
Under consideration for publication in Theory and Practice of Logic Programming 1

Online appendix for the paper

Resource Usage Analysis of Logic Programs
via Abstract Interpretation Using Sized Types ∗

published in Theory and Practice of Logic Programming

A. SERRANO1† P. LOPEZ-GARCIA2,3 M. V. HERMENEGILDO3,4

1Dept. of Information and Computing Sciences, Utrecht University

(e-mail: A.SerranoMena@uu.nl)
2IMDEA Software Institute

(e-mail: pedro.lopez@imdea.org, manuel.hermenegildo@imdea.org)
3Spanish Council for Scientific Research (CSIC)

4Technical University of Madrid (UPM)

(e-mail: herme@fi.upm.es)

submitted February 4, 2014; revised March 18, 2014; accepted May 1, 2014

Appendix A The Abstract Interpretation Framework

Abstract interpretation (Cousot and Cousot 1992) is a framework for static analysis.

Execution of the program on a concrete domain is simulated in an abstract domain,

simpler than the former one. Both domains must be lattices, 〈P(Σ),⊆〉 and 〈∆,v〉. To

go from one to another we use a pair of functions, called abstraction α : P(Σ)→ ∆ and

concretization γ : ∆→ P(Σ), which should form a Galois connection:

〈P(Σ),⊆〉 −−−→←−−−α
γ
〈∆,v〉 if and only if α(x) v y ⇐⇒ x ⊆ γ(y)

Intuitively α(σ) generates the smallest element in ∆ that contains all the elements in σ,

and γ(δ) computes all the concrete elements represented by δ.

The methodology is very general, so we focus specifically on the PLAI (Muthukumar

and Hermenegildo 1989; Muthukumar and Hermenegildo 1992) framework. The PLAI

algorithm abstracts execution and-or trees similarly to (Bruynooghe 1991) but repre-

sents the abstract executions implicitly and computes fixpoints efficiently using memo

tables, dependency tracking, etc. The procedure is generic (parametric) in the sense that

it factors out the abstraction of program execution flow (the execution and-or trees),

which is common to many different analyses, from other (mainly data-related) abstrac-

tions, which are more application-specific, and which are encoded as one or more abstract

domains. It is also goal dependent: it takes as input a pair (L, λc) representing a pred-

icate along with an abstraction of the call patterns (in the chosen abstract domain)

∗ This research was supported in part by projects EU FP7 318337 ENTRA, Spanish MINECO TIN2012-
39391 StrongSoft and TIN2008-05624 DOVES, and Madrid TIC/1465 PROMETIDOS-CM.
† A. Serrano performed this work during his former affiliation to the IMDEA Software Institute.



2 A. Serrano et al.

and produces an abstraction λo which overapproximates the possible outputs, as well as

all different call/success pattern pairs for all called predicates in all paths in the pro-

gram and the corresponding abstract information at all other program points, for all

procedure versions. This algorithm is the basis of the PLAI abstract analyzer found in

CiaoPP (Hermenegildo et al. 2012), where we have integrated a working implementation

of the proposed resource analysis. In PLAI, abstract domains are pluggable units which

need to define implementations of v, least upper bound (t), bottom (⊥), and a number

of other operations related to predicate calls and successes.

For any clause h :− q1, . . . , qn., let λi and λi+1 be the abstract substitutions to the

left and to the right of literal qi, and λcall i and λsuccess i their projections onto the

variables of qi respectively. λ1 and λn+1 are the entry and exit substitutions of the

clause respectively, denoted also as βentry and βexit. We can show this graphically as

follows:

λcall p λsuccess

β1,entry h1 β1,exit . . . βm,entry hm βm,exit

βentry h βexit

λ1 p1 λ2 . . . λn pn λn+1

To compute λsuccess from λcall of a generic (sub)goal p(x̄) with predicate p:

1. Generate a βentry i from λcall for each of the m clauses Ci defining the predicate

p. This transfers the unification of the subgoal and head variables into ∆.

2. For each clause Ci, compute βexit i from βentry i, and then project βexit i back

again onto the subgoal variables, obtaining λ′i.

3. Aggregate all the exit substitutions using the least upper bound, λsuccess =
m⊔
i=1

λ′i.

Computing βexit from βentry is straightforward: set βentry as λ1. Then, project it onto

the variables appearing in the call to the first literal q1, obtaining λcall 1 for q1, and

compute λsuccess 1 from it using the procedure mentioned above. Now λ1 is integrated

with this success substitution, referred to as extending λ1 with λsuccess 1. The result is

set as λ2, for which the same series of steps is performed with respect to the second

literal q2. The process continues until λn+1 is obtained, which is actually βexit.

In the process, more than one call substitution may appear for the same predicate.

This is called multivariance of predicates. Furthermore, if the predicate is recursive, a

fixpoint needs to be computed. To do so, the process above is iterated starting from

the bottom element of the lattice, ⊥. (Muthukumar and Hermenegildo 1992; Puebla and

Hermenegildo 1996) describe performant algorithms for this purpose, which are imple-

mented in CiaoPP.

Appendix B The Abstract Elements, Redux

Because of space constraints, in the main part of the paper the concrete and abstract

domains have not been described in full. In this section we aim to give a more precise

definition of both elements within the framework of abstract interpretation.

In the concrete domain, the resource usage of a predicate p with respect to a set

of resources ri is given by a set of triples (t, s, rp,i), where t is a tuple of terms. The

interpretation of such set is that for a call to p with arguments bound to t, the number



Resource Usage Analysis via Abstract Interpretation Using Sized Types 3

of solutions is exactly s and the resource usage of each ri is exactly rp,i. Note that s and

rp,i are actual values, not equations or recurrences. The resource usage is computed by

adding the head cost at the point of entering a clause and the literal cost at the point

of calling a literal in the body, using the usual SLD resolution semantics. This definition

follows closely the one in (López-Garćıa et al. 2010), but extended to support several

resources and cardinality.

Let dom(e) be the set of tuples of terms t for which a concrete element e has information

over its resource usage. We define e vc e′ if and only if dom(e) ⊆ dom(e′) and for each

t ∈ dom(e), (p(t), s, rU,i) = (p(t), s′, r′U,i). That is, the set of terms of the smaller element

must be a subset of the larger one, and the cardinality and resource usage must coincide

in the common part of their domains.

This concrete domain is abstracted in three different ways, to get a compound domain.

Two of them have already been discussed in the literature: the non-failure and determi-

nacy analyses. Those components of the abstract domain correspond to abstracting the

set of elements t using a regular type abstract domain and then summarizing for those

elements whether s = 0 or s > 0 (for the non-failure domain) and whether s = 1 or

s 6= 1 (for the determinacy one). The failed? component of the abstract elements follows

closely the non-failure analysis, keeping different information during the analysis, but

with the same result.

For the recurrences part, we perform several abstractions. First of all, we move from

strict values for the number of solutions and resource usage to value bounds. Thus, the

elements are sets of triples (t, (sL, sU ), (rL,i, rU,i)). The ordering is now given by:

e v1 e
′ ⇐⇒ dom(e) ⊆ dom(e′)

and for each t ∈ dom(e), (sL, sU ) ⊆ (s′L, s
′
U ) and (rL,i, rU,i) ⊆ (r′L,i, r

′
U,i)

The abstraction function in this case is very simple, we just need to send each value to

an interval with it as only point:

α1({(t, s, rp,i)}t) = {(t, (s, s), (rp,i, rp,i))}t

The second abstraction involves summarizing the domain of each α1(e) using the sized

types abstract domain. As discussed in (Serrano et al. 2013), a set of terms is described

via sized types using sized type schemas along with a domain d which tells which are the

values of the bound variables which are covered by the abstract element, and a set of

recurrences r which defines the relations that bound variables must satisfy between them.

When adding resource usage information, apart from the bounds from sized types we can

refer to new variables: sL and sU refer to the upper and lower bound in the number of

solutions, and vresources contains such variables for each resource in the system.

In this case, it is easier to give the concretization function to move from an abstract

element e to one in the intermediate abstract domain:

γ2(〈d, (sL, sU ), vres, r)〉) =
⋃

t∈ γsized types(〈d,r〉)

(t, bound(sL,sU )(t, r), boundvres(t, r))

where boundv(t, r) returns the upper and lower numerical bounds for the variables v as

given in the recurrences r for the tuple of values t. In few words, γ2 takes all the possible

tuples of values given by the sized type we refer to, and computes the cardinality and

resource usage of each of them as given by the recurrence equations.



4 A. Serrano et al.

The intermediate domain and this concretization function allows us to define an or-

dering v in the abstract elements. But, as stated in the main part of the paper, doing so

would entail knowing whether some recurrences define a set that is larger or smaller than

another one. This is an undecidable problem, and thus we need to resort to other checks

which, while being correct, are not complete. In our case, we chose to use a syntactic

check.

From α1 we can obtain the corresponding concretization function γ1, and from γ2 we

can do the same to obtain an α2. By composition we obtain the abstraction αr = α2 ·α1

and concretization γr = γ1 · γ2 functions that define the Galois connection between

concrete resource usage triples and the abstract domain of recurrence equations.

As stated before, our complete abstract elements:

〈(sL, sU ), vresources, failed?, d, r, nf, det〉

are the combination of that given by 〈αr, γr〉 with those of non-failure (which give the

failed? and nf components) and determinism (which gives the det component), which

abstract information about s over all possible values. For an abstract element a to be

smaller than b, it must be smaller in all of the three domains at the same time.

References

Bruynooghe, M. 1991. A practical framework for the abstract interpretation of logic programs.
J. Log. Program. 10, 2, 91–124.

Cousot, P. and Cousot, R. 1992. Abstract Interpretation and Applications to Logic Pro-
grams. Journal of Logic Programming 13, 2-3, 103–179.

Hermenegildo, M. V., Bueno, F., Carro, M., López, P., Mera, E., Morales, J., and
Puebla, G. 2012. An Overview of Ciao and its Design Philosophy. Theory and Practice of
Logic Programming 12, 1–2 (January), 219–252. http://arxiv.org/abs/1102.5497.

López-Garćıa, P., Darmawan, L., and Bueno, F. 2010. A Framework for Verification and
Debugging of Resource Usage Properties. In Technical Communications of the 26th Int’l.
Conference on Logic Programming (ICLP’10), M. Hermenegildo and T. Schaub, Eds. Leibniz
International Proceedings in Informatics (LIPIcs), vol. 7. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 104–113.

Muthukumar, K. and Hermenegildo, M. 1989. Determination of Variable Dependence
Information at Compile-Time Through Abstract Interpretation. In 1989 North American
Conference on Logic Programming. MIT Press, 166–189.

Muthukumar, K. and Hermenegildo, M. 1992. Compile-time Derivation of Variable Depen-
dency Using Abstract Interpretation. Journal of Logic Programming 13, 2/3 (July), 315–347.

Puebla, G. and Hermenegildo, M. 1996. Optimized Algorithms for the Incremental Analysis
of Logic Programs. In International Static Analysis Symposium (SAS 1996). Number 1145 in
LNCS. Springer-Verlag, 270–284.

Serrano, A., Lopez-Garcia, P., Bueno, F., and Hermenegildo, M. 2013. Sized Type
Analysis for Logic Programs (technical communication). In Theory and Practice of Logic
Programming, 29th Int’l. Conference on Logic Programming (ICLP’13) Special Issue, On-line
Supplement, T. Swift and E. Lamma, Eds. Vol. 13. Cambridge U. Press, 1–14.


