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Appendix A Adequacy Theorem

In this section we will discuss the adequacy theorem. We will start by proving Theorem 2 for

the case where the framework used for the specification is SELL (i,e, the underlying constraint

system is built from an idempotent c-semiring). Later, in Section A.2, we extend this result for

the SELLS case for non-idempotent c-semirings.

A.1 Adequacy using SELL

Since SELL admits a focused system (Andreoli 1992), we can use here the same machinery

developed in (Nigam et al. 2013).

First of all, notice that, by using simple logical equivalences (such as moving the existential

outwards), we can rewrite the constraints to the following shape:

c = ∃x.([pc1]a1
⊗·· ·⊗ [pcn]an)

where [pc1]a1
, . . . , [pcn]an are all of the form !ai(!aiA1 ⊗·· ·⊗ !aiAmi) or of the form !aiA. Observe

that the formula above is composed only by positive formulas. Thus, from the focusing discipline,

whenever such a formula appears in the left-hand-side, it is decomposed as illustrated by the

following derivation:

∆, [pc1]a1
, . . . , [pcn]an −→ R

∆, [pc1]a1
⊗·· ·⊗ [pcn]an −→ R

n− 1×⊗L

∆,∃x.([pc1]a1
⊗·· ·⊗ [pcn]an)−→ R

p×∃L

Next, the constraints [pc1]a1
, . . . , [pcn]an appearing in the premise of this derivation are moved

to the contexts a1, . . . ,an, respectively. This is all done in a negative phase. That is, focusing on
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P[[tell(c)]] corresponds exactly to the operational semantics of tells: the pre-constraints in c are

added to the constraint store, creating fresh names in the process.

On the other hand, if such a constraint c is focused on the right, the derivation will have the

shape

∆1≤a1
−→ pc1

∆1−[pc1]a1
→ ···

∆n≤an
−→ pcn

∆n−[pcn]an
→

∆−[pc1]a1
⊗···⊗[pcn]an

→
n− 1×⊗

∆−∃x.([pc1]a1
⊗···⊗[pcn]an )

→
p×∃R

where ∆−c→ represents a sequent with left context ∆ and focused on the right-hand side formula

c. Here ∆i≤ai
contains the elements of ∆i whose contexts are marked with subexponentials greater

or equal to ai. Since ai and u,p,d are not related, ∆i≤ai
will have only pre-constrains and non-

logical axioms. This means that focusing on P[[ask c then P]] = !p(c−◦P[[P]]) corresponds to

proving c only from pre-constraints and non-logical axioms and moving all the other resources

to proving P[[P]].

Continuing this exercise, we can go case by case and prove that, indeed, one focus step corres-

ponds to one operational step, hence proving Theorem 2 with the highest level of adequacy (on

derivations).

A.2 Adequacy using SELLS

The ideas above cannot be used in order to show that the adequacy theorem also holds for SELLS.

The reason is that it is not trivial how to define a focused system to SELLS. Thus we will show

that, in the proof of constraints, no encoded processes, procedure calls or procedure definitions

are used. This is due to the fact that u,p,d are unrelated, and p,d are linear.

Lemma 1

Assume the subexponential signature Σ used to build Soft-CCP. Let ∆∪{p,c} be a set of formu-

las, where: ∆ contains the encoding of non-logical axioms and constraints; c is a constraint and

p is the encoding of a process or of a procedure call. Let b be the subexponential p or d. Then

the sequents ∆, !b p −→ c and ∆, p −→ c are not provable in SELLSΣ.

Proof

The proof is by contradiction. Assume that the sequent ∆, !b p −→ c (resp. ∆, p −→ c) is provable

and consider a proof π of it with smallest height. The last rule applied in π cannot be an initial

rule, because !b p (resp. p) is linear. One possible action is to derelict the formula !b p obtaining

the sequent ∆, p−→ c, which reduces the two cases to one. Another possibility would be applying

some non logical axiom !⊤A (∀x(d −◦ e)) in ∆. But since d,e are constraints, this will lead to a

premise with the formula !b p (resp. p) in the context. Moreover, introducing the formula c is

either not possible: when c is of the form !a pc, b is unrelated to a (resp. the linear formula p is in

the context); or when possible, that is, when c’s main connective is an ∃ or a ⊗, then !b p (resp.

p) is in the context of one of the premises. Finally, we can introduce the formula p if it is the

encoding of a process, such as an ask. But again one of the resulting premises will again contain

a formula of the form !b p′ in the context, where p′ is the encoding of a process. Thus there is no

such minimal proof.
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Lemma 2

Assume the subexponential signature Σ used to build Soft-CCP. Let ∆∪{ f ,c} be a set of formu-

las, where ∆ contains the encoding of logical axioms and constraints; c is a constraint, and !u f

is the encoding of a process definition p(x)
∆
= P. Then the sequent ∆, !u f −→ c is provable in

SELLSΣ if and only if ∆ −→ c is provable.

Proof

The (⇐) direction is straightforward as one only needs to weaken !u f .

The (⇒) direction is as follows. The only way to prove the sequent ∆, !u f −→ c is by weak-

ening !u f . As in the proof of Lemma 1, either we cannot introduce c or when it is introduced

the formula !u f still appears in the context of the premise. Moreover, we cannot derelict !u f ,

because the resulting sequent would contain a linear formula and using the same reasoning in

Lemma 1 we can show that this resulting sequent is not provable. Contracting !u f also does not

help in the proof, as the new occurrence of !u f would also need to be weakened.

Hence even without using focusing in order to control the flow of the proof, we have a neat

way of controlling its shape, using the subexponential structure and linearity.

Appendix B Cut-elimination for SELLS

We prove now Theorem 3. We shall omit the subindex “A ” in ×A and +A since in this context

it is clear that × and + refer to the operands of the c-semiring.

We start by proving the following result, which is a substitution lemma for �.

Lemma 3

Let Σ be a subexponential signature constructed on a c-semiring. Then if b � a× c and a � d,

then b � d × c.

Proof

Let’s assume that b � a× c and a � d. We prove b � c× d. Recall that x � y if x+ y = y (by

definition). Then b � a×c iff b+a×c= a×c and a � d iff a+d = d. By c-semiring properties,

× distributes on +. Then, multiplying c on a+d = d we get c× (a+d) = a× c+ c×d = c×d.

Hence, a× c � c× d. By using the fact that b � a× c, we conclude b � c× d.

Proof of Theorem 3 We first show that Cut permutes over the promotion rule as shown below:

!a1F1, . . . , !
anFn −→ G

!a1F1, . . . , !
anFn −→ !aG

!a
RS

!d1G1, . . . , !
dmGm, !

aG −→ F

!d1G1, . . . , !
dmGm, !

aG −→ !bF
!b

RS

!a1F1, . . . , !
anFn, !

d1G1, . . . , !
dmGm −→ !bF

Cut
 

!a1F1, . . . , !
anFn −→ G

!a1F1, . . . , !
anFn −→ !aG

!a
RS !d1G1, . . . , !

dmGm, !
aG −→ F

!a1F1, . . . , !
anFn, !

d1G1, . . . , !
dmGm −→ F

Cut

!a1F1, . . . , !
anFn, !

d1G1, . . . , !
dmGm −→ !bF

!b
RS

The derivation above is possible since, from the left premise of the first derivation, a � a1 ×

·· ·×an and, from the right premise of the same derivation, b � a×d1 ×·· ·×dm. Thus from the

Lemma 3, we have that b � a1 ×·· ·× an × d1 ×·· ·× dm, i.e., the last !b can be introduced.

For the rest of the cases, the proof is similar to SELL. The more interesting cases are:
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• Promotion + dereliction

Γ −→ G

Γ −→ !aG
!a

RS

∆,G −→ F

∆, !aG −→ F
!a

L

Γ,∆ −→ F
Cut

 

Γ −→ G ∆,G −→ F

Γ,∆ −→ F
Cut

• Promotion + weakening

Γ −→ G

Γ −→ !aG
!a

RS

∆ −→ F

∆, !aG −→ F
!a

L

Γ,∆ −→ F
Cut

 

∆ −→ F

Γ,∆ −→ F
W

We can weaken Γ since applying the !a
RS

rule in the left premise forces Γ to have the shape

!a1F1, . . . , !
anFn, with a � a1 × . . .× an. On the other hand, from the right-premise, a ∈U ,

i.e., formulas of the form !aF are allowed to contract and weaken. Since U is upwardly

closed with respect to �, we also have a1, . . . ,an ∈ U . Thus !a1F1, . . . , !
anFn can also be

weakened.

• Promotion + contraction

Γ −→ G

Γ −→ !aG
!a

RS

∆, !aG, !aG −→ F

∆, !aG −→ F
!a

L

Γ,∆ −→ F
Cut

 

Γ −→ G

Γ −→ !aG
!a

RS

Γ −→ G

Γ −→ !aG
!a

RS
∆, !aG, !aG −→ F

∆,Γ, !aG −→ F
Cut

Γ,Γ,∆ −→ F
Cut

Γ,∆ −→ F
C

• When Cut permutes over structural rules.

!aH, !aH,Γ −→ G

!aH,Γ −→ G
C

∆,G −→ F

!aH,Γ,∆ −→ F
Cut

 

!aH, !aH,Γ −→ G ∆,G −→ F

!aH, !aH,Γ,∆ −→ F
Cut

!aH,Γ,∆ −→ F
C

Γ −→ G

!aH,Γ −→ G
W

∆,G −→ F

!aH,Γ,∆ −→ F
Cut

 

Γ −→ G Γ,G −→ F

Γ,∆ −→ F
Cut

!aH,Γ,∆ −→ F
W

• Some other principal cases
Γ1 −→ A Γ2 −→ B

Γ1,Γ2 −→ A⊗B
⊗R

∆,A,B −→ F

∆,A⊗B −→ F
⊗L

Γ1,Γ2,∆ −→ F
Cut

 

Γ1 −→ A

Γ2 −→ B ∆,A,B −→ F

Γ2,∆,A −→ F
Cut

Γ1,Γ2,∆ −→ F
Cut

Γ −→ A Γ −→ B
Γ −→ A & B

⊗R
∆,A −→ F

∆,A & B −→ F
&L

Γ,∆ −→ F
Cut

 

Γ −→ A ∆,A −→ F

Γ,∆ −→ F
Cut

Ξ1

Γ −→ G[t/x]

Γ −→ ∃x.G
∃R

Ξ2

∆,G[e/x]−→ F

∆,∃x.G −→ F
∃L

Γ,∆ −→ F
Cut

 

Ξ1

Γ −→ G[t/x]
Ξ2[t/e]

∆,G[t/x]−→ F

Γ,∆ −→ F
Cut

The proof of the right premise of the right figure, Ξ2[t/e] is a SELLS proof using the usual

eigenvariable argument. This can be proved by induction on the height of proofs.
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Appendix C Constraint systems as cylindric algebras

We shall now recall the abstract and general definition of constraint systems as cylindric algebras

as in (de Boer et al. 1995).

Definition 1 (Constraint System)

A cylindric constraint system is a structure C = 〈C ,≤,⊔,1,0,Var,∃∃ ,D〉 such that:

- 〈C ,≤,⊔,1,0〉 is a lattice with ⊔ the lub operation (representing the logical and), and 1, 0 the

least and the greatest elements in C respectively (representing true and false). Elements in C

are called constraints with typical elements c,c′,d,d′.... If c ≤ d and d ≤ c we write c ∼= d. If

c ≤ d and c 6∼= d, we write c < d.

-Var is a denumerable set of variables.

-For each x ∈ Var the function ∃∃ x : C → C is a cylindrification operator satisfying: (E1) ∃∃ x(c)≤

c; (E2) If c ≤ d then ∃∃ x(c) ≤ ∃∃ x(d); (E3) ∃∃ x(c⊔∃∃ x(d)) ∼= ∃∃ x(c)⊔∃∃ x(d); (E4) ∃∃ x∃∃ y(c) ∼=

∃∃ y∃∃ x(c).

- For each x,y ∈ Var, the constraint dxy ∈ D is a diagonal element and it satisfies: (D1) dxx
∼= 1;

(D2) If z is different from x,y then dxy
∼= ∃∃ z(dxz ⊔ dzy); (D3) If x is different from y then c ≤

dxy ⊔∃∃ x(c⊔dxy).

- We say that d entails c, notation d |= c, iff c ≤ d.

The cylindrification operators model a sort of existential quantification, helpful for hiding

information. Properties (E1) to (E4) are standard.

The diagonal element dxy can be thought of as the equality x = y. Properties (D1) to (D3) are

standard and they allow the definition of substitutions of the form [y/x] required, for instance,

to represent the substitution of formal and actual parameters in procedure calls. By using these

properties, it is easy to prove that c[y/x] ∼= ∃∃ x.(c⊔ dxy), where c[y/x] represents abstractly the

constraint obtained from c by replacing the variables x by y. As it is customary, we shall assume

that the constraint system under consideration contains an equality theory. Hence, we shall use

indistinguishably the notation dxy and x = y to denote diagonal elements.

Theorem 1 (Constraint System)

Let C = 〈A ,C , |=〉 be as in Definition 4. Then, the structure 〈C ,≤,⊗,1,0,Var,∃,D〉 is a cyl-

indric constraint system where D = {!⊤A (x = y) | x,y ∈Var} and c ≤ d iff d |= c.

Proof

Recall that c ≤ d iff the sequent !⊤A δ1, ..., !
⊤Aδn,d −→ c is provable in SELL where δi is an

axioms in ∆ (see Definition 4). Abusing of the notation, we shall write sequents as the one above

as !⊤A ∆,d −→ c.

Properties (E1) to (E4) of ∃∃ (interpreted as ∃) are easy.

Note that the constraint system contains an equality theory and then, ∆ define the meaning

of “=”. Observe also that diagonal elements are marked with the largest subexponential ⊤A

(which is unbounded). Then, it is easy to see that the following sequents are provable: !⊤A ∆ −→

!⊤A (x = x) ≡ 1; !⊤A ∆ −→ !⊤A (x = y) ≡ ∃z.(!⊤A (x = z)⊗ !⊤A (z = y)) whenever z is different

from x and y; and !⊤A ∆, !⊤A (x = y),∃x.(c⊗ !⊤A (x = y)) −→ c if x is different from y. Then,

properties (D1) to (D3) hold.

Finally, we note that according to Definition 4, every constraint c is a classical formula. Then

it follows that for any c,d, the sequents !⊤A ∆,c −→ 1, !⊤A ∆,0 −→ c and !⊤A ∆,c,d −→ c are

also provable. This shows that indeed 〈C ,≤,⊗,1,0〉 is a lattice where ⊗ is the lub and 1 (resp.

0) the least (resp. greatest) element.
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