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1 Appendix

In this appendix, given an A log program Π, a set A of literals and a rule r ∈ Π, we use α(r,A)

to denote the rule obtained from r in the aggregate reduct of Π with respect to A. α(r,A) is nil,

called an empty rule, if r is discarded in the aggregate reduct. We use α(Π,A) to denote the

aggregate reduct of Π, i.e., {α(r,A) : r ∈Π and α(r,A) 6= nil}.

Proposition 1 (Rule Satisfaction and Supportedness)

Let A be an answer set of a ground A log program Π. Then

1. A satisfies every rule r of Π.

2. If p∈ A then there is a rule r from Π such that the body of r is satisfied by A and p is

the only atom in the head of r which is true in A. (It is often said that rule r supports

atom p.)

Proof: Let

(1) A be an answer set of Π.

We first prove A satisfies every rule r of Π. Let r be a rule of Π such that

(2) A satisfies the body of r.

Statement (2) implies that every aggregate atom, if there is any, of the body of r is satisfied by A.

By the definition of the aggregate reduct, there must be a non-empty rule r′ ∈ α(Π,A) such that

(3) r′ = α(r,A).

By the definition of aggregate reduct, A satisfies the body of r iff it satisfies that of r′. Therefore,

(2) and (3) imply that

(4) A satisfies the body of r′.

By the definition of answer set of A log, (1) implies that

(5) A is an answer set of α(Π,A).
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Since α(Π,A) is an ASP program, (3) and (5) imply that

(6) A satisfies r′.

Statements (4) and (6) imply A satisfies the head of r′ and thus the head of r because r and and

r′ have the same head.

Therefore r is satisfied by A, which concludes our proof of the first part of the proposition.

We next prove the second part of the propostion. Consider p ∈ A. (1) implies that A is an answer

set of α(Π,A). By the supportedness Lemma for ASP programs (?), there is a rule r′ ∈ α(Π,A)

such that

(7) r′ supports p.

Let r ∈Π be a rule such that r′ = α(r,A). By the definition of aggregate reduct,

(8) A satisfies the body of r iff A satisfies that of r′.

Since r and r′ have the same heads, (7) and (8) imply that rule r of Π supports p in A, which

concludes the proof of the second part of the proposition. �

Proposition 2 (Anti-chain Property)

Let A1 be an answer set of an A log program Π. Then there is no answer set A2 of Π such that

A1 is a proper subset of A2.

Proof: Let us assume that there are A1 and A2 such that

(1) A1 ⊆ A2 and

(2) A1 and A2 are answer sets of Π

and show that A1 = A2.

Let R1 and R2 be the aggregate reducts of Π with respect to A1 and A2 respectively. Let us first

show that A1 satisfies the rules of R2. Consider

(3) r2 ∈ R2.

By the definition of aggregate reduct there is r ∈Π such that

(4) r2 = α(r,A2).

Consider

(5) r1 = α(r,A1).

If r contains no aggregate atoms then
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(6) r1 = r2.

By (5) and (6), r2 ∈ R1 and hence, by (2) A1 satisfies r2.

Assume now that r contains one aggregate term, f{X : p(X)}, i.e. r is of the form

(7) h← B,C( f{X : p(X)})

where C is some property of the aggregate.

Then r2 has the form

(8) h← B,P2

where

(9) P2 = {p(t) : p(t) ∈ A2} and f (P2) satisfies condition C.

Let

(10) P1 = {p(t) : p(t) ∈ A1}

and consider two cases:

(11a) α(r,A1) = /0.

In this case C( f (P1)) does not hold. Hence, P1 6= P2. Since A1 ⊆ A2 we have that P1 ⊂ P2, the

body of rule (8) is not satisfied by A1, and hence the rule (8) is.

(11b) α(r,A1) 6= /0.

Then r1 has the form

(12) h← B,P1

where

(13) P1 = {p(t) : p(t) ∈ A1} and f (P1) satisfies condition C.

Assume that A1 satisfies the body, B,P2, of rule (8). Then

(14) P2 ⊆ A1

This, together with (9) and (10) implies

(15) P2 ⊆ P1.

From (1), (9), and (10) we have P1 ⊆ P2. Hence
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(16) P1 = P2.

This means that A1 satisfies the body of r1 and hence it satisfies h and, therefore, r2.

Similar argument works for rules containing multiple aggregate atoms and, therefore, A1 satisfies

R2.

Since A2 is a minimal set satisfying R2 and A1 satisfies R2 and A1 ⊆ A2 we have that A1 = A2.

This completes our proof. �

Proposition 3 (Splitting Set Theorem)

Let

1. Π1 and Π2 be ground programs of A log such that no atom occurring in Π1 is unifi-

able with any atom occurring in the heads of Π2,

2. S be a set of ground literals containing all head literals of Π1 but no head literals of

Π2,

Then

(3) A is an answer set of Π1∪Π2

iff

(4a) A∩S is an answer set of Π1 and

(4b) A is an answer set of (A∩S)∪Π2.

Proof. By the definitions of answer set and aggregate reduct

(3) holds iff

(5) A is an answer set of α(Π1,A)∪α(Π2,A)

It is easy to see that conditions (1), (2), and the definition of α imply that α(Π1,A), α(Π2,A),

and S satisfy condition of the splitting set theorem for ASP (?). Hence

(5) holds iff

(6a) A∩S is an answer set of α(Π1,A)

and

(6b) A is an answer set of (A∩S)∪α(Π2,A).

To complete the proof it suffices to show that

(7) Statements (6a) and (6b) hold iff (4a) and (4b) hold.
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By definition of α ,

(8) (A∩S)∪α(Π2,A) = α((A∩S)∪Π2,A)

and hence, by the definition of answer set we have

(9) (6b) iff (4b).

Now notice that from (4b), clause 2 of Proposition ??, and conditions (1) and (2) of our theorem

we have that for any ground instance p(t) of a literal occurring in an aggregate atom of Π1

(10) p(t) ∈ A iff p(t) ∈ A∩S

and, hence

(11) α(Π1,A) = α(Π1,A∩S).

From (9), (11), and the definition of answer set we have that

(12) (6a) iff (4a)

which completes the proof of our theorem. �

Lemma 1

Checking whether a set M of literals is an answer set of P, a program with aggregates, is in

co-NP.

Proof: To prove that M is not an answer set of P, we first check if M is not a model of the

aggregate reduct of P, which is in polynomial time. If M is not a model, M is not an answer set of

P. Otherwise, we guess a set M′ of P, and check if M′ is a model of the aggregate reduct of P and

M′ ⊂M. This checking is also in polynomial time. Therefore, the problem of checking whether

a set M of literals is an answer set of P is in co-NP. �

Proposition 4 (Complexity)

The problem of checking if a ground atom a belongs to all answer sets of an A log program is

Π
P
2 complete.

Proof: First we show that the cautious reasoning problem is in Π
P
2 . We verify that a ground atom

a is not a cautious consequence of a program P as follows: Guess a set M of literals and check

that (1) M is an answer set for P, and (2) a is not true wrt M. Task (2) is clearly polynomial, while

(1) is in co-NP by virtue of Lemma 1. The problem therefore lies in Π
P
2 .

Next, cautious reasoning over programs without aggregates is Π
P
2 hard by (?). Therefore, cautious

reasoning over programs with aggregates is Π
P
2 hard too.

In summary, cautious reasoning over programs with aggregates is Π
P
2 complete. �


