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Appendix A Weak Progression

In this section, we show how a weaker variant of progression can be defined using three-

valued logic. We will restrict our attention to function-free vocabularies (i.e.,vocabularies

containing only constant and predicate symbols) here to simplify the presentation. How-

ever, all definitions can be extended to the general case.

A.1 Three-valued logic

We briefly summarise some concepts from three-valued logic. A truth-value is one of the

following: {t, f,u} (true, false and unknown). We define f−1 = t, t−1 = f and u−1 = u.

We define two orders on truth values: the precision order ≤p is given by u≤p t and u≤p f.

And the truth order ≤ is given by f ≤ u ≤ t.

Definition Appendix A.1

A partial set P over D is a function from D to {t, f,u}.

The precision order is extended to partial sets over D: P ≤p P ′ if for all d ∈ D :

P(d)≤p P ′(d).

A partial Σ-structure J consists of 1) a domain, DJ : a set of elements, and 2) a mapping

associating a value to each symbol in Σ. For predicate symbols P of arity n, this is a

partial set P J over (DJ)n. For constants, this is a value in DJ .

We assume that a (partial) structure also interprets variable symbols and denote J [x :

d] for the structure equal to J except interpreting x by d.

If J and J ′ are two partial structures with the same interpretation for constants, J

is less precise than J ′ (J ≤p J
′) if for all symbols σ, σJ ≤p σ

J′
. A partial structure J

is two-valued if interpretations of its symbols map nothing to u. A two-valued partial

structure is exactly a structure.
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Definition Appendix A.2
Given a partial structure J , the Kleene valuation (KlJ) is defined inductively based on

the Kleene truth tables (Kleene 1938):

• KlJ(P (t)) = P J(t
J

),
• KlJ(¬ϕ) = (KlJ(ϕ))−1

• KlJ(ϕ ∧ ψ) = min≤ (KlJ(ϕ),KlJ(ψ))
• KlJ(ϕ ∨ ψ) = max≤ (KlJ(ϕ),KlJ(ψ))
• KlJ(∀x : ϕ) = min≤

{
KlJ[x:d](ϕ) | d ∈ DJ

}
• KlJ(∃x : ϕ) = max≤

{
KlJ[x:d](ϕ) | d ∈ DJ

}
The Kleene valuation is extended to definitions and theories. For definitions, intuitively,

the value of ∆ is true if all its defined atoms are two-valued and have the correct (defined)

interpretation, its value is false if some defined atom is interpreted incorrectly, and is

unknown otherwise. The exact definition can be found in (Denecker and Ternovska 2008).

In this text, we will only use the following property.

Proposition Appendix A.3
If all defined atoms in a non-empty definition ∆ are interpreted as u in J , then KlJ(∆) =

u.

We use KlJ(T ) to denote the Kleene value of a theory T over a structure J . KlJ(T ) = t

if all of T ’s definitions and sentences have value t in structure J . KlJ(T ) = f if one of

T ’s definitions or sentences has value f in structure J . KlJ(T ) = u otherwise.

We summarise some well-known properties about the Kleene-valuation.

Proposition Appendix A.4
If J is a two-valued partial structure (i.e., a structure), then KlJ(T ) is t if and only if

J |= T and KlJ(T ) is f otherwise.

Proposition Appendix A.5
If J and J ′ are partial structures with J ≤p J

′, then for every theory T ,KlJ(T )≤pKlJ′(T ).

A.2 Weakly T -Compatible Chains and Weak Progression

For this paper, we are only interested in a special kind of partial structures: partial

structures that have complete information on an initial segment of time points and that

have no information about other time points. Using the identification of a structure with

an ∞-chain, a k-chain corresponds to such a partial structure. If (Jj)
k
j=0 is a k-chain, we

associate to J the partial structure J equal to the Jj on static symbols and such that for

dynamic symbols σ

σ(d1 . . . dn−1, j)
J =


t if j ≤ k and (d1 . . . dn−1) ∈ σJj

curr

f if j ≤ k and (d1 . . . dn−1) 6∈ σJj
curr

u otherwise

We identify the k-chain and the corresponding partial structure.

Definition Appendix A.6 (Weakly T -compatible, weak T -successor)
A k-chain J is weakly T -compatible with a Σ-theory T if KlJ(T ) 6= f.

A Σss-structure S′ is a weak T -successor of a k-chain J if J::S is weakly T -compatible.
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Proposition Appendix A.7

Every T -compatible k-chain J is also weakly T -compatible.

Proof

If J is T -compatible, then there is a model J ′ of T that is more precise than J . Since

J ′ |= T , KlJ′(T ) = t by Proposition Appendix A.4. Now, Proposition Appendix A.5

guarantees that KlJ(T ) is less precise than t, hence it must be either t or u and we

conclude that J is indeed weakly T -compatible.

The reverse of Proposition Appendix A.7 does not hold as the following (simple) ex-

ample shows.

Example Appendix A.8

Let T be the following first-order theory:

P (I).

∀t : Q(S(t))⇔ P (t).

∀t : ¬Q(t).

It is clear that T has no models, as the second constraint requires Q to be true at time

1, while the last constraint requires Q to be false at all time points. Hence, there are no

T -compatible chains.

However, the 0-chain J such that J0 interprets P by t and Q by f is weakly T -

compatible. The Kleene-valuation of T in J is u.

The above example shows that it is possible that a weakly T -compatible chain cannot

be extended. Such a situation is often called a deadlock.

Definition Appendix A.9 (Deadlock)

A weakly T -compatible chain J is in a deadlock if there are no weakly T -compatible

extensions of J .

Definition Appendix A.10 (Weak Progression inference)

The weak progression inference is an inference that takes as input a theory T and a

weakly T -compatible k-chain J and returns all weak T -successors of J .

Definition Appendix A.11 (Weak Markov property)

A theory T satisfies the weak Markov property if for every weakly T -compatible k-chain

J , and every weakly T -compatible k′-chain J ′ ending in the same state, i.e., such that

Jk = J ′k′ , the weak T -successors of J are exactly the weak T -successors of J ′.

The weak Markov property essentially says the same as the Markov property, namely

that the successors of a given chain only depend on the last state, i.e., that the system

has no history.
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Appendix B Proofs

Proposition 3.6

Let Σ be a linear-time vocabulary and Σss the corresponding single state vocabulary.

Then the mappings πss
k (·) induce a one-to-one correspondence between Σ-structures J

and sequences (Jk)∞k=0 of Σss-structures sharing the same interpretation of static symbols.

Proof

It is clear that given a structure J , (πss
k (J))∞k=0 is indeed such a sequence.

Now, for the other direction, suppose Jk is a sequence of Σss-structures sharing the

same interpretation of static symbols. Let J denote the Σ-structure with the same inter-

pretation of static symbols and such that, for dynamic predicates σ,

σJ = {(d1, . . . , dn−1, k) | (d1, . . . , dn−1) ∈ σJk
curr}.

Then J is indeed a structure such that πss
k (J) = Jk, as desired.

Theorem 3.18

Let T be an LTC-theory and J a Σ-structure. Then J is a model of T if and only if

πss
0 (J) |= T0 and for every k ∈ N, πbs

k (J) |= Tt.

Proof

By the first condition of Definition 3.13, the FO part of the theory only consists of static,

initial, single-state, and bistate sentences. Now, a structure J satisfies a static sentence if

and only if each of its projections satisfy this sentence. A structure J satisfies an initial

sentence, if and only if its initial time-point satisfies the projection of this sentences, etc.

Hence, for the FO part, the result easily follows.

Furthermore, Definition 3.13 guarantees that all definitions in T are stratified over

time. Now, it follows immediately from Theorem 4.5 in (Vennekens et al. 2006) that we

can split stratified definitions in one definition for each stratification level. Thus, what

we obtain is one definition for each point in time, defining the state at S(t) in terms of

the state in t. This definition corresponds exactly to the definition in Tt, as desired.

Theorem 3.19

Let T be an LTC-theory and J a k-chain. Then, J is weakly T -compatible if and only if

πss
0 (J) |= T0 and for every j < k, πbs

j (J) |= Tt.

Proof

One direction is clear: if J is weakly T -compatible, then πss
0 (J) |= T0 and for every j < k,

πbs
j (J) |= Tt.
For the other direction, suppose πss

0 (J) |= T0 and for every j < k, πbs
j (J) |= Tt. We will

show that J is weakly T -compatible. In order to show this, we will show that KlJ(T ) 6= f,

or said differently, that for every sentence ϕ ∈ T , KlJ(ϕ) 6= f and that for the definition

∆ in T , KlJ(∆) 6= f.

First, let ϕ be any sentence in T . If ϕ is an initial, or a static sentence, then J |= ϕ

because πss
0 (J) |= T0, thus KlJ(ϕ) = t for such sentences. If ϕ is a universal single-

state sentence ∀t : ϕ′(t), we assume that KlJ(ϕ) = f, and will show that this leads to

a contradiction. In this case, using the definition of the Kleene valuation, at least for

one i, KlJ(ϕ[i/t]) = f, or said differently, at least for one i, Ji 6|= te(ϕ). Now, this i

should definitely be greater than k, since Tt contains the constraint te(ϕ). However, since
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Ji is completely unknown on dynamic predicates, we see that Ji≤p J0. Hence, using

Proposition Appendix A.5, we find that also J0 6|= te(ϕ), which is in contradiction with

the assumption that πss
0 (J) |= T0. For bistate sentences, a similar argument holds. Thus

we can conclude that indeed for every sentence ϕ in T , KlJ(ϕ) 6= f.

Now, let ∆ be the definition of T . We should show that KlJ(∆) 6= f. As ∆ is stratified

over time, by Theorem 4.5 in (Vennekens et al. 2006), we can split ∆ in definitions

(∆i)i∈N for each time point. The definitions ∆i with i ≤ k are satisfied in J because

those are the definitions in the theory Tt. For definitions ∆i with i > k, these definitions

define only dynamic atoms with dynamic arguments greater than k. Furthermore, these

dynamic atoms are completely unknown in J . Proposition Appendix A.3 then yields that

KlJ(∆) = u 6= f.

Thus, we also find that KlJ(T ) = u 6= f, i.e., J is indeed weakly T -compatible.

Corollary 3.20

LTC-theories satisfy the Markov property and the weak Markov property.

Proof

We first prove that LTC theories satisfy the Markov property. Let J and J ′ be a k-chain

and a k′-chain respectively with Jk = J ′k′ . Suppose S is a T -successor of J ′. We show

that S is also a T -successor of J . Since J ′::S is T -compatible, there exists a model K ′

of T such that K ′i = J ′i for i ≤ k′ and Kk′+1 = S. Now let K be the structure such that

Kj =

{
Jj for j ≤ k,
K ′k′+j−k otherwise.

We claim that K is a model of T more precise than J::S. The fact that it is more precise

than J ::S follows from the fact that Kk+1 = K ′k′+(k+1)−k = K ′k′+1, which equals S, by

construction of K. In order to prove our claim, we show that for every j, (Kj ,Kj+1),

satisfies Tt. For j ≤ k, this follows from the fact that J is T -compatible; for j > k, from

the fact that K ′ is a model of T . Now using Theorem 3.18, we see that K is a model of

T , which shows that J::S is indeed T -compatible.

We now prove that LTC theories satisfy the weak Markov property. This follows im-

mediately from Theorem 3.19: J ::S is weakly T -compatible if and only if J is weakly

T -compatible and (Jk, S) |= Tt.

Theorem 4.2

Let T be an LTC-theory and ϕ a universal single-state sentence. Then T |= ϕ if T0 |=
te(ϕ), and (Tt ∧ te(ϕ)) |= te(ϕ[S(t)/t]), where t is the unique time-variable in ϕ.

Proof

This theorem is in fact a reformulation of the principle of proofs by induction. The

condition T0 |= te(ϕ) expresses that the invariants holds at time 0, i.e., this is the base

case. The condition (Tt ∧ te(ϕ)) |= te(ϕ[S(t)/t]) expresses that whenever the invariants

holds at t, it also holds at S(t).

Theorem 4.3

Let J be a Σs-structure and let ϕ be a universal single-state sentence with time variable t.

Then ϕ is satisfied in all Σ-structures expanding J if T0∧¬te(ϕ) has no models expanding

J , and Tt ∧ te(ϕ) ∧ ¬te(ϕ[S(t)/t]) has no models expanding J .
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Proof

This theorem is also a reformulation of the principle of proofs by induction, analogue to

Theorem 4.2.

Theorem 4.4

Let T be an LTC-theory and ϕ a universal bistate sentence. Then T |= ϕ if and only if

Tt |= te(ϕ).

Proof

One direction, is clear: if T |= ϕ, it follows immediately that Tt |= te(ϕ).

For the other direction, suppose Tt |= te(ϕ). We should show that T |= ϕ. Therefore, let

J be a model of T . By Theorem 3.18, for every k, Jk |= Tt. Thus, using our assumption,

for every k, also Jk |= te(ϕ). But ϕ is itself an LTC-theory, and ϕi = t and ϕt = te(ϕ).

Thus, using Theorem 3.18 again, we find that J |= ϕ, as desired.
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