
Under consideration for publication in Theory and Practice of Logic Programming 1

Appendix for the paper of

Causal Graph Justifications of Logic Programs∗

Pedro Cabalar, Jorge Fandinno

Department of Computer Science

University of Corunna, Spain

(e-mail: {cabalar, jorge.fandino}@udc.es)

Michael Fink

Vienna University of Technology,

Institute for Information Systems

Vienna, Austria

(e-mail: fink@kr.tuwien.ac.at)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Appendix A. Auxiliary figures

Associativity

t + (u+w) = (t+u) + w

t ∗ (u∗w) = (t ∗u) ∗ w

Commutativity

t + u = u + t

t ∗ u = u ∗ t

Absorption

t = t + (t ∗u)
t = t ∗ (t+u)

Distributive

t + (u∗w) = (t+u) ∗ (t+w)
t ∗ (u+w) = (t ∗u) + (t ∗w)

Identity

t = t + 0

t = t ∗ 1

Idempotence

t = t + t

t = t ∗ t

Annihilator

1 = 1 + t

0 = 0 ∗ t

Fig. 1. Sum and product satisfy the properties of a completely distributive lattice.

Appendix B. An example of causal action theory

In this section we consider a more elaborated example from Pearl (2000).

Example 1

Consider the circuit in Figure 2 with two switches, a and b, and a lamp l. Note that a is the main

switch, while b only affects the lamp when a is up. Additionally, when the light is on, we want

to track which wire section, v or w, is conducting current to the lamp. �

As commented by Pearl (2000), the interesting feature of this circuit is that, seen from outside

as a black box, it behaves exactly as a pair of independent, parallel switches, so it is impossible

to detect the causal dependence between a and b by a mere observation of performed actions and

their effects on the lamp. Figure 2 also includes a possible representation for this scenario; let us

call it program P1. It uses a pair of fluents up(X) and down(X) for the position of switch X , as

∗ This research was partially supported by Spanish MEC project TIN2009-14562-C05-04, Xunta projects GPC2013/070
and INCITE 2011, Inditex-University of Corunna 2013 grants and the Austrian Science Fund (FWF) project P24090.

2 P. Cabalar, J. Fandinno & M. Fink

well as on and off to represent the state of the lamp. Fluents up(X) and down(X) (respectively,

on and off) can be seen as the strong negation of each other, although we do not use an operator

for that purpose1. Action m(X ,D) stands for “move switch X in direction D ∈ {u,d}” (up and

down, respectively). Actions between state t and t + 1 are located in the resulting state. Finally,

we have also labelled inertia laws (by i) to help keeping track of fluent justifications inherited by

persistence.

Circuit diagram

a

b

l

w

v

Inertia

i : up(X)t+1 ← up(X)t , not down(X)t+1

i : down(X)t+1 ← down(X)t , not up(X)t+1

Direct effects

up(X)t ← m(X ,u)t

down(X)t ← m(X ,d)t

Causal rules (indirect effects)

v : ont ← down(a)t

w : ont ← up(a)t , down(b)t

offt ← up(a)t , up(b)t

Constraints

⊥ ← m(X ,u)t , m(X ,d)t

⊥ ← up(X)t , down(X)t

⊥ ← ont , offt

Initial state

up(a)0 up(b)0 off0

Fig. 2. A circuit with two switches together with a possible representation.

Suppose we perform the following sequence of actions: we first move down both switches,

next switch b is moved first up and then down, and finally we move up switch a. Assume also

that each action occurrence is labelled with the action name so that, for instance, moving b up

in Situation 1 corresponds to the program fact m(b,u)1 : m(b,u)1. The table in Figure 3 shows

the resulting temporal projection. Note how the lamp turns on in Situation 1 but only because

of v, that is, moving a down. Movements of b at 2 and 3 do not affect the lamp, and its causal

explanation (down(a)) is maintained by inertia. In Situation 4, the lamp is still on but the reason

has changed. The explanation this time is that we had closed down b at 3 (and this persisted by

inertia) while we have just moved a up, firing rule w.

This example also illustrates why we are not interested in providing negative justifications through

default negation. This would mean to explicitly include non-occurrences of actions that might

otherwise have violated inertia. For instance, the explanation for on2 would include the fact that

we did not perform m(a,u)2. Including this information for one transition is perhaps not so cum-

bersome, but suppose that, from 2 we executed a high number of transitions without performing

any action. The explanation for on3 would additionally collect that we did not perform m(a,u)3

either. The explanation for on4 should also collect the negation of further possibilities: moving a

up at 4; three movements of a up, down and up; moving b at 3 and both switches at 4; moving

both switches at 3 and b at 4; etc. It is easy to see that negative explanations grow exponentially:

1 Notice how strong negation would point out the cause(s) for a boolean fluent to take value false, whereas default
negation represents the absence of cause.

Theory and Practice of Logic Programming 3

t 0 1 2 3 4

Actions m(a,d)1, m(b,d)1 m(b,u)2 m(b,d)3 m(a,u)4

up(a)t 1 0 0 0 m(a,u)4

down(a)t 0 m(a,d)1 m(a,d)1 · i m(a,d)1 · i 0

up(b)t 1 0 m(b,u)2 0 0

down(b)t 0 m(b,d)1 0 m(b,d)3 m(b,d)3 · i

ont 0 m(a,d)1 · v m(a,d)1 · iv m(a,d)1 · iv (m(b,d)3 · i∗m(a,u)4) ·w
offt 1 0 0 0 0

Fig. 3. Temporal projection of a sequence of actions for program P1.

at step t we would get the negation of all possible plans for making ont false, while indeed,

nothing has actually happened (everything persisted by inertia).

4 P. Cabalar, J. Fandinno & M. Fink

Appendix C. Example with infinite rules

Example 2

Consider the infinite program P2 given by the ground instances of the set of rules:

l(s(X)) : nat(s(X))← nat(X)

l(z) : nat(z)

defining the natural numbers with a Peano-like representation, where z stands for “zero.” For

each natural number n, the causal value obtained for nat(sn(z)) in the least model of the program

is l(z) · l(s(z)) . . . l(sn(z)). Read from right to left, this value can be seen as the computation steps

performed by a top-down Prolog interpreter when solving the query nat(sn(z)). As a further

elaboration, assume that we want to check that at least some natural number exists. For that

purpose, we add the following rule to the previous program:

some← nat(X) (1)

The interesting feature of this example is that atom some collects an infinite number of causes

from all atoms nat(sn(z)) with n ranging among all the natural numbers. That is, the value for

some is I(some) = α0 +α1 +α2 + . . .+αn + . . . where αn
def= l(z) · l(s(z)) · . . . · l(sn(z)). However,

it is easy to see that the fact nat(z) labelled with l(z) is not only sufficient to prove the existence

of some natural number, but, due to the recursive definition of the natural numbers, it is also

necessary – note how all the proofs αi actually begin with an application of l(z).

This fact is captured in our semantic by the algebraic equivalences showed in Fig ??. From

associativity and identity of ‘·’, the following equivalence holds:

αn = 1 · l(z) · βn with βi
def= l(s(z)) · . . . · l(si(z))

for any n≥ 1. Furthermore, from absorption of ‘·’ w.r.t the addition, it also holds that

α0 + αn = l(z) + 1 · l(z) · βn = l(z)

As a consequence, the previous infinite sum just collapses to I(some) = l(z), reflecting the fact

that, to prove the existence of a natural number, only the fact labelled as l(z) is relevant.

Suppose now that, rather than defining natural numbers in a recursive way, we define them by

directly asserting an infinite set of facts as follows:

l(sn(z)) : nat(sn(z)) (2)

for any n≥ 0, where s0(z) stands for z. In this variant, the causal value obtained for nat(sn(z)) is

simply l(sn(z)), so that the dependence we had before on lower natural numbers does not exist

any more. Adding rule (1) to the set of facts (2) allows us concluding I(some) = l(z)+ l(s(z))+

l(s2(z))+ . . .+ l(sn(z))+ . . . and this infinite sum cannot be collapsed into any finite term. This

reflects that we have now infinite independent ways to prove that some natural number exists.

This last elaboration can be more elegantly captured by replacing the infinite set of facts (2)

by an auxiliary recursive predicate aux defined as follows:

aux(s(X))← aux(X)

aux(z)

l(X) : nat(X)← aux(X)

Since rules for aux are unlabelled, the value of aux(sn(z)) in the least model is I(aux(sn(z)) = 1 so

the effect of this predicate is somehow “transparent” regarding causal justifications. As a result,

the value of nat(sn(z)) is just l(sn(z)) as before.

Theory and Practice of Logic Programming 5

Appendix D. Proofs

In order to improve clarity, for any causal graph G = 〈V,E〉 we use the notation V (G) and E(G)

to refer to V and E respectively.

Proposition 1 (Monotonicity)

Let G,G′ be a pair of causal graph with G≤ G′. Then, for any causal graph H:

G∗H ≤G′ ∗H, G ·H ≤ G′ ·H and H ·G≤ H ·G′

Proof . First we will show that G∗H ≤G′ ∗H. Suppose that E(G∗H) 6⊇ E(G′ ∗H) and let (l1, l2)

be an edge in E(G′ ∗H) but not in E(G∗H ′), i.e. (l1, l2) ∈ E(G′ ∗H)\E(G∗H ′).

Thus, since by product definition E(G′∗H)= E(G′)∪E(H), it follows that either (l1, l2)∈E(G′)

or (l1, l2) ∈ E(H). It is clear that if (l1, l2) ∈ E(H) then (l1, l2) ∈ E(G ∗H) = E(G)∪ E(H).

Furthermore, since G≤ G′ it follows that E(G) ⊇ E(G′), if (l1, l2) ∈ E(G′) then (l1, l2) ∈ E(G)

and consequently (l1, l2) ∈ E(G ∗H) = E(G)∪E(H). That is E(G ∗H) ⊇ E(G′ ∗H) and then

G ∗H ≤ G′ ∗H. Note that V (G ∗H) ⊇ V (G′ ∗H) follows directly from E(G ∗H) ⊇ E(G′ ∗H)

and the fact that every vertex has and edge to itself.

To show that G ·H ≤ G′ ·H (the case for H ·G ≤ H ·G′ is analogous) we have has to show that,

in addition to the previous, for every edge (lG, lH) ∈ E(G′ ·H) with lG ∈V (G′) and lH ∈V (H) it

holds that (lG, lH) ∈ E(G ·H). Simply note that since G≤ G′ it follows V (G)⊇ V (G)′ and then

lG ∈V (G). Consequently (lG, lH) ∈ E(G ·H). �

Proposition 2 (Distributivity)

For every pair of sets of causal graphs S and S′, it holds that
(

∏S
)

·
(

∏S′
)

= ∏
{

G ·G′
∣

∣ G ∈ S and G′ ∈ S′
}

.

Proof . For readability sake, we define two causal graphs

GR
def=

(

∏S
)

·
(

∏S′
)

and GL
def= ∏

{

G ·G′
∣

∣ G ∈ S and G′ ∈ S′
}

and we assume that both S and S′ are not empty sets. Note that ∏ /0 = CLb = ∏{G /0}. Then, by

product definition, it follows that

E(GL) =
(

⋃
{

E(G)
∣

∣ G ∈ S
}

∪
⋃

{

E(G′)
∣

∣ G ∈ S′
}

∪EL

)∗

E(GR) =
(

⋃
{

E(G)∪E(G′)∪ER(G,G′)
∣

∣ G ∈ S and G′ ∈ S′
}

)∗

where
EL =

{

(l, l′)
∣

∣ l ∈
⋃

{ V (G)
∣

∣ G ∈ S } and l′ ∈
⋃

{ V (G′)
∣

∣ G′ ∈ S′ }
}

ER(G,G′) = { (l, l′)
∣

∣ l ∈V (G) and l′ ∈V (G′) }

Furthermore let ER =
⋃

{ ER(G,G′)
∣

∣ G ∈ S and G′ ∈ S′ }. For every edge (l, l′) ∈ EL there are a

pair of c-graphs G∈ S and G′ ∈ S′ s.t. l ∈V (G) and l′ ∈V (G′) and then (l, l′) ∈ ER(G,G′) and so

(l, l′) ∈ ER. Moreover, for every edge (l, l′) ∈ ER there are a pair of c-graphs G ∈ S and G′ ∈ S′

s.t. (l, l′) ∈ ER(G,G′) with l ∈V (G) and l′ ∈V (G)′. So that (l, l′) ∈ EL. That is EL = ER. Then

E(GR) =
(

⋃
{

E(G)
∣

∣ G ∈ S
}

∪
⋃

{

E(G′)
∣

∣ G′ ∈ S′
}

∪ER

)∗

=
(

E(GL)\EL∪ER

)∗
=

(

E(GL)
)∗

= E(GL)

Consequently GL = GR. �

6 P. Cabalar, J. Fandinno & M. Fink

Proposition 3 (Distributivity cont)

For any causal graphs G, G′ 6= /0 and G′′, it holds that

G ·G′ ·G′′ = G ·G′ ∗G′ ·G′′

Proof . It is clear that G ·G′ ·G′′ ≤ G ·G′ and G ·G′ ·G′′ ≤ G′ ·G′′ and then G ·G′ ·G′′ ≤ G ·

G′ ∗G′ ·G′′. Let G1, G2, GL and GR be respectively G1 = G ·G′, G2 = G′ ·G′′, GL = G1 ·G
′′,

and GR = G1 ∗G2. Suppose that GL < GR, i.e. GL ⊃ GR and there is an edge (v1,v2) ∈ GL but

(v1,v2) /∈ GR. Then G1 ⊆ GR and G′′ ⊆ G2 ⊆ GR and one of the following conditions holds:

1. (v1,v2) ∈G1 ⊆ GR or (v1,v2) ∈G′′ ⊆ GR which is a contradiction with (v1,v2) /∈ GR.

2. v1 ∈ G1 and v2 ∈ G′′, i.e. v1 ∈ G and v2 ∈ G′′ or v1 ∈ G′ and v2 ∈ G′′. Furthermore, if the

last it is clear that (v1,v2) ∈G′ ·G′′ = G2 ⊆GR which is a contradiction with (v1,v2) /∈GR.

Thus it must be that v1 ∈G and v2 ∈ G′′. But then, since G′ 6= /0 there is some v′ ∈G′ and conse-

quently there are edges (v1,v
′) ∈G ·G′ = G1 ⊆GR and (v′,v2) ∈G′ ·G′′ = G2 ⊆GR. Since GR is

closed transitively, (v1,v2) ∈GR which is a contradiction with the assumption that (v1,v2) /∈GR.

That is, GL = G ·G′ ·G′′ = G ·G′ ∗G′ ·G′′ = GR.

Proposition 4

For every causal graph G = 〈V,E〉 it holds that G = ∏
{

l · l′
∣

∣ (l, l′) ∈ E
}

.

Proof . Let G′ be a causal graphb s.t. G′ = ∏
{

l · l′
∣

∣ (l, l′) ∈ E
}

. Then for every edge (l, l′) ∈

E(G) it holds that (l, l′)∈ E(l · l′) and then (l, l′)∈ E(G′) =
⋃

{ E(l · l′)
∣

∣ (l, l′)∈ E }, i.e. E(G)⊆

E(G′). Furthermore for every (l, l′) ∈ E(G′) there is li · l j s.t. (l, l′) ∈ li · l j and (li, l j) ∈ E(G).

Then, since E(li · l j) = {(li, l j)} it follows that (l, l′) ∈ E(G), i.e. E(G) ⊇ E(G′). Consequently

G = G′ = ∏
{

l · l′
∣

∣ (l, l′) ∈ E
}

. �

Proposition 5 (Infimum)

Any set of causal graphs S has a ≤-infimum given by their product ∏S.

Proof . By definition ∏S is the causal graph whose vertices and edges are respectively the sets

V (∏S) =
⋃

{

V (G)
∣

∣ G ∈ S
}

and E(∏S) =
⋃

{

E(G)
∣

∣ G ∈ S
}

. It is easy to see that ∏S is

the supremum of the subgraph relation, so that, since for every pair of causal graphs G ≤ G′ iff

G⊇ G′, it follows that infimum of S w.r.t. ≤. �

Proof of Theorem 1. Let F be the set of filters over the lower semilattice 〈CLb,∗〉. Stumme was

showed in (Stumme 1997) that the concept lattice B〈F,VLb,∆〉 (with F∆I⇔F∩I 6= /0) is isomor-

phic to the free completely distributive complete lattice generated by the partial lattice 〈CLb,+,∗〉

where + and ∗ are two partial functions corresponding with the supremum and infimum. In our

particular, case for every set of causal graphs S its infimum is defined as ∏S and the supremum

is defined as G ∈ S such that G′ ≤ G for all G′ ∈ S, when such G exists and undefined otherwise.

Thus VLb is the set of ideals over the partial lattice 〈CLb,+,∗〉, i.e. every I ∈ VLb is also closed

under defined suprema. He also show that the elements of such lattice are described as pairs
{

(Ft ,It)
∣

∣ Ft ⊆ F, It ⊆ VLb, FI
t = It and Ft = II

t

}

where

Theory and Practice of Logic Programming 7

FI
t =

{

I ∈ I
∣

∣ ∀F ∈ Ft : F ∩ I 6= /0
}

II
t =

{

F ∈ F
∣

∣ ∀I ∈ It : F ∩ I 6= /0
}

That is, every element is in the form 〈II
t ,It 〉. Furthermore infima and suprema can be described

as follows:

∧

t∈T

(II
t ,It) =

(

⋂

t∈T

II
t ,

(

⋃

t∈T

It

)II)

∨

t∈T

(II
t ,It) =

((

⋃

t∈T

II
t

)II

,
⋂

t∈T

It

)

We will show that εI : B−→ VLb given by (II
t ,It) 7→

⋂

It is an isomorphism between 〈B,∨,∧〉

and 〈VLb,∪,∩〉. Note that, since ∏ /0 = G /0 it holds that the empty set is not close under defined

infimum and then it is not a filter, i.e. /0 6∈ F, and then for every filter F ∈ F it holds that G /0 ∈ F .

Thus if It = /0 follows that II
t = F and then III

t = {I ∈VLb |G /0 ∈ I}= CLb 6= It . That is, 〈 /0I, /0〉 6∈B.

We will show that for every ideal It ∈ I and for every set of ideals It ⊆ I s.t. It =
⋂

It it holds that

(II
t ,It) ∈B〈F,I,∆〉 ⇐⇒ It =

{

I ∈ I
∣

∣ It ⊆ I
}

(3)

and consequently εI is a bijection between and B and VLb.

Suppose that (II
t ,It) ∈B〈F,I,∆〉. For every I ∈ It it holds that It ⊆ I. So suppose there is I ∈ I

s.t. It ⊆ I and I 6∈ It . Then there is F ∈ II
t s.t. I∩F = /0 and for every element I′ ∈ It it holds that

I′∩F 6= /0. Pick a causal graph G s.t. G = ∏{G′ | G′ ∈ I′ ∩F and I′ ∈ It}. Since for every G′ it

holds G′ ∈ F and G≤ G′ follows that G ∈ F (F is close under infimum) and G ∈ I′ (every I′ is

close under ≤). That is, for every I′ ∈ It it holds that G ∈ I′∩F and then, since It =
⋂

It , it also

holds that G∈ It ∩F and since It ⊆ I also G ∈ I∩F which contradict that I∩F = /0. So that I ∈ It

and it holds that

(II
t ,It) ∈B〈F,I,∆〉=⇒ It =

{

I ∈ I
∣

∣ It ⊆ I
}

Suppose that It = {I ∈ I | It ⊆ I} but (II
t ,It) ∈B〈F,I,∆〉, i.e. It 6= III

t . Note that It ⊆ III
t because

otherwise there are I ∈ It and F ∈ II
t s.t. I∩F = /0 which is a contradiction with the fact that for

every F ∈ II
t and I ∈ It it holds that F ∩ I 6= /0.

So, there is I ∈ III
t s.t. I 6∈ It , i.e. for every F ∈ II

t it holds that F ∩ I 6= /0 but It 6⊆ I. Pick G ∈ It\I

and F = {G′ | G ≤ G′}. It is clear that F ∈ F and F ∩ It 6= /0 because G ∈ It , so that F ∈ II
t .

Furthermore F ∩ I = /0, because G 6∈ I, which is a contradiction with the assumption. Thus

(II
t ,It) ∈B〈F,I,∆〉 ⇐= It =

{

I ∈ I
∣

∣ It ⊆ I
}

Now, we will show that (II
1,I1)∨ (II

2,I2) = (II
3,I3) iff I1 ∪ I2 = I3. From the above statement

follows that

I1∩ I2 = {I ∈ I | I1 ⊆ I and I2 ⊆ I}=

= {I ∈ I | I1∪ I2 ⊆ I}

I3 = {I ∈ I | I3 ⊆ I}

That is, I1 ∩ I2 = I3 iff I1 ∪ I2 = I3 and by definition of ∨ the first is equivalent to (II
1,I1)∨

(II
2,I2) = (II

3,I3).

8 P. Cabalar, J. Fandinno & M. Fink

Finally we will show that (II
1,I1)∧ (II

2,I2) = (II
3,I3) iff I1∩ I2 = I3. It holds that

(I1∪ I2)
II =

(

{

I ∈ I
∣

∣ I1 ⊆ I or I2 ⊆ I
}

)II

=

=
(

{

I ∈ I
∣

∣ I1∩ I2 ⊆ I
}

)II

I3 =
{

I ∈ I
∣

∣ I3 ⊆ I
}

Since εI is a bijection, it holds that (I1∪ I2)
II = I3 iff I1∩ I2 = I3.

Thus εI : B −→ VLb is an isomorphism between 〈B,∨,∧〉 and 〈VLb,∪,∩〉, i.e. 〈VLb,∪,∩〉 is

isomorphic to the free completely distributive lattice generated by 〈CLb,∗〉.

Let’s check now that ↓: CLb −→ VLb defined as is an injective homomorphism. Stumme has

already showed that εp : CLb −→B given by

εp(G) 7→
(

{

F ∈ F
∣

∣ G ∈ F
}

,
{

I ∈ I
∣

∣ G ∈ I
}

)

is an injective homomorphism between the partial lattice 〈CLb,+,∗〉 and 〈B,∨,∧〉. So that εI ◦εp

is an injective homomorphism between 〈CLb,+,∗〉 and 〈VLb,∪,∩〉 given by

εI ◦ εp(G) 7→
⋂

{

I ∈ VLb

∣

∣ G ∈ I
}

Note that for any causal graph G and G′ ∈ CLb s.t. G′ ≤ G it holds that G′ ∈ εI ◦ εp(G) that

is ↓ G ⊆ εI ◦ εp(G). Furthermore for every causal graph G it holds that ε(G) is an ideal, i.e.

↓G ∈VLb and it is clear that G ∈↓G so that, εI ◦εp is a intersection of which one element is ↓G,

thus εI ◦εp(G)⊆↓G. That is ↓G = εI ◦εp(G) and consequently it is an injective homomorphism

between 〈CLb,+,∗〉 〈VLb,∪,∩〉.

Lemma 0.1

Let P be a positive (and possible infinite) logic program over signature 〈At,Lb〉. Then, (i) the

least fix point of TP, lfp(TP) is the least model of P, and (ii) lfp(TP) = TP ↑
ω (0). �

Proof . Since the set of causal values forms a lattice causal logic programs can be translated to

Generalized Annotated Logic Programming (GAP). GAP is a general a framework for multival-

ued logic programming where the set of truth values must to form an upper semilattice and rules

(annotated clauses) have the following form:

H : ρ ← B1 : µ1 & . . . & Bn : µn (4)

where L0, . . . ,Lm are literals, ρ is an annotation (may be just a truth value, an annotation variable

or a complex annotation) and µ1, . . . ,µn are values or annotation variables. A complex annotation

is the result to apply a total continuous function to a tuple of annotations. Thus a positive program

P is encoded in a GAP program, GAP(P) rewriting each rule R ∈Π of the form

t : H ← B1∧ . . .∧Bn (5)

as a rule GAP(R) in the form (4) where µ1, . . . ,µn are annotation that capture the causal values

of each body literal and ρ is a complex annotation defined as ρ = (µ1 ∗ . . .∗ µn) · t.

Thus we will show that a causal interpretation I |= Π if and only if I |=r GAP(P) where |=r refers

to the GAP restricted semantics.

Theory and Practice of Logic Programming 9

For any program P and interpretation I, by definition, I |= P (resp. I |=r GAP(P)) iff I |= R (resp.

I |=r GAP(R)) for every rule R ∈ P. Thus it is enough to show that for every rule R it holds that

I |= R iff I |=r GAP(R).

By definition, for any rule R of the form of (5) and an interpretation I, I |= R if and only if
(

I(B1)∗ . . .∗ I(Bn)
)

· t ≤ I(H) whereas for any rule GAP(R) in the form of (4), I |=r GAP(R) iff

for all µi ≤ I(Bi) implies that ρ = (µ1 ∗ . . .∗ µn) · t ≤ I(H).

For the only if direction, take µi = I(Bi), then ρ = (µ1 ∗ . . .∗ µn) · t = (I(B1)∗ . . .∗ I(Bn)) · t and

then ρ ≤ I(H) implies
(

I(B1)∗ . . .∗ I(Bn)
)

· t ≤ I(H), i.e. I |=r GAP(R) implies I |= R. For the if

direction, take µi ≤ I(Bi) then, since product an applications are monotonic operations, it follows

that (µ1 ∗ . . .∗ µn) · t ≤ (I(B1)∗ . . .∗ I(Bn)) · t ≤ I(H), That is, I |= R also implies I |=r GAP(R).

Consequently I |= R iff I |=r GAP(R).

Thus, from Theorem 1 in (Kifer and Subrahmanian 1992), it follows that the operator TP is

monotonic.

To show that the operator TP is also continuous we need to show that for every causal program

P the translation GAP(P) is an acceptable program. Indeed since in a program GAP(P) all body

atoms are v-annotated it is acceptable. Thus from Theorem 3 in (Kifer and Subrahmanian 1992),

it follows that TP ↑
ω (0) = l f p(TP) and this is the least model of P.

Lemma 0.2

Given a positive and completely labelled program P, for every atom p and integer k ≥ 1,

TP ↑
k (0)(p) = ∑

R∈Ψ
∑
f∈R

∏
{

f
(

TP ↑
k−1 (0)(q)

) ∣

∣ q ∈ body(R)
}

· label(R)

where Ψ is the set of rules Ψ = { R ∈ Π
∣

∣ head(R) = p } and R is the set of choice functions

R =
{

f
∣

∣ f (S) ∈ S
}

.

Proof . By definition of TP ↑
k (0)(p) it follows that

TP ↑
k (0)(p) = ∑

{ (

TP ↑
k−1 (0)(q1)∗ . . .∗TP ↑

k−1 (0)(q1)
)

· label(R)
∣

∣ R ∈ P with head(R) = p
}

then, applying distributive of application w.r.t. to the sum and and rewriting the sum and the

product aggregating properly, it follows that

TP ↑
k (0)(p) = ∑

R∈Ψ
∏

{

TP ↑
k−1 (0)(q)

∣

∣ q ∈ body(R)
}

· label(R)

Furthermore for any atom q the causal value TP ↑
k−1 (0)(q) can be expressed as the sum of all

c-graphs in it and then

TP ↑
k (0)(p) = ∑

R∈Ψ
∏

{

∑
f∈R

f
(

TP ↑
k−1 (0)(q)

) ∣

∣ q ∈ body(R)
}

·abel(R)

and applying distributivity of products over sums it follows that

TP ↑
k (0)(p) = ∑

R∈Ψ
∑
f∈R

∏
{

f
(

TP ↑
k−1 (0)(q)

)
∣

∣ q ∈ body(R)
}

· lR �

10 P. Cabalar, J. Fandinno & M. Fink

Lemma 0.3

Given a positive and completely labelled program P and a causal graph G, for every atom p and

integer k≥ 1, it holds that G∈ TP ↑
k (0)(p) iff there is a rule l : p← q1, . . . ,qm and causal graphs

Gq1
, . . . , Gqm respectively in TP ↑

k−1 (0)(qi) and G≤
(

Gq1
∗ . . .∗Gqm

)

· l.

Proof . From Lemma 0.2 it follows that G ∈ TP ↑
k (0)(p) iff

G ∈ value
(

∑
R∈Ψ

∑
f∈R

∏
{

f
(

TP ↑
k−1 (0)(q)

) ∣

∣ q ∈ body(R)
}

· label(R)
)

iff
G ∈

⋃

R∈Ψ

⋃

f∈R

value
(

∏
{

↓ f
(

TP ↑
k−1 (0)(q)

)

)

∣

∣ q ∈ body(R)
}

· label(R)

iff there is R ∈Φ, with head(R) = p and a choice function f ∈Ψ s.t.

G ∈ value
(

∏
{

f
(

TP ↑
k−1 (0)(q)

) ∣

∣ q ∈ body(R)
}

· label(R)
)

Let R = l : p← q1, . . . ,qm and f
(

TP ↑
k−1 (0)(qi)

)

= Gqi
. Then the above can be rewritten as

G≤
(

Gq1
∗ . . .∗Gqm

)

· l. �

Definition 1

Given a causal graph G = 〈V,E〉, we define the restriction of G to a set of vertex V ′ ⊆ V as

the casual graph G′ = 〈V ′,E ′〉 where E ′ = { (l1, l2) ∈ E
∣

∣ l1 ∈ V ′ and l2 ∈ V ′ }, and we define

the reachable restriction of G to a set of vertex V ′ ⊆ V , in symbols GV ′ , as the restriction of

G to the set of vertex V ′′ from where some vertex l ∈ V ′ is reachable V ′′ = { l′ ∈ V
∣

∣ (l′, l) ∈

E∗ for some l ∈V ′ }. When V ′ = l is a singleton we write Gl .

Lemma 0.4

Let P be a positive, completely labelled program, p and q be atoms, G be a causal graph, R be a

causal rule s.t. head(R) = q and label(R) = l is a vertex in G and k ∈ {1, . . . ,ω} be an ordinal.

If G ∈ TP ↑
k (0)(p), then Gl ∈ TP ↑

k (0)(q). �

Proof . In case that k = 0 the lemma statement holds vacuous. Otherwise assume as induction hy-

pothesis that the lemma statement holds for k−1. From Lemma 0.3, since G∈ TP ↑
k (0)(p), there

is a rule Rp = (lp : p← p1, . . . , pm) and c-graph Gp1
, . . . ,Gpm s.t. each Gpi

∈ TP ↑
k−1 (0)(pi) and

G≤ (Gp1
∗ . . .∗Gpm) · lp.

If l = lp then, since P is uniquely labelled, R = Rp, Gl = G and by assumption G ∈ TP ↑
k (0)(p).

Otherwise l ∈ Gpi
for some Gpi

and in its turn Gpi
∈ TP ↑

k−1 (0)(pi). By induction hypothesis

Gl ∈ TP ↑
k−1 (0)(q) and since TP ↑

k−1 (0)(q)⊆ TP ↑
k (0)(q) it follows that Gl ∈ TP ↑

k (0)(q).

In case that k = ω , by definition TP ↑
ω (0)(p) = ∑i<ω TP ↑

i (0)(p) and the same for atom q.

Thus, if G ∈ TP ↑
ω (0)(p) there is some i < ω s.t. G ∈ TP ↑

i (0)(p), and as we already show,

Gl ∈ TP ↑
i (0)(q) and consequently Gl ∈ TP ↑

ω (0)(q). �

Lemma 0.5

Let P be a positive, completely labelled program, p be an atom and G be a causal graph and k≥ 1

be an integer. If G is maximal in TP ↑
k (0)(p) then

Theory and Practice of Logic Programming 11

1. there is a causal rule R = (l : p← p1, . . . , pm) and there are causal graphs Gp1
, . . . ,Gpm

s.t. each Gpi
∈maxTP ↑

k−1 (0)(pi) and Gp = (Gp1
∗ . . .∗Gpm) · l and

2. l is not a vertex of any Gpi
. �

Proof . From Lemma 0.3 it follows that G∈TP ↑
k (0)(p) iff there is a rule R =(l : p← q1, . . . ,qm)

and causal graphs G′q1
, . . . ,G′qm

s.t. each Gpi
∈maxTP ↑

k−1 (0)(pi) and G =
(

G′q1
∗ . . .∗G′qm

)

· l.

Let Gq1
, . . . ,Gqm be causes such that each Gqi

∈ maxTP ↑
k−1 (0)(qi) and G′qi

≤ Gqi
and let G′

be the c-graph G′ =
(

Gq1
∗ . . . ∗Gqm

)

· l. By product and application monotonicity it holds that

G≤G′ and, again from Lemma 0.3, it follows that G′ ∈ TP ↑
k (0)(p). Thus, since G is maximal,

it must to be that G = G′ and consequently G =
(

Gq1
∗ . . .∗Gqm

)

· l where each Gqi
is maximal.

Suppose that l is a vertex of Gpi
for some Gpi

. From Lemma 0.4, if follows that Gl
pi
∈TP ↑

k (0)(p).

Furthermore, since Gpi
⊇ Gl

pi
, it follows that Gpi

≤ Gl
pi

and, since l is a label (l 6= 1), it follows

that G < Gpi
and so that G < Gl

pi
which contradicts the assumption that G ∈maxTP ↑

k (0)(p). �

Definition 2

Given a causal graph G we define height(G) as the length of the maximal simple (no repeated

vertices) path in G.

Lemma 0.6

Let P be a positive, completely labelled program, p be an atom, k ∈ {1, . . . ,ω} be an ordinal and

G be a causal graph. If G ∈maxTP ↑
k (0)(p) and height(G) = h≤ k then G ∈ TP ↑

h (0)(p).

Proof . In case that h = 0, from Lemma 0.5, it follows that if G ∈ maxTP ↑
k (0)(p) there is

a causal rule R = (l : p← p1, . . . , pm) and c-graphs. . . . Furthermore, since P is completely la-

belled, it follows that l 6= 1 and then G < l < 1. Since 1 is the only c-graph whose height is 0 the

lemma statement holds vacuous.

In case that h > 0, we proceed by induction assuming as hypothesis that the lemma statement

holds for any h′ < h. From Lemma 0.5, there is a causal rule l : p← p1, . . . , pm, and there are

causal graphs Gp1
, . . . ,Gpm s.t. each Gpi

∈ maxTP ↑
k−1 (0)(pi), G = GR · l and l 6∈ V (Gpi

) for

any Gpi
where GR = Gp1

∗ . . .∗Gpm.

If m = 0 then G = 1 · l = l, height(l) = 1 and l ∈ maxTP ↑
k (0)(p) for any k ≥ 1. Otherwise,

since any path in Gpi
is also a path Gp, it is clear that height(Gpi

) = h′pi
≤ h for any Gpi

. Suppose

that h′pi
= h for some Gpi

. Then there is a simple path l1, . . . , lh of length h in Gpi
and, since

G = GR · l, there is an edge (lh, l) ∈ E(G). That is l1, . . . , lh, l is a walk of length h + 1 in G and,

since l 6∈V (Gpi
), it follows that li 6= l with 1≤ i≤ h. So that l1, . . . , lh, l is a simple path of length

h + 1 which contradicts the assumption that height(G) = h. Thus height(Gpi
) = h′pi

< h for any

Gpi
and then, by induction hypothesis, Gpi

∈maxTP ↑
h′pi (0)(pi).

Let h′ = max{ h′pi

∣

∣ 1≤ i≤m }< h. Since the TP operator is monotonic and h′pi
≤ h′ for any pi, it

follows that TP ↑
h′pi (0)(pi)≤ TP ↑

h′ (0)(pi) and then there are casual graphs G′p1
, . . . ,G′pm

such

that each G′pi
∈ maxTP ↑

h′ (0)(pi), Gpi
≤ G′pi

and G′ = GR · l where G′R = G′p1
∗ . . .∗G′pm

. By

product and application monotonicity, it follows that G ≤ G′, and, from Lemma 0.3, it follows

that G′ ∈ TP ↑
h′+1 (0)(p). Since h′+ 1≤ h it follows that G′ ∈ TP ↑

h (0)(p) and since G≤ G′ it

follows that G ∈ TP ↑
h (0)(p).

12 P. Cabalar, J. Fandinno & M. Fink

Suppose that G 6∈ maxTP ↑
h (0)(p). Then there is G′′ ∈ maxTP ↑

h (0)(p) s.t. G < G′′ and then,

since h ≤ k, it follows that G′′ ∈ TP ↑
k (0)(p) which, since G < G′′, contradicts the assumption

that G ∈ maxTP ↑
k (0)(p). Thus, if G ∈ maxTP ↑

k (0)(p) and height(G) = h ≤ k it follows that

G ∈ TP ↑
h (0)(p).

In case that k = ω , by definition TP ↑
ω (0)(p)= ∑i<ω TP ↑

i (0)(p). Thus, if G∈maxTP ↑
ω (0)(p)

and height(G)= h then there is some i < ω s.t. G∈maxTP ↑
i (0)(p) and h≤ i, and as we already

show, then G ∈ TP ↑
h (0)(p). �

Lemma 0.7

Let P,Q two positive causal logic programs such that Q is the result of replacing label l in P by

some u (a label or 1) then TQ ↑
k (0)(p) = TP ↑

k (0)(p)[l 7→ u] for any atom p and k ∈ {1, . . . ,ω}.

Proof . In case that n = 0, TQ ↑
k (0)(p) = 0 and TP ↑

k (0)(p) = 0 and 0 = 0[l 7→ u]. That is

TQ ↑
k (0)(p) = TP ↑

k (0)(p)[l 7→ u].

We proceed by induction on k assuming that TQ ↑
k−1 (0)(p) = TP ↑

k−1 (0)(p)[l 7→ u] for any

atom p and we will show that TQ ↑ (0)(p) = TP ↑
k (0)(p)[l 7→ u].

Pick G ∈ TP ↑
k (0)(p) then, from Lemma 0.3, there is a rule l′ : p ← q1, . . . ,qm and causal

graphs Gq1
, . . . , Gqm each one respectively in TP ↑

k−1 (0)(qi) s.t. G≤ GR = (Gq1
∗ . . .∗Gqm) · l′.

Thus, by induction hypothesis, for every atom qi and c-graph Gqi
∈ TP ↑

k−1 (0)(q) it holds that

Gqi
[l 7→ u] ∈ TQ ↑

k−1 (0)(qi).

Let GR[l 7→ u] be a c-graph defined as GR[l 7→ u] =
(

Gq1
[l 7→ u] ∗ . . . ∗Gqm [l 7→ u]

)

· l′[l 7→ u].

Then, since G ≤ GR, it follows that G[l 7→ u] ≤ GR[l 7→ u] and then, again from Lemma 0.3, it

follows that G[l 7→ u] ∈ TQ ↑
n (0)(p). That is TP ↑

k (0)(p)[l 7→ u]⊆ TQ ↑
k (0)(p).

Pick G ∈ TQ ↑
k (0)(p) then, from Lemma 0.3, there is a rule there is a rule l′ : p← q1, . . . ,qm

and c-graphs Gq1
, . . . , Gqm respectively in TP ↑

k−1 (0)(qi) s.t. G ≤ GR where GR = (Gq1
∗ . . . ∗

Gqm) · l′.

By induction hypothesis, for every atom qi and graph Gqi
it holds that if Gqi

∈ TQ ↑
k−1 (0)(qi)

then Gqi
∈ TP ↑

k−1 (0)(qi)[l 7→ u]. Thus, it follows that there is a graph G′qi
∈ TP ↑

k−1 (0)(qi)

such that G′qi
[l 7→ u] = Gqi

. Let G′R be a graph s.t. G′R =
(

G′q1
∗ . . .∗G′qm

)

· l′. From Lemma 0.3 for

every causal graph G′ ≤G′R it holds that G′ ∈ TP ↑
k (0)(p). Since G′R[l 7→ u] = GR and G≤GR it

follows that G≤GR[l 7→ u] and, since GR ∈ TP ↑
k (0)(p), it follows that G∈ TP ↑

k (0)(p)[l 7→ u].

Consequently TP ↑
k (0)(p)[l 7→ u]⊇ TQ ↑

n (0)(p) and then TP ↑
k (0)(p)[l 7→ u] = TQ ↑

n (0)(p).

In case that k = ω , by definition TP ↑
ω (0)(p)[l 7→ u] = ∑i<ω TP ↑ (0)(i)p[l 7→ u] and as we

alerady show TP ↑ (0)(i)p[l 7→ u] = TQ ↑
i (0)(p) for all integer i < ω , so that, their sum is also

equal and consequently TP ↑
ω (0)(p)[l 7→ u] = TQ ↑

ω (0)(p).

Proof of Theorem 2. Let P′ be a positive, completely labelled causal program with the same rules

as P. From Lemma 0.1 it follows that (i) lfp(TP) and lfp(TP′) are respectively the least model of

the programs P and P′, and (ii) lfp(TP) = TP ↑
ω (0) and lfp(TP′) = TP′ ↑

ω (0).

Futhermore, it is clear that if P is an infinite program, i.e. n = ω , then TP′ ↑
n (0) = TP′ ↑

ω (0).

Otherwise, by definition it holds that TP′ ↑
n (0) ≤ TP′ ↑

ω (0). Suppose TP′ ↑
n (0) < TP′ ↑

ω (0).

Then there is some atom p and c-graph G ∈ TP′ ↑
ω (0)(p) such that G 6∈ TP′ ↑

n (0)(p). The

Theory and Practice of Logic Programming 13

longest simple path in G must be smaller than the number of its vertices and this must be smaller

than the number of labels of the program which in its turn is equal to the number of rules n, i.e.

height(G) = h≤ n. From Lemma 0.6 it follows that G ∈ TP′ ↑
h (0)(p) and since h≤ n it follows

that TP′ ↑
h (0)(p)⊆ TP′ ↑

n (0)(p) and so that G ∈ TP′ ↑
n (0)(p) which is a contradiction with

the assumption that G ∈ TP ↑
ω (0)(p) but G 6∈ TP ↑

n (0)(p). Thus TP′ ↑
n (0) = TP′ ↑

ω (0).

Furthermore, from Lemma 0.7, TP ↑
k (0)(p) = TP′ ↑

k (0)(p)[l′1 7→ l1] . . . [l
′
n 7→ ln] for k ∈ {n,ω}

and where l′1, . . . , l
′
n are the labels of rules of P′ and l1, . . . , ln are the correspondent labels of such

rules in P. Thus, since TP′ ↑
n (0) = TP′ ↑

ω (0), it follows that TP ↑
n (0) = TP ↑

ω (0).

Lemma 0.8

For any proof π(p) it holds that

graph
(π(q1), . . . ,π(qm)

p
(l)

)

=
(

graph(π(q1))∗ . . .∗ graph(π(q1))
)

· l

Proof . We proceed by structural induction assuming that for every proof in the antecedent π(qi)

and every label l′ ∈V (graph(π(qi))) there is an edge (l′, label(π(qi))) ∈ E(graph(π(qi))).

By definition graph(π(p)) = G∗π(p) is the reflexive and transitive closure of Gπ(p) and then

graph(π(p)) =
(

⋃
{

graph(π(qi))
∣

∣ 1≤ i≤ m
}

∪
{

(label(π(qi), l)
∣

∣ 1≤ i≤ m
}

)∗

Thus, graph(π(p))≥∏
{

graph(π(qi))
∣

∣ 1≤ i≤m
}

· l and remain to show that for every atom

qi and label l′ ∈ V (graph(π(qi))) the edge (l′, l) ∈ E(graph(π(p))). Indeed, since by induc-

tion hypothesis there is an edge (l′, label(π(qi))) ∈ E(graph(π(qi)))⊆ E(graph(π(p)), the fact

that the edge (label(π(qi), l) ∈ E(graph(π(p))) and since graph(π(p)) is closed transitively, it

follows that (l′, l) ∈ E(graph(π(p))). �

Lemma 0.9

Let P be a positive, completely labelled program and π(p) be a proof for p w.r.t. P. Then it holds

that graph(πp) ∈ TP ↑
h (0)(p) where h is the height of π(p) which is recursively defined as

height(π) = 1 + max{ height(π ′)
∣

∣ π ′ is a sub-proof of π }

Proof . In case that h = 1 the antecedent of π(p) is empty, i.e.

π(p) =
⊤

p
(l)

where l is the label of the fact (l : p). Then graph(π(p)) = l. Furthermore, since the fact (l : p)

is in the program P, it follows that l ∈ TP ↑
1 (0)(p).

In the remain cases, we proceed by structural induction assuming that for every natural num-

ber h ≤ n− 1, atom p and proof π(p) of p w.r.t. P whose height(π(p)) = h it holds that

graph(π(p))∈ TP ↑
h (0)(p) and we will show it in case that h = n.

Since height(πp) > 1 it has a non empty antecedent, i.e.

π(p) =
π(q1), . . . ,π(qm)

p
(l)

14 P. Cabalar, J. Fandinno & M. Fink

where l is the label of the rule l : p ← q1, . . . ,qm. By height definition, for each qi it holds

that height(π(qi))≤ n−1 and so that, by induction hypothesis, graph(π(qi)) ∈ TP ↑
h−1 (0)(qi).

Thus, from Lemmas 0.3 and 0.8, it follows respectively that

∏{ graph(π(qi))
∣

∣ 1≤ i≤ m } · l ∈ TP ↑
h (0)(p)

graph(π(p)) = ∏{ graph(π(qi))
∣

∣ 1≤ i≤ m } · l

That is, graph(π(p)) ∈ TP ↑
h (0)(p). �

Lemma 0.10

Let P be a positive, completely labelled program and π(p) be a proof of p w.r.t. P. For every

atom p and maximal causal graph G ∈ TP ↑
ω (0)(p) there is a non-redundant proof π(p) for p

w.r.t. P s.t. graph(π(p)) = G.

Proof . From Lemma 0.5 for any maximal graph G∈TP ↑
k (0)(p), there is a rule l : p← q1, . . . ,qm

and maximal graphs Gq1
∈ TP ↑

h−1 (0)(q1), . . . ,Gqm ∈ TP ↑
k−1 (0)(qm) s.t.

G = (Gq1
∗ . . .∗Gqm) · l

Furthermore, we assume as induction hypothesis that for every atom qi there is a non redundant

proof π(qi) for qi w.r.t. P s.t. graph(π(qi)) = Gqi
. Then π(p) defined as

π(p) =
π(q1), . . . ,π(qm)

p
(l)

is a proof for p w.r.t. P which holds graph(π(p)) = Gp (from Lemma 0.8) and height(π(p)≤

h. Furthermore, suppose that π(p) is redundant, i.e. there is a proog π ′ for p w.r.t P such

that graph(π(p)) < graph(π ′). Let h = height(π ′). Then, from Lemma 0.9, it follows that

graph(π ′) ∈ TP ↑
h (0)(p) and then graph(π ′) ∈ TP ↑

ω (0)(p) which contradicts the hypothe-

sis that G is maximal in TP ↑
ω (0)(p). �

Proof of Theorem 3. From Theorem 2 it follows that the least model I is equal to TP ↑
ω (0). For

the only if direction, from Lemma 0.10, it follows that for every maximal c-graph G ∈ I(p) =

TP ↑
ω (0)(p) there is a non-redundant proof π(p) for p w.r.t P s.t. G = graph(π(p)). That is,

π(p) ∈ Πp and then G = graph(π(p)) ∈ graph(Πp). For the if direction, from Lemma 0.9, for

every G ∈ graph(Πp), i.e. G = graph(π(p)) for some non-redundant proof π(p) for p w.r.t.

P, it holds that G ∈ TP ↑
ω (0)(p) and so that G ∈ I(p). Furthermore, suppose that G is not

maximal, i.e. there is a maximal c-graph G′ ∈ I(p) s.t. G < G′ and a proof π ′ for p w.r.t. P s.t.

graph(π ′) = G′ which contradicts that π(p) is non-redundant. �

Lemma 0.11

Let t be a causal term. Then value(t[l 7→ u]) = value(t)[l 7→ u].

Proof . We proceed by structural induction. In case that t is a label. If t = l then value(l[l 7→

u] = value(u) =↓ u = value(l)[l 7→ u]. If t = l′ 6= l then value(l′[l 7→ u] = value(l′) =↓ l′ =

value(l′)[l 7→ u]. In case that t = ∏T it follows that value(∏T [l 7→ u]) =
⋂

{ value(t ′[l 7→

u])
∣

∣ t ′ ∈T }) and by induction hypothesis value(t ′[l 7→ u])= value(t ′)[l 7→ u]. Then value(∏T [l 7→

u]) =
⋂

{ value(t ′)[l 7→ u]
∣

∣ t ′ ∈ T }) = value(∏T)[l 7→ u]. The cases for t = ∑T is analo-

gous. In case that t = t1 · t2 it follows that value(t[l 7→ u]) = value(t1[l 7→ u]) ·value(t2[l 7→ u]) =

value(t1)[l 7→ u] · value(t2)[l 7→ u] = value(t)[l 7→ u]

Theory and Practice of Logic Programming 15

Proof of Theorem 4. From Theorem 2, models I and I′ are respectively equal to TP ↑
ω (0) and

TP′ ↑
ω (0). Furthermore, from Lemma 0.7, it follows that TP′ ↑

ω (0)(p) = TP ↑
ω (0)(p)[l 7→ u]

for any atom p. Lemma 0.11 shows that the replacing can be done in any causal term without

operate it.

Proof of Theorem 5. It is clear that if every rule in P is unlabelled, i.e. P = P′, then their least

model assigns 0 to every f alse atom and 1 to every true atom, so that their least models coincide

with the classical one, i.e. I = I′ and then Icl = I = I′. Otherwise, let Pn be a program where n

rules are labelled. We can build a program Pn−1 removing one label l and, from Theorem 4, it

follows that In−1 = In[l→ 1]. By induction hypothesis the corresponding classical interpretation

of least model of Pn−1 coincides with the least model of the unlabelled program, i.e. Icl
n−1 = I′,

and then In[l 7→ 1]cl = Icl
n−1 = I′. Furthermore, for every atom p and c-graph G it holds that

G ∈ In(p) iff G[l 7→ 1] ∈ In[l 7→ 1](p). Simple remain to note that value(z) = /0, so that In(p) = 0

iff In[l 7→ 1](p) = 0 and consequently Icl
n = In[l 7→ 1]cl = I′. �

Proof of Theorem 6. By definition I and Icl assigns 0 to the same atoms, so that PI = PIcl
.

Furthermore let Q (instead of P′ for clarity) be the unlabelled version of P. Then QIcl
is the

unlabelled version of PI . (1) Let I be a stable model of P and J be the least model of QIcl
. Then,

I is the least model of PI and, from Theorem 5, it follows that Icl = J, i.e. Icl is a stable model

of Q. (2) Let I′ is a stable model of Q and I be the least model of PI′ . Since I′ is a stable model

of Q, by definition it is the least model of QI′ , furthermore, since QI′ is the unlabelled version of

PI′ it follows, from Theorem 5, that Icl = I′. Note that PI = PIcl
= PI′ . Thus I is a stable model

of P. �

