
Under consideration for publication in Theory and Practice of Logic Programming 1

Online Appendix of: Tabling, Rational Terms, and
Coinduction Finally Together!

THEOFRASTOS MANTADELIS, RICARDO ROCHA and PAULO MOURA
CRACS & INESC TEC, Faculty of Sciences, University of Porto

Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
(e-mail: {theo.mantadelis,ricroc}@dcc.fc.up.pt,pmoura@inescporto.pt)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

YAP Installation and Rational Term Support

At the time of this submission, our contributions are part of the development version
of YAP (git clone git://git.code.sf.net/p/YAP/YAP-6.3). Inside the folder YAP-6.3/ the
ICLP2014_examples.YAP file contains the paper examples using the appropriate tabling
settings. Currently, tabling supports rational terms only when the answers are loaded by
the tries. To activate that option one can use the following YAP flag:

yap_flag(tabling_mode, load_answers).

Furthermore, our coinductive transformation can be activated by the following directives:

:- table PREDICATE/ARITY.
:- tabling_mode(PREDICATE/ARITY, coinductive).

Technical Requirements: Our tabling extensions only require that the Prolog sys-
tem allows the creation of rational terms and that unification (=/2) works between rational
terms. Our canonical_term/2 predicate also requires that the operators ==/2, =../2 work
with rational terms.

Appendix A Coinduction Examples

The following examples are recreations of the examples presented at (Moura 2013) by
using our implementation.

:- table(comember/2).
:- tabling_mode(comember/2, coinductive).

% Returns the infinite members of a list.
comember(H, L) :-

drop(H, L, L1),
comember(H, L1).

:- table(drop/3).
drop(H, [H|T], T).
drop(H, [_|T], T1) :- drop(H, T, T1).

% Queries:

2 T. Mantadelis, R. Rocha and P. Moura

?- _L=[1,2|_B], _B=[3,4,5|_B], comember(E, _L).
E = 3 ? ;
E = 4 ? ;
E = 5 ? ;
false.

?- comember(1, A).
A = [1|A] ? ;
A = [_1,1,_1|A] ? ;
A = [_1,_2,1,_1|A] ? ;
A = [_1,_2,_3,1,_1|A] ?
...

?- A=[1,2,3|A], drop(H, A, T).
A = [1,2,3|A],
H = 1,
T = [2,3,1|T] ? ;
A = [1,2,3|A],
H = 2,
T = [3,1,2|T] ? ;
A = T = [1,2,3|A],
H = 3 ? ;
false.

?- B=[1|A],A=[2,3|A], drop(H, B, T).
A = T = [2,3|A],
B = [1,2,3|B],
H = 1 ? ;
A = [2,3|A],
B = [1,2,3|B],
H = 2,
T = [3,2|T] ? ;
A = T = [2,3|A],
B = [1,2,3|B],
H = 3 ? ;
false.

?- A=[1,2,3|A], member(H, A).
A = [1,2,3|A],
H = 1 ? ;
A = [1,2,3|A],
H = 2 ? ;
A = [1,2,3|A],
H = 3 ? ;
A = [1,2,3|A],
H = 1 ? ;
A = [1,2,3|A],
H = 2 ?
...

?- B=[1|A],A=[2,3|A], member(H, B).
A = [2,3|A],
B = [1,2,3|B],
H = 1 ? ;
A = [2,3|A],
B = [1,2,3|B],
H = 2 ? ;
A = [2,3|A],
B = [1,2,3|B],
H = 3 ? ;
A = [2,3|A],
B = [1,2,3|B],
H = 2 ? ;
A = [2,3|A],
B = [1,2,3|B],
H = 3 ?

Online Appendix of: Tabling, Rational Terms, and Coinduction Finally Together! 3

...

:- table(p/1).
:- tabling_mode(p/1, coinductive).

:- table(q/1).
:- tabling_mode(q/1, coinductive).

:- table(r/1).
:- tabling_mode(r/1, coinductive).

% Tangle example.
p([a|X]) :- q(X).
p([c|X]) :- r(X).
q([b|X]) :- p(X).
r([d|X]) :- p(X).

% Queries:
?- p(X).
X = [a,b|X] ? ;
X = [c,d|X].

?- L = [a,b,c,d|L], p(L).
L = [a,b,c,d|L].

?- L = [a,c|L], p(L).
false.

:- table(automaton/2).
:- tabling_mode(automaton/2, coinductive).

% Automaton example.
automaton(State, [Input|Inputs]) :-

trans(State, Input, NewState),
automaton(NewState, Inputs).

trans(s0, a, s1).
trans(s1, b, s2).
trans(s2, c, s3).
trans(s2, e, s0).
trans(s3, d, s0).

% Queries:
?- automaton(s0, X).
X = [a,b,c,d|X] ? ;
X = [a,b,e|X].

?- L = [a,b,c,d,a,b,e|L], automaton(s0, L).
L = [a,b,c,d,a,b,e|L].

?- L = [a,b,e,c,d|L], automaton(s0, L).
false.

:- table(sieve/2).
:- tabling_mode(sieve/2, coinductive).

:- table(filter/3).
:- tabling_mode(filter/3, coinductive).

% computes a coinductive list with all the primes in the 2..N interval

4 T. Mantadelis, R. Rocha and P. Moura

primes(N, Primes) :-
generate_infinite_list(N, List),
sieve(List, Primes).

% generate a coinductive list with a 2..N repeating patern
generate_infinite_list(N, List) :-
sequence(2, N, List, List).

sequence(Sup, Sup, [Sup| List], List) :-
!.

sequence(Inf, Sup, [Inf| List], Tail) :-
Next is Inf + 1,
sequence(Next, Sup, List, Tail).

sieve([H| T], [H| R]) :-
filter(H, T, F),
sieve(F, R).

filter(H, [K| T], L) :-
(K > H, K mod H =:= 0 ->

% throw away the multiple we found
L = T1

; % we must not throw away the integer used for filtering
% as we must return a filtered coinductive list
L = [K| T1]

),
filter(H, T, T1).

% Queries:
?- primes(20, P).
P = [2,3,5,7,11,13,17,19,2,3,5,7,11,13,17,19,2,3|P].

Appendix B Experiments

We used the following example program in order to run experiments.

:- table(path/2).
:- tabling_mode(path/2, coinductive).

% Finds infinite paths starting from node F.
path(F, [F|P]) :-

edge(F, N),
path(N, P).

edge(1, 2).
edge(1, 3).
edge(2, 4).
edge(2, 3).
edge(3, 2).

% Queries:
?- path(1, P).
P = [1,2,3|P] ? ;
P = [1,3,2|P].

?- path(2, P).
P = [2,3|P].

?- path(3, P).
P = [3,2|P].

?- path(4, P).

Online Appendix of: Tabling, Rational Terms, and Coinduction Finally Together! 5

false.

Instead of the small graph shown above, we used a fully connected graph of different
sizes, as presented next:

full_edge_size(8).

edge(X, Y) :-
posint(X),
posint(Y),
X \== Y.

posint(N) :-
posint(N, 0).

posint(_, I) :-
full_edge_size(N),
I > N, !,
fail.

posint(I, I).
posint(X, I) :-
NI is I + 1,
posint(X, NI).

And implemented the same program in Logtalk:

:- object(path).
:- public(path/2).
:- coinductive(path/2).

% :- table(path/2). % used for tabled co-SLD

path(F, [F|P]) :-
edge(F, N),
path(N, P).

full_edge_size(8).

edge(X, Y) :-
posint(X),
posint(Y),
X \== Y.

posint(N) :-
posint(N, 0).

posint(_, I) :-
full_edge_size(N),
I > N, !,
fail.

posint(I, I).
posint(X, I) :-
NI is I + 1,
posint(X, NI).

:- end_object.

We executed the query: time((path(1, _P), fail)) on graphs with size 8x8 up to 19x19.
Table B 1 presents our results; all times are in seconds. For co-SLD we used the coinduc-
tive transformation of Logtalk. For co-SLG we used our transformation. Furthermore,
we also experimented with the path/2 coinductive predicate in Logtalk being tabled with
our rational term support. This can be achieved by just tabling the co-SLD transformed
predicate of Logtalk as shown at the comment instruction of the Logtalk code.

6 T. Mantadelis, R. Rocha and P. Moura

Table B 1. Experimental results for the query (path(1, _P), fail)

Graph Size co-SLD co-SLG Tabled co-SLD

8x8 1 0.005 4
9x9 11 0.014 *
10x10 126 0.035
11x11 1,724 0.053
12x12 > 324,000 0.126
13x13 0.287
14x14 0.674
15x15 1.5
16x16 3.5
17x17 8
18x18 17
19x19 39
20x20 *

As expected the difference for the path example for co-SLD and co-SLG is significant.
This is easy to explain as tabling in this case decreases the complexity of the problem.
co-SLD is able to solve up to an 11x11 graph in approximately 1,700 seconds, and it
takes more than 1.5 hours which was used as our timeout to solve the 12x12 problem.
On the other hand, enumerating all the cyclic paths with co-SLG is speed efficient but
very memory consuming. Our system exhausted the 10GB memory that was available
to it trying to calculate the 20x20 graph. We also executed experiments by tabling the
co-SLD approach. These experiments, which obtained the worst results, are important in
order to point out that co-SLG is not simply achieved by tabling a co-SLD transformed
predicate. The tabled co-SLD predicate soon went out of memory as it had the task to
table both the resulting paths and the coinductive hypothesis. Unfortunately, we could
not ignore the coinductive hypothesis from being tabled due to a limitation of YAP’s
mode-directed tabling (Santos and Rocha 2012).

It is well known that using tabling naively can result on a poor performance; for
example tabling append/2 predicate as shown in (Swift and Warren 2012). The same
applies for using co-SLG over co-SLD naively. There are examples that co-SLD will
perform better than co-SLG like the Eratosthenes sieve example.

References

Moura, P. 2013. A Portable and Efficient Implementation of Coinductive Logic Programming.
In International Symposium on Practical Aspects of Declarative Languages. LNCS, vol. 7752.
Springer-Verlag, 77–92.

Santos, J. and Rocha, R. 2012. Mode-Directed Tabling and Applications in the YapTab
System. In Symposium on Languages, Applications and Technologies. 25–40.

Swift, T. and Warren, D. S. 2012. XSB: Extending Prolog with Tabled Logic Programming.
Theory and Practice of Logic Programming 12, 1 & 2, 157–187.

