
1

Online appendix for the paper

Inference and Learning in Probabilistic Logic
Programs using Weighted Boolean Formulas

published in Theory and Practice of Logic Programming

DAAN FIERENS, GUY VAN DEN BROECK, JORIS RENKENS,

DIMITAR SHTERIONOV, BERND GUTMANN, INGO THON,

GERDA JANSSENS, LUC DE RAEDT

Department of Computer Science

KU Leuven

Celestijnenlaan 200A, 3001 Heverlee, Belgium
(e-mail: FirstName.LastName@cs.kuleuven.be)

submitted 26 June 2012; revised 4 January 2013; accepted 28 January 2014

Appendix A Proofs

In this appendix we give the proofs of Theorems 1 to 3.

Proof of Theorem 1

To prove Theorem 1 we first give necessary some lemma’s. We use pruneInactive(L,

E = e) to denote the result of removing from a ground program L all rules that are

inactive under the evidence E = e.

Lemma 1
Let L be a ground normal logic program and let L′ = pruneInactive(L,E = e). For

each world/interpretation ω that is consistent with the evidence E = e it holds:

a) for each subset A of atoms: A is an unfounded set with respect to ω under

program L if and only if it is so under program L′, and
b) ω is the well-founded model of L if and only if it is the well-founded model of

L′.

Proof:

Part a: We use the notion of unfounded set see Definition 3.1 in Van Gelder et al.

(1991). We prove both directions of the ‘if and only if’.

• If A is an unfounded set with respect to ω under program L, then this also

holds under program L′:

The definition of unfounded set imposes a certain condition on each rule in

the program whose head is in the set A, we refer to this as the unfounded rule

condition. If we know that this condition holds for all such rules in L, then it

also holds for all such rules in L′, because the latter set of rules is a subset of

the former (L′ is the result of removing inactive rules from L).

2

• If A is an unfounded set with respect to ω under program L′, then this also

holds under program L:

The ‘if’ part of this ‘if-then’ implies that the unfounded rule condition holds

for all rules in L′, so to prove the ‘then’ part we only need to show that the

unfounded rule condition also holds for all rules in L \ L′ (i.e., for all rules

in L that were removed because of being inactive under the evidence). Every

rule r ∈ L\L′ contains at least one atom in its body that is false according to

the evidence (that is what made r inactive). Since this lemma applies only to

worlds ω that are consistent with the evidence, we have for every such world

ω: every rule r ∈ L \L′ contains in its body at least one atom false in ω. This

is a sufficient condition to make the rule r an unfounded rule, see condition

‘1.’ in Definition 3.1 in Van Gelder et al. (1991).

Part b: We can now use Part a to prove that, for every evidence-consistent world

ω, ω is the well-founded model (WFM) of L if and only if it is the WFM of L′.

The WFM is the fixed point of the WP operator (Van Gelder et al. 1991). For

a program L, this operator is defined as WL(ω) = TL(ω) ∪ ¬UL(ω), see Definition

3.3 in Van Gelder et al. (1991). We prove below that, for every evidence-consistent

world ω: TL(ω) = TL′(ω) and UL(ω) = UL′(ω). Hence, WL(ω) = WL′(ω), hence

their fixed points are identical, hence Part b holds.

• For every evidence-consistent world ω: TL(ω) = TL′(ω)

L consists of all rules in L′ plus some rules that are inactive under the evidence.

For each evidence-consistent ω, the bodies of the inactive rules in L are false

under ω and hence these rules cannot ‘fire’. Hence these rules play no role in

the execution of the TP operator on ω. Hence TL(ω) = TL′(ω).

• For every evidence-consistent world ω: UL(ω) = UL′(ω):

UL(ω) is the greatest unfounded set with respect to (wrt) ω, which is defined

as the union of all unfounded sets wrt ω, see Definition 3.2 in Van Gelder et al.

(1991). Part a says that any subset A of atoms is an unfounded set wrt ω under

program L if and only if it is so under program L′. Hence UL(ω) = UL′(ω).

�

Lemma 2

Let L be a ground ProbLog program and let L′ = pruneInactive(L,E = e). Then

MODE=e(L) = MODE=e(L′).

Proof: MODE=e(L) is defined as the set of all worlds ω that are consistent with the

evidence E = e and are models of the ProbLog program L, i.e., for which there exists

a total choice C and WFM (C ∪R) = ω, with R the rules in L and WFM () the well-

founded model. The previous lemma implies that, for every ω consistent with the

evidence, removing inactive rules from a given logic program does not alter whether

or not ω is the WFM of that program or not. In other words: ω ∈ MODE=e(L) if

and only if ω ∈ MODE=e(L′). Hence MODE=e(L) = MODE=e(L′). �

Lemma 3

3

Let L be a ground ProbLog program and let L′ = pruneInactive(L,E = e). Then

PL(Q | E = e) = PL′(Q | E = e)

Proof: We prove the stronger condition ∀ω : PL(ω | E = e) = PL′(ω | E = e) The

conditional probability PL(ω | E = e) of an interpretation ω according to program

L is:

• (case1) if ω ∈ MODE=e(L) then

PL(ω | E = e) =
PL(ω,E = e)

PL(E = e)
·

Since ω agrees with E = e, we have that the combined assignment ω,E = e

is simply equal to ω. Hence:

PL(ω | E = e) =
PL(ω)

PL(E = e)
=

PL(ω)∑
ω′∈MODE=e(L)

PL(ω′)
· (A1)

• (case2) if ω /∈ MODE=e(L) then PL(ω | E = e) = 0.

We now prove that for every ω, PL(ω | E = e) = PL′(ω | E = e). The proof consists

of two parts.

1. We need to prove that we are in case1 under L if and only if we are in

case1 under L′. In other words: for every ω: ω ∈ MODE=e(L) if and only if

ω ∈ MODE=e(L′). This follows from the previous lemma.

2. We need to prove that if we are in case1 (i.e. if ω ∈ MODE=e(L)), then the

conditional probability given by the fraction in Equation A1 is the same under

L as under L′.

• The numerator is the same under L and L′. This can be seen as follows.

For any ω ∈ MODE=e(L), the probability P(ω) is by definition equal to

the probability of ω’s total choice. The ProbLog programs L and L′ differ

in their rules, but they have exactly the same probabilistic facts and hence

determine the same probability distribution over total choices. Hence P(ω)

is the same under L as under L′.

• The sum in the denominator is also the same under L and L′. This can be

seen as follows. First, the set MODE=e(L) over which the sum ranges is the

same under L as under L′ because of the above lemma. Second, each term

in the sum is the same under L as under L’, i.e. for every ω ∈ MODE=e(L)

the probability P(ω) is the same under L as under L′ (because of the same

reasoning as for the numerator).

This concludes the proof. �

Theorem 1

Let L be a ProbLog program and let Lg be the relevant ground program for L with

respect to Q and E = e. Then PL(Q | E = e) = PLg (Q | E = e).

Proof: It follows from the grounding semantics of ProbLog that replacing the orig-

inal program L by its full grounding (w.r.t. the Herbrand base) Lfull preserves the

distribution, i.e., PL(Q | E = e) = PLfull
(Q | E = e). The relevant ground program

4

Lg differs from Lfull only in that it does not contain inactive rules (with respect to

E = e) or irrelevant rules (with respect to Q∪E). The lemma above states that re-

moving inactive rules preserves the distribution P(Q | E = e). Removing irrelevant

rules also preserves this distribution; this can be seen as follows. The probability of

an atom being true can be determined from all proofs of the atom and the probabili-

ties of the probabilistic facts appearing in these proofs, see De Raedt et al. (2007). Ir-

relevant rules are - by definition - rules that are not used in any proof of any atom in

Q∪E. Hence omitting such irrelevant rules does not alter the distribution P(Q,E).

Hence, also the distribution P(Q | E = e) is preserved because P(Q | E = e) can

be defined in terms of P(Q,E), i.e., P(Q | E = e) = P(Q,E=e)
P(E=e) = P(Q,E=e)∑

q P(Q=q,E=e) .

Proof of Theorem 2

Theorem 2
Let Lg be the relevant ground program for some ProbLog program with respect to

Q and E = e. Let MODE=e(Lg) be those models in MOD(Lg) that are consistent

with the evidence E = e. Let ϕ denote the formula and w(·) the weight function of

the weighted formula derived from Lg . Then:

- (model equivalence) SAT (ϕ) = MODE=e(Lg),
- (weight equivalence) ∀ω ∈ SAT (ϕ): w(ω) = PLg (ω), i.e., the weight of ω

according to w(·) is equal to the probability of ω according to Lg .

Proof: The proof consists of two parts.

Model equivalence. Consider Lemma 1 (Section 5.2). The lemma is about the

formula ϕr that captures the rules but not yet the evidence. The lemma states that

SAT (ϕr) = MOD(Lg). The present theorem is about the formula ϕ = ϕr ∧ ϕe ,

where ϕe captures the evidence. The effect of adding ϕe to the formula is that

all worlds not consistent with the evidence are ruled out. Hence SAT (ϕr ∧ ϕe) =

MODE=e(Lg).

Weight equivalence. Weight equivalence says that the probability of every model

(according to Lg) is equal to the weight of the model (according to our weight

function w(·)). This follows from the way the probability and the weight function

are defined.

• The probability of a model of a ProbLog program, according to the distri-

bution semantics, is the probability of the underlying total choice, which in

turn is defined as the product of probabilities of each of the atomic choices.

Formally, the probability of a model ω is:

P(ω) =
∏

a∈PA+(ω)

p(a)
∏

a∈PA−(ω)

p(¬a)

=
∏

a∈PA+(ω)

p(a)
∏

a∈PA−(ω)

(1− p(a)),

with PA+(ω) (respectively PA−(ω)) being the set of all ground probabilis-

tic atoms that are true (resp. false) in ω and p(·) denoting the probability

distribution specified by the probabilistic facts.

5

• The weight of a world ω according to our weight function is the product of

the weights of all literals l constituting the world/interpretation ω:

w(ω) =
∏
l∈ω

w(l)·

The literals/atoms in ω fall into four groups: probabilistic atoms that are true

in ω (denoted PA+(ω), non-probabilistic or derived atoms that are true in

ω (denoted DA+(ω)), and similar for the atoms that are false in ω (PA−(ω)

and DA−(ω)). Hence:

w(ω) =
∏
l∈ω

w(l)

=
∏

a∈PA+(ω)

w(a)
∏

a∈PA−(ω)

w(¬a)
∏

a∈DA+(ω)

w(a)
∏

a∈DA−(ω)

w(¬a)·

By definition of the weight function, the weight of an atom a ∈ PA+(ω) is

p(a), the weight of a ∈ PA−(ω) is 1 − p(a), the weight of a ∈ DA+(ω) ∪
DA−(ω) is 1. Hence:

w(ω) =
∏

a∈PA+(ω)

p(a)
∏

a∈PA−(ω)

(1− p(a))
∏

a∈DA+(ω)

1
∏

a∈DA−(ω)

1

=
∏

a∈PA+(ω)

p(a)
∏

a∈PA−(ω)

(1− p(a)) = P(ω)·

This proves weight equivalence. �

Proof of Theorem 3

Theorem 3

Let Lg be the relevant ground program for some ProbLog program with respect to

Q and E = e. Let M be the corresponding ground MLN. The distribution P(Q)

according to M is the same as the distribution P(Q | E = e) according to Lg .

Proof: We prove that (1) the set of worlds with non-zero probability according to

the MLN is the same as the set of worlds with non-zero probability according to the

ProbLog program and the evidence; (2) for every such world ω, PM(ω) = PL(ω |
E = e)

(Part 1) A world has non-zero probability according to an MLN if it satisfies all

hard clauses in the MLN. The hard clauses in the MLN are the same as the clauses in

the weighted formula ϕ. Hence the set of worlds with non-zero probability according

to the MLN equals SAT (ϕ). Theorem 2 (model equivalence) implies that this set

equals MODE=e(Lg), which is exactly the set of worlds with non-zero probability

according to the ProbLog program and the evidence.

(Part 2) The probability of a world ω ∈ SAT (ϕ) according to an MLN is defined

as PM(Q) = W (ω)/Z , with W (ω) the product of exponentiated weights of the

soft clauses satisfied in ω, and Z the normalization constant. The probability of

ω according to the ProbLog program conditioned on the evidence is PL(ω|E =

6

e) = PL(ω)/PL(E = e). We now show that both expressions are the same (i.e.

W (ω)/Z = PL(ω)/PL(E = e)).

• The numerators are the same (W (ω) = PL(ω)): The only soft clauses in the

MLN are unit clauses, whose weights are derived from the probabilistic facts.

The unit clauses are such that, for any given world ω, there is one unit clause

per probabilistic atom that is satisfied. W (ω) is the product of the expo-

nentiated weights of all these clauses. It follows from the way these weights

are defined in terms of the weighted formula, and from weight equivalence

between the weighted formula and the ProbLog program (Theorem 2), that

this product is equal to the probability of the total choice of ω according to

the ProbLog program and hence to the numerator PL(ω).

• The denominators are the same (Z = PL(E = e)): The normalization con-

stant Z of the MLN is defined as
∑
ω∈SAT(ϕ) W (ω). The evidence probability

PL(E = e) equals
∑
ω∈MODE=e(L)

P(ω). These sums are equal since (a) the

sets over which they range are equal due to Theorem 2 (model equivalencce),

(b) the summed terms are equal (because of the same reasoning as for the

numerator).

This concludes the proof. �

Appendix B Markov Logic

We briefly review Markov Logic (Domingos et al. 2008). While Markov Logic gener-

ally works with FOL formulas, we consider only the ground case, as this is sufficient

for our paper.

A Markov Logic Network (MLN) consists of two parts: a set of ‘soft’ formulas fi ,

which each have an associated weight wi ∈ R, and a set of ‘hard’ formulas. An MLN

determines a probability distribution on the set of possible worlds (determined by

the Herbrand base). The probability of a world ω is 0 if it violates some hard

formula and is 1
Z e

∑
i wiδi (ω) otherwise, where the sum is over all soft formulas and

δi(ω) is the indicator function being 1 if the soft formula fi is true in world ω and 0

otherwise. Note that the exponent
∑

i wiδi(ω) is the sum of weights of satisfied soft

formulas in world ω; the higher this sum, the more likely ω is. The name ‘MLN’

comes from the fact that this probability distribution can also be written as the

distribution of a Markov network.

Appendix C The need for smoothing d-DNNFs

The algorithm we use to compute marginal probabilities requires a smooth d-DNNF.

A smooth d-DNNF is a d-DNNF where for every disjunction node all children use

exactly the same set of atoms. That is, if C1 · ·Cn are the children of an OR node

C , then Atoms(Ci) = Atoms(Cj), for i 6= j , where Atoms(Ci) is the set of atoms

which Ci uses.

Figure C 1a shows a non-smooth d-DNNF, while Figure C 1b shows the corre-

sponding smooth d-DNNF (which we have already shown before in Figure 1.a of

7

AND

calls(john) hears_alarm(john) OR alarm

AND burglary

-burglary earthquake

(a) A non smooth d-DNNF

AND

calls(john) hears_alarm(john) OR alarm

AND AND

-burglary

earthquake

burglary OR

-earthquake

(b) A smooth d-DNNF

Fig. C 1. A d-DNNF and the corresponding smooth d-DNNF for the formula
burglary ∨ earthquake.

the paper but we repeat here for convenience). Consider the non-smooth d-DNNF.

The OR node doesn’t satisfy smoothness, since the sets of atoms of its children dif-

fer ({burglary , earthquake} and {burglary}; the negation is ignored here). Hence we

need to transform this d-DNNF into a smooth d-DNNF, see Figure C 1b. This is

done by substituting the burglary node by an AND node, then adding the burglary

node as a child to the new AND node and creating a new smoothing node for the

missing atom -earthquake. The smoothing node is an OR node which links to

earthquake and -earthqake. It is then linked to the AND node.

Let us illustrate how smoothness affects the computation of probabilities using

our Alarm running example (so not the restricted version of the example considered

above). We have seen the arithmetic circuit (AC) corresponding to the smooth d-

DNNF for this example before, recall Figure 2 on p. 22 of the paper. This figure also

illustrates how we can compute the probability of the conjunction P(earthquake =

true ∧ calls(john) = true). This yields the value 0.14, which is indeed the correct

value. In contrast, Figure C 2 shows the same evaluation process on an AC for the

non-smooth d-DNNF. This results in an incorrect value (0.196). This shows the

need for smoothness of the d-DNNF.

Appendix D Kullback-Leibler Divergence Between ProbLog Programs

The Kullback-Leibler divergence D(P ||Q) is a non-symmetric measure for the dif-

ference of two probability distributions P and Q (cf. Wasserman (2003)). It is used

in probability theory as well as in information theory where it is also known as

information gain. The K-L divergence aggregates the difference of the two distribu-

tions on all elements of the outcome space. It is only defined if the support of Q is

larger than the one of P , that is, for all i where P(i) > 0 also Q(i) > 0.

We use the K-L divergence to evaluate the LFI-ProbLog learning algorithm

(cf. Algorithm 1 of the paper) and measure how close the learned program T2

is to the ground truth program T1. We are doing parameter estimation, that is,

the structure of the program is fixed and only the fact probabilities change. Hence

8

* (0.196)

* (1.0) * (0.7) + (0.28) * (1.0)

λ[calls(john)] = 1 1.0 λ[hears_alarm(john)] = 1 0.7 * (0.18) * (0.1) λ[alarm] = 1 1.0

* (0.9) * (0.2)

λ[-burglary] = 1 0.9 λ[earthquake] = 1 0.2

λ[burglary] = 1 0.1

Fig. C 2. The arithmetic circuit corresponding to the non-smooth d-DNNF for the
Alarm example.

we can restrict the definition of the K-L divergence to programs that are identical

except for the fact probabilities.

Definition 1 (K-L Divergence)

Let T1 = F1 ∪ R and T2 = F2 ∪ R be ground ProbLog programs such that the

probabilistic facts are identical except for the probabilities, that is, F1 = {pi ::

fi |1 ≤ i ≤ n} and F2 = {qi :: fi |1 ≤ i ≤ n}. Let At denote the Herbrand base of T1

and T2 (note that they have the same Herbrand base). We denote interpretations

as subsets of atoms, i.e., L ⊆ At is the interpretation in which the atoms that are

in L are true and the other atoms are false. Then the K-L Divergence between T1

and T2 is defined as

D(T1||T2) =
∑
L⊆At

PT1
(L) log

PT1
(L)

PT2
(L)

(D1)

There are exponentially many interpretations L ⊆ At , which makes evaluating the

K-L divergence as defined above impossible in practice. However, the probabilistic

facts in a ProbLog program are independent, which can be exploited to compute

the K-L divergence in linear time by looping once over F .

Theorem 4

Let T1 = F1 ∪ R and T2 = F2 ∪ R be ground ProbLog programs such that the

probabilistic facts are identical except for the probabilities, that is, F1 = {pi ::

fi |1 ≤ i ≤ n} and F2 = {qi :: fi |1 ≤ i ≤ n}. Then the K-L Divergence between T1

and T2 can be calculated as

D(T1||T2) =

n∑
i=1

(
pi log

pi

qi
+ (1− pi) log

1− pi

1− qi

)
· (D2)

It is possible to extend the K-L divergence and the theorem to non-ground facts.

To do so, one needs to multiply each summand pi log pi

qi
+ (1− pi) log 1−pi

1−qi with the

number of ground instances of the probabilistic fact fi .

9

Proof
We prove Theorem 4 by induction over the number of probabilistic facts.

Base case n = 1.

D(T1||T2) =
∑
L⊆At

PT1(L) log
PT1(L)

PT2
(L)

= PT1
({f1}) log

PT1({f1})
PT2

({f1})

+PT1(∅) log
PT1

(∅)
PT2(∅)

= p1 log
p1

q1
+ (1− p1) log

1− p1

1− q1

=

n∑
i=1

(
pi log

pi

qi
+ (1− pi) log

1− pi

1− qi

)
Inductive case n → n + 1. To simplify the notation, we define Tn+1

1 = T1 ∪
{pn+1 :: fn+1} and Tn+1

2 = T2 ∪ {qn+1 :: fn+1}
D(Tn+1

1 ||Tn+1
2)

=
∑

L⊆(At∪{fn+1})
PTn+1

1
(L) log

P
T
n+1
1

(L)

P
T
n+1
2

(L)

=

[∑
L⊆At

PTn+1
1

(L ∪ {fn+1}) log
P

T
n+1
1

(L∪{fn+1})

P
T
n+1
2

(L∪{fn+1})

]
+[∑

L⊆At

PTn+1
1

(L) log
P

T
n+1
1

(L)

P
T
n+1
2

(L)

]
Probabilistic facts are independent and thus we can

factorize the probabilities

=

[∑
L⊆At

pn+1 · PT1
(L) log

pn+1·PT1
(L)

qn+1·PT2
(L)

]
+[∑

L⊆At

(1− pn+1) · PT1
(L) log

(1−pn+1)·PT1
(L)

(1−qn+1)·PT2 (L)

]
using the rules for log and factoring out the constants

= pn+1

[∑
L⊆At

PT1
(L)
(

log pn+1

qn+1
+ log

PT1
(L)

PT2 (L)

)]
+

(1− pn+1)

[∑
L⊆At

PT1
(L)
(

log 1−pn+1

1−qn+1
+ log

PT1
(L)

PT2
(L)

)]
expanding the inner sums and factoring out constants

= pn+1

(
log pn+1

qn+1

)[∑
L⊆At

PT1
(L)

]
+

pn+1

[∑
L⊆At

PT1(L)
(

log
PT1 (L)

PT2
(L)

)]
+

10

(1− pn+1)
(

log 1−pn+1

1−qn+1

)[∑
L⊆At

PT1
(L)

]
+

(1− pn+1)

[∑
L⊆At

PT1(L)
(

log
PT1 (L)

PT2
(L)

)]
since

∑
L⊆At PT1

(L) is 1, rearranging yields

= pn+1

(
log pn+1

qn+1

)
+ (1− pn+1)

(
log 1−pn+1

1−qn+1

)
+∑

L⊆At

PT1
(L) log

PT1
(L)

PT2
(L)

using the inductive assumption

= pn+1

(
log pn+1

qn+1

)
+ (1− pn+1)

(
log 1−pn+1

1−qn+1

)
+

n∑
i=1

(
pi log pi

qi
+ (1− pi) log 1−pi

1−qi

)
rearranging the terms

=
n+1∑
i=1

(
pi log pi

qi
+ (1− pi) log 1−pi

1−qi

)

References

De Raedt, L., Kimmig, A., and Toivonen, H. 2007. Problog: a probabilistic prolog
and its application in link discovery. In In Proceedings of 20th International Joint
Conference on Artificial Intelligence. AAAI Press, 2468–2473.

Domingos, P., Kok, S., Lowd, D., Poon, H., Richardson, M., and Singla, P. 2008.
Probabilistic Inductive Logic Programming - Theory and Applications. Lecture Notes
in Computer Science. Springer, Chapter ‘Markov Logic’.

Van Gelder, A., Ross, K. A., and Schlipf, J. S. 1991. The well-founded semantics
for general logic programs. Journal of the ACM 38, 3, 620–650.

Wasserman, L. 2003. All of Statistics: A Concise Course in Statistical Inference (Springer
Texts in Statistics). Springer.

