(0),[X2|Y2],[X2|R2])

take(0,Y2,R2)

Fig. 3. First steps of the derivation for the goal taken(s2(0),X) – s2(0) denotes s(s(0)) – and the program

TakeFirstN, with θ1 = Y/[X1|Y1],X/[X1|R1] and θ2 = Y1/[X2|Y2],R1/[X2|R2] . As take is an inductive predicate, and
from is coinductive; resolvents for take nodes are given priority.

connected(O,Z)

edge(O,Y) connected(Y,Z)

edge(Y,Y1)connected(Y1,Z)

edge(Y1,Y2)connected(Y2,Z)
.
.
.

Fig. 4. The infinite coinductive tree for the program GC from from Example 3.1, for the database edge(0,1)←.

growing infinite for the latter. It was especially significant that this new approach was, unlike Pro-

log, robust to permutations of clauses and atoms, and, unlike CoLP, was working with productive

irregular streams. Curiously, the following logic program fails to produce finite coinductive trees:

Example 3.1 (GC) Let GC (for graph connectivity) denote the logic program

1.connected(X,X) ←

2.connected(X,Y) ← edge(X,Z),connected(Z,Y)

It would be used with database of graph edges, like edge(0,1)←.

The program gives rise to infinite coinductive trees, see Figure 4. It would terminate in LP, but,

similarly to our discussion of BitList, would lose the termination property if the order of clauses

(1) and (2) changes, or if the order of the atoms in clause (2) changes.

The reason behind infinity of coinductive trees for the above program is the absence of function

symbols – “constructors” in the clause heads. The lazy nature of coinductive trees was in part

due to the term-matching used to compute them. Term-matching loses its restrictive power in the

absence of constructors. A very similar procedure of guarding recursion by constructors of types

is used in e.g. Coq or Agda. This observation would suggest an easy way to fix the GC example,

by introducing reducing dummy-constructors:

Example 3.2 (Guarded GC)

1.connected(X,cons(Y,Z)) ← edge(X,Y),connected(Y,Z)

2.connected(X,nil) ←

(Co)recursion in Logic Programming: Lazy vs Eager 7

Considerations of this kind led us to believe that our lazy (co)recursive approach opens the

way for a compile-time termination and productivity checks akin to respective checks in Coq or

Agda (Coquand 1994; Abel et al. 2013). The programmer would be warned of non-terminating

cases and asked to find a guarded reformulation for his functions. In Coq and Agda, different

checks are imposed on recursive functions (“structural recursion” condition) and corecursive

functions (“guardedness” checks). In logic programming terms, where types or predicate an-

notations are unavailable, we can formulate a uniform productivity property for recursive and

corecursive programs, as follows:

Definition 3.1 Let P be a logic program, P is productive if for any goal G, the coinductive tree

for P∪{G} has a finite size.

The above is a semantic property; syntactically, we need to introduce guardedness checks

to ensure productivity. The intuitive idea is to ensure that every coinductive program behaves

like BitStream: BitStream is guarded by the coinductive function symbol (or “guard”) scons

(denoted by [.|.]); and hence all coinductive trees for it are finite, see Figure 2. On the contrary,

Comember lacks a guarding constructor.

Example 3.3 (Comember) The predicate comember is true if and only if the element X occurs

an infinite number of times in the stream S.

1.drop(H,[H|T],T) ←

2.drop(H,[H1|T],T1) ← drop(H,T,T1)

3.comember(X,S) ← drop(X,S,S1),comember(X,S1)

Comember is un-productive for e.g. the coinductive tree arising from the query comember(X,S)

contains a chain of alternating •’s and atoms comember(X,S1), comember(X,S2), etcetera,

yielding an infinite coinductive tree.

We will give a high-level formulation of guardedness checks here, for more technical discus-

sion, see (Komendantskaya et al. 2014a).

Guardedness Check 1 (GC1): If the same predicate Q occurs in the head and in the body of

a clause, then there must exist a function symbol f occurring among the arguments of Q; such

that the number of its occurrences is reduced from head to body.

Example 3.4 (Guarded Comember) We propose the following guarded definition of comem-

ber, thereby simplifying it and reducing an extra argument to drop.

1.drop(H,[H|T]) ←

2.drop(X,[H|T]) ← drop(X,T)

3.gcomember(X,[H|T]) ← drop(X,[H|T]),gcomember(X,T)

In CoALP, the goal gcomember(0,nats)will lazily search for 0 in an infinite stream of natural

numbers, but it never falls into un-productive coinductive trees, as CoLP would do.

GC1 would be sufficient for some programs, like BitStream, where there is only one (co)inductive

clause; but not in the general case. LP in general is not compositional, that is, composing two

programs may yield a program that has semantic properties not present in the initial programs.

8 J. Heras, E. Komendantskaya, and M. Schmidt

stream2’([s(X)|Y],Z)

nat(X) stream-aux([s(X)|Y],Z)

θ1−→ . . .
θ2−→

→

stream2’([s(0)|Y],[s(Y1)|Z1])

nat(0)

2

stream-aux([s(0)|Y],[s(Y1)|Z1])

nat(Y1) stream2’([s(0)|Y],[s(Y1)|Z1])

nat(0)

2

.

.

.

Fig. 5. Coinductive derivation of stream2’([s(X)|Y],Z) and the program from Example 3.5 producing an infinite coinductive tree,

with θ1 = X/0 and θ2 = Z/[s(Y1)|Z1]. The figure also represents one GC-derivation generated during GC3. GC3 detects the un-guarded

loop; see the underlined atoms.

Same rule applies in CoALP: if both P1 and P2 are productive programs, their composition is not

guaranteed to be a productive program; the next check is imposed to cover the compositional

cases.

Guardedness Check 2 (GC2): For every clause head A, construct a coinductive tree with the

root A. If there are atoms Q(t̄) and Q(t̄ ′) in the coinductive tree such that Q(t̄ ′) is a child of Q(t̄),

apply GC1 to the clause Q(t̄)← Q(t̄ ′).

GC1–GC2 handle some programs well, but they are still insufficient in the general case. The

following program passes the checks GC1-GC2, but is not productive in the sense of Defini-

tion 3.1, see Figure 5.

Example 3.5 (Un-productive Program that passes GC1-GC2)

1.stream2’([s(X)|Y],Z) ← nat(X), stream-aux([s(X)|Y],Z)

2.stream-aux(X,[s(Y)|Z]) ← nat(Y), stream2’(X,[s(Y)|Z])

Guardedness Check 3 (GC3): For every clause head A, start a coinductive derivation with

the goal A imposing GC2 condition to every coinductive tree in the derivation, and imposing the

following termination conditions:

1. Terminate coinductive derivation if GC2 fails for at least one tree.

2. Terminate coinductive derivation if all branches are either closed with 2 or contain guarded

loops only.

Note that the checks GC1-GC3 we have introduced here are a pre-processing (compile-time)

mechanism of CoALP. Once the program passed the guardedness checks, it does coinductive

derivations lazily; and does not require any loop-detection procedures at run-time. If a program

fails GC1-GC3, the programmer will be asked to re-formulate the definitions as we have seen in

Examples 3.2 and 3.4. The first implementation of guardedness checks is available at (Komen-

dantskaya et al. 2014b).

We finish this section with Table 1 comparing how SWI-Prolog, CoLP and CoALP handle

various recursive and corecursive programs. For CoALP, we also benchmark guardedness checks.

For coinductive programs, CoLP can only handle coinductive programs that contain a regular

pattern and fails otherwise (cf. Table 1); on the contrary, CoALP, in its lazy style, works for

any program. This is illustrated, for instance, with the programs TakeFirstN and TakeRepeat.

Table 1 shows that CoALP is slower than the CoLP interpreter and SWI-Prolog – note that SWI-

Prolog is a fully-tuned mature programming language and the CoLP interpreter runs on top of

SWI-Prolog, as opposed to our implementation of CoALP in Go from scratch.

(Co)recursion in Logic Programming: Lazy vs Eager 9

CoALP CoLP SWI-Prolog

TakeFirstN† Yes
GC time: 0.0002s

No No
runtime: lazy execution

Takerepeat† Yes
GC time: 0.0009s

Yes (0.0001s) No
runtime: lazy execution

Comember† Not guarded Yes? (0.0001s) No

GComember† Yes
GC time: 0.0011s

Yes? (0.0001s) No
runtime: lazy execution

SumFirstn† Yes
GC time: 0.0013s

No No
runtime: lazy execution

FibStream† Yes
GC time: 0.0006s

No No
runtime: lazy execution

Infinite Automata† Yes
GC time: 0.0011s

Yes (0.0001s) No
runtime: lazy execution

Knights Yes
GC time: 0.225s

Yes (1.13s) Yes (0.012s)
runtime: 3.002s

Finite Automata Yes
GC time: 0.0011s

Yes (0.04s) Yes (0.0005s)
runtime: 0.0023s

Ackermann Yes
GC time: 0.001s

Yes (7.692s) Yes (3.192s)
runtime: 13.23s

Table 1. Execution of different programs in CoALP, CoLP and SWI-Prolog. Examples marked with † involve both

inductive and coinductive predicates. In the table, “No” means that the system runs forever without returning an answer,

and “Yes?” indicates that the program succeeds if it contains a regular pattern and fails otherwise.

4 Work-in-Progress: Soundness for Corecursion

There are two main directions for CoALP’s development, both related to soundness:

(I) We are in the process of establishing soundness of GC1-GC3 that is, the property that, if a

program P is guarded by GC1-GC3, then it is productive in CoALP.

Proving this property in the general case is a challenge; and involves pattern analysis on re-

solvents and also a proof of termination of GC1-GC3. Example 3.5 and Figure 5 give a flavour

of the complicated cases the guardedness checks need to cover. Note that GC1-GC3 provide the

guarding property only in the CoALP setting, and the same idea of guarding (co)recursion by

constructors would fail for standard LP or CoLP, as many examples of this paper show.

(II) Soundness of coinductive derivations needs to be established. This challenge is best illus-

trated by the following example.

Example 4.1 (Soundness for Comember) To check the validity of a query in Comember (Ex-

ample 3.3) for an arbitrary stream, one needs to satisfy two conditions: 1) finding an element to

drop in a finite time, 2) finding guarantees that this finite computation will be repeated an infinite

number of times for the given stream. CoLP would handle such a case for all streams that consist

of a regular finite repeating pattern and will not be able to handle cases when the input stream

is not regular. CoLP would fail to derive true or falsity of e.g. the query comember(0,nats),

where nats is the stream of natural numbers, as CoLP falls into an infinite non-terminating

computation and fails to produce any response to the query. CoALP in its current implemen-

tation will handle any case of corecursion, including comember(0,nats), but in its lazy, and

therefore partial, style.

Similarly, TakeFirstN falls into an infinite loop with CoLP, but unfolds lazily with CoALP,

see Figure 3. Laziness on its own, however, does not guarantee soundness.

For inductive programs and recursive functions, CoALP yields the same theorems of sound-

ness and completeness as classical LP (Lloyd 1987); cf. (Komendantskaya et al. 2014a). The

10 J. Heras, E. Komendantskaya, and M. Schmidt

only adaptation to the already described coindutive derivation procedure is the requirement that

the derivation terminates and gives an answer whenever a success subtree is found. Thus, gener-

alisation of standard soundness and completeness for induction in CoALP is not very surprising.

Soundness of CoALP for coinductive programs is conceptually more interesting: it has to

include a number of guarantees that need to be checked at compile-time and run-time, that is:

1. Identification of the guarding pattern coming from sound guardedness checks;

2. Guarantee that the guarding pattern will be produced in a finite number of derivation steps;

3. Guarantee that the guarding pattern will be re-produced an infinite number of times.

Item 3. in particular may allow for a few different solutions. In its basic form, it can be a

repeated regular pattern, as it is done in CoLP. In a more sophisticated form, it can cover ir-

regular patterns, as long as more involved guarantees of infinite execution are be provided, cf.

Example 1.4 and Figure 3.

To conclude, we have described a new method to analyse termination and productivity of logic

programs by means of lazy guarded corecursion in CoALP, as outlined in Figure 1. We advocated

a new style of programming in LP, where the programmer is in charge of providing termination

or productivity measures for (co)recursive programs at compile-time, as it is done in some other

declarative languages with recursion and corecursion. Finally, we outlined the main directions

towards establishing soundness results for CoALP outputs.

References

ABEL, A. ET AL. 2013. Copatterns: programming infinite structures by observations. In POPL’13. ACM

SIGPLAN Notices, vol. 48. 27–38.

BERTOT, Y. AND KOMENDANTSKAYA, E. 2008. Inductive and coinductive components of corecursive

functions in Coq. ENTSC 203, 5, 25–47.

COQUAND, T. 1994. Infinite objects in type theory. In TYPES’93. LNCS, vol. 806. 62–78.

DE SCHREYE, D. AND DECORTE, S. 1994. Termination of logic programs: the never-ending story. J. of

Logic Programming 19–20, Supplement 1, 199–260. Special Issue: Ten Years of Logic Programming.

GUPTA, G. ET AL. 2007. Coinductive logic programming and its applications. In ICLP’07. LNCS, vol.

4670. 27–44. Interpreter Available at http://www.utdallas.edu/˜gupta/meta.html.

GUPTA, G. AND COSTA, V. 1994. Optimal implementation of and-or parallel prolog. In PARLE’92. 71–92.

KOMENDANTSKAYA, E. ET AL. 2014a. Coalgebraic logic programming: from semantics to implementa-

tion. J. Logic and Computation.

KOMENDANTSKAYA, E. ET AL. 2014b. CoALP webpage: software and supporting documentation.

http://staff.computing.dundee.ac.uk/katya/CoALP/.

KOMENDANTSKAYA, E. ET AL. 2014c. Exploiting parallelism in coalgebraic logic programming.

ENTCS 303, 121–148.

KOMENDANTSKAYA, E. AND POWER, J. 2011. Coalgebraic derivations in logic programming. In CSL’11.

LIPIcs. Schloss Dagstuhl, 352–366.

LLOYD, J. 1987. Foundations of Logic Programming, 2nd ed. Springer-Verlag.

SIMON, L. ET AL. 2007. Co-logic programming: Extending logic programming with coinduction. In

ICALP’07. LNCS, vol. 4596. 472–483.

Supplementary material: Technical Communication c© 2014 [Tiep Le, Enrico Pontelli, Tran Cao

Son, William Yeoh]

1

Logic and Constraint Logic Programming
for Distributed Constraint Optimization

Tiep Le, Enrico Pontelli, Tran Cao Son, William Yeoh

Department of Computer Science, New Mexico State University

(e-mail: {tile,epontell,tson,wyeoh}@cs.nmsu.edu)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

The field of Distributed Constraint Optimization Problems (DCOPs) has gained momentum, thanks to

its suitability in capturing complex problems (e.g., multi-agent coordination and resource allocation

problems) that are naturally distributed and cannot be realistically addressed in a centralized

manner. The state of the art in solving DCOPs relies on the use of ad-hoc infrastructures and

ad-hoc constraint solving procedures. This paper investigates an infrastructure for solving DCOPs

that is completely built on logic programming technologies. In particular, the paper explores the use

of a general constraint solver (a constraint logic programming system in this context) to handle the

agent-level constraint solving. The preliminary experiments show that logic programming provides

benefits over a state-of-the-art DCOP system, in terms of performance and scalability, opening the

doors to the use of more advanced technology (e.g., search strategies and complex constraints) for

solving DCOPs.

KEYWORDS: DCOP, CLP, Implementation

1 Introduction

Distributed Constraint Optimization Problems (DCOPs) are descriptions of constraint op-

timization problems where variables and constraints are distributed among a group of

agents, and where each agent can only interact with agents that share a common con-

straint (Modi et al. 2005; Petcu and Faltings 2005; Yeoh and Yokoo 2012). Researchers

have realized the importance of DCOPs, as they naturally capture real-world scenarios,

where a collective tries to achieve optimal decisions, but without the ability to collect all

information about resources and limitations into a central solver. For example, DCOPs

have been successfully used to model domains like resource management and scheduling

(Maheswaran et al. 2004; Farinelli et al. 2008; Léauté and Faltings 2011), sensor networks

(Fitzpatrick and Meertens 2003; Jain and Ranade 2009; Zhang et al. 2005; Zivan et al.

2009; Stranders et al. 2009), and smart grids (Kumar et al. 2009; Gupta et al. 2013).

The DCOP field has grown at a fast pace in recent years. Several popular implementa-

tions of DCOP solvers have been created (Léauté et al. 2009; Sultanik et al. 2007; Ezzahir

et al. 2007). The majority of the existing DCOP algorithms can be placed in one of three

classes. Search-based algorithms perform a distributed search over the space of solutions

to determine the optimum (Modi et al. 2005; Gershman et al. 2009; Zhang et al. 2005;

Yeoh et al. 2010). Inference-based algorithms, on the other hand, make use of techniques

2 Tiep Le et al.

from dynamic programming to propagate aggregate information among agents (Petcu

and Faltings 2005; Farinelli et al. 2008; Vinyals et al. 2009); these two classes provide

a different balance between memory requirements and number of messages exchanged.

Another class of methods includes approximated algorithms that rely on sampling (Ottens

et al. 2012; Nguyen et al. 2013) applied to the overall search space.

The driving objective of the investigation discussed in this paper is to understand the

role that logic programming can play in solving DCOPs. In particular, existing popular

DCOP solvers (e.g., the frequently used FRODO platform (Léauté et al. 2009)) are

ad-hoc systems, with a relatively closed structure, and making use of ad-hoc dedicated

solvers for constraint handling within each agent. Thus, a question we intend to address

with this paper is whether the use of a general infrastructure for constraint solving

within each agent of a DCOP would bring benefits compared to the ad-hoc solutions of

the existing implementations. We propose a general infrastructure (based on distributed

dynamic programming) for the communication among agents, guaranteeing completeness

of the system. The platform enables the use of a generic logic programming solver (e.g.,

a Constraint Logic Programming system) to handle the local constraints within each

agent; the generality of the platform will also allow the use of distinct logic programming

paradigms within each agent (e.g., Answer Set Programming).

The paper discusses the overall logic programming infrastructure, along with the details

of the modeling of each agent using constraint logic programming. We provide some

preliminary experimental results, validating the viability and effectiveness of this research

direction for DCOPs. The results also highlight the potential offered by logic programming

to provide an implicit representation of hard constraints in DCOPs, enabling a more

effective pruning of the search space and reducing memory requirements.

2 Background

In this section, we provide a brief review of basic concepts from DCOPs. We assume that

the readers have familiarity with logic and constraint logic programming; in particular,

we will refer to the syntax of the clpfd library of SICStus Prolog (Carlsson et al. 2012).

2.1 Distributed Constraint Optimization Problems (DCOPs)

A DCOP (Modi et al. 2005; Petcu and Faltings 2005; Yeoh and Yokoo 2012) is described

by a tuple P = (X,D, F, A, α) where: (i) X = {x1, . . . , xn} is a set of variables; (ii)

D = {Dx1
, . . . , Dxn} is a set of finite domains, where each Dxi is the domain of variable

xi; (iii) F = {f1, . . . , fm} is a set of utility functions (a.k.a. constraints), where each

fj : Dxj1 × Dxj2 × . . . × Dxjk 7→ N ∪ {−∞, 0} specifies the utility of each combination of

values of variables in its scope scp(fj) = {xj1, . . . , xjk} ⊆ X; (iv) A = {a1, . . . , ap} is a set

of agents; and (v) α : X → A maps each variable to an agent.

We assume the domains Dx to be finite intervals of integer numbers. A substitution θ

of a DCOP P is a value assignment for the variables in X s.t. θ(x) ∈ Dx for each x ∈ X.

Its utility is utP(θ) =
∑m

i=1 fi(scp(fi)θ), i.e., the evaluation of all utility functions on it. A

solution θ is a substitution such that utP(θ) is maximal, i.e., there is no other substitution

σ such that utP(θ) < utP(σ). SolnP denotes the set of solutions of P.

Each DCOP P is associated with a constraint graph, denoted with GP = (X,EP), where

(C)LP for DCOP 3

x1

x2

x3 x4

xi xj utility

0 0 5

0 1 8

1 0 20

1 1 2

x2 x1 utility

0 0 5+20+20=45

0 1 8+20+20=48

1 0 20+8+8=36

1 1 2+8+8=18

Fig. 1. DCOP Example

X is a set of nodes which correspond to DCOP variables, and EP is a set of edges which

connect pairs of variables in the scope of the same utility function.

2.2 Distributed Pseudo-tree Optimization Procedure (DPOP)

DPOP (Petcu and Faltings 2005) is one of the most popular complete algorithms for

the distribution resolution of DCOPs; as discussed in several works, it has several nice

properties (e.g., it requires only a linear number of messages), and it has been used as the

foundations for several more advanced algorithms (Petcu et al. 2006; Petcu and Faltings

2007; Petcu et al. 2007).

The premise of DPOP is the generation of a DFS-Pseudo-tree—composed of a subgraph

of the constraint graph of a DCOP. The pseudo-tree has a node for each agent in the

DCOP; edges meet the following conditions: (a) If an edge (a1, a2) is present in the pseudo-

tree, then there are two variables x1, x2 s.t. α(x1) = a1, α(x2) = a2, and (x1, x2) ∈ EP;

(b) The set of edges describes a rooted tree; (c) For each pair of variables xi, xj s.t.

α(xi) 6= α(xj) and (xi, xj) ∈ EP, we have that α(xi) and α(xj) appear in the same branch

of the pseudo-tree. α(xi) and α(xj) are also called the pseudo-parent and pseudo-child of

each other.

Algorithms exist (e.g., (Hamadi et al. 1998)) to support the distributed construction

of a DFS-Pseudo-tree. Given a DCOP P, we will refer to a DFS-Pseudo-tree of P by

TP = (A,ETP). We will also denote with a 7→P b if there exists a sequence of edges

(a1, a2), (a2, a3), . . . , (ar−1, ar) in ETP such that a = a1 and b = ar; in this case, we say that

b is reachable from a in TP. Given an agent a, we denote with SP(a) the set of agents

in TP in the subtree rooted at a (including a itself).

The DPOP algorithm operates in two phases:

• UTIL Propagation: During this phase, messages flow bottom-up in the tree, from the

leaves towards the root. Given a node N, the UTIL message sent by N summarizes

the maximum utility achievable within the subtree rooted at N for each combination

of values of variables belonging to the separator set (Dechter 2003) of N. The agent

does so by summing the utilities in the UTIL messages received from its children

agents, and then projecting out its own variables by optimizing over them.

• VALUE Propagation: During this phase, messages flow top-down in the tree. Node

N determines an assignment to its own variables that produces the maximum utility

based on the assignments given by the ancestor nodes; this assignment is then

propagated as VALUE messages to the children.

Let us consider a DCOP with X = {x1, x2, x3, x4}, each with Dxi = {0, 1} and with

binary constraints described by the graph (and pseudo-tree) and utility table (assuming

i > j) in Fig. 1 (left and middle). For simplicity, we assume a single variable per agent.

4 Tiep Le et al.

Node x2 will receive two UTIL messages from its children; for example, the message from

x3 will indicate that the best utilities are 20 (for x2 = 0) and 8 (for x2 = 1). In turn,

x2 will compose the UTIL messages with its own constraint, to generate a new utility

table, shown in Fig. 1 (right). This will lead to a UTIL meassage sent to x1 indicating

utilities of 45 for x1 = 0 and 48 for x1 = 1. In the VALUE phase, node x1 will generate

an assignment of x1 = 1, which will be sent as a VALUE message to x2; in turn, x2 will

trigger the assignment x2 = 0 as a VALUE message to its children.

3 Logic-Programing-based DPOP (LP-DPOP)

In this section, we illustrate the LP-DPOP framework, designed to map DCOPs into logic

programs that can be solved in a distributed manner using the DPOP algorithm.

Agent a

Agent b

DFS-Pseudo-tree Parent

DFS-Pseudo-tree Children

table_max_b
table_info_b

table_max_a
table_info_a solution_c

solution_a

Agent c

Fig. 2. Overall Communication Needs

Agent
Description
(FRODO)

variables
domains

utilities

!a

LP variables/domains

Utility Facts

Pseudo-tree

Algorithm

DFS
Pseudo

Tree
Computation

Fig. 3. Components of an Agent in LP-DPOPfacts

3.1 Overall Structure

The overall structure of LP-DPOP is summarized in Fig. 2. Intuitively, each agent a of a

DCOP P is mapped to a logic program Πa. Agents exchange information according to

the communication protocol of DPOP. These exchanges are represented by collections of

facts that are communicated between agents. In particular,

• UTIL messages from agent b to agent a are encoded as facts table max b(L), where

L is a list of [u, v1, . . . , vk]. Each one is a row of the UTIL message, where u is

the maximum utility for the combination of values v1, . . . , vk . It is also necessary

to transmit an additional message describing the variables being communicated:

table info b([v(x1, low1, high1), . . . , v(xk , lowk , highk)]). This message identifies the names

of the variables being communicated and their respective domains. It should be

mentioned that the UTIL message from b to a can contain variables belonging to

some ancestors of a.

• VALUE messages from agent c to agent a are encoded as facts solution c(Var ,Val),

where Var is the name of a variable and Val is the value assigned to it.

3.2 LP-DPOP Execution Model

Computing DFS-PseudoTree: One can use existing off-the-shelf distributed algorithms

to construct pseudo-trees. A commonly used algorithm is the distributed DFS proto-

col (Hamadi et al. 1998), that creates a DFS tree with the max-degree heuristic as the

(C)LP for DCOP 5

variable-ordering heuristic. The max-degree heuristic favors variables with larger numbers

of constraints to be higher up in the pseudo-tree.

Solving a DCOP: The actual agent a is implemented by a logic program Πa. In the context

of this paper, the logic program is a CLP program, whose entry point is a predicate called

agent:

agent :- agent(ID),

(\+is_leaf(ID) -> get_utils; true),

(\+is_root(ID) -> compute_utils, send_utils, get_value; true),

(\+is_leaf(ID) -> compute_value, send_value; compute_value).

The logic program implements the compute utils and the compute value predicates.

They are described in the next section.

3.3 Modeling LP-DPOP as CLP

In this section, we illustrate the structure of the logic program that encodes each individual

agent. We propose two alternative models. The first one follows the model illustrated in

Fig 3: the input DCOP is described using the standardized format introduced by the

FRODO DCOP platform (Léauté et al. 2009).

In the first model, referred to as LP-DPOPfacts, the FRODO model is literally translated

into collections of logic programming facts. The second model, referred to as LP-DPOPrules,

follows the more “realistic” option of capturing the hard constraints present in the DCOP

model explicitly as logical constraints, instead of forcing their mapping to explicit utility

tables (as automatically done by FRODO).

3.3.1 LP-DPOPfacts

The logic program Πa modeling an agent is composed of four primary modules, as

illustrated in Fig. 3:

1. Agent, Variables and Domains: the core components of the agent variables and

domains are encoded in Πa by facts of the form:

◦ A single fact agent(a) describing the identity of the agent;

◦ For each variable xi with domain Dxi , such that α(xi) = a or α(xj) = a for

some variable xj such that (xi, xj) ∈ EP: a fact variable(xi, min(Dxi), max(Dxi))

and a fact owner(α(xi), xi).

2. DFS-Pseudo-Tree: the local position of a in the DFS-Pseudo-tree is described by:

− facts of the form child(b) where b is agent s.t. (a, b) ∈ ETP;

− a fact parent(c) where c is the (only) agent s.t. (c, a) ∈ ETP; and

− a fact ancestor(c) where c is any non-parent ancestor of a in the pseudo-tree,

i.e., any agent c s.t. (c, a) 6∈ ETP and c 7→P a.

3. Utilities/Constraints: the constraints are obtained as direct translation of the utility

tables in the FRODO representation: for each constraint fj , there is a fact of

the form constraint fj(L), where L is a list containing lists [fj(v1, . . . vr), v1, . . . , vr]

for each assignement {x1/v1, . . . , xr/vr} to the variables of scp(fj) = {x1, . . . , xr}
where fj(v1, . . . , vr) 6= −∞. Each constraint is further described by the facts: (i) a

fact constraint(fj), identifying the name of each constraint, (ii) a fact scope(fj , xi)

for each xi ∈ scp(fj), identifying the variables contributing to the scope of the

6 Tiep Le et al.

constraint, and (iii) facts of the form constraint agent(fj , ar), identifying agents that

has variables in the scope of the constraint.

4. Resolution Engine: a collection of rules that implement the compute utils and

compute value—these are described below.
The core of the computation of the UTIL message is implemented within the

compute utils predicate. Intuitively, the construction of the UTIL message is mapped
to a CLP problem. Its construction and resolution can be summarized as follows:

... define_variables(L,Low,High),

define_constraints(L,Util),

generate_utils(Low,High,UTILITIES), ...

The steps can be summarized as follows:

• The define variables predicate is used to collect the variables that belong to the

agent and its ancestors (returned in the list Low and High, respectively), and for each

variable generates a corresponding CLP domain variable. The collecting variables

phase is based on the variable facts (describing all variables owned by the agent) and

the variables indicated in the table info b messages received from the children; these

may contain variables that belong to pseudo-parents in the tree and unknown to

the agent a. To enable interpretation of the CLP variables, two facts low vars(Low)

and high vars(High) are created in this phase. In the latter phase, for each Xi in

the collection of variables collected from the former phase calls Xi in `..m where

` and m are the minimum and maximum value of Xi’s domain which are either

known to the agent or given in received the table info b message.

• The predicate define constraints creates CLP constraints capturing the utilities

the agent has to deal with—these include the utilities described by each table max b

message received from a child b and the utilities fj of the agent a s.t. scp(fj) does

not contain any variables in
⋃

(a,b)∈ETP
{x ∈ X | α(x) = b}. For each utility fi of these

utilities (described by a list of lists), the predicate define constraints introduces

a constraint of the form:

table([[Ui, X1, .., Xr]] , L, [order(id3), consistency(domain)])

where:

◦ X1, . . . , Xr are the CLP variables which were created by define variables

and correspond to the scope of this utility.

◦ L is the list of lists given in constraint fi(L);

◦ Ui is a new variable introduced for each utility fi.

The final step of the define constraints is to introduce the additional CLP

constraint Util#= U1 + U2+. . . +Us where Ui are the variables introduced in the

table constraints and Util is a brand new variable.

• The generate utils predicate has the following general structure:
generate_utils(Lo, Hi, UTILITIES) :-

findall([Util|Hi], (labeling([],Hi),find_max_util(Lo,Hi,Util)),UTILITIES).

find_max_util(Lo, Hi, Util) :-

maximize(labeling([ff],Lo), Util), assert(agent_a_table_max(Lo,Hi)).

The core of the computation of the VALUE message takes advantage of the fact

that the combination of variables producing the maximum values are asserted as

agent a table max facts during the UTILs phase, enabling a simple lookup to com-

pute the solution. This can be summarized as follows:

... high_vars(H),

(C)LP for DCOP 7

findall(Value,(member(Name,H),solution(Name,Value)), Sols),

agent_a_table_max(Low,Sols),

low_vars(Lo), length(Lo,Len), I in 1..Len,

findall(solution(Name,Value),

(indomain(I), nth1(I,Lo,Name), nth1(I,Low,Value)), VALUES), ...

3.3.2 LP-DPOPrules

An alternative encoding takes advantage of the fact that the utilities provided in the

utility table of a FRODO encoding are the results of enumerating the solutions of hard

constraints. A hard constraint captures a relation fj(x1, . . . , xr) ⊕ u where ⊕ is a relational

operator, and u is an integer. This is typically captured in FRODO as a table, containing

all tuples of values from Dx1
× · · · × Dxr that satisfy the relation (with a utility value of

0), and the default utility value of −∞ assigned to the remaining tuples.

This utility can be directly captured in CLP, thus avoiding the transition through the

creation of an explicit table of solutions:

hard constraint fj(X1, . . . , Xr) : −f̂j(X1, . . . , Xr)⊕̂u

where f̂j and ⊕̂ are the CLP operators corresponding to fj and ⊕. For example, the smart

grid problems used in the experimental section uses hard constraints encoded as

hard constraint eq0(X1,2, X2,1) :− X1,2 + X2,1# = 0

The resulting encoding of the UTIL value computation will modify the encoding of

LP-DPOPfacts as shown below

constraint_f(L),

table([[U,X_1,...,X_r]],L,_)
⇒ hard_constraint_f(X_1,...,X_r)

3.4 Some Implementation Details

The current implementation of LP-DPOP makes use of the Linda (Carriero et al. 1994)

infrastructure of SICStus Prolog (Carlsson et al. 2012) to handle all the communication.

Independent agents can be launched on different machines and connect to a Linda

server started on a dedicated host. Each agent has a main clause of the type

run agent :- prolog flag(argv, [Host,Port]),linda client(Host:Port),agent.

The operations of sending a UTIL message from b to the parent a is simply realized

by a code fragment of the type

send util(Vars,Utils,To):- out(msg to(To),[table info b(Vars),table max b(Utils)]).

The corresponding reception of UTIL message by a will use a predicate of the form

get util(Vars,Utils,Me):- in(msg to(Me), [table info b(Vars),table max b(Utils)]).

The communication of VALUE messages is analogous. get value and send value are

simple wrappers of the predicates discussed above.

3.5 Some Theoretical Considerations

The soundness and completeness of the LP-DPOP system is a natural consequence of the

soundness and completeness properties of the DPOP algorithm, along with the soundness

and completeness of the CLP(FD) solver of SICStus Prolog. Since LP-DPOP emulates

the computation and communication operations of DPOP, each Πa program is a correct

and complete implementation of the corresponding agent a.

8 Tiep Le et al.

In the worst case, each agent in LP-DPOP, like DPOP, needs to compute, store, and send

a utility for each combination of values of the variables in the separator set of the agent.

Therefore, like DPOP, LP-DPOP also suffers from an exponential memory requirement,

i.e., the memory requirement per agent is O(maxDomw), where maxDom = argmaxi |Di|
and w is the induced width of the pseudo-tree.

4 Experimental Results

We compare two implementations of the LP-DPOP framework, LP-DPOPfacts and LP-

DPOPrules with a publicly-available implementation of DPOP, which is available on the

FRODO framework (Léauté et al. 2009). All experiments are conducted on a Quadcore

3.4GHz machine with 16GB of memory. The runtime of the algorithms are measured

using the simulated runtime metric (Sultanik et al. 2007). The timeout is set to 10 minutes.

Two domains, randomized graphs and smart grids, were used in the experiments.

Randomized Graphs: A randomized graph generated using the model in (Erdös and Rényi

1959) with the input parameters n (number of nodes) and M (number of binary edges)

will be used as the constraint graph of a DCOP instance P.

Each instance P = (X,D, F, A, α) is generated using five parameters: |X|, |A|, the domain

size d of all variables, the constraint density p1 (defined as the ratio between the number

of binary edges M and the maximum number of binary edges among |X| nodes), and

the constraint tightness p2 (defined as the ratio between the number of infeasible value

combinations, that is, their utility equals −∞, and the total number of value combinations).

We conduct experiments, where we vary one parameter in each experiment. The “de-

fault” value for each experiment is |A| = 5, |X| = 15, d = 6, p1 = 0.6, and p2 = 0.6.

As the utility tables of instances of this domain are randomly generated, the programs

for LP-DPOPrules and LP-DPOPfacts are very similar. Thus, we only compare FRODO with

LP-DPOPfacts. Table 1 shows the percentage of instances solved and the average simulated

runtime (in ms) for the solved instances; each data point is an average over 50 randomly

generated instances. If an algorithm fails to solve more than 85% of instances in a specific

configuration, then we consider that it fails to solve problems with that configuration.

The results show that LP-DPOPfacts is able to solve more problems and is faster than

DPOP when the problem becomes more complex (i.e., increasing |X|, d, p1, or p2). The

reason is that at a specific percentage of hard constraints (i.e., p2 = 0.6), LP-DPOPfacts is

able to prune a significant portion of the search space. Unlike DPOP, LP-DPOPfacts does

not need to explicitly represent the rows in the UTIL table that are infeasible, resulting

in lower memory usage and runtime needed to search through search space. The size of

the search space pruned increases as the complexity of the instance grows, making the

difference between the runtimes of LP-DPOPfacts and DPOP significant.

Smart Grids: A customer-driven microgrid (CDMG), one possible instantiation of the

smart grid problem, has recently been shown to subsume several classical power system

sub-problems (e.g., load shedding, demand response, restoration) (Jain et al. 2012). In this

domain, each agent represents a node with consumption, generation, and transmission

preference, and a global cost function. Constraints include the power balance and no

power loss principles, the generation and consumption limits, and the capacity of the

power line between nodes. The objective is to minimize a global cost function. CDMG

optimization problems are well-suited to be modeled with DCOPs due to their distributed

(C)LP for DCOP 9

Table 1. Experimental Results on Random Graphs (%: Solved; Time: Runtime)

|X| DPOP LP-DPOPfacts
d DPOP LP-DPOPfacts

% Time % Time % Time % Time

5 100% 35 100% 30 4 100% 782 100% 74
10 100% 204 100% 264 6 90% 28,363 100% 539
15 86% 39,701 100% 1,008 8 14% - 98% 22,441
20 0% - 100% 1,263 10 0% - 94% 85,017
25 0% - 100% 723 12 0% - 60% -
30 0% - 100% 255
35 0% - 100% 256

p1
DPOP LP-DPOPfacts

p2
DPOP LP-DPOPfacts

% Time % Time % Time % Time

0.3 100% 286 100% 2,629 0.4 86% 48,632 92% 155,089
0.4 100% 1,856 100% 2,038 0.5 94% 38,043 100% 23,219
0.5 100% 13,519 100% 938 0.6 90% 31,513 100% 844
0.6 94% 42,010 100% 706 0.7 90% 39,352 100% 84
0.7 56% - 100% 203 0.8 92% 40,525 100% 61
0.8 20% - 100% 176 0.9 96% 27,416 100% 60

nature. Moreover, as some of the constraints in CDMGs (e.g., the power balance principle)

can be described in functional form, they can be exploited by LP-DPOPrules. For this reason,

both LP-DPOPfacts and LP-DPOPrules were used in this domain.

We conduct experiments on a range of CDMG problem instances generated using the

four network topologies following the IEEE standards and varying the domain of the

variables.1 Fig. 4(a) displays the topology of the IEEE 13 Bus network, where rectangles

represent nodes/agents, filled circles represent variables, and links between variables

represent constraints. The initial configuration of the CDMG and the precise equations

used in the generation of the problems can be found in (Jain et al. 2012). The experimental

results for the four largest standards, the 13, 34, 37, and 123 Bus Topology,2 are shown in

Fig. 4(b), 4(c), 4(d), and 4(e), respectively. We make the following observations:

• LP-DPOPrules is the best among the three systems both in terms of runtime and

scalability in all experiments. LP-DPOPrules’s memory requirement during its execution

is significant smaller and increases at a much slower pace than other systems. This

indicates that the rules used in expressing the constraints help the constraint solver

to more effectively prune the search space resulting in a better performance.

• LP-DPOPfacts is slower than DPOP in all experiments in this domain. It is because

LP-DPOPfacts often needs to backtrack while computing the UTIL message, and each

backtracking step requires the look up of several related utility tables—some tables

can contain many tuples (e.g., one agent in the 13 Bus problem with domain size

of 23 could have 3, 543, 173 facts). We believe that this is the source of the weak

performance of LP-DPOPfacts.

1 www.ewh.ieee.org/soc/pes/dsacom/
2 In 123 Bus Topology’s experiments, a multi-server version of LP-DPOPfacts and LP-DPOPrules was used

because of the limit on the number of concurrent streams supported by Linda and SICStus. FRODO cannot
be run on multiple machines.

10 Tiep Le et al.

A6

A1 A2 A3 A4 A5

A7 A8 A9 A10 A11

A12 A13

(a) IEEE Standard 13 Bus Topology

 101

 102

 103

 104

 105

 106

 107

 108

 5 7 9 11 13 15 17 19 21 23 25 27 29 31

S
im

ul
at

ed
 R

un
tim

e
(m

s)

Domain Size

|A| = 13, |X| = 74, |F| = 51

DPOP
LP-DPOPfacts

LP-DPOPrules

(b) 13 Bus Topology

 101

 102

 103

 104

 105

 106

 107

 5 7 9 11 13 15 17 19 21 23 25 27 29 31

S
im

ul
at

ed
 R

un
tim

e
(m

s)

Domain Size

|A| = 34, |X| = 200, |F| = 135

DPOP
LP-DPOPfacts

LP-DPOPrules

(c) 34 Bus Topology

 101

 102

 103

 104

 105

 106

 107

 108

 5 7 9 11 13 15 17 19 21 23 25 27 29 31

S
im

ul
at

ed
 R

un
tim

e
(m

s)

Domain Size

|A| = 37, |X| = 218, |F| = 147

DPOP
LP-DPOPfacts

LP-DPOPrules

(d) 37 Bus Topology

 102

 103

 104

 105

 106

 107

 108

 5 7 9 11 13 15 17 19 21 23 25 27 29 31

S
im

ul
at

ed
 R

un
tim

e
(m

s)

Domain Size

|A| = 124, |X| = 748, |F| = 497

DPOP
LP-DPOPfacts

LP-DPOPrules

(e) 123 Bus Topology

Fig. 4. Experiment Results on Smart Grids

5 Conclusion and Future Work

In this paper, we presented a generic infrastructure built on logic programming to address

problems in the area of DCOP. The use of a generic CLP solver to implement the

individual agents proved to be a winning option, largely outperforming existing DCOP

technology in terms of speed and scalability. The paper also makes the preliminary case

for a different encoding of DCOPs w.r.t. existing technologies; the ability to explicitly

model hard constraints provides agents with additional knowledge that can be used to

prune the search space, further enhancing performance.

This is, in many regards, a preliminary effort that will be expanded in several directions.

First, we believe that different types of DCOP problems may benefit from different types

of local solvers within each agent; we currently explore the use of ASP as an alternative

for the encoding the agents. The preliminary results are competitive and superior to those

produced by DPOP. Classifying DCOP problems in such a way to enable the automated

selection of what type of LP-based solver to use is an open research question to be

addressed. The strong results observed in the use of implicit encodings of hard constraints

also suggest the need of developing DCOP description languages that separate hard and

soft constraints and do not require the explicit representation for all constraints.

On the other direction, we view this work as a feasibility study towards the development

of distributed LP models (e.g., Distributed ASP). Paradigms like ASP are highly suitable

to capture the description of individual agents operating in multi-agent environments;

yet, ASP does not inherently provide the capability of handling a distributed ASP

computation with properties analogous to those found in DCOP. We believe the models

and infrastructure described in this paper could represent the first step in the direction of

creating the foundations of DASP and other distributed logic programming models.

References

Carlsson et al., M. 2012. SICStus Prolog User’s Manual. Tech. rep., Swedish Institute of Computer

Science.

(C)LP for DCOP 11

Carriero, N., Gelernter, D., Mattson, T., and Sherman, A. 1994. The Linda Alternative to

Message Passing Systems. Parallel Computing 20, 4, 633–655.

Dechter, R. 2003. Constraint processing. Elsevier Morgan Kaufmann.

Erdös, P. and Rényi, A. 1959. On random graphs I. Publicationes Mathematicae Debrecen 6, 290.

Ezzahir, R., Bessiere, C., Belaissaoui, M., and Bouyakhf, E. H. 2007. DisChoco: A platform

for distributed constraint programming. In Proceedings of the Distributed Constraint Reasoning

Workshop. 16–27.

Farinelli, A., Rogers, A., Petcu, A., and Jennings, N. 2008. Decentralised coordination of

low-power embedded devices using the Max-Sum algorithm. In Proceedings of the International

Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS). 639–646.

Fitzpatrick, S. and Meertens, L. 2003. Distributed coordination through anarchic optimization.

In Distributed Sensor Networks: A Multiagent Perspective, V. Lesser, C. Ortiz, and M. Tambe, Eds.

Kluwer, 257–295.

Gershman, A., Meisels, A., and Zivan, R. 2009. Asynchronous Forward-Bounding for distributed

COPs. Journal of Artificial Intelligence Research 34, 61–88.

Gupta, S., Jain, P., Yeoh, W., Ranade, S., and Pontelli, E. 2013. Solving customer-driven micro-

grid optimization problems as DCOPs. In Proceedings of the Distributed Constraint Reasoning

Workshop. 45–59.

Hamadi, Y., Bessière, C., and Quinqueton, J. 1998. Distributed intelligent backtracking. In

Proceedings of the European Conference on Artificial Intelligence (ECAI). 219–223.

Jain, P. and Ranade, S. 2009. Capacity discovery in customer-driven micro-grids. In Proceedings

of the North American Power Symposium (NAPS). 1–6.

Jain, P., Ranade, S., Gupta, S., and Pontelli, E. 2012. Optimum operation of a customer-driven

microgrid: A comprehensive approach. In Proceedings of International Conference on Power

Electronics, Drives and Energy Systems (PEDES). 2012. 1–6.

Kiekintveld, C., Yin, Z., Kumar, A., and Tambe, M. 2010. Asynchronous algorithms for approxi-

mate distributed constraint optimization with quality bounds. In Proceedings of the International

Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS). 133–140.

Kumar, A., Faltings, B., and Petcu, A. 2009. Distributed constraint optimization with structured

resource constraints. In Proceedings of the International Joint Conference on Autonomous Agents

and Multiagent Systems (AAMAS). 923–930.

Léauté, T. and Faltings, B. 2011. Coordinating logistics operations with privacy guarantees. In

Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). 2482–2487.

Léauté, T., Ottens, B., and Szymanek, R. 2009. FRODO 2.0: An open-source framework for

distributed constraint optimization. In Proceedings of the Distributed Constraint Reasoning Work-

shop. 160–164.

Maheswaran, R., Tambe, M., Bowring, E., Pearce, J., and Varakantham, P. 2004. Taking DCOP

to the real world: Efficient complete solutions for distributed event scheduling. In Proceedings

of the International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS).

310–317.

Modi, P., Shen, W.-M., Tambe, M., and Yokoo, M. 2005. ADOPT: Asynchronous distributed

constraint optimization with quality guarantees. Artificial Intelligence 161, 1–2, 149–180.

Nguyen, D. T., Yeoh, W., and Lau, H. C. 2013. Distributed Gibbs: A memory-bounded sampling-

based DCOP algorithm. In Proceedings of the International Joint Conference on Autonomous

Agents and Multiagent Systems (AAMAS). 167–174.

Ottens, B., Dimitrakakis, C., and Faltings, B. 2012. DUCT: An upper confidence bound

approach to distributed constraint optimization problems. In Proceedings of the AAAI Conference

on Artificial Intelligence (AAAI). 528–534.

Petcu, A. and Faltings, B. 2005. A scalable method for multiagent constraint optimization. In

Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). 1413–1420.

12 Tiep Le et al.

Petcu, A. and Faltings, B. 2007. MB-DPOP: A new memory-bounded algorithm for distributed

optimization. In Proceedings of the International Joint Conference on Artificial Intelligence (IJ-

CAI). 1452–1457.

Petcu, A., Faltings, B., and Mailler, R. 2007. PC-DPOP: A new partial centralization algorithm

for distributed optimization. In Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI). 167–172.

Petcu, A., Faltings, B., and Parkes, D. C. 2006. MDPOP: Faithful distributed implementa-

tion of efficient social choice problems. In Proceedings of the International Joint Conference on

Autonomous Agents and Multiagent Systems (AAMAS). 1397–1404.

Prosser, P. 1996. An empirical study of phase transitions in binary constraint satisfaction problems.

Artificial Intelligence 81, 1-2, 81–109.

Stranders, R., Farinelli, A., Rogers, A., and Jennings, N. 2009. Decentralised coordination of

mobile sensors using the Max-Sum algorithm. In Proceedings of the International Joint Conference

on Artificial Intelligence (IJCAI). 299–304.

Sultanik, E., Lass, R., and Regli, W. 2007. DCOPolis: a framework for simulating and deploying

distributed constraint reasoning algorithms. In Proceedings of the Distributed Constraint Reasoning

Workshop.

Vinyals, M., Rodrguez-Aguilar, J. A., and Cerquides, J. 2009. Generalizing DPOP: Action-

GDL, a new complete algorithm for DCOPs. In Proceedings of the International Joint Conference

on Autonomous Agents and Multiagent Systems (AAMAS). 1239–1240.

Yeoh, W., Felner, A., and Koenig, S. 2010. BnB-ADOPT: An asynchronous branch-and-bound

DCOP algorithm. Journal of Artificial Intelligence Research 38, 85–133.

Yeoh, W. and Yokoo, M. 2012. Distributed problem solving. AI Magazine 33, 3, 53–65.

Zhang, W., Wang, G., Xing, Z., and Wittenberg, L. 2005. Distributed stochastic search and

distributed breakout: Properties, comparison and applications to constraint optimization problems

in sensor networks. Artificial Intelligence 161, 1–2, 55–87.

Zivan, R., Yedidsion, H., Okamoto, S., Glinton, R., and Sycara, K. 2014. Distributed constraint

optimization for teams of mobile sensing agents. Autonomous Agents and Multi-Agent Systems ,

1–42.

Supplementary material: Technical Communication c© 2014 [A. Nampally and C. R. Ramakrishnan] 1

Adaptive MCMC-Based Inference in
Probabilistic Logic Programs

(Extended Abstract)

Arun Nampally, C. R. Ramakrishnan

Department of Computer Science, Stony Brook University, Stony Brook, NY 11794

{ anampally,cram}@cs. stonybrook. edu

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Probabilistic Logic Programming (PLP) languages enable programmers to specify systems that

combine logical models with statistical knowledge. The inference problem, to determine the proba-

bility of query answers in PLP, is intractable in general. In this paper, we present a technique for

approximate inference of conditional probabilities for PLP queries. It is an adaptive Markov Chain

Monte Carlo (MCMC) technique, where the proposal distribution is modified as the Markov Chain

is explored. In particular, the distribution is modified to increase the likelihood that a proposed

sample is consistent with evidence. In our context, each sample is uniquely characterized by the

outcomes of a set of random variables. Inspired by reinforcement learning, our technique propagates

positive rewards to random variable/outcome pairs used in a consistent sample. The cumulative

rewards of each outcome of a random variable is used to derive a new “adapted distribution”

for the variable. For a query with “Markovian evaluation structure”, we show that the adapted

proposal distribution converges to the query’s conditional probability distribution. We empirically

evaluate the effectiveness of the adaptive sampling method.

1 Introduction

Probabilistic Logic Programming (PLP) covers a class of Statistical Relational Learning

frameworks (Getoor and Taskar 2007) aimed at combining logical and statistical rea-

soning. Examples of languages and systems combining logical and statistical inference

include ICL (Poole 1997), SLP (Muggleton et al. 1996), PRISM (Sato and Kameya 1997),

LPAD (Vennekens and Verbaeten 2003) and ProbLog (De Raedt et al. 2007). In addition

to standard statistical models, these languages allow reasoning over many models where

logical and statistical knowledge is intricately combined, and cannot be expressed as

standard statistical models.

An example problem with such a model is reachability over finite probabilistic graphs,

i.e., graphs in which the presence or absence of edges is determined by a set of independent

probabilistic processes. Fig. 1(a) shows a probabilistic graph, where labels on the edges

denote the probability with which that edge is present. The logical relationship between

reachability of e from a, and the underlying edges in the graph cannot be expressed

concisely in traditional probabilistic frameworks, but is easily specified in a probabilistic

logic framework. A PRISM program encoding this problem is shown in Fig. 1(b).

As illustrated in Fig. 1(b), PRISM adds probabilistic facts of the form msw(s, i, t) where

s is a term representing a random process called a switch, i a term representing its

2 A. Nampally, C. R. Ramakrishnan

a

b c

d e

0.2 0.2

0.2 0.2
0.2 0.2

1 % Possible edges

2 pedge(a,b).

3 pedge(a,c).

4 pedge(b,d).

5 pedge(b,e).

6 pedge(c,d).

7 pedge(c,e).

8 % Random processes

9 values(r(_,_), [t,f]).

10 % Distributions

11 :- set_sw(r(_,_), [0.2,0.8]).

12 % Edge:

13 edge(X, Y) :-

14 pedge(X, Y),

15 msw(r(X, Y), 1, t).

16 % Reachability

17 reach(X, Y) :-

18 edge(X, Y).

19 reach(X, Y) :-

20 edge(X, Z),

21 reach(Z, Y).

(a) (b)

Fig. 1. Example: (a) Probabilistic Graph; (b) Reachability over probabilistic graphs in PRISM

instance, and t its outcome. Instance i in an msw may be omitted when a switch has

only one instance. The range of a switch is specified by “values” declarations; and its

distribution by “set sw” declarations. A possible world associates an outcome with each

switch instance, and can be seen as a set of msw facts external to the program. In each

possible world, the PRISM program, together with msw facts defining the world is a non-

probabilistic program; the distribution over the possible worlds induces a distribution over

the models of the PRISM program. Such a declarative distribution semantics, originally

defined for ICL and PRISM, has been defined for other PLP languages such as LPAD

and ProbLog as well.

The Problem. Inference of answer probabilities in PLPs is intractable in general. Of the

several powerful sampling-based techniques developed for statistical reasoning, Markov

Chain Monte Carlo (MCMC) techniques are especially suited for inference in PLPs, as

shown by Cussens (2000) and Moldovan et al. (2013).

PLP queries for evaluating conditional probabilities are called as conditional queries and

denoted as prob(q | e), where q and e are ground atomic goals, called query and evidence,

respectively. A conditional query prob(q | e) denotes the suitably normalized distribution

of q over all possible worlds where e holds. Existing PLP systems either provide efficient

techniques that apply to a restricted class of q and e (e.g., hindsight in PRISM) or do

not treat evidence specially, leading to poor performance especially when the likelihood

of evidence is low. For instance, consider evaluating prob(reach(a, d) | reach(a, e)), over

the probabilistic graph in Fig. 1(a). Techniques such as the one proposed by Moldovan

et al. (2013) will generate a world and reject it if evidence does not hold in the world.

Since the probability that e is reachable is about 0.08, a number of generated worlds

will be inconsistent with the evidence, and hence unusable for computing the conditional

probability.

We address the problem of efficiently estimating conditional probability by develop-

ing an Adaptive Markov Chain Monte Carlo (AMCMC) technique. Following adaptive

MCMC techniques in statistical reasoning, we progressively modify the distribution from

which samples are derived, so as to favor those samples that are consistent with evidence.

The adaptive sampler reduces the number of generated samples needed to estimate the

conditional probability to a given precision.

Approach Overview and Summary of Contributions. Our technical development starts

with an MCMC technique where each state of the Markov chain is an assignment of

values to a set of switch instances. An assignment at a state corresponds to a set of

possible worlds such that the truth values of evidence and query are identical in all the

Adaptive MCMC-Based Inference in Probabilistic Logic Programs 3

worlds in the set. Transitions are proposed on this chain by resampling one or more

switch instances in the state and extending the resulting assignment to another state. A

Metropolis-Hastings (Hastings 1970) sampler is used to accept or reject this proposal,

yielding the next state in the chain. The procedure is described in Section 3. Since the states

of the Markov chain are sets of possible worlds, this procedure is largely independent of

LP evaluation itself. It can hence be used for approximate inference even in the presence

of complex logical inference procedures such as tabling.

We introduce adaptation into this basic MCMC technique (see Section 4). For each

switch instance/outcome pair, we maintain its Q-value: an estimate of the likelihood that

an evaluation of the evidence goal using that switch instance/outcome will succeed. Q-

values are computed by propagating rewards through the set of switch instance/outcome

pairs used in the evidence goal’s evaluation, where the reward depends on the success or

failure of the evaluation. The adapted distribution of a switch instance is proportional to

its original distribution weighted by the Q-values of each outcome.

Although motivated by conditional queries, the technique we describe is more gener-

ally applicable, even to unconditional queries. For a class of queries with “Markovian

evaluation structure”, the adapted distribution of a random variable coincides with its

marginal. For such queries, we obtain an alternative adaptation procedure that can be

used to obtain an adaptive independent sampler.

We describe the results of our preliminary experiments to evaluate the MCMC proce-

dure as well as the adaptation procedure in Section 5. The rest of the paper begins with a

brief overview of MCMC in Section 2. A more detailed description of related work and

concluding remarks appears Section 6.

2 Preliminaries: Markov Chain Monte Carlo Techniques

A sequence of random variables X(i)
, i > 0 taking on values x(i) is called a Markov chain if

P (x(i)|x(i−1)
, x

(i−2)
, . . . , x

(1)) = P (x(i)|x(i−1)) (Andrieu et al. 2003). The values of the random

variables are chosen from a fixed set called the state space of the Markov chain. When

the state space is finite, the one step transition probabilities between various states are

generally given as a matrix known as the transition kernel.

For certain Markov chains, irrespective of the initial distribution on X
(0) , the distribution

on the of values X
(n) converges as n increases, to its limiting or stationary distribution.

More formally, a stationary distribution π with respect to a Markov chain with transition

kernel A satisfies the condition π = πA.

Given a hard-to-sample target distribution, MCMC techniques solve the problem by

constructing a Markov chain whose stationary distribution is the target distribution and

drawing samples from it. Metropolis-Hastings (MH) is a popular MCMC-based sampling

technique. Given a target distribution π and an irreducible, aperiodic Markov chain with

transition kernel A, the MH sampler proposes a transition from state x to y according to

A(x, y), but then accepts or rejects this proposal according to the acceptance probability

min{1, π(y)A(y,x)
π(x)A(x,y)

} (Hastings 1970).

Adaptive MCMC. Given a target distribution, MCMC algorithms construct a Markov

chain whose stationary distribution matches the target. Several Markov chains may have

matching stationary distribution, with different rates of convergence. Adaptive MCMC

4 A. Nampally, C. R. Ramakrishnan

algorithms tune a given transition kernel, effectively switching between different Markov

chains as samples are drawn (Roberts and Rosenthal 2007).

The total variation distance between two distributions P and Q is defined as ‖P −Q‖ =
1
2

∑
x

|P (x) − Q(x)| (Levin et al. 2009). An adaptive MCMC algorithm preserves the

stationary distribution under the ergodicity conditions (Roberts and Rosenthal 2007)

given below. In the following, A(x, ·) denotes the x-th row of matrix A, and π(·) denotes

the row vector π.

Ergodicity conditions. Given a family of transition kernels {PΓ1
, PΓ2

, . . .}, with π as the

common stationary distribution, adaptive MCMC algorithms choose kernel PΓi
at time i.

The update rule of PΓi
is specified by the adaptive algorithm. Then ergodicity is preserved

if all transition kernels have simultaneous uniform ergodicity, namely,

∀ε > 0, ∃N such that ‖PN

γ
(x, .) − π(.)‖ 6 ε for all x and γ

and the following diminishing adaptation condition is satisfied.

lim
n→∞

supx‖PΓn+1
(x, .) − PΓn

(x, .)‖ = 0 in probability

3 MCMC for Probabilistic Logic Programs

The ability to treat a PRISM program as non-probabilistic in each world also helps us

in designing sample-based query evaluation. Given a PRISM program P and a ground

goal q, we lazily construct a set of worlds by sampling, such that q succeeds or fails in all

worlds in the set. The set of worlds are represented by assignments described below.

Assignments. An assignment is denoted by partial function σ such that σ(s, i) is the

value of instance i of switch s. Note that σ represents a set of worlds; the set of worlds

corresponding to σ is denoted by worlds(σ).

Let σ be an assignment. Then σ[(s, i) → v] is an assignment that is identical to σ at

every point except at (s, i) where it is v. We define a partial order “�” over assignments:

σ
′ � σ if σ

′(s, i) = σ(s, i) whenever σ(s, i) 6= ⊥. We also say that σ
′ extends σ if σ

′ � σ.

Two assignments σ and σ
′ are mutually exclusive, denoted by σ ‖ σ

′, if there is some

switch instance (s, i) such that both σ and σ
′ are defined at (s, i), but σ(s, i) 6= σ

′(s, i). Two

assignments are compatible (denoted by “,”) if they are not mutually exclusive.

Given a switch s, we denote by random(s) a value randomly drawn from the domain

of s using the probability distribution defined for s. For looking up in an assignment or

extending an assignment, we use function pick value defined as follows:

pick value(σ, s, i) =

{
〈v, σ〉 if σ(s, i) = v 6= ⊥
〈v, σ[(s, i) 7→ v]〉 if σ(s, i) = ⊥ and v = random(s)

Note that pick value is non-decreasing in the sense that if 〈v, σ′〉 = pick value(σ, s, i), then

σ
′ � σ.

Sampling Evaluators. Our MCMC algorithm is parameterized with respect to a prob-

abilistic query evaluation procedure called the Sampling Evaluator. Given an assignment

σ and ground goal q, the sampling evaluator (probabilistically) generates an answer to

q (success/failure), denoted by ans(q), an assignment σ
′, and a sequence ρ of switch/in-

stance/outcome triples (s1, i1, v1), (s2, i2, v2), . . . , (sk , ik , vk), k > 0 such that the following

conditions hold:

Adaptive MCMC-Based Inference in Probabilistic Logic Programs 5

SE1. Consider a sequence of assignments σ0, σ1, . . . , σk such that σ0 = ∅, and σj =

σj−1[(sj , ij) 7→ vj], 0 < j 6 k. Then, σk = σ
′, and σ

′ is compatible with σ, i.e. σ′ , σ.

SE2. If ans(q) = success (similarly, failure), then q is true (or false, resp.) in all worlds

w ∈ worlds(σ′).

Moreover, let Σ denote the set of all σ′ generated by the sampling evaluator. Then,

SE3. If w is a world s.t. q is true (similarly, false) in w, then ∃σ′ ∈ Σ such that w ∈
worlds(σ′) and ans(q) = success (or failure, respectively).

SE4. Every distinct σa, σb ∈ Σ are mutually exclusive: i.e. either σa = σb, or σa ‖ σb.

Properties SE2 and SE3 correspond to soundness and completeness, respectively. Prop-

erty SE4 ensures that a sampling evaluator can be used to define states in an MCMC

algorithm. We can use Prolog-style evaluation, performed until the first derivation is

found (if one exists) to construct a sampling evaluator satisfying the above requirements

including SE4. The key idea is to implement pick value to draw samples for switch in-

stances and commit to the chosen values by representing assignments in the dynamic

database. This evaluator is described in detail in (Nampally and Ramakrishnan 2014).

Initial State. When evaluating probabilities of unconditional queries, we generate an

assignment corresponding to the initial state by invoking a sampling evaluator with

an empty assignment. For conditional queries, a randomly constructed explanation for

evidence is used to generate the initial state. We do this via a backtracking search for a

derivation of evidence, and collect all the switches and outcomes used in that derivation

into an initial assignment. The initial assignment is randomly constructed by randomizing

the order in which clauses and switch values are selected during the backtracking search.

We refer to this procedure as InitialSample(P , e) in the MCMC algorithm shown in Fig. 2.

1: function MCMC

2: Input: P : Program, q: Query, e: Evidence,

3: N: Steps to simulate

4: Output: p = prob(q | e)
// Initialize

5: σ0 := InitialSample(P , e)

6: (rq , σ,) := SamplingEvaluator(P , q, σ0)

7: Nq := 0

// Generate a chain of length N

8: for N times do

9: σ
′ = Resample(σ)

10: (r′
e
, σe, ρ) = SamplingEvaluator(P , e, σ

′)

11: if r
′
e

= success then

12: (r′
q
, σq ,) = SamplingEvaluator(P , q, σe)

13: if accept (σ, σq) then

14: σ := σq

15: rq := r
′
q

16: if rq = success then Nq := Nq + 1

17: return Nq/N

Fig. 2. MCMC Algorithm for Inferring

Conditional Probabilities

Transitions. Consider a state in the

Markov Chain corresponding to assign-

ment σj . We generate a successor state by

(1) generating an alternative assignment σ′

by assigning different outcomes for some

switch instances in σj , and (2) invoking

SamplingEvaluator with σ
′ to evaluate e

and q to obtain the proposal for the next

state, σ̂j+1. The switch instances to be re-

sampled can be selected in many ways. We

use one of the following:

1. Single Switch: We select a single (s, i)

such that σj(s, i) 6= ⊥ uniformly, and gen-

erate σ
′ = σj[(s, i) 7→ ⊥], effectively forget-

ting (s, i).

2. Multi-Switch: This resampling mode is

parameterized with a probability P . We

generate σ
′ from σj by forgetting with

probability P each (s, i) for which σj is

defined. In Fig. 2, the resampling procedure is referred to as Resample.

6 A. Nampally, C. R. Ramakrishnan

Metropolis-Hastings. To draw samples from the target distribution prob(q | e), we

construct an MH sampler as follows. If the proposed state is inconsistent with evidence, it

is rejected deterministically. If it is consistent, it is accepted/rejected based on acceptance

probability. For single switch resampling strategy, the acceptance probability to go to state

σ2 from σ1 is min{1, |σ1|
|σ2| }. For multi-switch resampling strategy, the acceptance probability

is 1, as derived in (Nampally and Ramakrishnan 2014).

4 Adaptive MCMC for Probabilistic Logic Programs

The rate at which samples are rejected deterministically based on the evidence (due to

failure of condition in line 11 of Fig. 2) is called the rejection rate. We now present a

technique to progressively adapt the proposal distribution based on the samples generated

so far, in order to reduce the rejection rate.

The adaptation algorithm we present here is inspired by Q-learning, a reinforcement

learning technique (Sutton and Barto 1998). For each switch s, instance i and outcome v

used by the sampling evaluator, the Q-value Q(s, i, v) is a real number in [0, 1]. Intuitively

Q(s, i, v) represents the probability of generating a consistent sample, when the sampling

evaluator chooses v as the outcome of the i-th instance of switch s.

1: function Adapt

2: Input: ρ, r: Reward

3: Global: Q: Q-values, c: counts,

4: t: total Q-values.

5: j := length(ρ) ⊲ Initialize

6: while j > 0 do

7: let (sj , ij , vj) = ρ[j]

8: t(sj , ij , vj) := (t(sj , ij , vj) + r)

9: c(sj , ij , vj) := c(sj , ij , vj) + 1

10: Q(sj , ij , vj) := t(sj , ij , vj) ÷ c(sj , ij , vj)

11: j := j − 1

12: r :=
∑

v∈values(sj)

P (sj , ij , v) ∗ Q(sj , ij , v)

Fig. 3. Adaptation of Q-values

Initially, all Q-values are set to the

same constant, essentially assuming that are

equally likely to yield consistent samples. At

each iteration of MCMC, adaptation is done

after evidence is evaluated, by passing re-

wards to each switch/instance/outcome triple

in ρ (computed in line 10 of Fig 2). We

begin this processing with reward = 0 if

r
′
e
= failure, denoting an inconsistent sample,

and reward = 1 otherwise. We work back-

wards through the sequence ρ so that the last

switch/instance/outcome is given a reward

of 0/1, which it then modifies and passes to

the switch/instance/outcome preceding it in

ρ. The Q-value of each random process/in-

stance/outcome is computed as the average of the all rewards received by it. The algorithm

for maintaining Q-values is given in Fig. 3.

The MCMC algorithm in Fig. 2 is modified for adaptive sampling as follows. First

of all, function Adapt is invoked after line 16. Secondly, pick value function used in

the sampling evaluator draws values for a switch instance (s, i) based on the normalized

product of the original distribution and the Q-values of (s, i). Finally, the acceptance

probability computation is modified to take the adapted distributions into account.

Consider computing the acceptance probability to transition from state σ to σ
′. We can

partition the assignment σ into three non-overlapping functions: σ1 for those (s, i)’s defined

by σ but not by σ
′; σ2 for those defined by both σ and σ

′ but assigned different values;

and finally, σ3 for those defined by both σ and σ
′ and assigned same values. We can

similarly partition σ
′ into σ

′
1, σ

′
2 and σ

′
3.

Adaptive MCMC-Based Inference in Probabilistic Logic Programs 7

For single-switch resampling strategy, the acceptance probability is given by

min

(
1,

P (σ′
1)P (σ′

2)P
′(σ1)P

′(σ2)1/|σ′|

P (σ1)P (σ2)P ′(σ′
1)P

′(σ′
2)1/|σ|

)

where P is the original probability and P
′ is the adapted probability. For multi-switch

strategy, the acceptance probability is given by

min

(
1,
P (σ′

1)P (σ′
2)P

′(σ1)P
′(σ2)

P (σ1)P (σ2)P ′(σ′
1)P

′(σ′
2)

)

The derivations of these probabilities and the proof that the algorithm preserves ergodicity

with respect to the target distribution are in (Nampally and Ramakrishnan 2014).

Beyond MCMC. It should be noted that the adapted distribution may not coincide

with the conditional distribution prob(q | e). This is not a problem for MCMC, since

the adapted distribution is used as the proposal. However, the same adaptation scheme

cannot be used, in general, with other sampling strategies such as independent sampling.

Nevertheless, for a class of program/query pairs whose sampling evaluations is “Marko-

vian”, each switch instance’s adapted distribution converges to its marginal distribution.

For such programs, a modified adaptation can be used for independent sampling as well.

Consider the class of programs and queries for which the sequence ρ of ran-

dom process/instance outcomes (s1, i1, vi), . . . , (sk , ik , vk) is such that the probability

P (ans(e)|(sj, ij , vj)) is independent of the triples (sl , il , vl), l < j. These program/query

pairs are said to have a Markovian Evaluation Structure. We can redefine the Q-value

to be to be the last propagated reward, ensuring that the rewards received by any

switch instances will monotonically decrease due to adaptation. This allows us to adapt

independent sampling as well as MCMC for such programs and queries.

5 Experimental Results

The MCMC algorithm was implemented in the XSB logic programming system (Swift

et al. 2012). The sampling evaluator and the main control loop (Fig. 2) were implemented

in Prolog. Lower level primitives managing the maintenance of assignments, resampling,

computation of acceptance/rejection were implemented in C and invoked from Prolog.

We evaluated the performance of this implementation on four synthetic examples: BN,

Hamming, Grammar, and Reach. The experiments were run on a machine with 2.4GHz

Opteron 280 processor and 4G RAM.

BN. This example consists of Bayesian networks whose Boolean-valued variables are

arranged in the form of a 6 × 6 grid with each node having its left and top neighbors

(if any) as parents. Evidence sets the outcome of 6 variables; and we query the outcome

of one of the remaining variables. Fig 4(a) shows the conditional probability estimated

by our algorithm plotted as a function of sample size. The time overhead for performing

adaptation for this problem was small. This example clearly illustrates the benefit of

adaptation.

Hamming. The Hamming code example is a PRISM program that generates a set of

(4,3) Hamming codes. The evidence is a set of bits in the code with fixed values, and the

query is the value of a non-evidence bit (Moldovan et al. 2013). The data bits in the code

8 A. Nampally, C. R. Ramakrishnan

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0.012

 0.013

 0.014

 0.015

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

c
o

m
p

u
te

d
 a

n
s
w

e
r

samples

single switch resampling on 6x6 grid bayesian network

non-adaptive
adaptive

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

c
o

m
p

u
te

d
 a

n
s
w

e
r

samples

single switch resampling hamming code(length=112,evidence=48)

non-adaptive
adaptive

(a) 6 × 6 grid Bayesian Network (b) 112-bit Hamming Code

Fig. 4. Computed probability vs. sample size for two examples

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

6.4e-11 4.0e-9 4.6e-8 2.6e-7 1.0e-6 2.9e-6 7.5e-6 1.6e-5 3.4e-5

A
b

s
o

lu
te

 e
rr

o
rs

Probability of evidence

Non-Adaptive Sampler
Adaptaptive Sampler

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

6.4e-11 4.0e-9 4.6e-8 2.6e-7 1.0e-6 2.9e-6 7.5e-6 1.6e-5 3.4e-5

A
b

s
o

lu
te

 e
rr

o
rs

Probability of evidence

Non-Adaptive Sampler
Adaptaptive Sampler

(a) sample size 40000 (b) sample size 80000

Fig. 5. Effectiveness of adaptation with varying probability of evidence and sample sizes

were independent random variables, while the parity bits were computed from the data

bits’ values. The answers computed by adaptive and non-adaptive samplers are given in

Fig 4(b). In this example, the convergence of the adaptive MCMC is only a little better

than that of the non-adaptive algorithm.

Reach. The final set of examples are reachability queries in probabilistic acyclic graphs,

of the form shown in Fig. 1. For the graph shown in Introduction, while computing

prob(reach(a, d) | reach(a, e)), the non-adaptive sampler rejects 8% of the samples, while

the adaptive one rejects 1.5%. Similar rejection rates were observed for larger randomly

generated graphs as well. However, since the rejection rate of the non-adaptive sampler

is low, there is no significant difference between the convergence of adaptive and non-

adaptive samplers.

Effect of probability of evidence. We compared the answers computed by the adaptive

and non-adaptive samplers as the probability of evidence is varied. We used the 6x6

grid BN described earlier and varied the probability of evidence from 6.4e-11 to 3.4e-5

and used sample sizes of 40k and 80k. The absolute values of errors made by both the

samplers are plotted in Fig 5. Observe from the figure that adaptive sampling exhibits

significantly lower errors than non-adaptive sampling when the probability of evidence is

low. This difference disappears when the evidence probability is high.

Adaptive MCMC-Based Inference in Probabilistic Logic Programs 9

6 Discussion

An MCMC-based algorithm for approximate inference of stochastic logic programs (SLP)s

(Muggleton et al. 1996) was presented by Cussens (2000). The technique uses derivations

as states of the chain, and proposes transitions by selecting alternative branches using

repeated Bernoulli trials. In contrast, our sampling technique is largely independent of the

query evaluation process itself. More recently, Moldovan et al. (2013) describe an MCMC

technique for inference in ProbLog that treats explanations as states. However, special

handling is needed since explanations may not be mutually exclusive in general, resulting

in memory and time overheads when traversing the chain. In contrast, we use Prolog-style

evaluation to assure that the samples are pair-wise mutually exclusive. A more detailed

comparison of these techniques appears in (Nampally and Ramakrishnan 2014).

Adaptation techniques have been used to focus other sampling algorithms as well. For

instance, Mansinghka et al. (2009) presents an adaptive sequential rejection sampling

algorithm. This algorithm requires knowledge of the factors in the distribution from

which samples are drawn. Since PRISM programs represent logical as well as statistical

knowledge, explicit knowledge may not even be available in our case. Consequently, our

work does not rely on an explicit knowledge of factors.

Recent works have used sampling techniques for parameter estimation in PLP. Sato

(2011) presents an MCMC-based algorithm for computing posterior distribution on the

parameters of a PRISM program. At its core, that work builds a Markov chain over the

space of parameters, assuming that answer probabilities can be computed efficiently. In

contrast, our work deals with inference when answer probabilities are intractable. Cussens

(2011) describes an application of Approximate Bayesian Computation (ABC) Sequential

Monte Carlo (SMC) (Toni et al. 2009) technique to the problem of parameter estimation

in PRISM programs. A scheme similar to SMC is used to maintain a weighted set of

parameters (particles), and these particles are updated using a “perturbation kernel”. The

ABC scheme generates synthetic data using independent sampling and uses the notion of

distance between synthetic data and observed data to weight the particles. An interesting

open question is whether MCMC-based computation of answer probabilities can be

effectively used by the ABC scheme.

This paper focused on a generic MCMC method and adaptation, and did not consider

the effect of resampling strategies. The order in which random processes are sampled

may affect the convergence and hence the quality of inference. For instance, Decayed

MCMC (Marthi et al. 2002) samples processes based on a temporal order. As future

work, we plan extend our sampler to use an order based on programmer annotation;

whether such annotations can be inferred from the program is an open problem. Finally,

while sampling-based inference may be generally deployed, exact inference may still be

feasible for queries with short derivations. Hence, an interesting direction of future work

is to develop a hybrid inference technique that can combine exact and approximate

inference based on programmer annotation. Such an inference technique can be seen as

an analogue of the Rao-Blackwellized Particle Filtering method developed for Dynamic

Bayesian Networks (Doucet et al. 2000).

Acknowledgements: This work was supported in part by NSF Grants CCF-1018459,

CCF-0831298, and ONR Grant N00014-07-1-0928.

10 A. Nampally, C. R. Ramakrishnan

References

Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. 2003. An introduction to MCMC for

machine learning. Machine learning 50, 1, 5–43.

Cussens, J. 2000. Stochastic logic programs: Sampling, inference and applications. In Uncertainty

in Artificial Intelligence (UAI). Morgan Kaufmann, 115–122.

Cussens, J. 2011. Approximate Bayesian computation for the parameters of PRISM programs. In

Inductive Logic Programming. Springer, 38–46.

De Raedt, L., Kimmig, A., and Toivonen, H. 2007. Problog: A probabilistic Prolog and its

application in link discovery. In IJCAI. 2462–2467.

Doucet, A., Freitas, N. d., Murphy, K. P., and Russell, S. J. 2000. Rao-Blackwellised particle

filtering for dynamic Bayesian networks. In Uncertainty in Artificial Intelligence (UAI). 176–183.

Getoor, L. and Taskar, B. 2007. Introduction to Statistical Relational Learning. MIT press.

Hastings, W. 1970. Monte Carlo sampling methods using Markov chains and their applications.

Biometrika 57, 1, 97–109.

Levin, D. A., Peres, Y., and Wilmer, E. L. 2009. Markov chains and mixing times. Amer.

Mathematical Society.

Mansinghka, V. K., Roy, D. M., Jonas, E., and Tenenbaum, J. B. 2009. Exact and approximate

sampling by systematic stochastic search. In International Conference on Artificial Intelligence and

Statistics. 400–407.

Marthi, B., Pasula, H., Russell, S., and Peres, Y. 2002. Decayed MCMC filtering. In Uncertainty

in Artificial Intelligence (UAI). 319–326.

Moldovan, B., Thon, I., Davis, J., and Raedt, L. D. 2013. MCMC estimation of conditional

probabilities in probabilistic programming languages. In European Conference on Symbolic and

Quantitative Approaches to Reasoning with Uncertainty (ECSQARU). 436–448.

Muggleton, S. et al. 1996. Stochastic logic programs. Advances in inductive logic programming 32,

254–264.

Nampally, A. and Ramakrishnan, C. R. 2014. Adaptive MCMC-based inference in probabilistic

logic programs. CoRR abs/1403.6036.

Poole, D. 1997. The independent choice logic for modelling multiple agents under uncertainty.

Artificial Intelligence 94, 1, 7–56.

Roberts, G. O. and Rosenthal, J. S. 2007. Coupling and ergodicity of adaptive Markov chain

Monte Carlo algorithms. Journal of applied probability 44, 2, 458–475.

Sato, T. 2011. A general MCMC method for Bayesian inference in logic-based probabilistic

modeling. In IJCAI. AAAI Press, 1472–1477.

Sato, T. and Kameya, Y. 1997. PRISM: a language for symbolic-statistical modeling. In IJCAI.

1330–1335.

Sutton, R. S. and Barto, A. G. 1998. Introduction to reinforcement learning. MIT Press.

Swift, T., Warren, D. S., et al. 2012. The XSB logic programming system, Version 3.3. Tech. rep.,

Computer Science, SUNY, Stony Brook. http://xsb.sourceforge.net.

Toni, T., Welch, D., Strelkowa, N., Ipsen, A., and Stumpf, M. P. 2009. Approximate Bayesian

computation scheme for parameter inference and model selection in dynamical systems. Journal

of the Royal Society Interface 6, 31, 187–202.

Vennekens, J. and Verbaeten, S. 2003. A general view on probabilistic logic programming. In

Proceedings of BNAIC-03.

Supplementary material: Technical Communication c© 2014 [Authors] 1

Propagation Properties of Min-closed CSPs
Guy Alain Narboni

Implexe, France
(e-mail: r-d@implexe.fr)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract
Min-closed constraints are numerical relationships characterised by a simple property. Yet, with
finite-domain variables, min-closed systems give rise to a polynomial class of Constraint Satisfac-
tion Problems. Propagation alone checks them for satisfiability. Solving is therefore search-free.
Can this result be generalized from a discrete to a continuous (or mixed) setting? In this paper,
we investigate the use of interval solvers for handling constraints with real variables. We show
that the completeness result observed in the discrete case gracefully degrades into a ‘close ap-
proximation’ property in the continuous case. When switching from finite to infinite domains,
the pruning power of propagation remains intact in the sense that it provides a box enclosure
whose lower bound cannot be further updated (even by domain splitting). Applications of this
analysis to scheduling, rule-based reasoning and scientific simulation are briefly mentionned.

KEYWORDS: Interval solvers, Bounds-propagation, Min-closed (resp. Max-closed) constraints

1 Introduction

A constraint satisfaction problem (CSP) is a formal problem statement which involves a
finite set of variables (or unknowns), together with their associated definition domains,
and a finite conjunction of constraints (or requirements), interrelating the variables.
Typically, in combinatorial problems, variables have a finite domain, represented as an
interval over the integers. A binary variable for instance has a {0, 1} domain, where 0
conventionally stands for false and 1 for true.

A numeric CSP can be viewed as a CSP in which the integrality constraint on a
variable x is removed and replaced — if implicit — by an explicit constraint x ∈ Z. By
stating constraint systems on real numbers, we can this way express both continuous and
discrete problems, as is the case with integer or mixed models (MIP) in the extensions
of linear programming (LP).

In a numeric CSP, a constraint C(~x) therefore identifies a subset of Rn. Domain con-
straints are specific unary constraints. They bind the problem variables to their definition
domain. For instance, the condition ~x > ~0 states a conjunction of domain constraints
that restricts the problem space to the positive orthant: x1 > 0 ∧ . . . ∧ xn > 0. The other
constraints set additional conditions for a solution. Altogether, the problem restrictions
define a feasible region.

By far, the best-known continuous CSP is a linear program. A linear constraint~a~x 6 b

(where~a~x denotes a scalar product) cuts down an entire half-space. As stated in Table 1
in matrix notation, a conjunction of linear inequalities delimits a convex polyhedron.

2 G. Narboni - Implexe

Table 1: A linear constraint system viewed as a numeric CSP
A~x 6~b C1(~x) ∧ . . . ∧ Cm(~x)

~x >~0 ~x ∈ D = D1 × . . . × Dn

Solving a CSP means finding a solution or proving that the feasible region is empty.
Clearly, the method of choice for solving a linear program is to use a linear solver (the
satisfiability problem is of polynomial complexity). In the CSP framework however, we
can easily express mixed-integer problems (including NP-complete ones) as well as non-
linear problems for which solution procedures may be lacking. Therefore, deciding — in
reasonable time — whether a solution exists to the problem modeled is a task that no
inference engine is capable of, in general.

We can relax these requirements, either by restricting the constraint language, or
by approximating the solution process. Constraint programming (CP) favors the latter
option, in order to preserve the richness of CSPs. The key idea behind interval solving
(which generalizes finite-domain solving) is to quickly exclude from tests areas void of
solutions, so to concentrate the search effort on promising areas.

In some special circumstances, those consistency checks can be proved sufficient. For
instance, to guarantee the tractability of a combinatorial search problem, it is enough
to observe that the constraints are min-closed (or, symmetrically, max-closed). These
algebraic properties have been introduced by Jeavons and Cooper (1995) to the study of
finite-domain CSPs. But their definition is relevant to numeric CSPs as well.

In this paper, we prove that, in the general continuous case, min-closed CSPs have a
‘close approximation property’ from which the completeness of the specific discrete case
derives. In reference to the shaving procedure used for trimming variable domains, we
call it the close shaven property. Indeed, the ‘box relaxation’ an interval solver computes
cannot be better refined with respect to its bottom corner, so that shaving is of no use.

Identifying min-closed constraints allows us to spot ‘easy to solve’ qualitative or quan-
titative problems. We get a certificate of tractability or, at least, of good convergence.

This research note is organised as follows. After recalling the basics of interval solving,
we focus on the outcome of propagation — the underlying procedure used for pre-solving
a CSP. We first characterize the reduced domains computed in the CP relaxation. Then,
combining this knowledge to the definition of min-closed systems, we put forward and
prove the close-shaven property that the reduced domains exhibit. We finally present a
few application examples, crossing the lines between different disciplines.

2 Interval approximations in Constraint Logic Programming

When seeking solutions to numerical constraints, exact methods of computer algebra
often appear too specialized or too costly. Interval approximation methods provide an
alternative means which, though usually weak, is general-purpose (Older and Vellino
1993; Van Hentenryck et al. 1997; Benhamou and Granvilliers 2006).

−∞ < −fM < · · · < −f+ < −f < · · · < 0 < · · · < f < f+ < · · · < fM < +∞

The finite numerical scale F.

Theory and Practice of Logic Programming 3

2.1 Floating point intervals

Calculations on reals are performed using a slide rule having a finite set F of graduations.
In practice, this set is given by the IEEE scale of floating point numbers. Small integers
(together with the 2 infinities) are another option. Members of F∪{−∞,+∞} have a direct
machine representation. But most real numbers like 1/3 lie within two graduations. As a
matter of consequence, operations on reals are substituted with operations on intervals.

Following the theory of Prolog IV (Colmerauer 1994), we shall distinguish between
open and closed intervals. Historically, the need for expressing strict as well as non-
strict inequalities derives from the universal role given in the language to the not equal
constraint x 6= y (aka dif). We’ll call approximation interval any interval of reals whose
bounds (when they exist) are members of F. We’ll use the notation [1, 2[equivalent to
[1, 2) for the half-closed and half-open interval {x ∈ R | 1 6 x < 2}. The choice of F
leads to a finite partition1 of the real line R into atomic intervals of the following kind:

• degenerate closed intervals {f} reduced to a point which is a member of F

• open intervals]f, f+[between reals that are consecutive members of F

• the open half-line]fM ,+∞[where fM is the greatest real member of F

• the open half-line] − ∞,−fM[where −fM is the least real member of F.

Any non-empty approximation interval D therefore uniquely decomposes into a disjoint
union of atomic intervals that forms a totally ordered sequence. We’ll call the first element
∆ of that sequence the leftmost slice of D (and the last, its rightmost slice).

2.2 Interval constraints

In the sequel, we’ll make the non-restrictive assumption that variable domains are con-
vex2. Thus, a domain constraint will be a relation of the form x ∈ D where D is an
approximation interval (possibly empty). Domain constraints are handled apart in CP.

Assuming a fixed number of unknowns, say n, the conjunction of domain constraints
(x1 ∈ D1) ∧ (x2 ∈ D2) ∧ . . . ∧ (xn ∈ Dn) is equivalent to ~x ∈ D1 × D2 × . . . × Dn. The
cross-product of the variable’s domains defines a box, i.e., a hyper-rectangle aligned with
the axes of the Cartesian coordinate system.

A numerical constraint solver comes equipped with a catalogue of primitive constraints
(from arithmetic, trigonometry, . . .) that can be used for model building.

For the sake of simplicity, we shall assume that all the constraints used in our model
are n-ary3. Thus, a system of m simultaneous constraints can be condensed as:

C1(~x) ∧ ... ∧ Cm(~x) ∧ (~x ∈ D1 × . . . × Dn)

where each Ci denotes a primitive constraint (1 6 i 6 m) and each xj refers to a numerical
unknown (1 6 j 6 n). A constraint system is satisfiable if it has solutions. Obviously,
the domain product D1 × . . . × Dn provides an enclosure of all of the numerical solutions
sought in Rn. But even with a tight enclosure, a solution set may remain infinite.

1 If the approximation is restricted to closed intervals, as in (ECLiPSe), we have a covering instead.
2 The rationale (and leftmost slice) is the same for domains made of unions of approximation intervals.
3 A relation is always the projection of its cylindrical extension

4 G. Narboni - Implexe

The unary constraint ‘is an integer’ is of particular interest for making the connec-
tion with finite-domain contraint solving. By typing all of (or some of) the variables as
integers, we are allowed to express purely combinatorial or mixed problems.

3 Interval solving

Basically, constraint solving proceeds by transforming a system of primitive constraints:

C1(~x) ∧ ... ∧ Cm(~x) ∧ (~x ∈ D1 × . . . × Dn) (1)

into an equivalent system:

C1(~x) ∧ ... ∧ Cm(~x) ∧ (~x ∈ D1 × . . . × Dn) (2)

where all the domains are reduced (i.e., their bounds are updated): Dj ⊂ Dj (1 6 j 6 n).
By reducing domains, interval propagation amounts to drawing valid inferences locally

on variables’ domains that are shared globally. Every consequence derived is correct, but
not all expected consequences are derived. So, reasoning is sound but incomplete. Interval
solving is akin to a pre-processing step: it often has to be complemented by search.

When domains are finite, a complete exploration of the search space is possible (at an
exponential worst cost in the number of variables). When domains are infinite, search is
inevitably limited by the precision of the grid being used for the calculations.

3.1 Properties of reduced domains

Since implementations of constraint solvers vary with respect to the consistency checks
performed during propagation, we’ll stick to the theory of Prolog IV to make things
clear4. Formally, for every constraint Ci (1 6 i 6 m), the following property holds:

D1 × . . . × Dn = redCi
(D1 × . . . × Dn) (3)

where redC(D1 × . . .×Dn) is defined as the smallest box of Rn contained in D1 × . . . × Dn

and containing the graph of the relation C, i.e., {~x ∈ Rn| C(~x) ∧ ~x ∈ D1 × . . . × Dn}. The
narrowing operator redCi

attached to the primitive constraint Ci minimizes the size of
the domains. Those are trimmed as much as possible by performing bounds’ updates.

The fixed point equation (3) means interval solving is complete for a 1-constraint CSP:
Ci(~x) ∧ ~x ∈ D1 × . . . × Dn (in case of inconsistency, the box becomes the empty set).
Moreover, if the box reduces to a singleton {~x}, we have the guarantee that Ci(~x) holds.
From this, we recover the well-known global properties of interval solving:

• There are no solutions outside the box determined by the reduced domains.
• When the enclosing box becomes empty, system (2) is equivalent to the constraint

false. We thus have a proof that system (1) has no solution.
• When the enclosing box reduces to a single point, we know for sure that this point

satisfies every constraint. It is therefore a solution to the whole constraint system
(the unique one indeed in the original domains).

4 Refer to Collavizza et al. 1999 or Chiu Wo Choi et al. 2006 for a comparison with stronger forms of
inference, over infinite and finite domains respectively.

Theory and Practice of Logic Programming 5

3.2 Bounds-consistency property

Let us examine in detail what happens when the system (2) is locally consistent, i.e.,
when none of the reduced domain is empty. Then, every Dj has a leftmost slice, ∆j .
According to (3), for every constraint i (taken independently), and for every variable j,
the following formula holds — otherwise, the slice ∆j would have been ruled out:

∃~x Ci(~x) ∧ (~x ∈ D1 × · · · × ∆j × ... × Dn) (4)

When all of the reduced domains are bounded and closed — as is the case with finite
domains, we retrieve the classical definition of bounds-consistency, also known as 2B-
(Lhomme 1993) or hull-consistency (Benhamou et al. 1999). We can always find in the
box D1 ×· · ·×Dn a solution to Ci(~x) extending the partial assignment xj = min(Dj), since
for every constraint i (1 6 i 6 m) and every domain j (1 6 j 6 n) we have:

∃~x Ci(~x) ∧ (~x ∈ D1 × · · · × {min(Dj} × ... × Dn) (5)

A similar analysis applies to rightmost slices and maximum domain values.

3.3 Variants of primitive constraints

Quite often, quantitative relationships are specified using mathematical functions. We
can define for instance two constraints over Rn out of a function f, from Rn−1 into R:
C(~x, y) if and only if y = f(~x) and C ′(~x, y) if and only if y > f(~x). The definitions of
C and C ′ being fairly close, the following lemma shows we don’t need to implement
two narrowing operators, redC and redC ′ . We can define C ′ as a variant of the primitive
constraint C, without loosing the native properties (3, 4) that propagation guarantees.

Lemma Let C be a primitive constraint over Rn and Op an inequality symbol (<, 6,
>, or >). Define C ′ in terms of C by C ′(~x, y) = {(~x, y) ∈ Rn | ∃z C(~x, z) ∧ (z Op y)}.
Then, the bounds-consistency property holds for the defined constraint C ′.

Proof
Consider a system made of the pair of constraints defining C ′, together with some domain
restrictions (without loss of generality, we here assume the inequality stated is z 6 y):

C(~x, z) ∧ (z 6 y) ∧ (~x ∈ D1 × . . . × Dn−1) ∧ (y ∈ Dn) ∧ (z ∈ Dn+1)

Let D1 × . . .×Dn ×Dn+1 be the cross-product of the reduced domains. Assume the system
is locally consistent and suppose D1 × . . . × Dn is not the smallest box containing the
solutions to the system C ′(~x, y) ∧ (~x ∈ D1 × . . . × Dn−1) ∧ (y ∈ Dn). Then, we can safely
cut away a leftmost or rightmost slice, ∆i, from a reduced domain Di (1 6 i 6 n). The
constraint C ′(~x, y) having no solution in the box D1 × . . . × ∆i . . . × Dn, there exists no
value of z for which the system C(~x, z) ∧ (z 6 y) is satisfiable, and all the more so if z lies
in the rightmost slice ∆n+1 of Dn+1. Still, the bounds-consistency property holds for C in
the conjunct, so C(~x, z) remains satisfiable with (~x, y, z) in D1 × . . . × ∆i . . . × Dn × ∆n+1.
We thus have a particular solution to C, say (~x∗, z∗). The same is true for the inequality
z 6 y. Observe that the leftmost slice of the reduced domain of y can only be equal to
∆n+1 or follow it, so that we can always choose a value y∗ > z∗. We are thus able to
construct a point of D1 × . . . × ∆i . . . × Dn × ∆n+1 that is at the same time a solution to
z 6 y and a solution to C(~x, z). Hence a contradiction. q

6 G. Narboni - Implexe

4 Min-closed constraint systems

4.1 Definitions

We say that a subset S of Rn is closed for the minimum operation (in short, min-closed)
if, whenever ~x and ~y are in S , their minimum (defined component-wise) also lies in S :

~x ∈ S ∧~y ∈ S =⇒ min(~x,~y) = (min(x1, y1), . . . , min(xn, yn)) ∈ S (6)

By definition, a constraint is min-closed if its solution set is min-closed.
A conjunction of min-closed constraints forms a min-closed system. Its solution set is

min-closed, for the reason that the intersection of min-closed sets is min-closed. Similarly,
the projection onto a subset of variables of a min-closed system is min-closed.

4.2 First catalogue of min-closed constraints

• Unary constraints are min closed. In particular, domain constraints are min-closed.
• Binary constraints of the form y = f(x) are min-closed if f is a monotonically

increasing function of x, since f(min(x1, x2)) = min(f(x1), f(x2)).

Table 2: Min-closed primitive (or near-primitive) constraints.
Constraint Reified constraint

Comparison x = c •
x 6= c •
x 6 c •
x < c •
x > c • δ ≡ (x > c) •
x > c • δ ≡ (x > c) •
x = y •
x 6 y •
x < y •

Integrity x ∈ Z •
Boolean ¬β •

β ∧ γ • δ ≡ (β ∧ γ) ◦
β ⇒ γ •

Linear x + c = y •
x − c = y •
x + y 6 z ◦
x + y < z ◦

ax = y •
Non-linear xy 6 z, x > 0, y > 0 ◦

y = sqrt(x) {(x, y) ∈ R2 | y =
√
x, x > 0} •

y = log(x) {(x, y) ∈ R2 | y = log x, x > 0} •
. . .

All of the constraints in this excerpt are min-closed. Some are max-closed too (• mark).
Notations: x, y, z are real variables; β, γ, δ binary variables, i.e., restricted to {0,1};

c is a numerical constant; a a non-negative coefficient.

Theory and Practice of Logic Programming 7

-1 0 1 2 3 4 5 6

-1

1

2

3

(a) A counter-example (line segment)

0 3 6 9 12 15

5

10

(b) A min-closed polyhedron

Fig. 1: Linear constraint systems and their CP relaxations (boxes)

5 The ‘close-shaven’ property

Interval solvers are notoriously bad at solving linear systems. Contrary to linear solvers,
they miss a global view. Fig. 1a gives an example where propagation does not perform any
pruning at all. The CSP is: (−1 6 x 6 3)∧(−1 6 y 6 3)∧(x 6 y)∧(y 6 x+1)∧(x+y = 2).
The CP relaxation [−1, 3] × [−1, 3] leads to a quite pessimistic approximation of the
feasible region (highlighted line segment) whose exact projections are [0.5, 1] and [1, 1.5].

When the overall interval approximation is too loose, shaving heuristics can be used for
tightening bounds without creating choice points (contrary to general search procedures).
Shaving is therefore deterministic and attempts to exclude a leftmost (or rightmost) part
of a domain as long as it is safe do so (i.e., when its cross-product with the other domains
is void of solution). In the worst case, shaving may have to recursively examine all the
atomic boxes that decompose a domain. So, shaving can be potentially costly too.

5.1 General continuous case

We are now at a point where we can state the approximation property that min-closed
systems show for interval solving.

Proposition Assume C1(~x) ∧ ...∧Cm(~x) ∧ (~x ∈ D1 × . . .×Dn) is a min-closed system that
is locally consistent. Then, considering the leftmost slices ∆j of the reduced domains Dj ,
the system C1(~x) ∧ ... ∧ Cm(~x) ∧ (~x ∈ ∆1 × . . . × ∆n) is also locally consistent.

Proof
According to the bounds-consistency property (4), for each constraint Ci (1 6 i 6 m), we
have a solution in ∆1 ×D2 × . . .×Dn, a solution in D1 × ∆2 × . . .×Dn, . . . and a solution
in D1 × . . . × Dn−1 × ∆n. Their minimum is a point in ∆1 × . . . × ∆n. Since the constraint
is min-closed, it is a solution to Ci.

So, each constraint Ci is satisfiable within the cross-product ∆1 × . . .×∆n which defines
an atomic box and cannot be further reduced. It follows that the constraint system
C1(~x) ∧ ... ∧ Cm(~x) ∧ (~x ∈ ∆1 × . . . × ∆n) is locally consistent. q

8 G. Narboni - Implexe

Consequently, none of the lower bounds of the reduced domains obtained by propaga-
tion can be further improved by shaving: the reduced domains are all close-shaven. Still,
the system may be globally inconsistent, but bisection then is of no help. The solver
cannot disprove the formula: ∃~x C1(~x) ∧ ... ∧ Cm(~x) ∧ (~x ∈ ∆1 × · · · × ∆j × · · · × ∆n).

0

∆y

∆x

Inf

Sup

(a) The leftmost slices ∆x and ∆y in a 2D case.

5

3333
5
5

-

-

=

=

≡

(b) Zoom in on ∆x × ∆y for Fig. 1b example.

Fig. 2: Search space decomposition into atomic slices and boxes

When constraints are min-closed, one should not observe gross over-approximations in
the CP relaxation. By way of illustration, the cone of Fig. 1b is defined by two linear
inequalities in the R2 plane: (3x > 2y−1)∧ (3y > 2x+9). This CSP is min-closed. It has
a least element: (x, y) = (3, 5). The close-up on Fig. 2b shows that the minimum, though
not exactly computed, is precisely surrounded by the infimum of the reduced domains.
3≡ denotes the third float preceding 3 and 5= the second before 5. Atomic boxes that
are filled indicate areas where the interval solver cannot exclude solutions. We see in
particular that the leftmost slices of the two domains cannot be shaved off.

5.2 Specific discrete case

With finite domains, we derive from the close-shaven property a least element solution
(minimum of the box). This witness point ensures satisfiability and restores decidability.

Corollary Consider a min-closed system whose domains are bounded from below and
whose variables are of integer type . If the reduced domains are not empty, then the CP
relaxation D1 × . . .×Dn has a least element which is a solution to the constraint system.

Proof
Since the domains are closed and non empty, they have a minimum which is also their
lowest slice. The atomic box ∆1 × · · · × ∆n is a singleton point of integer coordinates
min(D1), . . . , min(Dn). As it satisfies every constraint, it is a solution. q

We retrieve the fact that propagation (which is a polynomial-time procedure) is com-
plete for min-closed finite-domain satisfiability checking5. Such CSPs are thus tractable.

5 The original paper of (1995) proved that a min-closed CSP is solved by enforcing arc-consistency only,
a stronger form of inference (Mackworth) than bounds-consistency. But obviously, the latter suffices.

Theory and Practice of Logic Programming 9

6 Cross-connections and examples

6.1 Application to linear systems

The following result generalizes the case illustrated by Fig. 1b.

Property 1 Every linear constraint of the form a1x1 + . . .+ anxn 6 cy+ b where the ai’s
are non-negative is min-closed.

This ‘meta-constraint’ easily decomposes into a min-closed system, using the primitives
of Table 2. If we define a quasi-positive matrix as a matrix having at most one negative
entry per row, it follows that a linear system A~x 6~b is min-closed if A is quasi-positive.
Then, if the feasible region is non-empty and bounded from below, it has a least element.

Now, there is a result from Cottle and Veinott (1972) stating exactly the converse:

Property 2 If A is quasi-positive, a convex polyhedron of the form P = {~x > 0 | A~x 6~b}
has a least element if it is non-empty.

So, for linear systems we see here a one-to-one correspondence between the algebraic
property (min-closed system), the geometric property (existence of a minimum) and the
syntactic property (quasi-positive matrix).

Furthermore, we have a special case ensuring integrality (Chandrasekaran 1984):

Property 3 Assuming that A and ~b have integer coefficients, if A is quasi-positive and
if the negative entries of A are equal to -1, then the polyhedron P = {~x > 0 | A~x 6 ~b}
has an integral least element if it is non-empty.

Note this result holds for integer as well as real valued variables. It follows that prop-
agation is complete for the numeric CSPs of that class since it involves no division. The
polyhedron’s least element is a corner-point for both the CP and LP relaxations.

A tension problem in a network (which is the dual of a flow problem) (Chvátal 1983)
is characterized by difference bounded constraints of the form a 6 x−y 6 b. With 2 non-
zero entries per row, equal to +1 and −1, its matrix is quasi-positive and quasi-negative.
Such a linear system globally acts as a primitive constraint for interval solving — a
feature which has direct applications to discrete- as well as continuous-time scheduling.

6.2 Application to rule-based systems

Property 4 A conditional constraint of the form: (x2 > a2) ∧ . . . ∧ (xk > ak) ⇒ (x1 > a1)

is min-closed.
Again, the property holds for integer and real variables (regarding the expressivity

of a knowledge engineering language, this point is worth noting). More generally, the
right-hand side of the implication can be any min-closed constraint.

We proved elsewhere (2010) that a finite-domain CSP made of rules of the above form
can be translated into a Horn propositional clausal system, i.e., into a well-known linearly
satisfiable SAT problem. We coined the term Horn-reencodable for characterizing a rule
base of such kind.

Now, according to Jeavons and Cooper (1995), every min-closed finite-domain con-
straint is logically equivalent to a conjunction a conditionals of that form. This means
that a min-closed finite-domain CSP is indeed Horn-reencodable.

The ability to provide a solution by joining the minima of the reduced domains thence
derives from the integer least element property of a Horn polytope (Chandru and Hooker).

10 G. Narboni - Implexe

6.3 Application to simulation systems

Convergence and numerical stability of the computation methods used are major concerns
in Numerical analysis when solving large (often sparse) equation systems. Many come
from the discretization of differential equations like the Laplacian equation for simulating
heat transfer. A typical 2D pattern is : −4xi,j + xi,j+1 + xi,j−1 + xi−1,j = 0. It relates each
cell to its north, est, south and west neighbours. We have one equation per cell, hence a
system A~x =~b with as many equations as unknowns (cell values).

We observe that the square matrix A is quasi-positive. It is also diagonally dominant,
so that the solution we expect to be non-negative is also known to be unique when it
exists (cf. cell assignments stating boundary conditions). The equation system is the
conjunction of 2 systems of inequalities: A~x 6 ~b,~x > ~0 and A~x > ~b,~x > ~0. The former
is min-closed. The latter is max-closed. Therefore, the value of the physical solution
will lie between a least and a greatest element, both computed with a high quality of
approximation. Moreover, if only one bound is needed, solving half of the system will do.

7 Conclusion

Compared to polyhedral studies for MIPs, there are not many theoretical results available
for figuring out in advance the outcome of a CP computation. However, it is a well-known
fact that two formulations that are logically equivalent are rarely equal in efficiency. For
understanding a CSP behaviour, a human modeler has to master the idiosyncrasies of
the type of engine he intends to use.

In this paper, we have shown with interval solving how to generalize the completeness
property of propagation on min-closed systems, from finite domains to infinite domains.
We have answered the question of what is the meaning of a good approximation for an
interval solver. It is a box enclosure of the feasible region that cannot be refined by search.
With min-closed systems, the CP relaxation delineates the best outward approximation
of the infimum of the solution set. And this is obtained free of search. The same is true
for max-closed systems (with respect to the supremum).

The polynomial class of min-closed problems has a theoretical significance since, among
its instances, we find Horn satisfiability and Critical Path optimization problems. It also
has practical applications, for instance, to machine scheduling (Purvis and Jeavons 1999)
or product configuration problems (Narboni 2010).

From the point of view of complexity theory, Bodirsky and Kára (2010) have thoroughly
investigated the generalization of min-closed CSPs to infinite domains for temporal con-
straint languages. Though restricted to logical combinations of variable comparisons,
those languages can be of use for specifying continuous-time disjunctive scheduling prob-
lems, or modeling rule-based systems too. The problem being amenable to quantifier
elimination, it is decidable. The authors prove a dichotomy result and provide an exact
solution algorithm for the polynomial case.

Our analysis gives an intuitive insight into the building and interpretation of interval-
based models. In the light of it, we may identify ‘well-solved’ sub-problems, occasionally
predict the robustness of a solution design or assess the effectiveness of a search heuris-
tics, prior to passing test experiments.

Theory and Practice of Logic Programming 11

References

Apt, K. and Wallace, M. 2007. Constraint Logic Programming using ECLiPSe, Cambridge.
Benhamou, F. et al. 1995. Le manuel de Prolog IV, PrologIA.

http:// www.prolog-heritage.org.
Behamou, F. and Goualard, F. and Granvilliers, L. and Puget, J-F. 1999. Revising

hull and box consistency. In Procs. ICLP’99, 230-244.
Benhamou, F. and Granvilliers, L. 2006. Continuous and Interval Constraints. In Handbook

of Constraint Programming, Elsevier.
Bodirsky, M. and Kára, J. 2010. The complexity of temporal constraint satisfaction problems.

J. ACM, 57:2.
Chandrasekaran, R. 1984. Integer programming problems for which a simple rounding type

of algorithm works. In Progress in Combinatorial Optimization (Pulleyblanck Ed.), 101-106.
Chandru, V. and Hooker, J. 1999. Optimization methods for logical inference, Wiley.
Chiu Wo Choi and Harvey, W. and Lee, J. and Stuckey, P. 2006. Finite Domain Bounds

Consistency Revisited. In Procs. Australian Joint Conference on Artificial Intelligence, 49-58.
Chvátal, V. 1983. Linear Programming, Freeman.
Cohen, D. and Jeavons, P. 2003. Tractable Constraints Languages. In Constraint Processing

by R. Dechter, 299-331, Morgan Kaufmann.
Collavizza, H. and Delobel, F. and Rueher, M. 1999. Comparing partial consistencies.

Reliable computing, 5:3 213-228.
Colmerauer, A. 1994. Spécifications de Prolog IV. Rapport technique, Faculté des Sciences de

Luminy.
Cottle, R. and Veinott, A. 1972. Polyhedral sets aving a least element. Mathematical Pro-

gramming, 3 238-249.
Jeavons, P. and Cooper, M. 1995. Tractable Constraints on Ordered Domains. AI Journal,

79:2 327-339.
Lhomme, O. 1993. Consistency techniques for Numeric CSPs. In Procs. of the 13th ĲCAI,

232-238.
Mackworth, A. 1977. Consistency in networks of relations. Artificial Intelligence, 8:1 99-118.
Narboni, G. 2010. A domain language for expressing engineering rules and a remarkable sub-

language. In Procs. IKBET ECAI’10 (A. Felferning, F. Wotowa Eds.). Journal version: 2013.
On rule systems whose consistency can be locally maintained. AI Communications, 26:1 67-77,
IOS Press.

Older, W. and Vellino, A. 1993. Constraint Arithmetic on Real Intervals. In Constraint
Logic Programming: Selected Research, MIT Press.

Purvis, L. and Jeavons, P. 1999. Constraint tractability theory and its application to the
product development process for a constraint-based scheduler. In Procs. of PACLP’99, The
Practical Application Company.

Van Hentenryck, P. et al. 1997. Numerica, MIT Press.

Supplementary material: Technical Communication c© 2002 [Zhang] 1

Towards an Efficient Prolog System by Code
Introspection

George S. Oliveira and Anderson F. da Silva

Departament of Informatics

State University of Maringá, Brazil

(e-mail: geo.soliveira@gmail.com, anderson@din.uem.br)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Several Prolog interpreters are based on the Warren Abstract Machine (WAM), an elegant model

to compile Prolog programs. In order to improve the performance several strategies have been

proposed, such as: optimize the selection of clauses, specialize the unification, global analysis, native

code generation and tabling. This paper proposes a different strategy to implement an efficient Prolog

System, the creation of specialized emulators on the fly. The proposed strategy was implemented

and evaluated at YAP Prolog System, and the experimental evaluation showed interesting results.

KEYWORDS: Prolog System, Introspection, Mutability

1 Introduction

Several programming languages provide introspection, a way for programs to reason about

their own internal structure. Besides in programming languages, introspection has been

employed in dynamic translation systems (Kiriansky et al. 2002), security and reliability

(Reis et al. 2005) and deadlock detection (Wen et al. 2011).

Prolog provides a significant form of introspection by the clause predicate. It allows

the user to find metadata related to a goal in the database. Besides, using this predicate it

is possible to create metacircular interpreters and write evaluators that use nonstandard

search orders.

The use of metadata provided by introspection should not be limited to outside

tools. So that, this paper proposes the use of introspection (and metadata) to build an

efficient Prolog System. Introspection can allow the system to reason about its internal

structure and self specialize on the fly. This strategy was implemented and evaluated on

YAP (Santos Costa et al. 2012), and the results indicated that is possible to reduce the

emulator’s overhead.

This paper is organized as follows. Section 2 presents related work. Section 3 de-

scribes the proposed strategy to construct an efficient Prolog System. Section 4 presents

experimental results and Section 5 ends with the concluding remarks.

2 George S. Oliveira and Anderson F. da Silva

2 Related Works

Several researches have been conducted with the purpose of improving the WAM per-

formance. These include researches about optimization of selection of clauses (Costa et al.

2007), specialization of unification (Meier 1990), global analysis (Hermenegildo et al.

2012), generation of efficient code (Taylor 1996) and tabling (Santos Costa et al. 2012),

which are, in part, already employed in current Prolog system.

These researches, however, have their drawbacks: some of them require a refinement

of the WAM (or variants) instruction set, or are very difficult to implement, or require

the use of another technique to be truly effective, or are effective only for programs that

manipulate large amount of data, in particular those for deductive database.

The purpose of this paper is to add a new strategy in order to improve the Prolog system

performance, the use of introspection to reason about the engine’s internal structure and

based on it to generate on the fly specialized emulators.

3 A Prolog System by Code Introspection

Prolog emulators have provided an attractive system with a simple and elegant language.

Such systems have been used on several applications such as theorem proving (Indo

2007), answer set programming (Inclezan 2013), heap solver (Albert et al. 2013), and

others. Therefore, it is important to provide a system that can be specialized to the

current program in order to minimize the intrinsic overhead of emulation. It is the

purpose of this paper, to describe a Prolog System that uses introspection in order to

create specialized emulators on the fly.

The Prolog language, although not be fully introspective, provides a degree of intro-

spection. In Prolog, it is possible to execute the following example:

degree(rio, 36)

degree(maringa, 34)

degree(curitiba, 24)

hotsummer(X) :- degree(X, Y), Y > 30.

?- clause(hotsummer(X),B)

B = degree(X, Y), Y > 30

This example demonstrated how Prolog provides a custom database perusal. A similar

functionality can be used in the engine level. Through introspection, the engine can peruse

its own metadata and use them to create mutable emulators.

Reasoning about its internal structure makes feasible not only return the control flow

graph of a specific instruction, but also the basic blocks, the number of basic blocks, the

size of each basic block, among other metadata. With this metadata, the system can build

a new emulator, more precisely, a specialized emulator (hereafter called S.emulator).

It is important to note that such feature raises some questions, such as:

• How can the system provide introspection?

Towards an Efficient Prolog System by Code Introspection 3

• How does the generation of a specialized emulator occur?

• What is the mutability and how does the system manage it?

3.1 Providing Introspection

In a context in which the emulator source code is available, it is possible to feed the

system with metadata describing each instruction, besides the structure of the system. On

the other hand, if the source code is not available it is possible to use some strategy

that comes from dynamic binary translation (Smith and Nair 2005), to perform this task.

Therefore, the ultimate goal is to capture during execution time this metadata, specialize

them (if necessary), and thus generating a specialized emulator that be able to reduce the

overhead of emulation.

A simple and effective strategy is to create specialized emulators in a conservative way

to assure it will never reach an unsafe state. Such task has the potential to increase

the interpretation’s overhead. Therefore, it is not desirable that such task be enabled

throughout the whole execution of the program. Ideally, it should only be enabled when

the program reaches a state in which type of its structures is consistent. As a result, it is

possible to generate a sYAAM emulator and ensure that an unsafe condition will not be

met.

Adding metadata to the system implies on the addition of new features such as capacity

of perusing and marking such metadata. At this point, a critical question arises: how does

the system begin to reason about its metadata?

In the context of just-in-time compilation, the compilation system is achieved when a

certain piece of code is invoked frequently, which is determined with the use of counters.

In this case, a piece of code must be compiled when its amount of invocations exceeds a

threshold.

Using the same approach, the proposed strategy instruments the predicates with counters

and uses them to initialize the task of perusing metadata. Therefore, when a counter

reaches a certain threshold, the system begins to reason about its internal structure and

marks the basic blocks executed by the current emulator instruction. It is important to

note that the use of counters incurs in a minimal overhead because only one increment

is executed in the head of the current clause (or fact). However, the markup task has an

overhead that can negatively impact the system. Due to the task of perusing the metadata

of the current instruction in order to find the current basic block and then mark it.

Therefore, the proposed strategy provides a mechanism to enable and disable the markup

task.

Disabling the markup task occurs when the system is running a S.emulator. If the

system requires a new specialization, which will cause a return to the default emulator, the

system enables the markup task and begisns the process of creating a new S.emulator. It

is important to note that the system handles several emulators, however only the default

emulator is the one be able to handle all the instructions and exceptions. On the other

hand, a S.emulator does not have this capacity in order to be a specialized emulator.

4 George S. Oliveira and Anderson F. da Silva

3.2 Creating a S.emulator on the Fly

At the implementation level, every emulator instruction contains basic blocks that will

always be executed and others that will only be executed from conditional branches.

Eliminating conditionals branches and build a S.emulator only with the basic blocks

executed can ensure the new emulator is compact and efficient in terms of execution time.

Basically, the markup of basic blocks starts from the first emulator instruction of a critical

clause1 and continues until the last statement of this clause. This process will create a

trace that will form a S.emulator. There are two important moments in the system life:

when some clause becomes critical, and when the same clause becomes hot. The first

indicates the system needs to begin the creation of a S.emulator, and the second indicates

that there is a complete trace. In the second moment, the system can finish to reason

about its internal structure, compile the new trace and finally install the new S.emulator.

When a trace is initialized, the critical clause and its first basic block executed becomes

the head of the trace. After that, each basic block executed is marked to form the

S.emulator. The trace consists of the control flow of each emulator instruction, represented

by an ordered sequence of basic blocks which begins with a label and finishes with a

unconditional branch to the label of the next emulator instruction. It is important to note

that a trace does not contain only basic blocks from only one clause. In fact, critical and

hot clauses are used to initialize and finalize the construction of a trace. It means a trace

does not have knowledge about clauses.

Ideally, an optimal trace should consist solely of basic blocks executed, without condi-

tional statements or useless basic blocks. However, the construction of such trace is not

always feasible because it can ensure the efficiency of a program but not the execution

of another program. For this reason, each trace, in addition to being efficient in terms

of execution time also must ensure the completion of the program and a correct output.

These conditions are fulfilled according to the following criteria:

1. The trace must be appropriate for the data type it was built;

2. The trace must maintain the conditions on the occurrence of exceptions;

3. A dereferenciation must complete successfully; and

4. The indexing instructions must invoke correct clauses.

Handling Data Types In practice, all emulator instructions are generic for all data type.

Therefore, the system should ensure an efficient trace eliminating conditional statements.

However, the Prolog data type can change during runtime. Thus, the system adjusts the

trace (more precisely, the S.emulator built previously) to the new data type. Thus, while

no change occurs, the trace will have a linear characteristic.

However, if a previously successful conditional statement fails, it is necessary the trace

be modified to contain the new basic blocks. This feature, mutability, indicates that during

the execution of a program, a trace can be rebuilt to change a previously built S.emulator.

The mutability ensures an accurate control flow for all data type.

Handling Exceptions In the YAP context, an exception is a control flow that does not

belong to a running clause. In practice, exceptions occur during backtracking and garbage

1 A critical clause is that which counter reached a threshold.

Towards an Efficient Prolog System by Code Introspection 5

collection. Both exceptions are prioritized during the trace construction, which infer that

the trace will not ignore the occurrence of such exceptions.

At the implementation level, conditional statements that throw exceptions for garbage

collection are not preceded by instructions that evaluate data type and, therefore, constitute

a single basic block in the trace. In this case, the basic block represents a conditional

statement that, if successful, returns the control flow to the default emulator and invoke

the garbage collector. After that, the system triggers the emulators; thus the execution

continues from that instruction that throws the exception on the S.emulator.

Moreover, exceptions caused by backtracking are always preceded by conditional state-

ments including instructions for evaluating data type. Unlike exceptions for garbage

collection, backtracking are handled by the S.emulator and should not have the condi-

tional statements ignored.

Handling Dereferenciation In YAP, the dereferenciation is implemented as a loop to

transverse a chain of pointers built during the unification of two variables. This loop

finishes when the value of the term is found or when it is determined that a term has

not been unified with a value yet. Before this loop is executed, a conditional statement

to verify if the term is variable is performed, and the dereferenciation occurs only if this

statement conditional is true.

Considering the dereferenciation implemented in YAP, this operation is handled by the

proposed strategy in the following ways:

• If the conditional statement is executed before the dereferenciation loop determines

that the term is not a variable, the dereferenciation operation is not inserted in the

trace.

• On the other hand, if the term is variable, a basic block containing the dereferen-

ciation operation is inserted in the trace. This block contains two branches. One

will be executed only if the dereferenciation process finishes with a variable, and,

therefore, the flow jumps to the basic block which handles variables. The other will

be executed if this process founds a non-variable value, in this case the target basic

block handles a non-variable.

Handling Indexing Instructions In practice, the indexing instructions are not profiled as

the others emulator instructions and are entire inserted in the trace, even if none of

its basic blocks are executed. It is important to note that before a clause be effectively

executed, the indexing instructions need to be executed first so that the system can identify

the correct clause to invoke. As several stop conditions are related to changing some data

type, this condition should be detected by the trace. Therefore, the strategy is to use a

conservative construction and maintain the indexing instructions in order to detect these

cases, even if such cases never occurred during the construction of the trace. Besides, it is

necessary to insert an instruction that performs a return to the default emulator in case

of invoked clause has not been inserted into the trace.

In YAP, the indexing instructions are generated on demand (Santos Costa 2009); thus

it is difficult to determine all the clauses that will be invoked after them, which further

reinforces the need to use a conservative strategy.

6 George S. Oliveira and Anderson F. da Silva

3.3 Handling the Mutability

The system recompiles a trace when the execution flow is modified. Normally, every trace

has at least an elementary basic block that contains several branches. In these basic

blocks is inserted an additional target to allow the control flow returns to the default

emulator when it is identified the execution of some basic block taht was not inserted in

the trace. Besides, the system sets the two new registers, namely: K and BADDR. The

former indicates whether the return occurred by a elementary basic block or a garbage

collection exception. The latter indicates the address from where the trace needs to be

rebuilt.

In other words, when a return to the default emulator occurs by an elementary basic

block, the system captures the metadata of the current emulator and enables the markup

task; thus the new basic blocks executed are inserted in this trace. When the default

emulator reaches the head of the trace, this is recompiled, installed and invoked instead

of the previous one. The new trace replaces the previous one. It reduces the space cost

and avoids the maintenance of a garbage collector to the S.emulator area.

It is necessary to ensure the return to the default emulator, in the case of changing in the

behavior of the program. In a situation without mutability, the earlier built S.emulators

can become invalid for the new behavior, causing a lot of return to the default emulator,

hurting the performance. With mutability, it is possible to change a previously built trace

and minimize the overhead of changing the current emulator.

3.4 Putting It all Together

The original YAP’s architecture comprises four components, namely: Libraries, Engine,

Compiler and Internal Database. The Libraries are collections of high and low level

libraries responsible for initializing the Engine, supporting threads, native predicates and

SWI emulation. The Engine is in charge of executing the Prolog program. The Compiler

translates the Prolog code into YAAM instructions. Finally, the Internal database is

the database of clauses. A detailed description about the original YAP’s architecture can

be found in the work of Santos Costa et al. (Santos Costa et al. 2012). In order to

provide mutability, the Engine has a new component, called Mutability System that

is responsible for creating and handling the S.emulators. Figure 1 provides a general

overview of YAP’s architecture with mutability.

Fig. 1. The YAP’s architecture with mutability.

Towards an Efficient Prolog System by Code Introspection 7

When a clause becomes critical, the system enables the Monitor that reasons about

the internal system structure and marks the basic blocks that were executed. After that,

when that clause becomes hot, the system captures the basic blocks, builds a control flow

graph, compiles it and finally installs the compiled code (the new S.emulator). Thus, when

the engine verifies that the current clause is a head of a S.emulator, it triggers from the

default emulator to the correct S.emulator.

The Trace Compiler is a dynamic compiler invoked at runtime which generates a

S.emulator from the control flow graph constructed by the Trace Builder. The system

uses the LLVM (Low Level Virtual Machine2) (Lattner and Adve 2004) to implement the

dynamic compiler. The attractiveness of this framework is the fact it generating native

code on memory, besides providing a library to tune the process of generating native

code.

4 The Results

The Experimental Setup The experiments in this paper are conducted using YAP version

6.3 3 and they are carried out on an Intel x86 64 based machine, supporting a Intel(R)

Xeon(R) CPU E5504 processor running at 2.00GHz, and 24GB of RAM. The operating

system on the machine was Ubuntu, running kernel 3.11.0. The Table 1 describes the

programs used in the experiments.

Table 1. The programs used in the experiments.

Program Preds. Input Size Program Preds. Input Size

append 1 63000000 hanoi 1 24

nreverse 2 52000 quicksort 1 52000

tak 1 57, 21, 36 binary trees 6 18

fannkuch 11 11 fasta 13 8000000

mandelbrot 5 2400 n-body 9 3000000

nsieve 9 5 nsieve bits 9 12

partial sum 3 30000000 pidigits 7 20000000

recursive 4 11 spectral norm 13 800

The validation of the results is based on the average of ten executions. Besides, in

the experiments, the machine workload was minimum as possible, in other words, every

instance was executed sequential, and the machine did not have external interference.

The improvement is calculated as follows.

Speedup = old runtime/new runtime

Improvement = (Speedup − 1) ∗ 100

2 http://www.llvm.org
3 http://www.dcc.fc.up.pt/ vsc/Yap

8 George S. Oliveira and Anderson F. da Silva

The Performance In general, the performance improvement is proportional to the portion

of time running on S.emulator. Mutability provided better results with performance im-

provement up to 10.99% considering all programs, and 23.57% considering only program

with performance improvement. The Figure 2 shows the performance improvement of the

proposed strategy.

appen
d

hanoi

nre
ve

rs
e

quick
so

rt ta
k

bin
ary

 tr
ee

s

fa
nnkuch

fa
sta

m
andelb

ro
t

n-b
ody

nsie
ve

nsie
ve

 b
its

parti
al s

um

pid
ig

its

re
cu

rs
ive

sp
ec

tra
l n

orm
-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

With Mutability

Without Mutability

Fig. 2. The improvement of the proposed strategy.

The results indicates the proposed strategy achieves better results to programs that

contains several predicates. kernels are small programs that have few predicates, besides

short runtime. These characteristics impact the performance negatively. In some cases,

the performance loss can be addressed by mutability (nreverse, and quicksort), but in

general kernels can show slowdown.

The programs with several predicates obtained better performance, using mutability and

without this feature. Only on three programs (binary trees, recursive, and spectral

norm), the proposed strategy loses performance.

The results indicate that, in some cases, the mutability can degrade the performance

(fasta, pidigits, n-body). In these cases, the return to the default emulator (due to

the S.emulator throws an exception) and the decision of rebuilding the S.emulator did

not bring the desired effect. It indicates it is difficult to predict the future based on past.

However, in general the best choice is to use mutability.

Such results are not only consequences of constructing S.emulators on the fly, but the

rules applied on control flow graph construction, which emphasizes the elimination of

conditional statements. Building S.emulators without such statements benefits prefetching

and branch predictions, and increase the scope of code transformations on a global level.

Therefore, these benefits are the reason for achieving results.

To understand the sources of performance loss, it is necessary to evaluate the mutability

system in details. So that, the evaluation described below emphasizes the rate of time spent

by the mutability system. In the Figure 3 each bar is composed by several components,

namely: default emulator, overflow, garbage collector, monitor e trace builder, trace com-

piler, and S.emulator. Besides, for each program is shown three bars. The first represents

the default emulator, the second represents the proposed system using mutability, and the

last the proposed system without mutability.

The cost of monitoring and building traces, as well as, the cost of compilation are min-

imal and do not degrade the performance. Without mutability, monitoring and building

ranged from 0.002% (mandelbrot) to 0.12% (recursive) of elapsed time and compiling

Towards an Efficient Prolog System by Code Introspection 9

ap
pe

nd

ha
no

i

nr
ev

er
se

qu
ic
ks

or
t

ta
k

bi
na

ry
 tr

ee
s

fa
nn

ku
ch

fa
st
a

m
an

de
lb
ro

t

n-
bo

dy

ns
ie
ve

ns
ie
ve

 b
its

pa
rt
ia
l s

um

pi
di
gi
ts

re
cu

rs
iv
e

sp
ec

tr
al
 n
or

m
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
YAAM emulator

Overflow

Garbage Collector

Monitor & Trace Builder

Trace Compiler

sYAAM emulator

Fig. 3. The breakdown of mutability handling.

ranged from just 0.084% (tak) to 1.496% (pidigits). These results show that invoking

the Monitor only on frequent regions of the program is crucial to achievef performance.

Now, with mutability, the cost ranged from 0.005% (hannoi) to 1.914% (binary trees)

to monitor and build and ranged from 0.073% (hanoi) to 1.914% (spectral norm) to

compile. This increase is evident by the need to keep the mutability system’s modules

active for long runtime, but it was not enough to degrade the performance due to the

high runtime in S.emulator. The results, from Figure 3, indicate that garbage collection,

overflow, and the time spend on YAAM emulator are sources of performance loss.

The results indicate it is possible to improve performance even in cases in which the

native code is executed for a short time. Such cases include mandelbrot (gain of 9.59%

with S.emulator active at 0.01% of the time), nsieve (gain of 4.51% with S.emulator

active at 18.18% of the time), and nsieve bits (gain of 8.06% with S.emulator active at

4.82% of the time), but even so, the performance for these was lower than that achieved

by mutability.

Discussion The results indicate that the performance gain is not only dependent on

the implementation of useful traces, but it can be achieved if useless traces are avoided

especially the traces with a high level of useless (nreverse and quicksort, and fannkuch).

In this sense, the mutability was very important because, in addition to achieving better

performance, in general it minimizes the overhead of useless traces.

Another important point to consider is that, with mutability, the construction and

compilation time of traces did not impact the performance of programs that had been

improved the performance without mutability, showing that the cost of rebuilding a

S.emulator is minimal. The only exception to this rule is the program Hanoi, but for this,

the case refers to the exceptions handled only on the default emulator. Additionally, the

construction of optimal traces (only) is no guarantee of performance for programs with a

high concentration on exception handling.

Finally, based on the results, an important future work is to modify the system so that

it addresses the tasks of manipulating the memory areas also on S.emulator in order to

ensure efficient implementation of all programs since all useful traces are built. Besides,

the task of avoiding useless traces indicates be a good strategy in some cases, but it can

be enhanced by the use of global analysis, for example, in order to detect the best starting

clause of a trace that is the beginning of an invocation chain.

10 George S. Oliveira and Anderson F. da Silva

5 Concluding Remarks

This paper proposed the use of introspection in order to create a specialized emulator

on the fly. The proposed strategy monitors the emulator execution and then generate

a control flow graph in memory only formed by basic blocks executed, which are then

compiled and executed with the highest priority.

The proposed strategy did not outperform the default emulator for all programs, due

to the overhead of returning to default emulator on the presence of exceptions. Currently,

a future work will investigate strategies to minimize this overhead.

References

Albert, E., de la Banda, M. J. G., Gmez-Zamalloa, M., Rojas, J. M., and Stuckey, P. J. 2013. A

CLP Heap Solver for Test Case Generation. Theory and Practice of Logic Programming 13, 4-5,

721–735.

Costa, V. S., Sagonas, K., and Lopes, R. 2007. Demand-driven Indexing of Prolog Clauses.

In Proceedings of the International Conference on Logic Programming. Springer-Verlag, Porto,

Portugal, 395–409.

Hermenegildo, M. V., Bueno, F., Carro, M., Lpez-Garca, P., Mera, E., Morales, J. F., and

Puebla, G. 2012. An Overview of CIAO and its Design Philosophy. Theory and Practice of

Logic Programming 12, 1-2 (January), 219–252.

Inclezan, D. 2013. An Application of ASP to the Field of Second Language Acquisition. In

Logic Programming and Nonmonotonic Reasoning, P. Cabalar and T. Son, Eds. Lecture Notes

in Computer Science, vol. 8148. Springer Berlin Heidelberg, 395–400.

Indo, K. 2007. Proving Arrows theorem by PROLOG. Computational Economics 30, 1, 57–63.

Kiriansky, V., Bruening, D., and Amarasinghe, S. P. 2002. Secure Execution via Program Shep-

herding. In Proceedings of the USENIX Security Symposium. USENIX Association, Berkeley,

CA, USA, 191–206.

Lattner, C. and Adve, V. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis

& Transformation. In Proceedings of the International Symposium on Code Generation and
Optimization. IEEE Computer Society, Palo Alto, California, 75–86.

Meier, M. 1990. Compilation of Compound Terms in Prolog. In Proceedings of the North American
Conference on Logic Programming. MIT Press, Austin, Texas, United States, 63–79.

Reis, G. A., Chang, J., Vachharajani, N., Rangan, R., and August, D. I. 2005. SWIFT:

Software Implemented Fault Tolerance. In Proceedings of the International Symposium on Code
Generation and Optimization. IEEE Computer Society, Washington, DC, USA, 243–254.

Santos Costa, V. 2009. On Just in Time Indexing of Dynamic Predicates in Prolog. In Progress
in Artificial Intelligence, L. Lopes, N. Lau, P. Mariano, and L. Rocha, Eds. Lecture Notes in

Computer Science, vol. 5816. Springer Berlin Heidelberg, 126–137.

Santos Costa, V., Rocha, R., and Damas, L. 2012. The YAP Prolog System. Theory and Practice
of Logic Programming 12, 1-2 (January), 5–34.

Smith, J. E. and Nair, R. 2005. Virtual Machines: Versatile Platforms for Systems and Process.
Morgan Kaufmann Publishers.

Taylor, A. 1996. Parma – Bridging the Performance GAP Between Imperative and Logic Program-

ming. Journal of Logic Programming 29, 1-3 (October), 5–16.

Wen, Y., Zhao, J., Huang, M., and Chen, H. 2011. Towards Detecting Thread Deadlock in Java

Programs with JVM Introspection. In Proceedings of the International Conference on Trust,
Security and Privacy in Computing and Communications. IEEE Computer Society, Washington,

DC, USA, 1600–1607.

Supplementary material: Technical Communication c© 2014 [Saptawijaya] 1

Joint Tabling of
Logic Program Abductions and Updates

ARI SAPTAWIJAYAã and LUÍS MONIZ PEREIRA

Centro de Inteligência Artificial (CENTRIA)

Departamento de Informática, Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

(e-mail: ar.saptawijaya@campus.fct.unl.pt, lmp@fct.unl.pt)

submitted n/a; revised n/a; accepted n/a

Abstract

Abductive logic programs offer a formalism to declaratively represent and reason about problems in

a variety of areas: diagnosis, decision making, hypothetical reasoning, etc. On the other hand, logic

program updates allow us to express knowledge changes, be they internal (or self) and external

(or world) changes. Abductive logic programs and logic program updates thus naturally coexist in

problems that are susceptible to hypothetical reasoning about change. Taking this as a motivation,

in this paper we integrate abductive logic programs and logic program updates by jointly exploiting

tabling features of logic programming. The integration is based on and benefits from the two

implementation techniques we separately devised previously, viz., tabled abduction and incremental

tabling for query-driven propagation of logic program updates. A prototype of the integrated system

is implemented in XSB Prolog.

KEYWORDS: abduction, logic program updates, tabled abduction, incremental tabling.

1 Introduction

Abduction has been well studied in logic programming (Denecker and de Schreye 1992;

Inoue and Sakama 1996; Fung and Kowalski 1997; Eiter et al. 1997; Kakas et al. 1998;

Satoh and Iwayama 2000; Alferes et al. 2004), and it offers a formalism to declaratively

represent and reason about problems in a variety of areas. Furthermore, the progress

of logic programming promotes new techniques for implementing abduction in logic

programs. For instance, we have shown recently in (Saptawijaya and Pereira 2013d),

that abduction may benefit from tabling mechanisms; the latter mechanisms are now

supported by a number of Prolog systems, to different extent. In that work, tabling is

employed to reuse priorly obtained abductive solutions from one abductive context to

another, thus avoiding potential unnecessary recomputation of those solutions.

Given the advances of tabling features, like incremental tabling (Saha 2006) and

answer subsumption (Swift and Warren 2010), we have also explored these in addressing

logic program updates. Our first attempt, reported in (Saptawijaya and Pereira 2013b),

exploits incremental tabling of fluents in order to automatically maintain the consistency

ã Affiliated with Fakultas Ilmu Komputer at Universitas Indonesia, Depok, Indonesia.

2 A. Saptawijaya and L. M. Pereira

of program states, analogously to assumption based truth-maintenance system, due to

assertion and retraction of fluents. Additionally, answer subsumption of fluents allows

to address the frame problem by automatically keeping track, at low level, of their

latest assertion or retraction, whether as a result of updated facts or concluded by

rules. In (Saptawijaya and Pereira 2013a), the approach is improved, by fostering further

incremental tabling. It leaves out the superfluous use of the answer subsumption feature,

but nevertheless still allows direct access to the latest time a fluent is true, via system

table inspection predicates. In the latter approach, incremental assertions of fluents

automatically trigger system level incremental upwards propagation and tabling of fluent

updates, on the initiative of top goal queries (i.e., by need only). The approach affords us

a form of controlled (i.e., query-driven) but automatic truth-maintenance (i.e., automatic

updates propagation via incremental tabling), up to actual query time.

When logic programs are used to represent agent’s knowledge, then the issue of

logic program updates pertains to expressing knowledge updates. Many applications of

abduction, as in reasoning of rational agents and decision making, are typically susceptible

to knowledge updates and changes, whether or not hypothetical. Thus, abductive logic

programs and logic program updates naturally coexist in these applications. Taking such

applications as a motivation, one of which we currently pursue (Saptawijaya and Pereira

2014), here we propose an implementation approach to integrate abductive logic programs

and logic program updates by exploiting together tabling features of logic programming.

The integration is strongly based on the reported approaches implemented in our two

systems: Tabdual (Saptawijaya and Pereira 2013d) for tabled abduction, and Evolp/r

(Saptawijaya and Pereira 2013a) for query-driven propagation of logic program updates

with incremental tabling. In essence, we show how tabled abduction is jointly combined

with incremental tabling of fluents in order to benefit from each feature, i.e., abductive

solutions can be reused from one context to another, while also allowing query-driven,

system level, incremental fluent update upwards propagation. The integration is achieved

by a program transformation plus a library of reserved predicates. The different purposes

of the dual program transformation, employed both in Tabdual and Evolp/r, are now

consolidated in one integrated program transformation: on the one hand, it helps to

efficiently deal with downwards by-need abduction under negated goals; on the other

hand, it helps to incrementally propagate upwards the dual negation complement of a

fluent.

The paper is organized as follows. Section 2 recaps tabled abduction and logic program

updates with incremental tabling. We detail our approach to the integration in Section 3,

and conclude, in Section 4, by mentioning related and future work.

2 Tabdual and Evolp/r

Tabled Abduction (Tabdual) We illustrate the idea of tabled abduction. Consider an

abductive logic program P0, with a and b abducibles:

q ← a . s ← b , q . t ← s , q .

Suppose three queries: q , s , and t , are individually launched, in that order. The first query,

q , is satisfied simply by taking [a] as the abductive solution for q , and tabling it. Executing

the second query, s , amounts to satisfying the two subgoals in its body, i.e., abducing b

followed by invoking q . Since q has previously been invoked, we can benefit from reusing

Joint Tabling of Logic Program Abductions and Updates 3

its solution, instead of recomputing, given that the solution was tabled. I.e., query s can

be solved by extending the current ongoing abductive context [b] of subgoal q with the

already tabled abductive solution [a] of q , yielding [a , b]. The final query t can be solved

similarly. Invoking the first subgoal s results in the priorly registered abductive solution

[a , b], which becomes the current abductive context of the second subgoal q . Since [a , b]

subsumes the previously obtained (and tabled) abductive solution [a] of q , we can then

safely take [a , b] as the abductive solution to query t . This example shows how [a], the

abductive solution of the first query q , can be reused from one abductive context of q

(i.e., [b] in the second query, s) to its other context (i.e., [a , b] in the third query, t). In

practice the body of rule q may contain a huge number of subgoals, causing potentially

expensive recomputation of its abductive solutions, if they are not tabled.

Tabled abduction with its prototype Tabdual, implemented in XSB Prolog (Swift

and Warren 2012), consists of a program transformation from abductive normal logic

programs into tabled logic programs; the latter are self-sufficient program transforms,

which can be directly run to enact abduction by means of Tabdual’s library of reserved

predicates. We recap the key points of the transformation. First, for every predicate p

with arity n (p/n for short) defined in a program, two new predicates are introduced

in the transform: pab/(n + 1) that tables one abductive solution for p in its single extra

argument, and p/(n+2) that reuses the tabled solution of pab to produce a solution from a

given input abductive context into an output abductive context (both abductive contexts

are the two extra arguments of p). The role of abductive contexts is important, e.g.,

in contextual abductive reasoning, cf. (Pereira et al. 2014). Second, for abducing under

negative goals, the program transformation employs the dual transformation (Alferes

et al. 2004), which makes negative goals ‘positive’ literals, thus permitting to avoid the

computation of all abductive solutions of the positive goal argument, and then having

to negate their disjunction. The dual transformation enables us to obtain one abductive

solution at a time, just as when we treat abduction under positive goals. In essence, the

dual transformation defines for each atom A and its set of rules R in a normal program P ,

a set of dual rules whose head not A is true if and only if A is false by R in the considered

semantics of P . Note that, instead of having a negative goal not A as the rules’ head, we

use its corresponding ‘positive’ literal, not A. The reader is referred to (Saptawijaya and

Pereira 2013d) and publications cited thereof for detailed aspects of tabled abduction.

Logic Program Updates with Incremental Tabling (Evolp/r) Evolp/r follows the paradigm

of Evolving Logic Programs (EVOLP) (Alferes et al. 2002), by adapting its syntax and

semantics, but simplifies it by restricting updates to fluents only. Syntactically, every fluent

F is accompanied by its fluent complement ∼F . Program updates are enacted by having

the reserved predicate assert/1 in the head of a rule, which updates the program by fluent

F , whenever the assertion assert (F) is true in a model; or retracts F in case assert (∼F)

obtains in the model under consideration. Though updates in Evolp/r are restricted to

fluents only, it nevertheless still permits rule updates by introducing a rule name fluent

that uniquely identifies the rule for which it is introduced. Such a rule name fluent is placed

in the body of a rule to turn the rule on and off, cf. (Poole 1988); this being achieved

by asserting or retracting that specific fluent. The reader is referred to (Saptawijaya and

Pereira 2013a) for a more detailed theoretical basis of Evolp/r.

Like Tabdual, Evolp/r is implemented by a compiled program transformation plus

4 A. Saptawijaya and L. M. Pereira

a library of reserved predicates. The implementation makes use of incremental tabling

(Saha 2006), a feature in XSB Prolog that ensures the consistency of answers in a table

with all dynamic clauses on which the table depends by incrementally maintaining the

table, rather than by recomputing answers in the table from scratch to keep it updated.

The main idea of the implementation is described as follows. The input program is first

transformed and then the initialization phase takes place. It sets a predefined upper global

time limit in order to avoid potential iterative non-termination of updates propagation

and it additionally creates and initializes the table for every fluent. When fluent updates

are given, they are initially kept pending in the database, and only on the initiative of

top-goal queries, i.e., by need, incremental assertions make these pending updates become

active (if not already so), but only those with timestamps up to an actual query time. Such

assertions automatically trigger system-implemented incremental upwards propagation of

updates and tabling of fluents (thanks to the incremental tabling). Because fluents are

tabled, a direct access to the latest time a fluent is true can be made possible by means of

existing table inspection predicates, and thus recursion through the frame axiom can be

avoided. Consequently, in order to establish whether a fluent F is true at an actual query

time, it suffices to inspect in the table the latest time both F and its complement ∼F are

true, and to verify whether F is supervened by ∼F .

We recap the key points of the transformation. First, the transformation adds to each

program clause of fluent f /n the timestamp information that figures as the only extra

argument of fluents (i.e., heads of clauses) and denotes a point in time when a fluent is

true (known as holds-time). Having this extra argument, both fluent f /(n + 1) and its

complement ∼f /(n + 1) are declared as dynamic and incremental. Second, each fluent

(goal) G in the body of a clause is called via a reserved incrementally tabled predicate

fluent (G ,HG) that non-deterministically returns holds-time HG of fluent G . In essence,

this reserved predicate simply calls G and obtains HG from G ’s holds-time argument.

Since every fluent and its complement are incrementally dynamic, the dependency of the

incrementally tabled predicate fluent/2 on them can be correctly maintained. Third, the

holds-time of fluent f in the head of a clause is determined by which inertial fluent in its

body holds latest. Fourth, the dual transformation from Tabdual is adapted for helping

propagate the dual negation complement ∼F of a fluent F incrementally, making the

holds-time of ∼F (and other fluents that depend on it) also available in the table.

3 Integrating Tabdual and Evolp/r

When logic programs are used to represent agent’s knowledge with abduction for decision

making, such applications are typically susceptible to knowledge updates and changes,

e.g., because of incomplete and imprecise knowledge, hypothetical updates, and changes

caused by agent’s actions (side-effects). Driven by such applications, one of which we

are currently pursuing (Saptawijaya and Pereira 2014), and given that Tabdual and

Evolp/r have been conceptualized to deal with abduction and logic program updates

independently, our subsequent challenge is how to seamlessly integrate both approaches.

In Section 2 we observe that tabling is employed both in Tabdual and Evolp/r, despite

its different purposes. Therefore, in addition to enable abduction and knowledge updates

in a unified approach, the integration also aims at keeping the different purposes served

by tabling in Tabdual and Evolp/r. That is, on the one hand the integration should

Joint Tabling of Logic Program Abductions and Updates 5

allow reusing an abductive solution entry from an abductive context to another. On the

other hand, it should also support system level incremental upwards updates propagation.

We now detail an approach to achieve these aims through a program transformation and

library of reserved predicates.

Enabling Abducibles In abduction it is desirable to generate only abductive explanations

relevant for the problem at hand. One stance for selectively enabling the assumption

of abducibles in abductive logic programs is introducing rules encoding domain specific

information about which particular assumptions are to be considered in a specific situation.

We follow the approach proposed in (Pereira et al. 2013), i.e., the notion of expectation

is employed to express preconditions for enabling the assumption of an abducible. An

abducible A can be assumed only if there is an expectation for it, and there is no

expectation to the contrary. We say then that the abducible is considered, expressed by

the rule:

consider(A)← expect (A), not expect not (A), A.

This method requires program clauses with abducibles to be preprocessed. That is, for

every abducible A appearing in the the body of a rule, A is substituted with consider(A).

For instance, given abducible a , rule p ← a is preprocessed into rule p ← consider(a).

The Roles of Abductive Contexts and Holds-Time In scientific reasoning tasks, it is com-

mon that besides the need to abductively discover which hypotheses to assume in order

to justify some observation, one may also want to know some of the side-effects of

those assumptions. This is one important extension of abduction, viz., to verify whether

some secondary observations are plausible in the presence of already obtained abductive

explanations, i.e., in the abductive context of the primary one.

As in Tabdual, our integration makes use of abductive contexts. They permit a

mechanism for reusing already obtained abductive solutions, which are tabled, from one

context to another. Technically, this is achieved by having two types of abductive context:

input and output, where an abductive solution is in the output context and obtained from

the input context plus a tabled abductive solution. In Section 2 we show that these two

contexts figure as extra arguments of a predicate.

Updates due to new observations or changes caused by side-effects of abductions may

naturally occur, and from the logic program updates viewpoint the time when such changes

or updates take place needs to be properly recorded. In Evolp/r, this is maintained via

the timestamp information, known as holds-time, that figures as an extra argument in a

fluent predicate. Like in Evolp/r, this timestamp information plays an important role in

the integration for propagating updates and tabling fluents affected by these propagations,

as shown in subsequent sections.

Based on the need for abductive contexts and holds-time, every predicate p/n , i.e.,

p(X1, . . . ,Xn) is now transformed into p(X1, . . . ,Xn , I ,O ,H), where the three extra argu-

ments refer to the input context I , the output context O , and the timestamp H .

We next show the mechanisms to compute abductive solutions and maintain holds-time

through updates propagation using the ingredients discussed earlier.

Example 3.1

Consider P1 with abducible a: q ← a . expect (a).

6 A. Saptawijaya and L. M. Pereira

After preprocessing abducible a in the body of rule q ← a , cf. “Enabling Abducibles”, we

have the program:

q ← consider(a). expect (a).

The preprocessed program is now ready to transform. We first follow the rule name

fluent mechanism of Evolp/r, i.e., a unique rule name fluent of the form #r(Head ,Body)

is assigned to each rule Head ← Body . For this example, we have only one rule, i.e.,

q ← consider(a), which is assigned the rule name fluent #r(q , [consider(a)]). Recall, the

rule name fluent is used to turn the corresponding rule on and off by introducing it in the

body of the rule. Thus, we have:

q ← #r(q , [consider(a)]), consider(a). expect (a).

Next, we attach the three additional arguments described earlier. For clarity of explanation,

we do that in two steps: first, we add abductive context arguments and discuss how

abductive solutions are obtained from them; second, we include the timestamp argument

for the purpose of maintaining holds-time in updates propagation.

Finding Abductive Solutions Adding abductive contexts brings us to the transform below

(cons is shorthand for consider):

q(I ,O)← #r(q , [cons(a)], I ,R), cons(a ,R,O). expect (a , I , I).

The abductive solution of q is obtained in its output abductive context O from its input

context I , by relaying the ongoing abductive solution stored in context R from subgoal

#r(q , [cons(a)], I ,R) to subgoal cons(a ,R,O) in the body. For expect (a), the content of

the context I is simply relayed from the input to the output context. That is, having no

body, the output context does not depend on the context of any other goals, but depends

only on its corresponding input context.

Maintaining Holds-Time Now, the timestamp argument is added to the transform:

q(I ,O ,H) ← #r(q , [cons(a)], I ,R,Hr), cons(a ,R,O ,Ha),

latest ([#r(q , [cons(a)], I ,R,Hr), cons(a ,R,O ,Ha)],H).

expect (a , I , I , 1).

The time when q is true (holds-time H of q) is derived from the holds-time Hr of its rule

name fluent #r(q , [consider(a)]) and Ha of consider(a), via the latest/2 reserved predicate.

Conceptually, H is determined by which inertial fluent in its body holds latest. Therefore,

the predicate latest (Body ,H) does not merely find the maximum H of Ha and Hr , but

also assures that no fluent in Body was subsequently supervened by its complement at

some time up to H . The holds-time for expect (a) is set to 1, by convention the initial

time when the program is inserted.

Finally, recursion through frame axiom can be avoided by tabling fluents – in essence,

tabling their holds-time – so it is enough to look-up the time these fluents are true in

the table, and pick-up the most recent holds-time. For this purpose, incremental tabling

is employed to ensure the consistency of answers in the table due to updates or changes

on which the table depends, by incrementally maintaining the table through updates

propagation. Similar to Evolp/r, the incremental tabling of fluents is achieved via a

reserved incrementally tabled predicate fluent (F , I ,O ,H), defined as follows:

:- table fluent/4 as incremental .

Joint Tabling of Logic Program Abductions and Updates 7

fluent (F , I ,O ,H)← upper(Lim), extend (F , [I ,O ,H],F ′), call (F ′),H 6 Lim .

where extend (F ,Args ,F ′) extends the arguments of fluent F with those in list Args to

obtain F ′. The definition requires a predefined upper time limit Lim , which is used to

delimit updates propagation due to potential iterative non-termination propagation, cf.

(Saptawijaya and Pereira 2013a) for details. Since fluent (F , I ,O ,H) simply calls fluent F

with a given list of context arguments I , O , and holds-time H , calls to fluents in the body

of a rule can be recast into calls via reserved predicate fluent/4. The above transform

finally becomes:

:- dynamic #r/5, expect/4 as incremental .

q(I ,O ,H) ← fluent (#r(q , [cons(a)]), I ,R,Hr),

cons(a ,R,O ,Ha),

latest ([#r(q , [cons(a)], I ,R,Hr), cons(a ,R,O ,Ha)],H).

expect (a , I , I , 1).

along with the assertion of rule name fluent #r(q , [cons(a)]) at the initial time 1,

#r(q , [cons(a)], I , I , 1).

Note that rule name predicate #r/5 and predicate expect/4 may be subjected to incre-

mental updates, hence their declaration as dynamic and incremental. On the other hand,

predicate consider/4 (i.e., cons/4 in the example) is not so declared, though it depends

(directly or indirectly) on dynamic incremental predicates expect/4 and expect not/4, as

we further show in the subsequent section. Thus, there is no need to wrap its call in the

body with the reserved predicate fluent/4.

Tabling of Abductive Solutions In the preprocessing, cf. “Enabling Abducibles”, every

abducible A appearing in the body of a rule is substituted with consider(A). Recall the

definition of consider(A):

consider(A)← expect (A), not expect not (A), A.

After preprocessing, the abducible A thus only appears in the definition of consider(A).

Consequently, the transformation that deals with tabling of abductive solutions takes place

only in the definition of consider/1. Like in Tabdual, we introduce two new predicates

for consider/1, namely considerab/3 and consider/4, where predicate considerab/3 is used

to table an abductive solution. We first define considerab/3 (exp is shorthand for expect):

:- table considerab/3 as incremental .

considerab(A,E ,T) ← timed (A,AT),

fluent (exp(A), [AT],R,H1),

fluent (not exp not (A),R,E ,H2),

latest ([exp(A, [AT],R,H1), not exp not (A,R,E ,H2)],T).

Observe that the tabled abductive solution entry E is derived by relaying the ongoing

abductive solution stored in context R from subgoal fluent (exp(A), [AT],R,H1) to subgoal

fluent (not exp not (A),R,E ,H2) in the body, given [AT] as the input abductive context

of exp(A). This input context [AT] comes from the abducible A appearing in the body

of consider(A) after it is equipped with T , i.e., the time A is abduced; AT is obtained

using predicate timed (A,AT). Notice that time T is the same time that considerab(A) is

true, which is the latest time between the two fluents, exp(A) and not exp not (A). Notice

8 A. Saptawijaya and L. M. Pereira

also that the subgoal call not expect not (A) in the original definition becomes a predicate

not exp not (A) in the subgoal call fluent/4, in the transform. This predicate is the dual of

exp not and is obtained by the dual transformation, as explained in the next section. Like

expect/4, it is subject to updating, and thus, declared as dynamic and incremental too.

Next, we define predicate consider/4, which reuses the tabled solution entry E from

considerab/3, for a given input context I , to obtain a solution in its output context O . It

is defined as (the holds-time H is just passed from the body to the head):

consider(A, I ,O ,H)← considerab(A,E ,H), produce(O , I ,E).

The reserved predicate produce(O , I ,E) should guarantee that it produces a consistent

output context O from I and E that encompasses both. For instance, produce(O , [b3], [a1])

and produce(O , [a1, b3], [a1]) both succeed with O = [a1, b3], but produce(O , [not a1], [a1])

fails because conjoining E = [a1] and I = [not a1] results in an inconsistent abductive

context O = [a1, not a1].

The Dual Program Transformation The different purposes of the dual program transfor-

mation in Tabdual and Evolp/r, cf. Section 2, are consolidated in the integration. First,

the dual predicate not G for the negation of goal G in Tabdual and ∼G for the negation

complement of fluent G in Evolp/r are now represented uniquely as not G , declared dy-

namic and incremental. Second, the abductive context and holds-time arguments jointly

figure in dual predicates, as for the positive transform.

The reader is referred to (Saptawijaya and Pereira 2013c) for a formal specification

and refinement of the dual transformation. We illustrate the transformation for q/0 and

expect/1 of Example 3.1. With regard to q , the transformation will create dual rules for

q that falsify q with respect to its only rule,1 expressed by predicate q∗1:

not q(I ,O ,H)← q∗1(I ,O ,H).

Next, predicate q∗1 is defined by falsifying the body of q ’s rule in the transform. That

is, the rule of q is falsified by alternatively failing one subgoal in its body at a time, i.e. by

negating #r(q , [cons(a)]) or, instead, by negating consider(a) and keeping #r(q , [cons(a)]).

Therefore, we have:

q∗1(I ,O ,H) ← fluent (not #r(q , [cons(a)]), I ,O ,H).

q∗1(I ,O ,H) ← fluent (#r(q , [cons(a)]), I ,R,Hr), not consider(a ,R,O ,H),

verify pos([#r(q , [cons(a)], I ,R,Hr)],H).

Observe that in both rules, the holds-time of q∗1 is determined by the dualized goal in

the body, i.e., fluent (not #r(q , [cons(a)]), I ,O ,H) in case of the first rule, and not consider

(a ,R,O ,H) in case of the second. Because the final solution in O is obtained from the inter-

mediate contexts of the preceding positive goals, the reserved predicate verify pos(Pos ,H)

ensures that none of the positive goals in Pos were subsequently supervened by their

complements at some time up to H .

With regard to expect/1, we have the dual rules:

not expect (A, I ,O ,H)← expect∗1(A, I ,O ,H). expect∗1(A, I , I ,H)← A 6= a .

1 In general, if q is defined by n rules, then not q is obtained by falsifying each of these n rules, i.e., it is defined
as the conjunction of q∗1, . . . , q∗n and relays the ongoing abductive solution from q∗i to q∗(i+1) via abductive
contexts. The holds-time of not q is obtained as in the positive transform, i.e., via reserved predicate latest/2

from each holds-time of inertial dualized literals in q∗1, . . . , q∗n .

Joint Tabling of Logic Program Abductions and Updates 9

The uninstantiated holds-time H may get instantiated later, possibly in conjunction with

other goals, or if it does not, eventually so by the actual query time. The input context I

of expect∗1 is simply relayed to its output, since A 6= a induces no abduction at all.

Finally, the dual of consider(A) is defined as (exp is shorthand for expect):

not consider(A, I ,O ,H) ← consider∗1(A, I ,O ,H).

consider∗1(A, I ,O ,H) ← not A(I ,O ,H).

consider∗1(A, I ,O ,H) ← fluent (not exp(A), I ,O ,H).

consider∗1(A, I ,O ,H) ← fluent (exp(A), I ,R,He), fluent (exp not (A),R,O ,H),

verify lits([exp(A, I ,R,He)],H).

In the first rule of consider∗1, the negation of A, i.e. not A, is abduced by invoking

the subgoal not A(I ,O ,H). This subgoal is defined via the transformation of abducibles

below (say for not a):

not a(I ,O ,H)← insert (not a(H), I ,O).

where insert (A, I ,O) is a reserved predicate that inserts abducible A into input context

I , resulting in output context O , while also keeping the consistency of the context (like

in produce/3). Again, the holds-time H may get instantiated later, like in the case of

not expect/4, above.

The Top-Goal Query As in Evolp/r, updates propagation by incremental tabling is

query-driven, i.e., the actual query time is used to control updates propagation by first

keeping the sequence of updates pending, say in the database, and then only making

active, through incremental assertions, those with timestamps up to the actual query time

(if they have not yet been so made already by queries of a later timestamp). Given that

an upper time limit has been set (cf. fluent/4 definition) and that some pending updates

may be available, the system is ready for a top-goal query. The query holds(G , I ,O ,Qt)

determines the truth and the abductive solution O of goal G at query time Qt , given input

context I . It is defined as:

holds(G , I ,O ,Qt) ← activate pending(Qt), compl (G ,G ′),

compute(G , I ,O ,H ,Qt ,V), compute(G ′, I ,O ,H ′
,Qt ,V ′),

verify holds(H ,V ,H ′
,V ′).

where activate pending(Qt) activates all pending updates up to Qt and compl (G ,G ′)

obtains the dual complement G ′ from G . The reserved predicate compute(G , I ,O ,H ,Qt ,V)

returns the highest timestamp H 6 Qt of goal G , and its abductive solution O , given

input context I . It additionally returns the truth value V of G , obtained through the

XSB predicate call tv/2. This is achieved by call tv (fluent (G , I ,O ,H),V), where V may

be instantiated with true or undefined .2 Finally, the predicate verify holds(H ,V ,H ′
,V ′)

ensures that H > H ′, and determines the truth value of G based on V and V ′. Note that,

when compute(F , I ,O ,H ,Qt ,V) fails, by convention it returns V = false with H = 0 (the

output context O is ignored). This is merely for a technical reason, to prevent compute/6

failing prematurely before verify/4 is called.

2 Fluents, that are not defined in the program by any rule or fact, have the truth value undefined at the initial
time 1. In this case, the content of its input context is simply relayed to its output one. Such fluents inertially
remain undefined at query time Qt , if they are never updated up to Qt .

10 A. Saptawijaya and L. M. Pereira

4 Concluding Remarks

Related Work Abductive logic programming with destructive databases (Kowalski and

Sadri 2011) is a distinct but somewhat similar and complementary to ours. It defines an

agent language based on abductive logic programming and relies on the fundamental

role of state transition systems in computing, realizing fluent updates by destructive

assignment. Their approach differs from ours in that it defines a new language and an

operational semantics, rather than taking an existing one. Moreover, it is implemented in

LPA Prolog with no underlying tabling mechanisms, whereas in our work both abduction

and fluent updates are managed by tabling mechanisms supported by XSB Prolog.

The connection of knowledge updates and abduction is also studied in (Sakama

and Inoue 1999), where techniques for updating knowledge bases are introduced and

formulated through abduction. On the other hand, the technique we propose pertains to

the integration of abduction and logic program updates via tabling, with no focus on

formulating updates by means of abduction. Our approach also makes use of abductive

contexts, making it suitable for contextual abductive reasoning.

A dynamic abductive logic programming procedure, called LIFF, is introduced in (Sadri

and Toni 2006). It allows reasoning in dynamic environments without the need to discard

earlier reasoning when changes occur. Though in that work updates are assimilated into

abductive logic programs, its emphasis is distinct from ours, as we do not propose a

new proof procedure in that respect, but rather an implementation technique using a

pre-existing theoretical basis.

Updates propagation has been well studied in the context of deductive databases, e.g.,

extending the SLDNF procedure for updating knowledge bases while maintaining their

consistency, including integrity constraints maintenance (Teniente and Olivé 1995), using

abduction for view updating (Decker 1996), as well as fixpoint approaches (Behrend 2011).

Though these methods do not directly deal with tabling mechanisms for the integration

of abduction and logic program updates, the approaches proposed in those works seem

relevant to ours and some cross-fertilization may lead to gains.

Conclusion and Future work In this work we have proposed a novel logic programming

implementation technique that aims at integrating abduction and logic program updates

by means of innovative tabling mechanisms. We have based the present work on our two

previously devised techniques, viz., tabled abduction (Tabdual) and query-driven updates

propagation by incremental tabling (Evolp/r). The main idea of the integration is to fuse

and to mutually benefit from tabling features already employed in each of our previous

approaches, and is afforded by a new program transformation synthesis, and library

of reserved predicates. The current implementation has simplified the transformation to

some extent, e.g., using tries data structure to construct dual rules only as they are needed

(like in Tabdual). Future work consists in perfecting the implementation and conducting

experimental evaluation to validate the implementation. We aim at deploying it in an

agent life cycle comprising hypothetical reasoning, counterfactual, and moral decision

making, which we are currently pursuing.

Acknowledgements Ari Saptawijaya acknowledges the support of FCT/MEC Portugal,

grant SFRH/BD/72795/2010.

Joint Tabling of Logic Program Abductions and Updates 11

References

Alferes, J. J., Brogi, A., Leite, J. A., and Pereira, L. M. 2002. Evolving logic programs. In JELIA

2002. LNCS, vol. 2424. Springer, 50–61.

Alferes, J. J., Pereira, L. M., and Swift, T. 2004. Abduction in well-founded semantics and gen-

eralized stable models via tabled dual programs. Theory and Practice of Logic Programming 4, 4,

383–428.

Behrend, A. 2011. A uniform fixpoint approach to the implementation of inference methods for

deductive databases. In INAP 2011.

Decker, H. 1996. An extension of sld by abduction and integrity maintenance for view updating

in deductive databases. In Procs. of the 1996 Joint International Conference and Symposium on

Logic Programming.

Denecker, M. and de Schreye, D. 1992. SLDNFA: An abductive procedure for normal abductive

programs. In Procs. of the Joint Intl. Conf. and Symp. on Logic Programming. The MIT Press.

Eiter, T., Gottlob, G., and Leone, N. 1997. Abduction from logic programs: semantics and

complexity. Theoretical Computer Science 189, 1-2, 129–177.

Fung, T. H. and Kowalski, R. 1997. The IFF procedure for abductive logic programming. Journal

of Logic Programming 33, 2, 151–165.

Inoue, K. and Sakama, C. 1996. A fixpoint characterization of abductive logic programs. J. of

Logic Programming 27, 2, 107–136.

Kakas, A., Kowalski, R., and Toni, F. 1998. The role of abduction in logic programming. In

Handbook of Logic in Artificial Intelligence and Logic Programming, D. Gabbay, C. Hogger,

and J. Robinson, Eds. Vol. 5. Oxford U. P.

Kowalski, R. and Sadri, F. 2011. Abductive logic programming agents with destructive databases.

Annals of Mathematics and Artificial Intelligence 62, 1, 129–158.

Pereira, L. M., Dell’Acqua, P., Pinto, A. M., and Lopes, G. 2013. Inspecting and preferring

abductive models. In The Handbook on Reasoning-Based Intelligent Systems, K. Nakamatsu

and L. C. Jain, Eds. World Scientific Publishers, 243–274.

Pereira, L. M., Dietz, E.-A., and Hölldobler, S. 2014. Contextual abductive reasoning with

side-effects. In ICLP 2014.

Poole, D. L. 1988. A logical framework for default reasoning. Artificial Intelligence 36, 1, 27–47.

Sadri, F. and Toni, F. 2006. Interleaving belief updating and reasoning in abductive logic program-

ming. In ECAI 2006. Frontiers of Artificial Intelligence and Applications (FAIA), vol. 141. IOS

Press, 442–446.

Saha, D. 2006. Incremental evaluation of tabled logic programs. Ph.D. thesis, SUNY Stony Brook.

Sakama, C. and Inoue, K. 1999. Updating extended logic programs through abduction. In LPNMR

1999. LNAI, vol. 1730. Springer, 147–161.

Saptawijaya, A. and Pereira, L. M. 2013a. Incremental tabling for query-driven propagation of

logic program updates. In LPAR-19. LNCS ARCoSS, vol. 8312. Springer, 694–709.

Saptawijaya, A. and Pereira, L. M. 2013b. Program updating by incremental and answer sub-

sumption tabling. In LPNMR 2013. LNCS, vol. 8148. Springer, 479–484.

Saptawijaya, A. and Pereira, L. M. 2013c. Tabled abduction in logic

programs. Tech. rep., CENTRIA, Departamento de Informática, Facul-

dade de Ciências e Tecnologia, Universidade Nova de Lisboa. Available at

http://centria.di.fct.unl.pt/~lmp/publications/online-papers/tabdual_lp.pdf.

Saptawijaya, A. and Pereira, L. M. 2013d. Tabled abduction in logic programs (Technical Commu-

nication of ICLP 2013). Theory and Practice of Logic Programming, Online Supplement 13, 4-5.

Saptawijaya, A. and Pereira, L. M. 2014. Towards modeling morality computationally with logic

programming. In PADL 2014. LNCS, vol. 8324. Springer, 104–119.

Satoh, K. and Iwayama, N. 2000. Computing abduction by using TMS and top-down expectation.

Journal of Logic Programming 44, 1-3, 179–206.

http://centria.di.fct.unl.pt/~lmp/publications/online-papers/tabdual_lp.pdf

12 A. Saptawijaya and L. M. Pereira

Swift, T. and Warren, D. S. 2010. Tabling with answer subsumption: Implementation, applications

and performance. In JELIA 2010. LNCS, vol. 6341. Springer, 300–312.

Swift, T. and Warren, D. S. 2012. XSB: Extending Prolog with tabled logic programming. Theory

and Practice of Logic Programming 12, 1-2, 157–187.

Teniente, E. and Olivé, A. 1995. Updating knowledge bases while maintaining their consistency.

The VLDB Journal 4, 2, 193–241.

Supplementary material: Technical Communication c© 2014 [Martin Slota, Martin Baláž and João Leite] 1

On Strong and Default Negation

in Answer-Set Program Updates

MARTIN SLOTA, JOÃO LEITE

CENTRIA, Universidade Nova de Lisboa

MARTIN BALÁŽ

Faculty of Mathematics, Physics and Informatics, Comenius University

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Existing semantics for answer-set program updates fall into two categories: either they consider only strong

negation in heads of rules, or they primarily rely on default negation in heads of rules and optionally provide

support for strong negation by means of a syntactic transformation.

In this paper we pinpoint the limitations of both these approaches and argue that both types of negation

should be first-class citizens in the context of updates. We identify principles that plausibly constrain their

interaction but are not simultaneously satisfied by any existing rule update semantics. Then we extend one

of the most advanced semantics with direct support for strong negation and show that it satisfies the outlined

principles as well as a variety of other desirable properties.

KEYWORDS: answer-set programming, updates, strong negation, default negation, well-supported models

1 Introduction

The increasingly common use of rule-based knowledge representation languages in dynamic

and information-rich contexts, such as the Semantic Web (Berners-Lee et al. 2001), requires

standardised support for updates of knowledge represented by rules. Answer-set programming

(Gelfond and Lifschitz 1988; Gelfond and Lifschitz 1991) forms the natural basis for investiga-

tion of rule updates, and various approaches to answer-set program updates have been explored

throughout the last 15 years (Leite and Pereira 1998; Alferes et al. 2000; Eiter et al. 2002; Leite

2003; Sakama and Inoue 2003; Alferes et al. 2005; Banti et al. 2005; Zhang 2006; Šefránek

2006; Delgrande et al. 2007; Osorio and Cuevas 2007; Šefránek 2011; Krümpelmann 2012).

The most straightforward kind of conflict arising between an original rule and its update occurs

when the original conclusion logically contradicts the newer one. Though the technical realisa-

tion and final result may differ significantly, depending on the particular rule update semantics,

this kind of conflict is resolved by letting the newer rule prevail over the older one. Actually,

under most semantics, this is also the only type of conflict that is subject to automatic resolution

(Leite and Pereira 1998; Alferes et al. 1998; Alferes et al. 2000; Eiter et al. 2002; Alferes et al.

2005; Banti et al. 2005; Delgrande et al. 2007; Osorio and Cuevas 2007).

From this perspective, allowing for both strong and default negation to appear in heads of

rules is essential for an expressive and universal rule update framework (Leite 2003). While

strong negation is the natural candidate here, used to express that an atom becomes explicitly

2 M. Slota, M. Baláž and J. Leite

false, default negation allows for more fine-grained control: the atom only ceases to be true,

but its truth value may not be known after the update. The latter also makes it possible to move

between any pair of epistemic states by means of updates, as illustrated in the following example:

Example 1.1 (Railway crossing (Leite 2003))

Suppose that we use the following logic program to choose an action at a railway crossing:

cross←¬train. wait← train. listen←∼train,∼¬train.

The intuitive meaning of these rules is as follows: one should cross if there is evidence that

no train is approaching; wait if there is evidence that a train is approaching; listen if there is no

such evidence. Consider a situation where a train is approaching, represented by the fact (train.).

After this train has passed by, we want to update our knowledge to an epistemic state where we

lack evidence with regard to the approach of a train. If this was accomplished by updating with

the fact (¬train.), we would cross the tracks at the subsequent state, risking being killed by

another train that was approaching. Therefore, we need to express an update stating that all past

evidence for an atom is to be removed, which can be accomplished by allowing default negation

in heads of rules. In this scenario, the intended update can be expressed by the fact (∼train.).

Concerning the support of negation in rule heads, existing rule update semantics fall into two

categories: those that only allow for strong negation, and those that primarily consider default

negation. As illustrated above, the former are unsatisfactory as they render many belief states

unreachable by updates. As for the latter, they optionally provide support for strong negation by

means of a syntactic transformation. Two such transformations are known, both based on the

principle of coherence: if an atom p is true, its strong negation¬p cannot be true simultaneously,

so ∼¬p must be true, and also vice versa, if ¬p is true, then so is ∼p. The first transforma-

tion, introduced in (Alferes and Pereira 1996), encodes this principle directly by adding, to both

the original program and its update, the following two rules for every atom p: ∼¬p← p. and

∼p←¬p. This way, every conflict between an atom p and its strong negation ¬p directly trans-

lates into two conflicts between the objective literals p, ¬p and their default negations. However,

the added rules lead to undesired side effects that stand in direct opposition with basic princi-

ples underlying updates. Specifically, despite the fact that the empty program does not encode

any change in the modelled world, the stable models assigned to a program may change after an

update by the empty program. This undesired behaviour is addressed in an alternative transfor-

mation from (Leite 2003) that encodes the coherence principle more carefully. Nevertheless, this

transformation also leads to undesired consequences, as demonstrated in the following example:

Example 1.2 (Faulty sensor)

Suppose that we collect data from sensors and multiple sensors are used to supply information

about the critical fluent p. In case of a malfunction of one of the sensors, we may end up with

an inconsistent logic program consisting of the following two facts: p. and ¬p. At this point, no

stable model of the program exists. If a problem is found in the sensor that supplied the first fact

(p.), after the sensor is repaired, this information needs to be reset by updating the program with

the fact (∼p.). Following the common pattern in rule updates, where recovery from conflicting

states is always possible, this update should be sufficient to assign a stable model to the updated

program. However, the transformational semantics for strong negation of (Leite 2003) still does

not provide any stable model – we remain without a valid epistemic state when one should exist.

In this paper we address the combination of strong and default negation in the context of rule

updates. We formulate a generic desirable principle that is violated by the existing approaches.

On Strong and Default Negation in Answer-Set Program Updates 3

Then we show how two distinct definitions of one of the most well-behaved rule update seman-

tics (Alferes et al. 2005; Banti et al. 2005) can be equivalently extended with support for strong

negation while satisfying the formulated principle and retaining the formal and computational

properties of the original semantics. Our main contributions are as follows: a) based on Exam-

ple 1.2, we introduce the early recovery principle that captures circumstances under which a

stable model after a rule update should exist; b) we extend the well-supported semantics for rule

updates (Banti et al. 2005) with direct support for strong negation; c) we define a fixpoint char-

acterisation of the new semantics, based on the refined dynamic stable model semantics for rule

updates (Alferes et al. 2005); d) we show that the defined semantics enjoy the early recovery

principle as well as a range of desirable properties for rule updates known from the literature.

This paper is organised as follows: In Sect. 2 we present logic programs, generalise the well-

supported semantics from the class of normal programs to extended ones and define the rule

update semantics from (Alferes et al. 2005; Banti et al. 2005). In Sect. 3, we establish the early

recovery principle, define the new rule update semantics for strong negation and show that it

satisfies the principle. In Sect. 4 we introduce other established rule update principles and show

that the proposed semantics satisfies them. We discuss our findings and conclude in Sect. 5. An

extended version of this paper with all the proofs is available as (Slota et al. 2014).

2 Background

Logic Programs We assume that a countable set of propositional atoms A is given and fixed.

An objective literal is an atom p∈A or its strong negation ¬p. We denote the set of all objective

literals by L. A default literal is an objective literal preceded by ∼ denoting default negation. A

literal is either an objective or a default literal. We denote the set of all literals by L
∗. As a conven-

tion, double negation is absorbed, so that ¬¬p denotes the atom p and∼∼l denotes the objective

literal l. Given a set of literals S, we introduce the following notation: S+ = { l ∈L | l ∈ S },

S− = { l ∈ L | ∼l ∈ S }, ∼S = {∼L | L ∈ S}. An extended rule is a pair π = (Hπ ,Bπ) where Hπ

is a literal, referred to as the head of π , and Bπ is a finite set of literals, referred to as the body of

π . Usually we write π as (Hπ ← B+
π ,∼B−π .). A generalised rule is an extended rule that contains

no occurrence of ¬, i.e., its head and body consist only of atoms and their default negations. A

normal rule is a generalised rule that has an atom in the head. A fact is an extended rule whose

body is empty and a tautology is any extended rule π such that Hπ ∈ Bπ . An extended (gener-

alised, normal) program is a set of extended (generalised, normal) rules. An interpretation is

a consistent subset of the set of objective literals, i.e., a subset of L not containing both p and

¬p for any atom p. The satisfaction of an objective literal l, default literal ∼l, set of literals S,

extended rule π and extended program P in an interpretation J is defined as usual: J |= l iff l ∈ J;

J |=∼l iff l /∈ J; J |= S iff J |= L for all L ∈ S; J |= π iff J |= Bπ implies J |= Hπ ; J |= P iff J |= π

for all π ∈ P. Also, J is a model of P if J |= P, and P is consistent if it has a model.

Definition 2.1 (Stable model)

Let P be an extended program. The set JPKSM of stable models of P consists of all interpretations

J such that J∗ = least(P∪ def(J)) where def(J) = {∼l. | l ∈L\ J }, J∗ = J ∪∼(L \ J) and

least(·) denotes the least model of the argument program with all literals treated as propositional

atoms.

A level mapping is a function that maps every atom to a natural number. Also, for any default

literal ∼p, where p ∈ A, and finite set of atoms and their default negations S, ℓ(∼p) = ℓ(p),

ℓ↓(S) = min{ℓ(L) | L ∈ S} and ℓ↑(S) = max{ℓ(L) | L ∈ S}.

4 M. Slota, M. Baláž and J. Leite

Definition 2.2 (Well-supported model of a normal program)

Let P be a normal program and ℓ a level mapping. An interpretation J ⊆ A is a well-supported

model of P w.r.t. ℓ if the following conditions are satisfied: 1. J is a model of P and 2. For every

atom p ∈ J there exists a rule π ∈ P such that Hπ = p∧J |= Bπ ∧ ℓ(Hπ) > ℓ↑(Bπ). The set JPKWS

of well-supported models of P consists of all interpretations J⊆A such that J is a well-supported

model of P w.r.t. some level mapping.

Proposition 2.3 ((Fages 1991))

Let P be a normal program. Then, JPKWS = JPKSM.

Well-supported Models for Extended Programs The well-supported models for normal

logic programs can be generalised in a straightforward manner to deal with strong negation while

maintaining their tight relationship with stable models (c.f. Proposition 2.3). This will come use-

ful when we discuss adding support for strong negation to semantics for rule updates. We extend

level mappings from atoms and their default negations to all literals: An (extended) level map-

ping ℓ maps every objective literal to a natural number. Also, for any default literal ∼l and finite

set of literals S, ℓ(∼l) = ℓ(p), ℓ↓(S) = min{ℓ(L) | L ∈ S} and ℓ↑(S) = max{ℓ(L) | L ∈ S}.

Definition 2.4 (Well-supported model of an extended program)

Let P be an extended program and ℓ a level mapping. An interpretation J is a well-supported

model of P w.r.t. ℓ if the following conditions are satisfied: 1. J is a model of P and 2. For every

objective literal l ∈ J there exists a rule π ∈ P such that Hπ = l ∧ J |= Bπ ∧ ℓ(Hπ) > ℓ↑(Bπ).

The set JPKWS of well-supported models of P consists of all interpretations J such that J is a

well-supported model of P w.r.t. some level mapping.

Proposition 2.5

Let P be an extended program. Then, JPKWS = JPKSM.

Rule Updates Rule update semantics assign stable models to a pair or sequence of programs

where each represents an update of the preceding ones. Formally, a dynamic logic program (DLP)

is a finite sequence of extended programs and by all(P) we denote the multiset of all rules in the

components of P. A rule update semantics S assigns a set of S-models, denoted by JPKS, to P.

We focus on semantics based on the causal rejection principle (Leite and Pereira 1998; Alferes

et al. 2000; Eiter et al. 2002; Leite 2003; Alferes et al. 2005; Banti et al. 2005; Osorio and Cuevas

2007) which states that a rule is rejected if it is in a direct conflict with a more recent rule. The

basic conflict between rules π and σ occurs when their heads are complementary, i.e. when

Hπ = ∼Hσ . Based on such conflicts and on a stable model candidate, a set of rejected rules can

be determined and it can be verified that the candidate is indeed stable w.r.t. the remaining rules.

We define the most mature of these semantics, providing two equivalent definitions: the refined

dynamic stable models (Alferes et al. 2005), or RD-semantics, defined using a fixpoint equation,

and the well-supported models (Banti et al. 2005), or WS-semantics, based on level mappings.

Definition 2.6 (RD-semantics (Alferes et al. 2005))

Let P = 〈Pi〉i<n be a DLP without strong negation. Given an interpretation J, the multisets of

rejected rules rej>(P,J) and of default assumptions def(P,J) are defined as follows:

rej>(P,J) = {π ∈ Pi | i < n∧∃ j > i ∃σ ∈ Pj : Hπ =∼Hσ ∧ J |= Bσ } ,

def(P,J) = {(∼l.) | l ∈ L∧¬(∃π ∈ all(P) : Hπ = l∧ J |= Bπ)} .

On Strong and Default Negation in Answer-Set Program Updates 5

Let J∗ and least(·) be defined as before. The set JPKRD of RD-models of P consists of all inter-

pretations J such that J∗ = least
(
[all(P)\ rej>(P,J)]∪def(P,J)

)
.

Definition 2.7 (WS-semantics (Banti et al. 2005))

Let P = 〈Pi〉i<n be a DLP without strong negation. Given an interpretation J and a level mapping

ℓ, the multiset of rejected rules rejℓ(P,J) is defined as follows:

rejℓ(P,J) = {π ∈ Pi | i < n∧∃ j > i ∃σ ∈ Pj : Hπ =∼Hσ ∧ J |= Bσ ∧ ℓ(Hσ) > ℓ↑(Bσ)} .

The set JPKWS of WS-models of P consists of all interpretations J such that for some level mapping

ℓ, the following conditions are satisfied: 1. J is a model of all(P) \ rejℓ(P,J) and 2. For every

l ∈ J there exists some rule π ∈ all(P)\ rejℓ(P,J) such that Hπ = l∧ J |= Bπ ∧ ℓ(Hπ) > ℓ↑(Bπ).

Unlike most other rule update semantics, these semantics can properly deal with tautological

and other irrelevant updates, as illustrated in the following example:

Example 2.8 (Irrelevant updates)

Consider the DLP P = 〈P,U〉with P = {day←∼night.,night←∼day.,stars← night,∼cloudy.,

∼stars.}, and U = {stars← stars.}. Program P has the single stable model J1 = {day} and

U contains a single tautological rule, i.e. it does not encode any change in the modelled do-

main. Thus, we expect that P also has the single stable model J1. However, many rule update

semantics, such as those introduced in (Leite and Pereira 1998; Alferes et al. 2000; Eiter et al.

2002; Leite 2003; Sakama and Inoue 2003; Zhang 2006; Osorio and Cuevas 2007; Delgrande

et al. 2007; Krümpelmann 2012), are sensitive to this or other tautological updates, introducing

or eliminating models of the original program.

In this case, the unwanted model candidate is J2 = {night,stars} and it is neither an RD- nor

a WS-model of P, though the reasons for this are technically different under these two semantics.

It is not difficult to verify that, given an arbitrary level mapping ℓ, the set of default assumptions

and the respective sets of rejected rules are as follows: def(P,J2) = {(∼cloudy.),(∼day.)},

rej>(P,J2)= {(stars← night,∼cloudy.),(∼stars.)}, and rejℓ(P,J2)= /0. Note that rejℓ(P,J2)

is empty because, independently of ℓ, no rule π in U satisfies the condition ℓ(Hπ) > ℓ↑(Bπ), so

there is no rule that could reject another rule. Thus, the atom stars belongs to J∗2 but does not

belong to least([all(P)\ rej
>
(P,J2)]∪def(P,J2)), so J2 is not an RD-model of P. Furthermore,

no model of all(P)\ rejℓ(P,J2) contains stars, so J2 cannot be a WS-model of P.

Furthermore, the resilience of RD- and WS-semantics is not limited to empty and tautological

updates, but extends to other irrelevant updates as well (Alferes et al. 2005; Banti et al. 2005). For

example, consider the DLP P′ = 〈P,U ′〉 where U ′ = {(stars← venus.),(venus← stars.)}.

Though the updating program contains non-tautological rules, it does not provide a bottom-up

justification of any model other than J1 and, indeed, J1 is the only RD- and WS-model of P′.

We also note that the two presented semantics for DLPs without strong negation provide the

same result regardless of the particular DLP to which they are applied.

Proposition 2.9 ((Banti et al. 2005))

Let P be a DLP without strong negation. Then, JPKWS = JPKRD.

In case of the stable model semantics for a single program, strong negation can be reduced

away by treating all objective literals as atoms and adding, for each atom p, the integrity con-

straint (← p,¬p.) to the program (Gelfond and Lifschitz 1991). However, this transforma-

tion does not serve its purpose when adding support for strong negation to causal rejection se-

mantics for DLPs because integrity constraints have empty heads, so according to these rule

6 M. Slota, M. Baláž and J. Leite

update semantics, they cannot be used to reject any other rule. For example, a DLP such as

〈{ p.,¬p.} ,{ p.}〉would remain without a stable model even though the DLP 〈{ p.,∼p.} ,{ p.}〉

does have a stable model. To capture the conflict between opposite objective literals l and ¬l in a

way that is compatible with causal rejection semantics, a slightly modified syntactic transforma-

tion can be performed, translating such conflicts into conflicts between objective literals and their

default negations. Two such transformations have been suggested in the literature (Alferes and

Pereira 1996; Leite 2003), both based on the principle of coherence. For any extended program

P and DLP P = 〈Pi〉i<n they are defined as follows:

P† = P∪{∼¬l← l. | l ∈ L} , P† = 〈P†
i 〉i<n,

P‡ = P∪{∼¬Hπ ← Bπ . | π ∈ P∧Hπ ∈ L} , P‡ = 〈P‡
i 〉i<n.

These transformations lead to four possibilities for defining the semantics of an arbitrary DLP

P: JP† KRD, JP‡ KRD, JP† KWS and JP‡ KWS. We discuss these in the following section.

3 Direct Support for Strong Negation in Rule Updates

The problem with existing semantics for strong negation in rule updates is that semantics based

on the first transformation (P†) assign too many models to some DLPs, while those based on the

second transformation (P‡) sometimes do not assign any model to a DLP that should have one.

Example 3.1 (Undesired side effects of the first transformation)

Consider the DLP P1 = 〈P,U〉 where P = { p.,¬p.} and U = /0. Since P has no stable model

and U does not encode any change in the represented domain, it should follow that P1 has

no stable model either. However, JP†
1 KRD = JP†

1 KWS = {{ p} ,{¬p}}, i.e. two models are as-

signed to P1 when using the first transformation to add support for strong negation. To ver-

ify this, observe that P
†
1 = 〈P†,U†〉 where P† = { p.,¬p.,∼p←¬p.,∼¬p← p.} and U† =

{∼p←¬p.,∼¬p← p.}. Consider J1 = { p}. Then, we have rej>(P†
1,J1) = {¬p.,∼¬p← p.}

and def(P†
1,J1) = /0, so it follows that least([all(P†

1)\rej>(P†
1,J1)]∪def(P†

1,J1)) = { p,∼¬p}=

J∗1 . In other words, J1 belongs to JP
†
1 KRD and in an analogous fashion it can be verified that

J2 = {¬p} also belongs there. A similar situation occurs with JP
†
1 KWS since the rules that were

added to the more recent program can be used to reject facts in the older one.

Thus, the problem with the first transformation is that an update by an empty program, which

does not express any change in the represented domain, may affect the original semantics. This

behaviour goes against basic and intuitive principles underlying updates, grounded already in the

classical belief update postulates (Keller and Winslett 1985; Katsuno and Mendelzon 1991) and

satisfied by virtually all belief update operations (Herzig and Rifi 1999) as well as by the vast

majority of existing rule update semantics, including the original RD- and WS-semantics.

This undesired behaviour can be corrected by using the second transformation instead. The

more technical reason is that it does not add any rules to a program in the sequence unless

that program already contains some original rules. However, its use leads to another problem:

sometimes no model is assigned when in fact a model should exist.

Example 3.2 (Undesired side effects of the second transformation)

Consider again Example 1.2, formalised as the DLP P2 = 〈P,V 〉 where P = { p.,¬p.} and V =

{∼p.}. It is reasonable to expect that since V resolves the conflict present in P, a stable model

should be assigned to P2. However, JP
‡
2 KRD = JP

‡
2 KWS = /0. To verify this, observe that P

‡
2 =

〈P‡,V ‡〉 where P‡ = { p.,¬p.,∼p.,∼¬p.} and V ‡ = {∼p.}. Given an interpretation J and level

On Strong and Default Negation in Answer-Set Program Updates 7

mapping ℓ, we conclude that rejℓ(P
‡
2,J) = { p.}, so the facts (¬p.) and (∼¬p.) both belong to

the program all(P‡
2)\ rejℓ(P

‡
2,J). Consequently, this program has no model and it follows that J

cannot belong to JP
‡
2 KWS. Similarly it can be shown that JP

‡
2 KRD = /0.

Based on this example, in the following we formulate a generic early recovery principle that

formally identifies conditions under which some stable model should be assigned to a DLP. For

the sake of simplicity, we concentrate on DLPs of length 2 which are composed of facts. We

discuss a generalisation of the principle to DLPs of arbitrary length and containing other rules

than just facts in Sect. 5. After introducing the principle, we define a semantics for rule updates

which directly supports both strong and default negation and satisfies the principle.

We begin by defining, for every objective literal l, the sets of literals l = {∼l,¬l } and ∼l =

{ l }. Intuitively, for every literal L, L denotes the set of literals that are in conflict with L. Fur-

thermore, given two sets of facts P and U , we say that U solves all conflicts in P if for each pair

of rules π ,σ ∈ P such that Hσ ∈ Hπ there is a fact ρ ∈U such that either Hρ ∈ Hπ or Hρ ∈ Hσ .

Considering a rule update semantics S, the new principle simply requires that when U solves

all conflicts in P, S will assign some model to 〈P,U〉. Formally:

Early recovery principle: If P is a set of facts and U is a consistent set of facts that solves all

conflicts in P, then J〈P,U〉KS 6= /0.

We conjecture that rule update semantics should generally satisfy the above principle. In con-

trast with the usual behaviour of belief update operators, the nature of existing rule update seman-

tics ensures that recovery from conflict is always possible, and this principle simply formalises

and sharpens the sufficient conditions for such recovery.

Our next goal is to define a semantics for rule updates that not only satisfies the outlined

principle, but also enjoys other established properties of rule updates that have been identified

over the years. Similarly as for the original semantics for rule updates, we provide two equivalent

definitions, one based on a fixed point equation and the other one on level mappings.

To directly accommodate strong negation in the RD-semantics, we first need to look more

closely at the set of rejected rules rej>(P,J), particularly at the fact that it allows conflicting rules

within the same component of P to reject one another. This behaviour, along with the constrained

set of defaults def(P,J), is used to prevent tautological and other irrelevant cyclic updates from

affecting the semantics. However, in the presence of strong negation, rejecting conflicting rules

within the same program has undesired side effects. For example, the early recovery principle

requires that some model be assigned to the DLP 〈{ p.,¬p.} ,{∼p}〉 from Example 3.2, but if

the rules in the initial program reject each other, then the only possible stable model to assign

is /0. However, such a stable model would violate the causal rejection principle since it does not

satisfy the initial rule (¬p.) and there is no rule in the updating program that overrides it.

To overcome the limitations of this approach to the prevention of tautological updates, we

disentangle rule rejection per se from ensuring that rejection is done without cyclic justifications.

We introduce the set of rejected rules rej¬>(P,S) which directly supports strong negation and

does not allow for rejection within the same program. Prevention of cyclic rejections is done

separately by using a customised immediate consequence operator TP,J . Given a stable model

candidate J, instead of verifying that J∗ is the least fixed point of the usual consequence operator,

as done in the RD-semantics using least(·), we verify that J∗ is the least fixed point of TP,J .

Definition 3.3 (Extended RD-semantics)

8 M. Slota, M. Baláž and J. Leite

Let P = 〈Pi〉i<n be a DLP. For an interpretation J and set of literals S, the multiset of rejected rules

rej¬>(P,S), the remainder rem(P,S) and the consequence operator TP,J are defined as follows:

rej¬>(P,S) =
{

π ∈ Pi

∣∣ i < n∧∃ j > i ∃σ ∈ Pj : Hσ ∈ Hπ ∧Bσ ⊆ S
}

,

rem(P,S) = all(P)\ rej¬>(P,S),

TP,J(S) =
{

Hπ | π ∈ (rem(P,J∗)∪def(J))∧Bπ ⊆ S∧¬(∃σ ∈ rem(P,S) : Hσ ∈ Hπ ∧Bσ ⊆ J∗)
}
.

Furthermore, T 0
P,J(S) = S and for every k > 0, T k+1

P,J (S)= TP,J(T
k

P,J(S)). The set JPK¬
RD

of extended

RD-models of P consists of all interpretations J such that J∗ =
⋃

k>0 T k
P,J(/0).

Adding support for strong negation to the WS-semantics is done by modifying the set of re-

jected rules rejℓ(P,J) to account for the new type of conflict. Additionally, to ensure that re-

jection of a literal L cannot be based on the assumption that some conflicting literal L′ ∈ L is

true, a rejecting rule σ must satisfy the stronger condition ℓ↓(L) > ℓ↑(Bσ). Finally, to prevent

defeated rules from affecting the resulting models, we require that all supporting rules belong to

rem(P,J∗).

Definition 3.4 (Extended WS-semantics)

Let P = 〈Pi〉i<n be a DLP. Given an interpretation J and a level mapping ℓ, the multiset of rejected

rules rej¬ℓ (P,J) is defined by:

rej¬ℓ (P,J) = {π ∈ Pi | i < n∧∃ j > i ∃σ ∈ Pj : Hσ ∈ Hπ ∧ J |= Bσ ∧ ℓ↓(Hπ) > ℓ↑(Bσ)} .

The set JPK¬
WS

of extended WS-models of P consists of all interpretations J such that for some

level mapping ℓ, the following conditions are satisfied: 1. J is a model of all(P)\rej¬ℓ (P,J) and 2.

For every l ∈ J there exists some rule π ∈ rem(P,J∗) such that Hπ = l∧J |= Bπ ∧ℓ(Hπ) > ℓ↑(Bπ).

The following theorems establishe that the two defined semantics are equivalent, that they

coincide with the original on DLPs without strong negation, and, unlike the transformational

semantics for strong negation, the new semantics satisfy the early recovery principle.

Theorem 3.5

Let P1 be a DLP and P2 be a DLP without strong negation. Then, JP1 K¬
WS

= JP1 K¬
RD

and JP2 K¬
WS

=

JP2 K¬
RD

= JP2 KWS = JP2 KRD.

Theorem 3.6

The extended RD-semantics and extended WS-semantics satisfy the early recovery principle.

4 Properties

The various approaches to rule updates (Leite and Pereira 1998; Alferes et al. 2000; Eiter et al.

2002; Leite 2003; Sakama and Inoue 2003; Alferes et al. 2005; Banti et al. 2005; Zhang 2006;

Šefránek 2006; Osorio and Cuevas 2007; Delgrande et al. 2007; Šefránek 2011; Krümpelmann

2012) share a number of basic characteristics, significantly differing in their technical realisation

and classes of supported inputs, and desirable properties such as immunity to tautologies are vio-

lated by many of them. Table 1 lists several generic properties proposed for rule updates that have

been identified and formalised throughout the years (Leite and Pereira 1998; Eiter et al. 2002;

Leite 2003; Alferes et al. 2005). The rule update semantics we defined in the previous section

enjoys all of them, while retaining the same computational complexity as the stable models.

Theorem 4.1

The extended RD-semantics and extended WS-semantics satisfy all properties listed in Table 1.

On Strong and Default Negation in Answer-Set Program Updates 9

Table 1. Desirable properties of rule update semantics

Generalisation of stable models J〈P〉K
S
= JPK

SM
.

Primacy of new information If J ∈ J〈Pi〉i<n K
S
, then J |= Pn−1.

Fact update A sequence of consistent sets of facts 〈Pi〉i<n has the single model{
l ∈ L

∣∣ ∃i < n : (l.) ∈ Pi∧ (∀ j > i : {¬l.,∼l.}∩Pj = /0)
}

.

Support If J ∈ JPK
S

and l ∈ J, then there is some rule π ∈ all(P) such that

Hπ = l and J |= Bπ .

Idempotence J〈P,P〉K
S
= J〈P〉K

S
.

Absorption J〈P,U,U〉K
S
= J〈P,U〉K

S
.

Augmentation If U ⊆V , then J〈P,U,V 〉K
S
= J〈P,V〉K

S
.

Non-interference If alphabets of U and V are disjoint, then J〈P,U,V 〉K
S
= J〈P,V,U〉K

S
.

Immunity to empty updates If Pj = /0, then J〈Pi〉i<n K
S
=

r
〈Pi〉i<n∧i6= j

z

S

.

Immunity to tautologies If 〈Qi〉i<n is a sequence of sets of tautologies,

then J〈Pi∪Qi〉i<n K
S
= J〈Pi〉i<n K

S
.

Causal rejection principle For every i < n, π ∈ Pi and J ∈ J〈Pi〉i<n K
S
, if J 6|= π , then there exists

some σ ∈ Pj with j > i such that Hσ ∈ Hπ and J |= Bσ .

Theorem 4.2

Let P be a DLP. The problem of deciding whether some J ∈ JPK¬
WS

exists is NP-complete. Given a

literal L, the problem of deciding whether for all J ∈ JPK¬
WS

it holds that J |= L is coNP-complete.

5 Concluding Remarks

In this paper we have identified shortcomings in the existing semantics for rule updates that fully

support both strong and default negation, and proposed a generic early recovery principle that

captures them formally. Subsequently, we provided two equivalent definitions of a new semantics

for rule updates. We have shown that the newly introduced rule update semantics constitutes a

strict improvement upon the state of the art in rule updates as it enjoys the following combination

of characteristics, unmatched by any previously existing semantics: - It allows for both strong and

default negation in heads of rules, making it possible to move between any pair of epistemic states

by means of updates; - It satisfies the early recovery principle which guarantees the existence of

a model whenever all conflicts in the original program are satisfied; - It enjoys all rule update

principles and desirable properties reported in Table 1; - It does not increase the computational

complexity of the stable model semantics upon which it is based.

However, the early recovery principle, as it is formulated in Sect. 3, only covers a single

update of a set of facts by another set of facts. Can it be generalised further without rendering it

too strong? Certain caution is appropriate here, since in general the absence of a stable model can

be caused by odd cycles or simply by the fundamental differences between different approaches

to rule update, and the purpose of this principle is not to choose which approach to take.

Nevertheless, one generalisation that should cause no harm is the generalisation to iterated

updates, i.e. to sequences of sets of facts. Another generalisation that appears very reasonable is

the generalisation to acyclic DLPs, i.e. DLPs such that all(P) is an acyclic program. An acyclic

program has at most one stable model, and if we guarantee that all potential conflicts within it

10 M. Slota, M. Baláž and J. Leite

certainly get resolved, we can safely conclude that the rule update semantics should assign some

model to it. We formalise these ideas in what follows.

A program P is acyclic (Apt and Bezem 1991) if for some level mapping ℓ, such that for every

l ∈L, ℓ(l) = ℓ(¬l), and every rule π ∈ P it holds that ℓ(Hπ) > ℓ↑(Bπ). Given a DLP P = 〈Pi〉i<n,

we say that all conflicts in P are solved if for every i < n and each pair of rules π ,σ ∈ Pi such

that Hσ ∈ Hπ there is some j > i and a fact ρ ∈ Pj such that either Hρ ∈ Hπ or Hρ ∈ Hσ .

Generalised early recovery principle: If all(P) is acyclic and all conflicts in P are solved, then

JPKS 6= /0.

Note that this generalisation of the early recovery principle applies to a much broader class of

DLPs than the original one. We illustrate this in the following example:

Example 5.1 (Recovery in a stratified program)

Consider the following programs programs P, U and V : P = { p← q,∼r.,∼p← s.,q.,s← q.},

U = {¬p.,r← q.,¬r← q,s.}, and V = {∼r.}. Looking more closely at program P, we see that

atoms q and s are derived by the latter two rules inside it while atom r is false by default since

there is no rule that could be used to derive its truth. Consequently, the bodies of the first two rules

are both satisfied and as their heads are conflicting, P has no stable model. The single conflict

in P is solved after it is updated by U , but then another conflict is introduced due to the latter

two rules in the updating program. This second conflict can be solved after another update by V .

Consequently, we expect that some stable model be assigned to the DLP 〈P,U,V 〉.

The original early recovery principle does not impose this because the DLP in question has

more than two components and the rules within it are not only facts. However, the DLP is acyclic,

as shown by any level mapping ℓ with ℓ(p)= 3, ℓ(q)= 0, ℓ(r) = 2 and ℓ(s)= 1, so the generalised

early recovery principle does apply. Furthermore, we also find the single extended RD-model of

〈P,U,V 〉 is {¬p,q,¬r,s}, i.e. the semantics respects the stronger principle in this case.

The stronger principle is generally satisfied by the semantics introduced in this paper.

Theorem 5.2

The extended RD-semantics and extended WS-semantics satisfy the generalised early recovery

principle.

Both the original and the generalised early recovery principle can guide the future addition

of full support for both kinds of negations in other approaches to rule updates, such as those

proposed in (Sakama and Inoue 2003; Zhang 2006; Delgrande et al. 2007; Krümpelmann 2012),

making it possible to reach any belief state by updating the current program. Furthermore, adding

support for strong negation is also interesting in the context of recent results on program revision

and updates that are performed on the semantic level, ensuring syntax-independence of the re-

spective methods (Delgrande et al. 2013; Slota and Leite 2014; Slota and Leite 2012a; Slota and

Leite 2010), in the context of finding suitable condensing operators (Slota and Leite 2013), and

unifying with updates in classical logic (Slota and Leite 2012b).

Acknowledgments

J. Leite was partially supported by FCT under project PTDC/EIA-CCO/121823/2010 and M.

Slota under project PTDC/EIA-CCO/110921/2009. The collaboration between the co-authors

resulted from the Slovak–Portuguese bilateral project supported by APVV agency under SK-PT-

0028-10 and by FCT under FCT/2487/3/6/2011/S.

On Strong and Default Negation in Answer-Set Program Updates 11

References

ALFERES, J. J., BANTI, F., BROGI, A., AND LEITE, J. A. 2005. The refined extension principle for

semantics of dynamic logic programming. Studia Logica 79, 1, 7–32.

ALFERES, J. J., LEITE, J. A., PEREIRA, L. M., PRZYMUSINSKA, H., AND PRZYMUSINSKI, T. C. 1998.

Dynamic logic programming. In Proceedings of the Sixth International Conference on Principles of

Knowledge Representation and Reasoning (KR’98), Trento, Italy, June 2-5, 1998, A. G. Cohn, L. K.

Schubert, and S. C. Shapiro, Eds. Morgan Kaufmann, 98–111.

ALFERES, J. J., LEITE, J. A., PEREIRA, L. M., PRZYMUSINSKA, H., AND PRZYMUSINSKI, T. C. 2000.

Dynamic updates of non-monotonic knowledge bases. The Journal of Logic Programming 45, 1-3

(September/October), 43–70.

ALFERES, J. J. AND PEREIRA, L. M. 1996. Update-programs can update programs. In Non-Monotonic

Extensions of Logic Programming (NMELP ’96), Selected Papers, J. Dix, L. M. Pereira, and T. C. Przy-

musinski, Eds. Lecture Notes in Computer Science, vol. 1216. Springer, Bad Honnef, Germany, 110–131.

APT, K. R. AND BEZEM, M. 1991. Acyclic programs. New Generation Computing 9, 3/4, 335–364.

BANTI, F., ALFERES, J. J., BROGI, A., AND HITZLER, P. 2005. The well supported semantics for mul-

tidimensional dynamic logic programs. In Proceedings of the 8th International Conference on Logic

Programming and Nonmonotonic Reasoning (LPNMR 2005), C. Baral, G. Greco, N. Leone, and G. Ter-

racina, Eds. Lecture Notes in Computer Science, vol. 3662. Springer, Diamante, Italy, 356–368.

BERNERS-LEE, T., HENDLER, J., AND LASSILA, O. 2001. The semantic web. Scientific American 284, 5,

28–37.

DELGRANDE, J., SCHAUB, T., TOMPITS, H., AND WOLTRAN, S. 2013. A model-theoretic approach to

belief change in answer set programming. ACM Transactions on Computational Logic (TOCL) 14, 2

(June), 14:1–14:46.

DELGRANDE, J. P., SCHAUB, T., AND TOMPITS, H. 2007. A preference-based framework for updating

logic programs. In Proceedings of the 9th International Conference on Logic Programming and Non-

monotonic Reasoning (LPNMR 2007), C. Baral, G. Brewka, and J. S. Schlipf, Eds. Lecture Notes in

Computer Science, vol. 4483. Springer, Tempe, AZ, USA, 71–83.

EITER, T., FINK, M., SABBATINI, G., AND TOMPITS, H. 2002. On properties of update sequences based

on causal rejection. Theory and Practice of Logic Programming (TPLP) 2, 6, 721–777.

FAGES, F. 1991. A new fixpoint semantics for general logic programs compared with the well-founded and

the stable model semantics. New Generation Computing 9, 3/4, 425–444.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In Pro-

ceedings of the 5th International Conference and Symposium on Logic Programming (ICLP/SLP 1988),

R. A. Kowalski and K. A. Bowen, Eds. MIT Press, Seattle, Washington, 1070–1080.

GELFOND, M. AND LIFSCHITZ, V. 1991. Classical negation in logic programs and disjunctive databases.

New Generation Computing 9, 3-4, 365–385.

HERZIG, A. AND RIFI, O. 1999. Propositional belief base update and minimal change. Artificial Intelli-

gence 115, 1, 107–138.

KATSUNO, H. AND MENDELZON, A. O. 1991. On the difference between updating a knowledge base and

revising it. In Proceedings of the 2nd International Conference on Principles of Knowledge Representa-

tion and Reasoning (KR’91), J. F. Allen, R. Fikes, and E. Sandewall, Eds. Morgan Kaufmann Publishers,

Cambridge, MA, USA, 387–394.

KELLER, A. M. AND WINSLETT, M. 1985. On the use of an extended relational model to handle changing

incomplete information. IEEE Transactions on Software Engineering 11, 7, 620–633.

KRÜMPELMANN, P. 2012. Dependency semantics for sequences of extended logic programs. Logic Journal

of the IGPL 20, 5, 943–966.

LEITE, J. A. 2003. Evolving Knowledge Bases. Frontiers of Artificial Intelligence and Applications, xviii

+ 307 p. Hardcover, vol. 81. IOS Press.

LEITE, J. A. AND PEREIRA, L. M. 1998. Generalizing updates: From models to programs. In Proceedings

of the 3rd International Workshop on Logic Programming and Knowledge Representation (LPKR ’97),

12 M. Slota, M. Baláž and J. Leite

October 17, 1997, Port Jefferson, New York, USA, J. Dix, L. M. Pereira, and T. C. Przymusinski, Eds.

Lecture Notes in Computer Science, vol. 1471. Springer, 224–246.

OSORIO, M. AND CUEVAS, V. 2007. Updates in answer set programming: An approach based on basic

structural properties. Theory and Practice of Logic Programming 7, 4, 451–479.

SAKAMA, C. AND INOUE, K. 2003. An abductive framework for computing knowledge base updates.

Theory and Practice of Logic Programming (TPLP) 3, 6, 671–713.

ŠEFRÁNEK, J. 2006. Irrelevant updates and nonmonotonic assumptions. In Proceedings of the 10th Euro-

pean Conference on Logics in Artificial Intelligence (JELIA 2006), M. Fisher, W. van der Hoek, B. Konev,

and A. Lisitsa, Eds. Lecture Notes in Computer Science, vol. 4160. Springer, Liverpool, UK, 426–438.

ŠEFRÁNEK, J. 2011. Static and dynamic semantics: Preliminary report. Mexican International Conference

on Artificial Intelligence, 36–42.

SLOTA, M., BALÁŽ, M., AND LEITE, J. 2014. On strong and default negation in logic program updates

(extended version). CoRR abs/1404.6784.

SLOTA, M. AND LEITE, J. 2010. On semantic update operators for answer-set programs. In ECAI 2010 -

19th European Conference on Artificial Intelligence, Lisbon, Portugal, August 16-20, 2010, Proceedings,

H. Coelho, R. Studer, and M. Wooldridge, Eds. Frontiers in Artificial Intelligence and Applications, vol.

215. IOS Press, 957–962.

SLOTA, M. AND LEITE, J. 2012a. Robust equivalence models for semantic updates of answer-set programs.

In Proceedings of the 13th International Conference on Principles of Knowledge Representation and

Reasoning (KR 2012), G. Brewka, T. Eiter, and S. A. McIlraith, Eds. AAAI Press, Rome, Italy, 158–168.

SLOTA, M. AND LEITE, J. 2012b. A unifying perspective on knowledge updates. In Logics in Artificial

Intelligence - 13th European Conference, JELIA 2012, Toulouse, France, September 26-28, 2012. Pro-

ceedings, L. F. del Cerro, A. Herzig, and J. Mengin, Eds. Lecture Notes in Computer Science, vol. 7519.

Springer, 372–384.

SLOTA, M. AND LEITE, J. 2013. On condensing a sequence of updates in answer-set programming. In

IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing,

China, August 3-9, 2013, F. Rossi, Ed. IJCAI/AAAI.

SLOTA, M. AND LEITE, J. 2014. The rise and fall of semantic rule updates based on se-models. Theory

and Practice of Logic Programming FirstView, 1–39.

ZHANG, Y. 2006. Logic program-based updates. ACM Transactions on Computational Logic 7, 3, 421–

472.

Supplementary material: Technical Communication c© 2014 [Nataliia Stulova, José F. Morales, and

Manuel V. Hermenegildo]

1

Towards Assertion-based Debugging of
Higher-Order (C)LP Programs ã

NATALIIA STULOVA1 JOSÉ F. MORALES1 MANUEL V. HERMENEGILDO1,2

1IMDEA Software Institute

(e-mail: {nataliia.stulova, josef.morales, manuel.hermenegildo}@imdea.org)
2School of Computer Science, Technical University of Madrid (UPM)

(e-mail: manuel.hermenegildo@upm.es)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Extended Abstract

Higher-order programming adds flexibility to the software development process. Within

the (Constraint) Logic Programming ((C)LP) paradigm, Prolog has included higher-order

constructs since the early days, and there have been many other proposals for combining

the first-order kernel of (C)LP with different higher-order constructs. Many of these

proposals are currently in use in different (C)LP systems and have been found very useful

in programming practice, inheriting the well-known benefits of code reuse (templates),

elegance, clarity, and modularization.

A number of extensions have also been proposed for (C)LP in order to enhance the

process of error detection and program validation. In addition to the use of classical

strong typing, a number of other approaches have been proposed which are based on the

dynamic and/or static checking of user-provided, optional assertions. Of these, the model

of (Hermenegildo et al. 2005) has perhaps had the most impact in practice and different

aspects of this model have been incorporated in a number of widely-used (C)LP systems,

such as Ciao, SWI, and XSB. A similar evolution is represented by the soft/gradual

typing-based approaches in functional programming and the contracts-based extensions

in object-oriented programming.

These two aspects, assertions and higher-order, are not independent. When higher-order

constructs are introduced in the language it becomes necessary to describe properties of

arguments of predicates/procedures that are themselves also predicates/procedures. While

the combination of contracts and higher-order has received some attention in functional

programming, within (C)LP the combination of higher-order with the previously men-

tioned assertion-based approaches has received comparatively little attention to date.

Current Prolog systems simply use basic atomic types (i.e., stating simply that the argu-

ment is a pred, callable, etc.) to describe predicate-bearing variables. Other approaches

are oriented instead to meta programming, describing meta-types but there is no notion

of directionality (modes), and only a single pattern is allowed per predicate.

ã Research supported in part by projects EU FP7 318337 ENTRA, Spanish MINECO TIN2012-39391 StrongSoft
and TIN2008-05624 DOVES, and Comunidad de Madrid TIC/1465 PROMETIDOS-CM.

2 Nataliia Stulova, José F. Morales, and Manuel V. Hermenegildo

Our work (Stulova et al. 2014) contributes towards filling this gap between higher-

order (C)LP programs and assertion-based extensions for error detection and program

validation. Our starting point is the Ciao assertion model, since, as mentioned before, it

has been adopted at least in part in a number of the most popular (C)LP systems.

We have proposed an extension of the traditional notion of programs and derivations

in order to deal with higher-order calls and we have adapted the notions of first-order

conditional literals, assertions, program correctness, and run-time checking to this type of

derivations. This has allowed us to revisit the traditional model in this new, higher-order

context, while introducing a different formalization than the original one, which is more

compact and gathers all assertion violations as opposed to just the first one, among other

differences. We have defined an extension of the properties used in assertions and of the

assertions themselves to higher-order, and provided corresponding semantics and results.

We have defined a new class of properties, “predicate properties” (predprops in short),

and proposed a syntax and semantics for them. These new properties can be used

in assertions for higher-order predicates to describe the properties of the higher-order

arguments. We have also proposed several operational semantics for performing run-time

checking of programs including predprops and provided correctness results for them.

Our predprop properties specify conditions for predicates that are independent of

the usage context. This corresponds in functional programming to the notion of tight

contract satisfaction, and it contrasts with alternative approaches such as loose contract

satisfaction. In the latter, contracts are attached to higher-order arguments by implicit

function wrappers. The scope of checking is local to the function evaluation. Although this

is a reasonable and pragmatic solution, we believe that our approach is more general and

more amenable to combination with static verification techniques. For example, avoiding

wrappers allows us to remove checks (e.g., by static analysis) without altering the program

semantics. Moreover, our approach can easily support loose contract satisfaction, since it

is straightforward in our framework to optionally include wrappers as special predprops.

We have included the proposed predprop extensions in an experimental branch of the

Ciao assertion language implementation. This has the immediate advantage, in addition

to the enhanced checking, that it allows us to document higher-order programs in a

much more accurate way. We have also implemented several prototypes for operational

semantics with dynamic predprop checking, which are being integrated into the already

existing assertion checking mechanisms for first-order assertions. Finally, we are developing

analyses for static verification of assertions containing predprops.

References

Hermenegildo, M., Puebla, G., Bueno, F., and Garcı́a, P. L. 2005. Integrated Program Debugging,

Verification, and Optimization Using Abstract Interpretation (and The Ciao System Preprocessor).

Science of Computer Programming 58, 1–2.

Stulova, N., Morales, J. F., and Hermenegildo, M. V. 2014. An Approach to Assertion-based

Debugging of Higher-Order (C)LP Programs. Tech. Rep. CLIP-1/2014.0, The CLIP Lab. January.

CoRR abs/1404.4246 [cs.PL].

Supplementary material: Technical Communication c© 2014 [Tarau and Hamid] 1

Interclausal Logic Variables

PAUL TARAU and FAHMIDA HAMID

Department of Computer Science and Engineering

(e-mail: tarau@cs.unt.edu) (e-mail: fahmidahamid@my.unt.edu)

submitted February 14, 2014; revised April 15, 2014; accepted March 25, 2014

Abstract

Unification of logic variables instantly connects present and future observations of their value, inde-
pendently of their location in the data areas of the runtime system. The paper extends this property
to “interclausal logic variables”, an easy to implement Prolog extension that supports instant global

information exchanges without dynamic database updates. We illustrate their usefulness with two
of algorithms, graph coloring and minimum spanning tree. Implementations of interclausal variables
as source-level transformations and as abstract machine adaptations are given. To address the

need for globally visible chained transitions of logic variables we describe a DCG-based program
transformation that extends the functionality of interclausal variables.

KEYWORDS: declarative programming language constructs, Prolog implementation, logic variables,
definite clause grammars, continuation passing Prolog.

1 Introduction

Referred to by Einstein as “spooky action at a distance”, quantum entanglement is the fact

that observation of the values of a particle’s physical attributes binds instantly entangled

particles to identical values independently of their physical distance.

In the field of quantum computing, entanglement plays a crucial role in designing new

algorithms and communication mechanisms, as well as in fine-tuning physical realizations

of quantum computing machines (Panangaden 2011).

In logic programming languages, the prototypical instance of such an “entanglement

pattern” is unification of logic variables (Robinson 1965). It instantly connects present

and future observations of their value, independently of their location in the data areas

of the runtime system.

While indulging into deviations from the strict entanglement analogy, thinking in terms

of it can clarify some interesting algorithms that are part of the “folklore” of logic

programming since the early years of Prolog. For instance, a simple and elegant graph

coloring algorithm is derived by using logic variables to denote colors associated to a

vertex. Avoiding cycles in graph visiting algorithms, solving a knight’s tour puzzle or

finding a Hamiltonian circuit in a graph have also simple declarative programs exhibiting

the entanglement analogy centered on unique bindings to logic variables.

We will revisit a few of these algorithms while proposing some new language constructs.

The fact that they are unusually easy to implement in a language like Prolog, gives us

hope that they will lead to interesting uses in everyday programming.

2 Paul Tarau and Fahmida Hamid

The paper is organized as follows. Section 2 introduces interclausal variables. Section 4

describes their implementation in the Styla Prolog system and discusses some alternative

source-level and WAM-level implementations. Section 3 describes the use of interclausal

variables in algorithms like graph coloring and minimum spanning tree and their use

to inject dynamic code in a program without using assert operations. Section 5 dis-

cusses a source-level implementation of backtrackable assumptions using Prolog’s DCG

transformation. Section 6 discusses related work and section 7 concludes the paper.

2 Interclausal logic variables

A natural extension of unification seen as an instance of the entanglement pattern is to

apply it to variables shared among different clauses, that we will call here interclausal

variables.

In a given logic program we could syntactically mark such a variable X, shared among

clauses, as ~X, for example

a(~X).

b(~X).

The execution algorithm will then be modified to share bindings between ~X occurring in
the two clauses as in

?- a(10),b(V).

a(10),b(V).

V = 10.

At the same time, it makes sense to trail such bindings, as one would do with ordinary
logic variables. This means that a query like the following would also succeed, with a
different binding

?- a(V),b(20).

a(V),b(20).

V = 20.

Therefore, the semantics of interclausal variables is the same as passing them along

in a shared compound term containing them as arguments, or passing them directly as

additional arguments to all predicates occurring in the program. Like in the case of

ordinary logic variables, their behavior on backtracking provides a form of memory reuse.

At the same time, indexing of Prolog clauses provides comparable access to the shared

variables as if they would be passed along in a data structure or as extra arguments.

As a result of our intended semantics, one would also expect that the interclausal

variables are trailed and reset to free after the query is answered.

3 Interclausal Variables at Work

Interclausal variables can be used in Prolog facts representing (possibly large) graphs as

markers associated to vertices. This assertional representation can provide scalability and

memory efficiency superior to equivalent representations as a data structure.

Interclausal Logic Variables 3

3.1 Graph Coloring with Interclausal Variables

We will start by illustrating a use of interclausal variables on a graph coloring program,

derived from a classic example exhibiting the use of logic variables as colors to be assigned

to vertices.

First we define our colors:

color(red). color(green). color(blue).

Next we define our vertices with interclausal variables ~C1..~C6 representing the colors

associated to each vertex.

vertex(1,~C1). vertex(2,~C2). vertex(3,~C3).

vertex(4,~C4). vertex(5,~C5). vertex(6,~C6).

The graph will be described as a set of edges connecting our vertices.

edge(1,2). edge(2,3). edge(1,3). edge(3,4). edge(4,5).

edge(5,6). edge(4,6). edge(2,5). edge(1,6).

The coloring algorithm will iterate over all edges to color their endpoint vertices and then

collect the facts describing the colorings.

coloring(Vs):-

E=edge(_,_),findall(E,E,Es),

color_all(Es),

V=vertex(_,_),findall(V,V,Vs).

The iteration over all edges ensures at each step that adjacent vertices are colored

differently

color_all([]).

color_all([edge(X,Y)|Es]):-

vertex(X,C), color(C),

vertex(Y,D), color(D),

\+(C=D),

color_all(Es).

The algorithm will return multiple possible colorings on backtracking, as if the colors
were passed along as additional arguments to each clause.

?- coloring(Vs).

Vs = [vertex(1,red),vertex(2,green),vertex(3,blue),

vertex(4,red),vertex(5,blue),vertex(6,green)];

...

Vs = [vertex(1,blue),vertex(2,green),vertex(3,red),

vertex(4,blue),vertex(5,red),vertex(6,green)].

At the end, the interclausal variables are ready for being reused, back to an unbound
state:

?- listing(vertex).

vertex(1,~C1).

...

vertex(6,~C6).

Note the mild deviation from our entanglement analogy, given that (sound) negation as

failure is used to ensure that colors associated to neighboring vertices are distinct.

4 Paul Tarau and Fahmida Hamid

Note also that in ASP systems (Gebser et al. 2007) or SAT-based constraint solver

extensions to Prolog (Zhou 2013) that rely on grounding, interclausal variables could be

introduced with the same semantics, to control combinatorial explosion that depends on

the total number of distinct variables.

3.2 A Minimum Spanning Tree Algorithm using Interclausal Variables

Our next example uses interclausal variables for a variant of Kruskal’s minimum spanning

tree algorithm with logic variables working as markers for connected sets of edges that

grow progressively until they cover the graph (assuming it is connected). It has been

derived from a Prolog program using a data structure passed along between clauses and

posted on Usenet by the author in 19921.

The algorithm proceeds by first sorting by cost the set of edges.

mst(NbOfVertices,Edges,MinSpanTree):-

sort(Edges,SortedEdges),

mst0(NbOfVertices,SortedEdges,MinSpanTree).

Next the program explores the set of edges, given as the second argument of the predicate

mst0/3. At a given step, it calls the predicate mst1/7 which decides about unifying or not

the components C1 and C2.

mst0(1,_,[]). % no more vertices left

mst0(N,[E|Es],T):- N>1,

E=edge(_Cost,V1,V2),

vertex(V1,C1), % C1,C2 are the components of V1,V2

vertex(V2,C2),

mst1(C1,C2,E,T,NewT,N,NewN),

mst0(NewN,Es,NewT).

The predicate mst1/7 checks if both endpoints of an edge are already in an incrementally

grown set of connected edges, in which case it skips the edge. Otherwise, if the sets

represented by C1 and C2 are distinct, they will be merged by unifying the variables,

adding the edge to the minimum spanning tree and counting the vertex as processed.

Note that we are reusing here the vertex definitions of our graph coloring program, with

colors interpreted as components.

mst1(C1,C2,_,T,T,N,N):-C1==C2.

mst1(C1,C2,E,T,NewT,N,NewN):-C1\==C2,C1=C2,

% Put endpoints in the same component

T=[E|NewT], % Add the the edge to the MST

NewN is N-1. % Count a new vertex

Finally the predicate test mst tries out the algorithm on a small graph.

test_mst(MinSpanTree):-

Edges = [edge(70,1,3),edge(80,3,4),edge(90,1,5),

edge(60,2,3),edge(20,4,5),edge(30,1,4),

edge(40,2,5),edge(50,3,5),edge(10,1,2)

],

mst(5,Edges,MinSpanTree).

1 A time when such uses of logic variables were still waiting to be uncovered.

Interclausal Logic Variables 5

Note that an answer is returned as a list of edges ordered by cost, such that each vertex
is an endpoint of at least one edge.

?- test_mst(Mst).

Mst = [edge(10,1,2),edge(20,4,5),edge(30,1,4),edge(50,3,5)]

3.3 Injecting Dynamic Code without Asserts

When used in a metavariable position, an interclausal variable can provide a lightweight al-

ternative to the assert/retract interface to dynamic code. In a clause like a0:-a1, . . .~V. . . , an

the metavariable ~V can be bound to a Prolog terms that gets “injected” in the possibly

statically compiled code of the clause. In particular, injecting ~V=fail in a clause like

a0:-~V. . . , an would temporarily disable the clause without the need to use a retract

operation. In a different branch of the computation, one could inject ~V=true to enable

the clause.

4 Implementing Interclausal Variables

We will describe here a few mechanisms for adding support for interclausal variables to

Prolog systems.

4.1 Interclausal variables in Styla

We have implemented interclausal variables in our Styla Scala-based Prolog system (Tarau

2012a) by taking advantage of its object oriented term structure and its distributed

unification and term copying algorithms, designed in such a way that various subterms

contribute small steps depending on their type. We have also used the fact that inheritance

enables “surgical” overriding of the small methods implementing these algorithms together.

First, we have created a new type EVar for interclausal variables as an extension of the

class of ordinary logic variables Var.

package prolog.terms

class EVar() extends Var {

override def tcopy(dict : Copier) : Term = this.ref

}

We made it inherit all properties of logic variables except one: behavior on copying.

The method tcopy, instead of creating a fresh variable, simply returns the reference ref

of our interclausal variable. As a result, bindings of interclausal variables are shared

between calls, while their unification behavior, including trailing for undoing bindings on

backtracking, is inherited unchanged.

Styla uses Scala’s combinator parsing API where only two simple modifications were

needed to process our new data type.

First, we specified the regular expression

val evarToken: Parser[String] = """~[A-Z_]\w*""".r

defining that interclausal variables start with the ~ symbol and have, otherwise, the same

token specification as the usual ones.

6 Paul Tarau and Fahmida Hamid

Next, we have ensured that the parser knows about them, by adding a rule associated

to their token type calling the method mkEVar

def mkEVar(x: String) = {

vars.getOrElseUpdate(x, new EVar())

}

Finally, a small change to the toStringmethod marks with a “~” the string representation

of interclausal variables. Besides helping with debugging, this is also useful as Styla keeps

track of variable names in the source code and uses them in predicates like listing/1,

when the source code of a predicate is displayed.

4.2 Source-level Implementations

Given a set of interclausal variables, one can implement them at source level simply

by adding them as extra arguments to each clause of a program. This would ensure

that a Datalog program remains a Datalog program after the transformation. While

linear, the resulting code explosion can be avoided by adding a single variable to each

clause representing a compound term, together with an arg/3 predicate call accessing the

appropriate position in it, for each interclausal variable occurring in a given clause.

4.3 WAM-level Implementations

In a way similar to BinProlog’s implementation of multiple DCG streams (Dahl et al.

1997), the argument registers (represented as an array in BinProlog (Tarau 2012b))

can be extended with as many positions as needed to accommodate all interclausal

variables, to which the compiler would generate appropriate references in instructions like

unify variable and unify value (Äıt-Kaci 1991). Alternatively, a heap area could be

reserved for them, say at a lower address range than that reserved for ordinary variables,

and instructions would be generated to create them on the heap before execution begins.

4.4 Scoping constructs and interclausal logic variables

Limiting the scope of interclausal variables to smaller code units can be achieved easily

in the case of a source-level implementation by limiting their addition as extra arguments

to only the clauses of a given module.

On the other hand, in a Prolog systems that would support local clauses, with a

semantics similar to Haskell’s “where” construct (usable for local function definitions),

one could implement variants of interclausal variables as logic variables one or more

levels up from the point where they are used with or without copying on new clause calls.

5 Source-level backtrackable assumptions

We will overview here another, less “pure” instance of the entanglement pattern that

provides, at source-level, a richer set of functionalities than interclausal or backtrackable

global variables.

A limitation of interclausal variables is that they do not allow threading information

that changes over multiple recursive calls, for which the prototypical example is Prolog’s

Interclausal Logic Variables 7

Definite Clause Grammar (DCG) mechanism (Pereira and Warren 1980), which has been

extended to support multiple independent chains of variables at source level (Van Roy

1989) or at WAM-level (Tarau et al. 1995).

As an application of the WAM-level implementation of (Tarau et al. 1995), specific

to the BinProlog system, Assumption Grammars have been introduced in (Dahl et al.

1997) featuring backtrackable dynamic database updates and a mechanism allowing the

programmer to chose between copying or sharing semantics for the assumed clauses.

We will describe here a source level implementation of the functionality of Assumption

Grammars, by overloading the standard DCG mechanism. As a result, it is portable to

virtually all Prolog systems.

Note that predicates defined here with arity 3 should be used within clauses defined

with DCG arrow “-->/2” rather than the usual clause neck “:-/2”.

The Assumption Grammar API is implemented as follows as source level program

transformation.

5.1 Setting and getting the database and the DCG tokens

’#<’(Xs) sets the DCG token list to be Xs for processing by the assumption grammar.

’#<’(Xs,_,Db-Xs):-new_assumption_db(Db).

’#>’(Xs) unifies current assumption grammar token list with Xs.

’#>’(Xs,Db-Xs,Db-Xs).

’#:’(X) matches X against the current DCG token the assumption grammar is working

on.

’#:’(X,Db-[X|Xs],Db-Xs).

5.2 Adding new assumptions

’#+’(X) adds “linear” assumption +(X) to be consumed at most once, by a ’#-’

operation.

’#+’(X,Db1-Xs,Db2-Xs):-add_assumption(’+’(X),Db1,Db2).

Note that variables occurring in a clause assumed with the ’#+’operation are “inter-

clausal” and their bindings provide a long distance communication channel between the

points where they are produced and consumed. ’#*’(X) adds ’intuitionistic’ assumption

’*’(X) to be used indefinitely by ’#-’operation.

’#*’(X,Db1-Xs,Db2-Xs):-add_assumption(’*’(X),Db1,Db2).

The semantics of these clauses is essentially the same as Prolog’s dynamic database with

“immediate update”, except that assumptions are backtrackable.

5.3 Querying the assumptions

’#=’(X) unifies X with any matching existing or future ’+’(X) linear assumptions.

’#=’(X,Db1-Xs,Db2-Xs):-equate_assumption(’+’(X),Db1,Db2).

8 Paul Tarau and Fahmida Hamid

’#-’(X) consumes a +(X) linear assumption or matches a ’*’(X) intuitionistic assump-

tion.

’#-’(X,Db1-Xs,Db2-Xs):-consume_assumption(’+’(X),Db1,Db2).

’#-’(X,Db-Xs,Db-Xs):-match_assumption(’*’(X),Db).

Note that this operation provides a mechanism to call either linear or intuitionistic

assumptions, except that in the later case, matching assumptions are “consumed” i.e;

removed from the database. ’#?’(X) matches ’+’(X) or ’*’(X) assumptions without

any binding.

’#?’(X,Db-Xs,Db-Xs):-match_assumption(’+’(X),Db).

’#?’(X,Db-Xs,Db-Xs):-match_assumption(’*’(X),Db).

5.4 Auxiliary predicates

A few auxiliary predicates implement internals of the API:

new_assumption_db(Xs/Xs).

add_assumption(X,Xs/[X|Ys],Xs/Ys).

consume_assumption(X,Xs/Ys,Zs/Ys):-nonvar_select(X,Xs,Zs).

match_assumption(X,Xs/_):-nonvar_member(X0,Xs),copy_term(X0,X).

equate_assumption(X,Xs/Ys,XsZs):- \+(nonvar_member(X,Xs)),!,

add_assumption(X,Xs/Ys,XsZs).

equate_assumption(X,Xs/Ys,Xs/Ys):-nonvar_member(X,Xs).

Finally, nonvar_member(X,XXs)and nonvar_select(X,XXs,Xs)are variants of member/2

and select/3 working on open ended lists.

nonvar_member(X,XXs):-nonvar(XXs),XXs=[X|_].

nonvar_member(X,YXs):-nonvar(YXs),YXs=[_|Xs],nonvar_member(X,Xs).

nonvar_select(X,XXs,Xs):-nonvar(XXs),XXs=[X|Xs].

nonvar_select(X,YXs,[Y|Ys]):-nonvar(YXs),YXs=[Y|Xs],nonvar_select(X,Xs,Ys).

5.5 Using Assumption Grammars

One can use phrase/3 to test out assumption grammar components, as follows:

?- phrase((’#<’([a,b,c]),’+’(t(99)),’#*’(p(88)),’#-’(t(A)),’#-’(p(B)),

’#:’(X),’#>’(As)),Xs,Ys).

A = 99, B = 88, X = a, As = [b, c],

Ys = [*(p(88))|_G2344]/_G2344-[b, c] .

?- phrase((’#<’([a,b,c]),’#+’(t(99)),’#*’(p(88)),’#-’(t(A)),

’#-’(p(B)),’#:’(X),’#>’(As)),Xs,Ys).

A = 99, B = 88, X = a, As = [b, c],

Ys = [*(p(88))|_G1161]/_G1161-[b, c] .

Interclausal Logic Variables 9

We refer to (Dahl et al. 1997) for various examples of their use both for expressing

concisely some Prolog algorithms and for capturing long distance dependencies in natural

language processing phenomena like anaphora resolution and agreement.

Note that one could also implement similar constructs by combining interclausal

variables storing compound terms in which mutable backtrackable state is updated with

built-ins like setarg/3.

6 Related Work

The first author must confess that about 25 years ago he has thought about and even

wrote a short draft paper about interclausal logic variables that got forgotten and lost.

Being quite sure that something similar might have popped-up over time and has made it

into the logic programming folklore, we have not revisited the subject until now, except

for a footnote in (Tarau and Majumdar 2009) where inter-clausal variables are mentioned

as write-once global variables relating them to the semantics of term copying. Other than

that, we have not found despite an extensive search, any reference to them or closely

related concepts.

In (Tarau and Dahl 1994), after applying the binarization transformation (Tarau 1993),

multi-headed clauses are introduced, which give direct access to continuations at source-

level. The technique makes possible long distance communication between logic variables

otherwise inaccessible.

Global variables (both backtrackable and persistent) have been present in BinProlog

since the mid-1990s (De Bosschere and Tarau 1996) and are these days available in various

Prolog systems. Among them, we mention SWI-Prolog’s implementation (Wielemaker

et al. 2012) where their values live on the Prolog global stack. Like in the case of

interclausal variables, this implies that lookup time is independent of the size of the term.

As a result, they can efficiently store large data structures like parsed XML syntax trees

or global constraint stores.

By contrast to non-backtrackable global variables, our interclausal variables are single

assignment and behave similarly to ordinary logic variables. Backtrackable global variables

are semantically similar to interclausal variables. However, like in BinProlog 2.0’s original

implementation (Tarau 1994), they are named with constants and used through an API

like SWI-Prolog’s b setval/2 and b getval/2, requiring a hash-table look-up to find

their values on the heap, while the interclausal variables in this proposal are implemented

simply as a special case of logic variables resulting also in a more natural notation.

7 Conclusion

Interclausal variables extend natural properties of the usual logic variables to variables

shared among clauses. Given the simplicity of their implementation, for which we have

outlined a few alternative scenarios, we hope they can contribute to adding flexibility to

logic programming languages while keeping intact their declarative flavor.

We have also described a source-level implementation of “assumption grammars” an

extension to Prolog’s DCGs that circumvents some limitations of interclausal variables.

We plan future work on implementing interclausal variables at WAM-level and ex-

periments with their uses in probabilistic logic programming. We also plan to work on

10 Paul Tarau and Fahmida Hamid

mechanisms based on interclausal logic variables that optimize the grounding phase in

ASP systems and SAT-based constraint solvers used by Prolog systems.

References

Aı̈t-Kaci, H. 1991. Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press.

Dahl, V., Tarau, P., and Li, R. 1997. Assumption Grammars for Processing Natural Language. In
Proceedings of the Fourteenth International Conference on Logic Programming, L. Naish, Ed. MIT

press, 256–270.

De Bosschere, K. and Tarau, P. 1996. Blackboard-based Extensions in Prolog. Software —

Practice and Experience 26, 1 (Jan.), 49–69.

Gebser, M., Schaub, T., and Thiele, S. 2007. GrinGo: A New Grounder for Answer Set Program-
ming. In Logic Programming and Nonmonotonic Reasoning, C. Baral, G. Brewka, and J. Schlipf,

Eds. Lecture Notes in Computer Science, vol. 4483. Springer Berlin Heidelberg, 266–271.

Panangaden, P. 2011. The Search for Structure in Quantum Computation. In Foundations of

Software Science and Computational Structures, M. Hofmann, Ed. Lecture Notes in Computer
Science, vol. 6604. Springer Berlin Heidelberg, 1–11.

Pereira, F. and Warren, D. 1980. Definite Clauses for Language Analysis. Artificial Intelligence 13,
231–278.

Robinson, J. A. 1965. A Machine-Oriented Logic Based on the Resolution Principle. JACM 12, 1,

23–41.

Tarau, P. 1993. An Efficient Specialization of the WAM for Continuation Passing Binary programs.
In Proceedings of the 1993 ILPS Conference. MIT Press, Vancouver, Canada. poster.

Tarau, P. 1994. BinProlog 2.20 User Guide. Tech. Rep. 94-1, Dept. d’Informatique, Université de
Moncton. Feb. ftp://clement.info.umoncton.ca/BinProlog.

Tarau, P. 2012a. Styla: a Lightweight Scala-based Prolog Interpreter Based on a Pure Object
Oriented Term Hierarchy. https://code.google.com/p/styla/.

Tarau, P. 2012b. The BinProlog Experience: Architecture and Implementation Choices for Con-

tinuation Passing Prolog and First-Class Logic Engines. Theory and Practice of Logic Program-

ming 12, 1-2, 97–126.

Tarau, P. and Dahl, V. 1994. Logic Programming and Logic Grammars with First-order Continu-
ations. In Proceedings of LOPSTR’94, LNCS, Springer. Pisa.

Tarau, P., Dahl, V., and Fall, A. 1995. Backtrackable State with Linear Assumptions, Continu-

ations and Hidden Accumulator Grammars. In Proceedings of ILPS’95, J. Lloyd, Ed. Portland,
Oregon, 642. poster abstract.

Tarau, P. and Majumdar, A. 2009. Interoperating Logic Engines. In Practical Aspects of Declarative

Languages, 11th International Symposium, PADL 2009. Springer, LNCS 5418, Savannah, Georgia,
137–151.

Van Roy, P. 1989. A useful extension to Prolog’s Definite Clause Grammar notation. SIGPLAN

notices 24, 11 (Nov.), 132–134.

Wielemaker, J., Schrijvers, T., Triska, M., and Lager, T. 2012. Swi-prolog. Theory and Practice

of Logic Programming 12, 1-2, 67–96.

Zhou, N.-F. 2013. Picat: A scalable logic-based language and system (invited talk). In SLATE, J. P.
Leal, R. Rocha, and A. Simões, Eds. OASICS, vol. 29. Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, 5–6.

Supplementary material: Technical Communication c© 2014 [Z-Z. Zhang and K-K. Zhao] 1

ESmodels: An Epistemic Specification Solver

ZHIZHENG ZHANG and KAIKAI ZHAO

School of Computer Science and Engineering

Southeast University, NanJing 211189, China

(e-mail: seu zzz@seu.edu.cn)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

ESmodels is designed and implemented as an experiment platform to investigate the semantics, language,

related reasoning algorithms, and possible applications of epistemic specifications. We first give the epi-

stemic specification language of ESmodels and its semantics. The language employs only one modal oper-

ator K but we prove that it is able to represent luxuriant modal operators by presenting transformation rules.

Then, we describe basic algorithms and optimization approaches used in ESmodels. After that, we discuss

possible applications of ESmodels in conformant planning and constraint satisfaction. Finally, we conclude

with perspectives.

KEYWORDS: logic programming, epistemic specification, knowledge representation

1 Introduction

The language of epistemic specification initially proposed in (Gelfond and Przymusinska 1991),

(Gelfond and Przymusinska 1993), (Gelfond 1994), and (Gelfond 1991) is an extension of the

language of answer set programs by modal operators K and M to represent beliefs of the agent

capable of introspection in the presence of multiple belief sets. Intuitively, it use KF to denote an

proposition F is believed to be true in each of the agent’s belief sets, and MF to denote an pro-

position F is believed to be true in some of the agent’s belief sets. This extension is believed to be

useful by discussing its application to formalization of commonsense reasoning. Along its syntax

and semantics in (Gelfond and Przymusinska 1991), a few efforts were made to establish reason-

ing algorithms in (Zhang 2006) and (Watson 1994), and theoretical foundation in (Zhang 2003),

(Watson 2000), and (Wang and Zhang 2005). Recently, research on epistemic specifications in-

creases again because introspective reasoning is becoming reality and forseeable as showed in

(Faber and Woltran 2011), (Faber and Woltran 2009), and (Truszczyński 2011). To eliminate

some unintended interpretations which exist under the original definition, a new semantics is

defined in (Gelfond 2011) to arguably close to the intuitive meaning of modalities. Currently, ef-

forts are still desired to made to establish and validate properties of epistemic specifications and

the corresponding reasoning algorithms, and to investigate the use of the language. The design

and implementation of an epistemic specification solver is hoped to facilitate those efforts.

This article introduces an epistemic specification solver ESmodels that is recently being de-

signed and implemented as a flexible platform for experiment with epistemic specifications. The

language of ESmodels has two types of subjective literals Kl and ¬Kl. To express other types of

subjective literals, we propose a group of transformation rules rewriting epistemic specifications

2 Z-Z. Zhang, K-K. Zhao

with arbitrary types of subjective literals in ESmodels’s language. In ESmodels, a generate-test

algorithm for computing world views of the epistemic specification is employed. It is worth not-

ing that efficient ASP solver Clasp is coupled into ESmodels to help to generate candidate world

views efficiently. Optimization approaches are preliminarily used to promoting the efficiency of

the basic algorithm. Presently, we are applying ESmodels in solving security conditions in con-

formant planning, and encoding constraint satisfaction problems.

2 Language

2.1 Syntax and Semantics

An ESmodels’s epistemic specification is a collection of finite rules in the following form

l0 or...or lk : − lk+1, ..., lj , Slj+1, ..., Slm, not lm+1, ..., not ln

where each li for 0 6 i 6 n is an objective literal, ie. either an atom A or the negation ¬A of

A, and S is either K or ¬K, not is negation as failure. The set of all objective literals appears in

an epistemic specification Π is denoted by LitΠ. Given a rule r in the above form, let head(r)

denote its head {l0, ..., lk}, and body(r) the body {lk+1, ..., lj , Slj+1 , ..., Slm, not lm+1, ..., not ln}.
Furthermore, let bodyP (r) be the positive objective body {lk+1 , ..., lg} and body

N(r) negative ob-

jective body {lm+1, ..., ln} of r, and body
S (r) the subjective body {lj+1, ..., lm}. In addition, we use

body
K(r) to denote the set of objective literals in the body of r which appears in term K, and

body
−K(r) to denote the set of objective literals in the body of r which appears in term ¬K.

Epistemic specifications with variables are considered as shorthands for their ground instan-

tiations. In the rest of this section, except special noted, we always consider the epistemic spe-

cification is grounded.

Let W be a non-empty collection of sets of objective literals, and l an objective literal.

- Kl is satisfied with regard to W , denoted by W |=Kl , iff ∀ω ∈W : l ∈ ω.

- ¬Kl is satisfied with regard to W , denoted by W |= ¬Kl , iff ∃ω ∈W : l /∈ ω.

Definition 1

Let Π be an epistemic specification and W be a non-empty collection of sets of objective literals

in Π. W is a world view of Π iff W is the collection of all answer sets of ΠW denoted by

AN(ΠW), where ΠW is an ASP program obtained from Π by the following reduct laws:

- RL1: removing all rules containing subjective literals not satisfied by W ;

- RL2: removing any remaining subjective literals of the form ¬Kl;

- RL3: replacing any remaining subjective literals of the form Kl by l.

Example 1

Let an epistemic specification Π1 consist of the following three rules:

p or q. p : − ¬K q. q : − ¬K p.

With regard to {{p}},¬K q is satisfied while¬K p is not satisfied. Hence, Π
{{p}}
1 = {p or q. p :

−.} and then AN(Π
{{p}}
1) = {{p}}. So {{p}} is a world view of Π1. Similarly, {{q}} is also a

world view of Π1.

ESmodels: An Epistemic Specification Solver 3

2.2 Representation of Other Subjective Literals

To handle other subjective literals using ESmodels, namely K not l, ¬K not l, Ml, ¬Ml, M not l,

and ¬M not l, we can convert an epistemic specification Π with arbitrary subjective literals in

rules bodies into an epistemic specification ΠES such that ΠES has only subjective literals in the

form Kl or ¬Kl by the following transformation procedure.

1 For each objective literal l, add a rule l
′ : − not l to ΠES if there exist a subjective

occurrence of ¬K not l or Ml or ¬Ml or K not l in Π, where l
′ is a new created objective

literal corresponding to l.

2 Add each rule of Π to ΠES after performing the following operations on it.

- Replace ¬K not l by ¬Kl
′;

- Replace Ml by ¬Kl
′;

- Replace ¬Ml by Kl
′;

- Replace K not l by Kl
′;

- Replace M not l by ¬Kl;

- Replace ¬M not l by Kl.

Then, we define its world view based semantics as follows.

Definition 2

For an epistemic specification Π with arbitrary subjective literals, let Lit be a set of objective

literals appearing in Π, and ΠES its corresponding ESmodels epistemic specification, a collection

of sets of objective literals W is a world view of Π iff there exists a world view W
′ of ΠES such

that W = {ω ∩ Lit|ω ∈W
′}.

Example 2

Given an epistemic specification Π2 : {p : − ¬Mq. q : − ¬Kp.} then we have Lit2 = {p, q}
and ΠES

2 : {p : −Kl. l : −not q. q : − ¬Kp.}. ΠES

2 has two world views {{q}} and {{p, l}},
hence, Π2 has two world views {{q}} and {{p}}.

Example 3

Given an epistemic specification Π3 : {p : − not q,Mq. q : − not p,Mq.}, then we have

ΠES

3 : {p : −not q,¬Kl. l : −not q. q : −not p,¬Ki. i : −not q.}. ΠES

3 has two world views

{{i, l}} and {{i, p, l}, {q}}, hence, Π3 has two world views {{}} and {{p}, {q}}.

2.3 Connection to Gelfond’s New Epistemic Specification

In the syntactic aspect of the epistemic specification defined in (Gelfond 2011), it allows two

more subjective literals of forms, K not l and ¬K not l, in the rule’s body. The modality M is

defined to be expressed in terms of K by M l =def ¬K not l. Semantically, let W be a non-empty

collection of sets of objective literals, and l an objective literal.

- Kl is satisfied with regard to W , denoted by W |=Kl , iff ∀S ∈W : l ∈ S .

- ¬Kl is satisfied with regard to W , denoted by W |= ¬Kl , iff ∃S ∈W : l /∈ S .

- K not l is satisfied with regard to W , denoted by W |= K not l iff for every S ∈W , l /∈ S ,

otherwise S |= ¬ K not l

4 Z-Z. Zhang, K-K. Zhao

The set W is called a world view of Π if W is the collection of all answer sets of ΠW , where

ΠW is obtained by

- removing all rules containing subjective literals not satisfied by W ;

- removing any remaining subjective literals of the form ¬Kl or ¬Knot l;

- replacing any remaining subjective literals of the form Kl by l and any Knot l by not l.

Theorem1 shows that ESmodels can compute the world view of any Gelfond’s new epistemic

specification.

Theorem 1

For any Gelfond’s new epistemic specification Π, let Lit be a set of objective literals appearing

in Π, a collection of sets of objective literals W is a world view of Π under Gelfond’s new

definition iff there exists a world view W
′ of ΠES such that W = {S ∩ Lit|S ∈W

′}.

Proof

The main idea of this proof is as follows. Let LitES be objective literals appearing in ΠES ,

← direction: if there is a world view W
′ of ΠES , then for any ω ∈ W

′, ω is an answer set of

(ΠES)W
′
. Let W = {S ∩Lit|S ∈W

′}, then ω∩Lit is an answer set of ΠW under Gelfond’s new

definition (because the Gelfond-Lifschitz reduction of ΠW wrt. ω ∩ Lit just possibly has less

facts {l : −.|l ∈ ω−Lit and l does not appear in bodies of any rules} than the Gelfond-Lifschitz

reduction of (ΠES)W
′
wrt. ω).

→ direction: if W is a world view of Π, then we create W
′ as follows: for each ω ∈ W , we

have ω
′ = ω ∪ {l ∈ Lit

ES − Lit|l : −not l′ ∈ ΠES
, l
′
/∈ ω} in W

′. Then, ω′ is an answer set

of (ΠES)W
′
(because the Gelfond-Lifschitz reduction of (ΠES)W

′
wrt. ω′ just possibly has more

facts {l : −.|l ∈ ω−Lit and l does not appear in bodies of any rules} than the Gelfond-Lifschitz

reduction of ΠW wrt. ω). q

Example 4

Given an epistemic specification Π4 : {p : −Mp.}, under Gelfond’s definition Π4 has two world

views {{}} and {{p}}. By the transformation defined in last subsection, we have ΠES

4 : {p :

−¬Kl. : −not p.}, and ESmodels can find ΠES

4 ’s two world views: {{l}} and {{p}}, that is,

Π4 also has two world views {{}} and {{p}} by ESmodels.

3 Computing World Views in ESmodels

A generate-test algorithm forms a basis of computing world views in ESmodels. Now, we are

taking two preliminary steps to optimize the algorithm.

3.1 Basic Algorithm

Let Π be an epistemic specification, EL(Π) be a set of objective literals such that l ∈ EL(Π) iff

Kl or -Kl occurring in Π. Then, we call a pair (S, S ′) an assignment of EL(Π) iff

S ∪ S
′ = EL(Π) and S ∩ S

′ = ∅

Then, we define an answer set program Π(S ,S ′) obtained by:

- removing from Π all rules containing subjective literals Kl such that l ∈ S
′, or subjective

literal ¬Kl such that l ∈ S ,

ESmodels: An Epistemic Specification Solver 5

- removing from the rest rules in Π all other occurrences of subjective literals of the form

¬Kl,

- replacing remaining occurrences of literals of the form Kl by l.

Theorem 2

Given an epistemic specification Π and a collection W of sets of objective literals. W is a world

view of Π if an assignment (S, S ′) of EL(Π) exists such that

- W is the collection of all answer sets of Π(S ,S ′),

- W satisfies the assignment, that is, S ∩
(⋂

A∈W

)
== S and S

′ ∩
(⋂

A∈W

)
== ∅.

Proof

If both S ∩
(⋂

A∈W

)
== S and S

′ ∩
(⋂

A∈W

)
== ∅ are satisfied, we have Π(S ,S ′) = ΠW .

Hence, if W is the collection of all answer sets of Π(S ,S ′) then W is the collection of all answer

sets of ΠW , that is, W is a world view of Π. q

By Theorem 2, an immediate method of computing the world views of an epistemic spe-

cification includes three main stages: generating a possible assignment, reducing the epistemic

specification into an answer set program, and testing if the collection of the answer sets of the

answer set program satisfies the assignment. At a high level of abstraction, the method can be

implemented as showed in the following algorithm.

Algorithm 1 ESMODELS.

Input:

Π: An epistemic specification;

Output:

All world views of Π;

1: for every possible assignment of EL(Π) (S, S ′) of Π do

2: Π
′
= Π(S ,S ′) {reduces Π to an answer set program Π

′
by (S, S ′)}

3: W = computerASs(Π
′
) {computes all answer sets of Π

′
}

4: if S ∩
(⋂

A∈W

)
== S and S

′ ∩
(⋂

A∈W

)
== ∅ then

5: output W

6: end if

7: end for

ESMODELS firstly gets all subjective literals EL(Π) and generates all possible assignments

of EL(Π). For each assignment(S, S ′), the algorithm reduces Π to an answer set program Π′, i.e.,

Π′ = Π(S ,S ′). Next, it calls exiting ASP solver like Smodels, Clasp to compute all answer sets W

of Π′. Finally, it verifies the W . W is a world view of Π, if W satisfies S ∩
(⋂

A∈W

)
== S and

S
′ ∩

(⋂
A∈W

)
== ∅. ESMODELS stops, when all possible assignments are tested.

3.2 Optimization Approaches

3.2.1 Reducing Subjective Literals

However, ESMODELS has a high computational cost, especially with a large number of sub-

jective literals. Therefore, we introduce a new preprocessing function to reduce reduce EL(Π)

before generating all possible assignments of EL(Π). We first give several propositions.

6 Z-Z. Zhang, K-K. Zhao

Let Π be an epistemic specification and a pair (S, S ′) of objective literals of Π, TΠ be an lower

bound operator on (S, S ′) defined as follows:

TΠ(S, S ′) =
(
{head(r)||head(r)|= 1, body+(r) ⊆ S, body

−(r) ⊆ S
′},

{l|¬∃r ∈ Π(l ∈ head(r)), or ∀r ∈ Π, l ∈ head(r)⇒ (body+(r)∩S ′ 6= ∅ or body−(r)∩S 6= ∅)}
)

where body+(r) = body
P (r)∪bodyK(r), body−(r) = body

N(r)∪body−K(r). Intuitively,TΠ(S, S ′)

computes the objective literals that must be true and that not true with regard to S and S
′ which

are sets of literals known true and known not true respectively. Clearly, we can use this opera-

tion to reduce the searching space of subjective literals. This idea is guaranteed by the following

definitions and propositions.

Definition 3

A pair (S, S ′) of sets of objective literals is a partial model of an epistemic specification Π if, for

any world view W of Π, S ∩
(⋂

A∈W

)
== S and S

′ ∩
(⋂

A∈W

)
== ∅.

Theorem 3

TΠ(S, S ′) is a partial model if (S, S ′) is a partial model of an epistemic specification Π, .

Proof

Let (A,B)|1 to denote A of a pair (A,B), and (A,B)|2 to denote B. The main idea of this proof

is as follows. For any world view W of Π, S ∩
(⋂

A∈W

)
== S and S

′ ∩
(⋂

A∈W

)
==

∅, by the definition of TΠ, the Gelfond-Lifschitz reduction of ΠW wrt. any ω ∈ W must

have l : −|l ∈ TΠ(S, S ′)|1 and must not have any rule with head in TΠ(S, S ′)|2, hence, we have

TΠ(S, S ′)|1 ∩
(⋂

A∈W

)
== TΠ(S, S ′)|1 and TΠ(S, S ′)|2 ∩

(⋂
A∈W

)
== ∅. q

Corollary 1

Let, T i

Π(S, S ′) = TΠ(T i−1
Π (S, S ′)), then T

k

Π(∅, ∅) is a partial model of Π.

Proof

Because (∅, ∅) is a partial model, TΠ(∅, ∅) is a partial model, and so on, T 2
Π(∅, ∅) ... T k

Π(∅, ∅) are

partial models of Π q

An epistemic specification rule r is defeated by (S, S ′) if body+(r)∩S ′ 6= ∅ or body−(r)∩S ′ 6= ∅.
Let (S, S ′) be a partial model of an epistemic specification Π, Π|(S ,S ′) is obtained by

- removing from Π all rules defeated by (S, S ′),

- removing from the rest rules in Π all other occurrences of literals of the form not l or ¬Kl

such that l ∈ S
′,

- removing remaining occurrences of literals of the form l or Kl such that l ∈ S .

- adding l ← . if l ∈ S

- adding← l. if l ∈ S
′

Theorem 4

If (S, S ′) is a partial model of an epistemic specification Π, Π|(S ,S ′) and Π have the same world

views.

ESmodels: An Epistemic Specification Solver 7

Proof

The main idea in this proof is as follows. For any world view W of Π, if S∩
(⋂

A∈W

)
== S and

S
′ ∩

(⋂
A∈W

)
== ∅, then ΠW and (Π|(S ,S ′))W have the same answer sets. And, for any world

view W of Π|(S ,S ′), we have that W is a world view of Π. q

By theorem 3 and 4, we can design PreProcess showed in algorithm 2. Firstly, it sets the pair

(S, S
′
) as (∅, ∅). Then it expands the partial model of Π and reducts the Π

′
according to (S, S

′
).

Next, we updates the partial model by the new program. Finally, it compares the new partial

model with the previous one. If the partial model is stable, it stops and returns Π
′
; Otherwise, it

repeats this procedure.

Algorithm 2 PreProcess.

Input:

Π: An epistemic specification;

Output:

Π
′
: A reduction of Π;

1: (S, S ′) = (∅, ∅),
2: repeat

3: (S, S ′) = TΠ′(S, S
′)

4: Π′ = Π′|(S ,S ′)
5: until S, S ′ are fixed

6: return Π′

Obviously, PreProcess and partial model are very helpful for reducing search space. We thus

provide an EFFICIENT ESMODELS as follows:

Algorithm 3 EFFICIENT ESMODELS.

Input:

Π: An epistemic specification;

Output:

All world views of Π;

1: Π′=PreProcess(Π)

2: for every possible assignment of EL(Π′) do

3: Π′ = Π′
(S ,S ′)

4: Π′=PreProcess(Π′)

5: W = computerASs(Π′)

6: if S ∩
(⋂

A∈W

)
== S and S

′ ∩
(⋂

A∈W

)
== ∅ then

7: output W

8: end if

9: end for

3.2.2 Using Multicore Technology

In ESmodels, another way of improving efficiency is the use of multicore technology. Based on

Algorithm 3, by parallel generation of possible assignments and parallel calling of ASP solver,

the efficiency of ESmodels can be improved greatly.

8 Z-Z. Zhang, K-K. Zhao

4 Applications

4.1 Conformant Planning

Consider the planning problem with multiple possible initial states, what makes it become much

harder is to find a so called secure plan that enforces the goal from any initial state. (Eiter et al.

2003) gives three security conditions to check whether a plan is secure:

1. the actions of the plan are executable in the respective stages of the execution;

2. at any stage, executing the respective actions of the plan always leads to some legal suc-

cessor state; and

3. the goal is true in every possible state reached if all steps of the plan are successfully

executed.

Here, we consider a track of effects of executing an action sequence as a belief set, thus can intuit-

ively encode those security conditions in epistemic specification constraints. We use nonexecutable

to denote the actions are not executable, inconsistent to denote that a state is illegal, success to

sign a state satisfies the goal, and goal(m) to denote the state reached after a given steps number

m satisfies the goal, and o(A,T) to denote an action A happens in the step T :

- for security condition 1: ←M nonexecutable.

- for security condition 2: ←M inconsistent.

- for security condition 3: success← goal(m). and← ¬K success.

Moreover, to guarantee the above security testing is put on tracks caused by the same action

sequence, we write a new constraint.

← ¬Ko(A,T), o(A,T). (1)

Intuitively, rule (1) says that if one action A happened in stage T of one track, it happened in

stage T of all tracks. Thus, we can easily get a Conformant Planning Module consisting of the

above five constraints and the following action generation rules:

• Set a planning horizon m: #const x = m. step(0..x).

• Generating one action for each step: 1{o(A,T) : action(A)}1← step(T), T < m.

Combine the conformant planning module with a planning domain (including action axioms

e.g., inertial law) encoded in an answer set program, the result epistemic specification represents

a conformant planning problem, and its world view(s) corresponds to the secure plan(s) of the

problem. Here, we use a case provided in (Palacios and Geffner 2006) to demonstrate the con-

formant planning approach using epistemic specification. Given a conformant planning problem

P with an initial state I = p ∨ q (i.e., nothing else is known; there is no CWA), and action a and

b with effects a causes q if r, a causes ¬s if r, and b causes s if q, the planning goal is q, s. Then,

we describe the planning domain as follows.

• Signatures: action(a). action(b).

fluent(in, p). fluent(in, q). fluent(in, r). fluent(in, s).

• Causal Laws: h(pos(q), T + 1) : −o(a, T), h(pos(p), T), step(T).

h(neg(s), T + 1) : −o(a, T), h(pos(r), T), step(T).

h(pos(s), T + 1) : −o(b, T), h(pos(q), T), step(T).

• Inertial Laws:

h(pos(X), T + 1) : −fluent(in, X), h(pos(X), T), step(T), not h(neg(X), T + 1).

h(neg(X), T + 1) : −fluent(in, X), h(neg(X), T), step(T), not h(pos(X), T + 1).

ESmodels: An Epistemic Specification Solver 9

• Initial: 1{h(pos(p), 0), h(pos(q), 0)}2.
1{h(pos(F), 0), h(neg(F), 0)}1 : −fluent(in, F).

• Goal: goal(T) : −h(pos(q), T), h(pos(s), T), step(T).

When we set m = 2, ESmodels can find the unique world view including twelve literal sets, and

each of them includes o(a, 0) and o(b, 1) that means the program has a conformant plan a b.

4.2 Constraints Satisfaction

In some situations, constraints on the variable are with epistemic features, that is, a variable’s

value is not only affected by the values of other variables, but also determined by all possible val-

ues of other variables. Here, we demonstrate the use of ESmodels in solving such constraint sat-

isfaction problems using a dinner problem:Jim, Bones, Checkov, Mike, Jack, Uhura, and Scotty,

and Tommy received a dinner invitation, and the constraints on their decisions and the constraints

description in epistemic specification rules are as follows:

• if Checkov may not participate, then Jim will participate: jim : − not checkove.

• if Jim may not participate, then bones will participate: bones : − not jim.

• if only one of Jack and Mike will participate: jack : − not mike. mike : − not jack.

• if Jack must participate, then Uhura will participate: uhura : −Kjack.

• if Uhura may not participate, then Scotty will participate: scotty : − not uhura.

• if Scotty must participate, then Tommy will participate: tommy : −Kscotty.

• Checkov will participate. checkov.

ESmodels can find the unique world view{{checkov, tommy, scotty, jim, mike}
{checkov, tommy, scotty, jim, jack}} that means Jim, Checkov, Scotty, and tommy must particip-

ate, Bones and Uhura must not participate, Jack and Mike may or may not participate.

5 Conclusion

ESmodels is an epistemic specification solver designed and implemented as an experiment plat-

form to investigate the semantics, language, related reasoning algorithms, and possible applica-

tions of epistemic specifications. A significant feature of this solver is that its language is more

compact than that defined in literatures, but capable of representing many subjective literals via

a group of transformation rules. Besides, this solver can compute world views under Gelfond’s

new definition, while that presented by Zhang in (Zhang 2007) and Watson in (Watson 1994)

are based on the early definition of epistemic specifications. In addition, we find the compact

encoding of conformant planning problems and constraint satisfaction problems in the epistemic

specification language, which primarily shows ESmodels’s potential in applications1.

The work presented here is primary. Now, we are designing and exploring more efficient

algorithm for ESmodels and evaluate it using those benchmarks in the conformant planning

field.

1 In the early related work, Gelfond investigated the value of epistemic specifications in formalizing commonsense
reasoning

10 Z-Z. Zhang, K-K. Zhao

Acknowledgment

We acknowledge the support from Project 60803061 and 61272378 by National Natural Science

Foundation of China, and Project BK2008293 by Natural Science Foundation of Jiangsu.

References

EITER, T., FABER, W., LEONE, N., PFEIFER, G., AND POLLERES, A. 2003. A logic programming

approach to knowledge-state planning, ii: The dlvk system. Artificial Intelligence 144, 1, 157–211.

FABER, W. AND WOLTRAN, S. 2009. Manifold answer-set programs for meta-reasoning. In Logic Pro-

gramming and Nonmonotonic Reasoning. Springer, 115–128.

FABER, W. AND WOLTRAN, S. 2011. Manifold answer-set programs and their applications. In Logic

programming, knowledge representation, and nonmonotonic reasoning. Springer, 44–63.

GELFOND, M. 1991. Strong Introspection. In National Conference on Artificial Intelligence. 386–391.

GELFOND, M. 1994. Logic programming and reasoning with incomplete information. Annals of mathem-

atics and artificial intelligence 12, 1-2, 89–116.

GELFOND, M. 2011. New semantics for epistemic specifications. In Logic Programming and Nonmono-

tonic Reasoning. Springer, 260–265.

GELFOND, M. AND PRZYMUSINSKA, H. 1991. Definitions in epistemic specifications. In LPNMR (2002-

01-03). 245–259.

GELFOND, M. AND PRZYMUSINSKA, H. 1993. Reasoning on open domains. In LPNMR. Vol. 1993.

397–413.

PALACIOS, H. AND GEFFNER, H. 2006. Compiling uncertainty away: Solving conformant planning prob-

lems using a classical planner (sometimes). In AAAI. AAAI Press, 900–905.

TRUSZCZYŃSKI, M. 2011. Revisiting epistemic specifications. In Logic programming, knowledge repres-

entation, and nonmonotonic reasoning. Springer, 315–333.

WANG, K. AND ZHANG, Y. 2005. Nested epistemic logic programs. In Logic Programming and Non-

monotonic Reasoning. Springer, 279–290.

WATSON, R. 1994. An inference engine for epistemic specifications. 1994.M.S. Thesis, Department of

Computer Science, University of Texas at El Paso..

WATSON, R. 2000. A splitting set theorem for epistemic specifications. In Proceedings of the 8th Interna-

tional Workshop on Non-MonotonicReasoning (NMR-2000).

ZHANG, Y. 2003. Minimal change and maximal coherence for epistemic logic program updates. In IJCAI.

112–120.

ZHANG, Y. 2006. Computational properties of epistemic logic programs. In KR. 308–317.

ZHANG, Y. 2007. Epistemic reasoning in logic programs. In IJCAI. 647–653.

	AbrantesTC.pdf
	areiasTC-new.pdf
	azizTC.pdf
	BalducciniTC.pdf
	BiTC.pdf
	bogaertsTC.pdf
	brassTC.pdf
	castroTC.pdf
	Introduction
	The Problem of Representing Java References in Prolog
	Reference Representation
	Opacity of the Representation
	Object Identity Preservation
	Reference Life Span
	Scope of the Inter-Language Conversion Policies

	Architecture
	Prolog VM Abstraction
	Embedded Prolog Database

	Reference Management with JPC
	Symbolic Representation
	Object Reference Representation

	Related Work
	Conclusions and Future Work
	References

	GallagherTC.pdf
	GavanelliTC.pdf
	Introduction
	Problem considered and CLP solution
	A CLP solution

	Extended solution
	Computing emissions
	Indicators
	Computing the Pareto front

	Graphical User Interface
	Conclusions and Future Work
	References

	gebserTC.pdf
	gomesTC.pdf
	Introduction
	Using TR to express complex events
	TRev: combining the execution of transactions with complex event detection
	TRev Syntax and Model Theory
	Entailment and Properties

	Discussion and Related Work
	References

	HerrasTC.pdf
	LeTC.pdf
	NampallyTC.pdf
	NarboniTC.pdf
	oliveiraTC.pdf
	saptawijayaTC.pdf
	Introduction
	Tabdual and Evolp/r
	Integrating Tabdual and Evolp/r
	Concluding Remarks
	References

	slota.pdf
	Introduction
	Background
	Direct Support for Strong Negation in Rule Updates
	Properties
	Concluding Remarks
	References

	stulovaTC.pdf
	TarauTC.pdf
	zhangTC.pdf

