
1

Online appendix for the paper

Generating Explanations for Biomedical Queries
published in Theory and Practice of Logic Programming

ESRA ERDEM, UMUT OZTOK
Sabancı University, Orhanlı, Tuzla, İstanbul 34956, Turkey

(e-mail: {esraerdem,uoztok}@sabanciuniv.edu)

submitted 25 October 2012; revised 17 July 2013; accepted 19 August 2013

Appendix A Proofs

We provide proofs of the theoretical results presented in the paper: the algorithmic analysis
for generating shortest explanations (Propositions 2, 3, and 4), the algorithmic analysis for
generating k different explanations (Propositions 5, 6, and 8), and the analysis for the
relationship between an explanation and a justification. (Propositions 10 and 11).

A.1 Generating Shortest Explanations

In Section 5 of the paper, we have analyzed three properties of Algorithm 1, namely termi-
nation, soundness and complexity, resulting in Propositions 2, 3, and 4. In the following,
we show the proofs of these results.

A.1.1 Proof of Proposition 2 – Termination of Algorithm 1

To prove that Algorithm 1 terminates we need the following lemma.

Lemma 1
Given a ground ASP program Π, an answer set X for Π, an atom p in X , and a set L of
atoms in X , Algorithm 2 terminates.

Proof of Lemma 1
It is sufficient to show that the recursion tree generated by Algorithm 2 is finite. That is, the
branching factor of the recursion tree and the height of the recursion tree are finite. Note
that each node of the recursion tree denotes a call to createTree(Π, X, d, L) for some atom
or rule d and a set L of atoms.

Part (1) We show that the branching factor of the tree is finite. Branches in the tree are
created in loops at Lines 5 and 13. The loop at Line 5 iterates at most the number of rules
in Π and the loop at Line 13 iterates at most the number of atoms in X . As Π and X are
finite, the branching factor of the tree is finite.

2

Part (2) We show that the height of the recursion tree is finite. Let us first make the fol-
lowing observation. Consider a path 〈v1, . . .〉 in the recursion tree. For every node vi that
denotes a call to createTree(Π, X, di, Li) where di is an atom in X , the following holds
for vi+2 (if exists): Li ⊂ Li+2. This follows from the two consecutive calls to create-
Tree: Li increases at every other call, due to Line 4. Now, assume that the height of the
recursion tree is infinite. Then, there exists an infinite path 〈v1, . . .〉 in the recursion tree.
Thus, L1 ⊂ L3 ⊂ . . . ⊂ L(2×|X|)+1 ⊂ L(2×|X|)+3 ⊂ Recall that we add elements
into Lis only from X (Line 4). Thus, L(2×|X|)+1 = X . Then, it is not possible to have
L(2×|X|)+1 ⊂ L(2×|X|)+3. As we reach a contradiction, the height of the recursion tree is
finite.

Now, we show that Algorithm 1 terminates.

Proposition 2
Given a ground ASP program Π, an answer set X for Π, and an atom p in X , Algorithm 1
terminates.

Proof of Proposition 2
Algorithm 1 terminates only if Algorithms 2, 3, and 4 terminate. By Lemma 1, we know
that Algorithm 2 terminates and that the vertex-labeled tree T returned by Algorithm 2
is finite. Since Algorithm 3 and Algorithm 4 simply traverse T (cf. Lines 2 and 6 in Al-
gorithm 3, and Lines 5 and 10 in Algorithm 4), they also terminate. Thus, Algorithm 1
terminates.

A.1.2 Proof of Proposition 3 – Soundness of Algorithm 1

To show the proof of Proposition 3, we need the following necessary lemmas.

Lemma 2
Let Π be a ground ASP program, X be an answer set for Π, d be an atom in X or a
rule in Π and L be a subset of X . If the vertex-labeled tree 〈V,E, l,Π, X〉 returned by
createTree(Π, X, d, L) is not empty, then the following hold:

(i) the root of 〈V,E〉 is created in createTree(Π, X, d, L) and is mapped to d by l;
(ii) for every rule vertex v ∈ V ,

outE(v) = {(v, v′) | (v, v′) ∈ E, l(v′) ∈ B+(l(v))};

(iii) each leaf vertex is a rule vertex.

Proof of Lemma 2
Let 〈V,E, l,Π, X〉 be the non-empty vertex-labeled tree returned by
createTree(Π, X, d, L). We show one by one that each condition in the lemma holds.

3

(i) Assume that d is an atom in X . Note that d /∈ L because otherwise 〈V,E〉 = 〈∅, ∅〉.
Due to the call createTree(Π, X, d, L), the algorithm, at Line 3, creates a vertex v such that
l(v) = d. We know that E 6= ∅. Then, there exists some out-going edges of v. At Line 9,
the out-going edges of v are formed. Due to Line 8, each vertex v′ in (v, v′) is the root of
a vertex-labeled tree. Moreover, there is no part of the algorithm that adds a “parent” to a
vertex. Therefore, v is the root of 〈V,E〉.

Similar reasoning can be applied for the case where d is a rule in Π.

(ii) Let v ∈ V be a rule vertex. Let Sv = {(v, v′) | (v, v′) ∈ E, l(v′) ∈ B+(l(v))}
denoting the set of out-going edges of v to atom vertices whose labels are in the positive
body of the rule that labels v. We show that outE(v) = Sv .

Let (v, v′) ∈ outE(v). Then, (v, v′) ∈ E. Edges are created at Lines 9 and 17. As v

is a rule vertex, (v, v′) must be created at Line 17. Then, by Line 16 and the condition at
Line 13, l(v′) ∈ B+(l(v)). So, (v, v′) ∈ Sv (i.e., outE(v) ⊆ Sv).

Let (v, v′) ∈ Sv . Then, by the definition of Sv , (v, v′) ∈ E. Thus, (v, v′) ∈ outE(v)

(i.e., Sv ⊆ outE(v)).

(iii) Assume otherwise. Then, there exists an atom vertex v ∈ V such that it is a leaf
vertex. Vertices are created at Lines 3 and 12. As v is an atom vertex, it must be created
at Line 3. Since it is a leaf vertex, condition at Line 7 never holds. But, then condition at
Line 10 holds. Then, the call where v is created returns an empty set of vertices. That is, v
cannot be in V .

Lemma 3
Let Π be a ground ASP program and X be an answer set for Π. For the two subsequent
calls createTree(Π, X, d, L) and createTree(Π, X, d′, L′) (i.e., createTree(Π, X, d′, L′) be-
ing called right after createTree(Π, X, d, L)) on a path in the recursion tree for some exe-
cution of Algorithm 2, the following hold

(i) If d is an atom, then L′ = L ∪ {d};
(ii) If d is a rule, then L′ = L.

Proof of Lemma 3
Let createTree(Π, X, d, L) and createTree(Π, X, d′, L′) be two subsequent calls on a path
in the recursion tree for some execution of Algorithm 2. We show one by one that the
conditions in the lemma hold.

(i) Assume that d is an atom. Then, createTree(Π, X, d′, L′) is called at Line 6. Due to
Line 4, L′ = L ∪ {d}.

(ii) Assume that d is a rule. Then, createTree(Π, X, d′, L′) is called at Line 13. As L is
not modified prior to this call, L′ = L.

4

Lemma 4
Let Π be a ground ASP program, X be an answer set for Π and 〈V,E, l,Π, X〉 be the
vertex-labeled tree returned by execution Exc of Algorithm 2. Let createTree(Π, X, d, L)

and createTree(Π, X, d′, L′) be the two subsequent calls (i.e., createTree(Π, X, d′, L′) be-
ing called right after createTree(Π, X, d, L)) on a path in the recursion tree for Exc, where
each call on the path returns a nonempty vertex-labeled tree. Let v and v′ be two ver-
tices created by createTree(Π, X, d, L) and createTree(Π, X, d′, L′), respectively, such that
l(v) = d and l(v′) = d′. Then, (v, v′) ∈ E.

Proof of Lemma 4
Notice that either d is an atom and d′ is a rule or vice versa. We show that the lemma
holds for the former case. The latter case can be shown similarly. Assume that d is an
atom and d′ is a rule. Then, createTree(Π, X, d′, L′) must be called at Line 6 within
createTree(Π, X, d, L). As none of the calls on the path returns empty vertex-labeled tree,
the condition at Line 7 holds in createTree(Π, X, d, L). Then, an edge (v, v′) is added to
E at Line 9. Note that v is created in createTree(Π, X, d, L) at Line 3 and l(v) = d. Also,
due to Line 8, v′ is the root of the vertex-labeled tree returned by createTree(Π, X, d′, L′).
Then, by Lemma 2, v′ is a vertex created in createTree(Π, X, d′, L′) and l(v′) = d′.

Lemma 5
Let Π be a ground ASP program, X be an answer set for Π, d be an atom in X and
T = 〈V,E, l,Π, X〉 be the vertex-labeled tree returned by createTree(Π, X, d, ∅). If
T is not empty, then for every node createTree(Π, X, d′, L′) in the recursion tree for
createTree(Π, X, d, ∅), where createTree(Π, X, d′, L′) and its ancestors return nonempty
vertex-labeled trees, L′ = ancT (v) where l(v) = d′.

Proof of Lemma 5
Assume that T is not empty. Then, we prove the lemma by induction on the depth of a
node in the recursion tree for createTree(Π, X, d, ∅).

Base case: Note that the node at depth 0 in the recursion tree for createTree(Π, X, d, ∅)
returns a nonempty vertex-labeled tree and it has no ancestors. By Lemma 2, the root v of
〈V,E〉 is mapped to d by l, i.e., l(v) = d = d′. As the root of a tree does not have any
ancestors, ancT (v) = ∅ = L′.

Induction step: As an induction hypothesis, assume that for every node
createTree(Π, X, d′, L′) at depth less than n in the recursion tree for
createTree(Π, X, d, ∅), where createTree(Π, X, d′, L′) and its ancestors return nonempty
vertex-labeled trees, L′ = ancT (v) where l(v) = d′. Let createTree(Π, X, d′, L′) be a node
at depth n in the recursion tree for createTree(Π, X, d, ∅), where createTree(Π, X, d′, L′)

and its ancestors return nonempty vertex-labeled trees. We show that L′ = ancT (v)

where l(v) = d′. For that, we need to consider two cases: d′ is an atom and d′ is a rule.
Let createTree(Π, X, p, Lp) be the parent of createTree(Π, X, d′, L′), as illustrated in
Figure A 1.

5

Depth

createTree(Π, X, d, ∅)

...

...

createTree(Π, X, p, Lp)

createTree(Π, X, d′, L′)

...

...

...

...
...

0

n− 1

n

Fig. A 1: Part of the recursion tree for createTree(Π, X, d, ∅).

Case 1. Assume that d is an atom. Then, p must be a rule. By Lemma 3, L′ = Lp.
Notice that the depth of the parent node is n − 1. Then, by the induction hypothesis,
Lp = ancT (v) where l(v) = p. Also, by Lemma 4, (v, v′) ∈ E where l(v′) = d′. Since v

is a rule vertex, ancT (v) = ancT (v′). Thus, L′ = ancT (v′) where l(v′) = d′.
Case 2. Assume that d is a rule. Then, p must be an atom. By Lemma 3, L′ = Lp∪{p}.

Notice that the depth of the parent node is n − 1. Then, by the induction hypothesis,
Lp = ancT (v) where l(v) = p. Also, by Lemma 4, (v, v′) ∈ E where l(v′) = d′. Since v

is an atom vertex, ancT (v) ∪ {l(v)} = ancT (v′). Thus, L′ = ancT (v′) where l(v′) = d′.

Proposition 12 (Soundness of Algorithm 2)
Let Π be a ground ASP program, X be an answer set for Π, d be an atom in X and
T = 〈V,E, l,Π, X〉 be the vertex-labeled tree returned by createTree(Π, X, d, ∅). If T is
not empty, then T is the and-or explanation tree for d with respect to Π and X .

Proof of Proposition 12
Suppose that T is not empty. We want to show that T is the and-or explanation tree for d
with respect to Π and X . For that, T must satisfy conditions (i)− (iv) in Definition 2. As
T is not empty, conditions (i), (iii) and (iv) hold due to Lemma 2. To complete the proof,
we show condition (ii) also holds in the sequel.

Let Sv = {(v, v′) | (v, v′) ∈ E, l(v′) ∈ ΠX,ancT (v′)(l(v))}. Our goal is to show that for
every atom vertex v ∈ V , outE(v) = Sv . To do so, we show that outE(v) ⊆ Sv and that
Sv ⊆ outE(v).

6

Let v be an atom vertex in V . Now, we show that outE(v) ⊆ S. Take an arbitrary
element (v, v′) ∈ outE(v). Then, (v, v′) ∈ E. Throughout the algorithm edges are created
at Lines 9 and 17. Since v is an atom vertex, (v, v′) must be created at Line 9. Then, due
to the condition at Line 5 and Lemma 5, l(v′) ∈ ΠX,ancE(v′)(l(v)). Thus, (v, v′) ∈ Sv . As
the last step, we show that Sv ⊆ outE(v). Let (v, v′) ∈ Sv be an arbitrary element. Then,
by the definition of Sv , (v, v′) ∈ E. Thus, trivially, (v, v′) ∈ outE(v).

Lemma 6
Let Π be a ground ASP program, X be an answer set for Π, d be an atom in X , T =

〈VT , ET , l,Π, X〉 be the and-or explanation tree for d with respect to Π and X , v be the
root of T and 〈V,E, l,Π, X〉 be the vertex-labeled tree returned by

extractExp(Π, X, VT , l, v, ET ,WT , ∅,min).

Then, for each v′ ∈ V , we have

WT (v′) ≤ min{WT (s) | s ∈ siblingET
(v′)}.

Proof of Lemma 6
Let v′ ∈ V . Vertices are added to V at Line 8. Then, due to Line 7, v′ is a rule vertex.
Also, each vertex added to V corresponds to the 5th parameter of the algorithm. Note that
recursive calls are made at Lines 5 and 10. Since the 5th parameter is a rule vertex only in
the call at Line 5, the call where v′ is added to V must be initiated at Line 5. Then, due to
Line 3, WT (v′) = min{WT (s) | s ∈ siblingET

(v′)}.

Lemma 7
Let Π be a ground ASP program, X be an answer set for Π, d be an atom in X , T =

〈VT , ET , l,Π, X〉 be the and-or explanation tree for d with respect to Π and X , v be the
root of T , and 〈V,E, l,Π, X〉 be the vertex-labeled tree returned by

extractExp(Π, X, VT , l, v, ET ,WT , ∅,min).

Let v1, v2 ∈ V . If (v1, v), (v, v2) ∈ ET for some v ∈ VT , then (v1, v2) ∈ E.

Proof of Lemma 7
Since v1 ∈ V , it is added to V at Line 8. Then, for each child of v1, the algorithm is
recursively called at Line 10. As (v1, v) ∈ ET , we make a call

extractExp(Π, X, VT , l, v, ET ,WT , v1,min).

Inside that call, we add (v1, c) to E (at Line 4) where c is a minimum weighted child of v
(due to Line 3). As (v, v2) ∈ ET and v2 is a minimum weighted child of v due to Lemma 6,
c is equal to v2. Thus, (v1, v2) ∈ E.

7

Lemma 8
Let Π be a ground ASP program, X be an answer set for Π, d be an atom in X , T =

〈VT , ET , l,Π, X〉 be the and-or explanation tree for d with respect to Π and X , and op be
a string min. Then, Algorithm 4 returns an explanation 〈V,E, l,Π, X〉 for d with respect
to Π and X .

Proof of Lemma 8
Let v be the root of T and S = 〈V,E, l,Π, X〉 be the output of

extractExp(Π, X, VT , l, v, ET ,WT , ∅,min).

To prove that S is an explanation for d with respect to Π and X , we need to show that there
exists an explanation tree 〈V ′, E′, l,Π, X〉 in T which satisfies Conditions (i) and (ii) in
Definition 4 of the paper. That is, the following hold.

(i) V = {v | v is a rule vertex inV ′};
(ii) E = {(v1, v2) | (v1, v), (v, v2) ∈ E′ for some atom vertex v ∈ V ′}.

To do so, we construct a vertex-labeled tree and show that it is an explanation tree
in T which satisfies above conditions. Thus, let us define a vertex-labeled tree T ′ =

〈V ′, E′, l,Π, X〉 where

V ′ = V ∪ {v | v ∈ VT s.t. (v, v′) ∈ ET for some v′ ∈ V } (A1)

E′ = {(v, v′) | v, v′ ∈ V ′ s.t. (v, v′) ∈ ET } (A2)

We now show that T ′ is an explanation tree in T , i.e., T ′ satisfies Conditions (i)–(iv) in
Definition 3.

(i) Due to Line 8 and that v ∈ VT , V ⊆ VT . So, by (A1), V ′ ⊆ VT . Also, by (A2),
E′ ⊆ ET .

(ii) In the first call of Algorithm 4, v is the root of T . Then, at Line 5, the algorithm is
called with a child c of v. Note that c is a rule vertex. Due to Line 8, for some v′ ∈ V ,
(v, v′) ∈ ET .

(iii) Let v′ be an atom vertex in V ′. Then, by (A1) and (A2), (v′, v′′) ∈ E′ for some
v′′ ∈ V . This ensures that deg′E(v′) ≥ 1. Assume that deg′E(v′) > 1. Then, for some
v′′′ ∈ V ′ (v′′ 6= v′′′), (v′, v′′′) ∈ E′. Then, v′′′ ∈ V . This is not possible due to Line 3.
Thus, degE(v′) = 1.

(iv) Let v′ be a rule vertex in V ′. Then, by (A1) v′ ∈ V and v is added into V at Line 8.
Due to Line 9 and (A1), every child c of v is in V ′. Then, by (A2), (v, c) ∈ E′. That is,
outET

(v) ⊆ E′.
As a last step, we show that T ′ satisfies Conditions (i) and (ii) in Definition 4.

(i) Note that every element in the set {v | v ∈ VT s.t. (v, v′) ∈ ET for some v′ ∈ V } is an
atom vertex. Then, by (A1), V = {v | v is a rule vertex inV ′};

8

(ii) Let S = {(v1, v2) | (v1, v), (v, v2) ∈ E′ for some atom vertex v ∈ V ′}. We show that
E = S.

Let (v1, v2) ∈ E. Then, (v1, v2) is added into E at Line 4. So, due to Lines 2 and 3,
we know that there exists an atom vertex v ∈ VT such that (v, v2) ∈ ET . Then, by (A1),
v ∈ V ′ and, by (A2), (v, v2) ∈ E′. Also, by Line 9, we know that (v1, v) ∈ ET . Then,
by (A2), (v1, v) ∈ E′. Thus, (v1, v2) ∈ S. That is, E ⊆ S.

Let (v1, v2) ∈ S. Then, for some atom vertex v ∈ V ′, (v1, v), (v, v2) ∈ E′. By (A2),
v1, v2 ∈ V and (v1, v), (v, v2) ∈ ET . Then, due to Lemma 7, (v1, v2) ∈ E. That is,
S ⊆ E.

Lemma 9
Let Π be a ground ASP program, X be an answer set for Π, and p be an atom in X .
Let T = 〈V,E, l,Π, X〉 be the and-or explanation tree for p with respect to Π and X ,
T ′ = 〈V ′, E′, l,Π, X〉 be an explanation tree in T and v be a rule vertex in V ′. Then, the
following inequality holds for the weight of v

WT (v) ≤ 1 + |{u′ |u′ ∈ desT ′(v)}|. (A3)

Proof of Lemma 9
We prove the lemma by induction on the height of a rule vertex in the explanation tree.

Base case: Let u be a rule vertex in V ′ at height 0. Then, u is a leaf vertex. By the definition
of the weight function, WT (u) = 1. Then, (A3) holds.

Induction step: As an induction hypothesis, assume that for every rule vertex i ∈ V ′ at
height less than n, (A3) holds. We show that (A3) holds for every rule vertex w ∈ V ′ at
height n + 1. Let w be a rule vertex at height n + 1. Then, by the definition of the weight
function, WT (w) = 1+

∑
w′∈childE(w) WT (w′). Let w′ be a child of w. Note that w′ is an

atom vertex. By the definition of an explanation tree, w′ ∈ V ′ and w′ has exactly one child
w′′ ∈ V ′ which is a rule vertex. Then, by the definition of the weight function, WT (w′) =

min{WT (c) | c ∈ childE(w′)} and thus WT (w′) ≤ WT (w′′). On the other hand, as the
height of w′′ is n− 1, by the induction hypothesis, WT (w′′) ≤ 1 + |{d | d ∈ desT ′(w′′)}|.
Since w′ has exactly one child w′′ ∈ V ′, we have

1 + |{d | d ∈ desT ′(w′′)}| = |{u |u ∈ desT ′(w′)}|.

That is, WT (w′) ≤ |{u |u ∈ desT ′(w′)}|. Then, we have

WT (w) = 1 +
∑

w′∈childE(w) WT (w′)

≤ 1 +
∑

w′∈childE(w) |{u |u ∈ desT ′(w′)}|
= 1 + |{u′ |u′ ∈ desT ′(w)}|.

9

Lemma 10
Let Π be a ground ASP program, X be an answer set for Π, p be an atom in X , T be the
and-or explanation tree (with edges E) for p with respect to Π and X , v be the root of T ,
and T ′ be an explanation tree (with vertices V ′) in T . Then,

WT (v) ≤ |{u |u is a rule vertex inV ′}|.

Proof of Lemma 10
We want to show that the weight of v, WT (v), is at most the number of rule vertices in
V ′. Note that v is the root of T ′ and there exists exactly one vertex v′ ∈ V ′ such that
v′ ∈ childE(v) (due to Definition 3). Then, we have

WT (v) = min{WT (c) | c ∈ childE(v)} (by Definition 6)

≤ WT (v′) (as v′ ∈ childE(v))

≤ 1 + |{v′′ | v′′ ∈ desT ′(v′)}| (by Lemma 9)

= |{u |u is a rule vertex inV ′}|. (as v′ is the only child of v in T ′)

Lemma 11
Let Π be a ground ASP program, X be an answer set for Π, p be an atom in X , T
be the and-or explanation tree for p with respect to Π and X , v be the root of T , and
〈V,E, l,Π, X〉 be an explanation for p with respect to Π and X . Then, WT (v) ≤ |V |.

Proof of Lemma 11
We show that the weight of v, WT (v), is at most |V |. By the definition of an expla-
nation, there exists an explanation tree T ′ (with vertices V ′) of T such that |V | =

|{v′ | v′ is a rule vertex inV ′}|. By Lemma 10, WT (v) ≤ |{v′ | v′ is a rule vertex inV ′}|.
Thus, WT (v) ≤ |V |.

Lemma 12
Let Π be a ground ASP program, X be an answer set for Π, p be an atom in X , T =

〈V,E, l,Π, X〉 be the and-or explanation tree for p with respect to Π and X , and T ′ =

〈V ′, E′, l,Π, X〉 be an explanation tree in T . If we have

WT (v) ≤ min{WT (s) | s ∈ siblingE(v)}. (A4)

for every rule vertex v ∈ V ′, then the following holds for every rule vertex v ∈ V ′.

WT (v) = 1 + |{u′ |u′ ∈ desT ′(v)}|. (A5)

Proof of Lemma 12
Assume that (A4) holds for every rule vertex v ∈ V ′. Then, we prove the lemma by
induction on the height of a rule vertex in the explanation tree.

Base case: Let u be a rule vertex in V ′ at height 0. Then, u is a leaf vertex. By the definition
of the weight function, WT (u) = 1. As u has no descendants, (A5) holds.

10

Induction step: As an induction hypothesis, assume that for every rule vertex i ∈ V ′ at
height less than n, (A5) holds. We show that (A5) holds for every rule vertex w ∈ V ′

at height n + 1. Let w ∈ V ′ be a rule vertex at height n + 1. Then, by the definition
of the weight function, WT (w) = 1 +

∑
w′∈childE(w) WT (w′). Let w′ be a child of w.

Note that w′ is an atom vertex. By the definition of an explanation tree, w′ ∈ V ′ and
w′ has exactly one child w′′ ∈ V ′, which is a rule vertex. Then, by the definition of the
weight function, WT (w′) = min{WT (c) | c ∈ childE(w′)}. Also, by (A4), WT (w′′) ≤
min{WT (s) | s ∈ siblingE(w′′)}. Then, WT (w′′) = min{WT (c) | c ∈ childE(w′)}. Thus,
WT (w′) = WT (w′′). As the height of w′′ is n−1, by the induction hypothesis, WT (w′′) =

1+|{u |u ∈ desT ′(w′′)}|. As w′′ is the only child of w′, WT (w′) = |{u |u ∈ desT ′(w′)}|.
Then, we have

WT (w) = 1 +
∑

w′∈childE(w) WT (w′)

= 1 +
∑

w′∈childE(w) |{u |u ∈ desT ′(w′)}|
= 1 + |{u′ |u′ ∈ desT ′(w)}|.

Lemma 13
Let Π be a ground ASP program, X be an answer set for Π, p be an atom in X , T be the
and-or explanation tree (with edges E) for p with respect to Π and X , v be the root of T ,
and T ′ be an explanation tree (with vertices V ′) in T . If we have

WT (v′) ≤ min{WT (s) | s ∈ siblingE(v′)} (A6)

for every rule vertex v′ ∈ V ′, then, the following holds

WT (v) = |{u |u is a rule vertex inV ′}|.

Proof of Lemma 13
Assume that (A4) holds for every rule vertex v′ ∈ V ′. Then, we want to show that the
weight of v, WT (v), is equal to the number of rule vertices in V ′. Note that v is the root
of T ′ and there exists exactly one vertex v′ ∈ V ′ such that v′ ∈ childE(v) (due to Defini-
tion 3). Then, we have

WT (v) = min{WT (c) | c ∈ childE(v)} (by Definition 6)

= WT (v′) (by (A6))

= 1 + |{u′ |u′ ∈ desT ′(v′)}| (by Lemma 12)

= |{u |u is a rule vertex inV ′}|. (as v′ is the only child of v in T ′)

We are now ready to prove Proposition 3.

Proposition 3
Given a ground ASP program Π, an answer set X for Π, and an atom p in X , Algorithm 1
either finds a shortest explanation for p with respect to Π and X or returns an empty vertex-
labeled tree.

11

Proof of Proposition 3

Algorithm 1 has two return statements; Lines 6 and 8. At Line 8, it returns an empty vertex-
labeled tree. We show that what Algorithm 1 returns at Line 6, S = 〈V ′, E′, l,Π, X〉, is an
explanation for p with respect to Π and X and that there is no other explanation for p with
respect to Π and X , with vertices V ′′, such that |V ′′| < |V ′|.

Due to the condition at Line 2, the vertex-labeled tree found at Line 1 is not empty. Then,
by Proposition 12, we know that T is the and-or explanation tree for p with respect to Π and
X . Then, by Lemma 8, we know that 〈V ′, E′, l,Π, X〉 found at Line 5 is an explanation
for p with respect to Π and X .

Now, suppose that there exists another explanation for p with respect to Π and X ,
with vertices V ′′, such that |V ′′| < |V ′|. Let v be the root of T . Then, by Lemma 11,
WT (v) ≤ |V ′′|. Also, since S is an explanation for p with respect to Π and X , there exists
an explanation tree with vertices V ′′′ in T such that V ′ = {u |u is a rule vertex inV ′′′}.
Due to Lemma 6, WT (v′) ≤ min{WT (s) | s ∈ siblingE(v′)} for each v′ ∈ V ′. Then, by
Lemma 13, WT (v) = |{u |u is a rule vertex inV ′′′}|. This implies that |V ′| ≤ |V ′′|. Since
this is a contradiction, S is a shortest explanation for p with respect to Π and X .

A.1.3 Proof of Proposition 4 – Complexity of Algorithm 1

We prove Proposition 4 which shows that the time complexity of Algorithm 1 is exponen-
tial in the size of the given answer set.

Proposition 4
Given a ground ASP program Π, an answer set X for Π, and an atom p in X , the time
complexity of Algorithm 1 is O(|Π||X| × |BΠ|).

Proof of Proposition 4

In Algorithm 1, all the lines, expect 1, 4 and 5, take constant amount of time. At Lines 1, 4

and 5, three different algorithms are called. At Line 1, Algorithm 2 is called. This algo-
rithm creates the and-or explanation tree recursively. As shown in Proof of Lemma 1, the
branching factor of a vertex in the recursion tree is O(max{|X|, |Π|}) and the height of
the tree is O(|X|). Also, at Line 5, for an atom d ∈ X , we check whether a rule in Π

supports d in O(|BΠ|). Thus, the time complexity of Algorithm 2, in the worst case, is
O(max{|X|, |Π|}|X| × |BΠ|). As |X| ≤ |Π|, it is O(|Π||X| × |BΠ|). At Lines 4 and 5,
Algorithm 3 and Algorithm 4 are called, respectively. Algorithm 3 and Algorithm 4 simply
traverse the tree T created by Algorithm 2 (cf. Lines 2 and 6 in Algorithm 3, and Lines 5

and 10 in Algorithm 4. By Proposition 12, we know that T is the and-or explanation tree
for p with respect to Π and X . Since the height of T is O(|X|) and the branching factor
of a vertex in T is max{|X|, |Π|}, the time complexity of Algorithm 2 dominates the time
complexities of others. Thus, the time complexity of Algorithm 1, in the worst case, is
O(|Π||X| × |BΠ|).

12

A.2 Generating k Different Explanations

In Section 6 of the paper, we have first analyzed three properties of Algorithm 5, namely
termination, soundness and complexity, resulting in Propositions 5, 6, and 8. Then, we
show some characteristics of its output, resulting in Proposition 7, Corollary 1 and Corol-
lary 2. In the following, we show the proofs of these results.

A.2.1 Proof of Proposition 5 – Termination of Algorithm 5

We now prove Proposition 5 which shows that Algorithm 5 terminates.

Proposition 5
Given a ground ASP program Π, an answer set X for Π, an atom p in X , and a positive
integer k, Algorithm 5 terminates.

Proof of Proposition 5
Algorithm 5 calls Algorithm 2 at Line 2. By Lemma 1, we know that Algorithm 2 termi-
nates. Then, to show that Algorithm 5 terminates, we need to show that the loop between
Lines 4–10 terminates. Due to Line 4, the loop iterates at most k times. If it iterates less
than k times, it means that it is terminated at Line 6. Thus, assume that it iterates k times.
Then, it is enough to show that every iteration of the loop terminates. Consider the ith

(1 ≤ i ≤ k) iteration of the loop. First, at Line 5, Algorithm 6 is called. Observe that this
algorithm simply traverses the and-or explanation tree T created at Line 2 (cf. Lines 2, 3, 8

and 9 in Algorithm 6). Since T is finite, Algorithm 6 terminates. Next, Algorithm 4 is
called at Line 7. Similar to Algorithm 6, this algorithm also simply traverses a portion of T
(cf. Lines 3, 5, 9 and 10 in Algorithm 4). Hence, Algorithm 4 also terminates. As the rest
of the loop consists of some assignment statements, the ith (1 ≤ i ≤ k) iteration of the
loop terminates. Since every iteration of the loop terminates, Algorithm 5 terminates.

A.2.2 Proof of Proposition 6 – Soundness of Algorithm 5

Before showing the soundness property of Algorithm 5, we provide some necessary lem-
mas.

Proposition 13 (Completeness of Algorithm 2)
Let Π be a ground ASP program, X be an answer set for Π, p be an atom in X . Let T
be the and-or explanation tree p with respect to Π and X . Then, createTree(Π, X, p, {})
returns T .

Proof of Proposition 13
Let 〈V,E, l,Π, X〉 be the output of Algorithm 2. By Condition (i) in Definition 2, the
root of T is an atom vertex with label p. Since p is in X and L = ∅ at the beginning of
Algorithm 2, a vertex v with label p is created at Line 3 and added into V at Line 4.

Take an atom vertex v ∈ V . Then, there should be an out-going edge (v, v′) of v such
that l(v′) ∈ ΠX,ancT (v′)(l(v)) (due to Condition (ii) in Definition 2). Note that, the set L
in Algorithm 2 is essentially ancT (v′), and l(v′) ∈ ΠX,L(l(v)) is checked at Line 5.

13

Moreover, we need to ensure that v′ is a rule vertex. This condition is checked at Line 6 by
recursive calls.

Take a rule vertex v ∈ V . Then, for every atom a in B+(l(v)), there should be an out-
going edge (v, v′) of v such that l(v′) = a (due to Condition (iii) in Definition 2). This
is satisfied by the condition at Line 13. Moreover, we need to make sure that v′ is atom
vertex. For that, there is a recursive call at Line 14.

Take a leaf vertex v ∈ V . Then, v must be a rule vertex (due to Condition (iv) in
Definition 2). Assume that v is an atom vertex. Thus, no out-going edge is defined for v at
Line 9. Then, when the loop at Line 5 terminates, the condition at Line 10 is satisfied. This
implies that v is not in V . As it is a contradiction, v must be a rule vertex.

By this proposition and Proposition 1, we know that Algorithm 2 returns the and-or expla-
nation tree. Thus, at Line 1 of Algorithm 5, the and-or explanation tree for p with respect
to Π and X is created. We prove our statements by keeping this in mind.

Lemma 14
Let Π be a ground ASP program, X be an answer set for Π, p be an atom in X , and k be
a positive integer. Let n be the number of different explanations for p with respect to Π

and X . Then, for the root vr of T , at each iteration i (1 ≤ i ≤ min{n, k}) of the loop in
Algorithm 5, WT,Ri−1

(vr) = |RVertices(Ki)\Ri−1|.

Proof of Lemma 14
Consider the ith (1 ≤ i ≤ min{n, k}) iteration of the loop. At Line 5, we call Algorithm 6
and calculate WT,Ri−1

for every vertex v in V . According to Algorithm 6, for an atom
vertex v ∈ V , due to Line 4, WT,Ri−1(v) = max{WT,Ri−1(v′) | v′ ∈ childE(v)} and for
a rule vertex u, due to Lines 6–9, WT,Ri−1

(u) = xu +
∑

u′∈childE(u) WT,Ri−1
(u′) where

xu = 1 if u /∈ Ri−1, xu = 0 otherwise. Let v be an atom vertex in V . Let {v′1, . . . , v′vz}
be a set of rule vertices that “contribute” to WT,Ri−1

(v), i.e., rule vertices that appear in
the expanded formula of WT,Ri−1

(v). This implies that WT,Ri−1
= xv′1

+ . . . + xv′vz
where xv′j

= 1 if v′j /∈ Ri−1, xv′j
= 0 otherwise, for 1 ≤ j ≤ vz . Also, at Line 7 in

Algorithm 5, we extract an explanation using Algorithm 4. Then, at Line 8, we assign
the output 〈V ′, E′, l,Π, X〉 of Algorithm 4 to Ki. Let RVertices(Ki) = {v1, . . . , vz}.
Observe in Algorithm 4 that for every atom vertex, we process its maximum weighted
child recursively (Line 3), and for every rule vertex we choose every child of it recursively
(Line 9). Then, due to the observation and the calculation of WT,Ri−1

, RVertices(Ki) is a
set of rule vertices that contribute to WT,Ri−1

(vr). Then, WT,Ri−1
(vr) = x1 + . . . + xz

where xj = 1 if vj /∈ Ri−1, xj = 0 otherwise, for 1 ≤ j ≤ z. That is, WT,Ri−1(vr) =

|RVertices(Ki)\Ri−1|.

Now, we prove Proposition 6.

Proposition 6
Let Π be a ground ASP program, X be an answer set for Π, p be an atom in X , and k be
a positive integer. Let n be the number of different explanations for p with respect to Π

and X . Then, Algorithm 5 returns min{n, k} different explanations for p with respect to Π

and X .

14

Proof of Proposition 6

First, assume that n ≥ k. Then, we show that Algorithm 5 returns at Line 11 a set K of k
different explanations for p with respect to Π and X . Note that an element is added into K

at each iteration of the loop between Lines 4–10. Since that loop iterates k times, we need
to show that two properties hold: (i) for every iteration i (1 ≤ i ≤ k), Ki (the element
added into K at the ith iteration) is an explanation for p with respect to Π and X . (ii) for
all iterations i, j (1 ≤ i < j ≤ k), Ki and Kj are different. In the following, we consider
those two properties.

(i) For every iteration i (1 ≤ i ≤ k), Ki is formed at Line 8. According to Line 7, Ki is
an output of Algorithm 4. Then, due to Lemma 8, we conclude that Ki is an explanation
for p with respect to Π and X .

(ii) Assume otherwise. Then, there exists i, j (1 ≤ i < j ≤ k) such that Ki = Kj . Con-
sider the jth iteration of the loop. At Line 5, we call Algorithm 6 and calculate WT,Rj−1

for every vertex v in V . Then, at Line 7, we extract an explanation using Algorithm 4. Let
Kj = 〈V ′, E′, l,Π, X〉, vr be the root of 〈V ′, E′〉 and RVertices(Kj) = {v1, . . . , vl}.
Then, by Lemma 14, WT,Rj−1

(vr) = x1 + . . . + xl where xz = 1 if vz /∈ Rj−1,
xz = 0 otherwise, for 1 ≤ z ≤ l. Since Ki = Kj , {v1, . . . , vl} = RVertices(Ki). Due to
Line 10, we know that RV ertices(Ki) ⊆ Rj−1. Then, for 1 ≤ z ≤ l, vz ∈ Rj−1. Thus,
WT,Rj−1

(vr) = 0. This implies that for every vertex v ∈ V , WT,Rj−1
(v) = 0. That is,

every rule vertex in V is also in Rj−1. However, as we are at the jth iteration and at each
iteration one explanation is computed, Rj−1 might contain rule vertices for at most j − 1

explanations. We know that n ≥ k. Thus, for some v′ ∈ V , the following should hold:
v′ /∈ Rj−1. As we reach a contradiction, Ki 6= Kj .

Now, assume that n < k. Then, we show that Algorithm 5 returns at Line 6 a set K of n
different explanations for p with respect to Π and X . Note that at the end of nth iteration
of the loop, K contains n different explanations (due to the same reasoning above). Then,
in the next iteration, WT,Rn+1

(v) = 0. This is because Rn contains the rule vertices of n
different explanations and the total number of explanations for p with respect to Π and X

is n. Thus, the condition at Line 6 is satisfied and n different explanations are returned.

A.2.3 Some Properties of Algorithm 5

Before presenting some characteristics of the output of Algorithm 5, we provide some
necessary definitions and lemmas.

Definition 18 (WT,R)
Let Π be a ground ASP program, X be an answer set for Π, p be an atom in X , T =

〈V,E, l,Π, X〉 be the and-or explanation tree for p with respect to Π and X , and R be a
set of rule vertices in V . Then, WT,R is a function that maps vertices in V to nonnegative

15

integers as follows.

WT,R(v) =

max{WT,R(v′) | v′ ∈ childE(v)} if v is an atom vertex;∑

v′∈childE(v) WT,R(v′) if v is a rule vertex and v ∈ R;

1 +
∑

v′∈childE(v) WT,R(v′) otherwise.

Lemma 15
Let Π be a ground ASP program, X be an answer set for Π, and p be an atom in X .
Let T = 〈V,E, l,Π, X〉 be the and-or explanation tree for p with respect to Π and X ,
T ′ = 〈V ′, E′, l,Π, X〉 be an explanation tree in T and R be a set of rule vertices in V .
Then, for every rule vertex v in V ′, the following holds

WT,R(v) ≥
{

1 + |{u′ |u′ ∈ (desT ′(v)\R)}| if v /∈ R;

|{u′ |u′ ∈ (desT ′(v)\R)}| otherwise.
(A7)

Proof of Lemma 15
We prove the lemma by induction on the height of a rule vertex in the explanation tree.

Base case: Let v be a rule vertex in V ′ at height 0. Then, v is a leaf vertex. By Defini-
tion 18, WT,R(v) = xv where xv = 1 if v /∈ R, xv = 0 otherwise. Then, (A7) holds.

Induction step: As an induction hypothesis, assume that for every rule vertex i ∈ V ′ at
height less than n+ 1, (A7) holds. We show that (A7) holds for every rule vertex v ∈ V ′ at
height n+1. Let v be a rule vertex in V ′ at height n+1. Then, by Definition 18, WT,R(v) =

xv +
∑

v′∈childE(v) WT,R(v′) where xv = 1 if v /∈ R, xv = 0 otherwise. Let v′ be a child
of v. Note that v′ is an atom vertex. By Conditions (iii) and (iv) in Definition 3, v′ ∈ V ′

and v′ has exactly one child v′′ ∈ V ′ which is a rule vertex. Then, by Definition 18,
WT,R(v′) = max{WT,R(c) | c ∈ childE(v′)} and thus WT,R(v′) ≥ WT,R(v′′). On the
other hand, as the height of v′′ is n − 1, by the induction hypothesis, (A7) holds for v′′.
Thus, we obtain the following.

WT,R(v′) ≥
{

1 + |{u′ |u′ ∈ (desT ′(v′′)\R)}| if v′′ /∈ R;

|{u′ |u′ ∈ (desT ′(v′′)\R)}| otherwise.
(A8)

Since v′ has exactly one child v′′ ∈ V ′, we derive

{v′′} ∪ {d | d ∈ desT ′(v′′)} = |{u |u ∈ desT ′(v′)}|. (A9)

Then, due to (A8) and (A9),

WT,R(v′) ≥ |{u |u ∈ (desT ′(v′)\R)}|. (A10)

Then, to conclude the proof, we consider two cases.
Case 1. Suppose that v /∈ R. Then, we can derive the following.

WT,R(v) = 1 +
∑

v′∈childE(v) WT,R(v′) (by Definition 18)

≥ 1 +
∑

v′∈childE(v) |{u |u ∈ (desT ′(v′)\R)}| (by (A10))

= 1 + |{u′ |u′ ∈ (desT ′(v)\R)}|.
(as every child of v is an atom vertex)

16

Case 2. Suppose that v ∈ R. Then, we can derive the following.

WT,R(v) =
∑

v′∈childE(v) WT,R(v′) (by Definition 18)

≥
∑

v′∈childE(v) |{u |u ∈ (desT ′(v′)\R)}| (by (A10))

= |{u′ |u′ ∈ (desT ′(v)\R}|.
(as every child of v is an atom vertex)

Lemma 16
Let Π be a ground ASP program, X be an answer set for Π, p be an atom in X , T =

〈V,E, l,Π, X〉 be the and-or explanation tree for p with respect to Π and X , v be the root
of T , T ′ be an explanation tree (with vertices V ′) in T , and R be a set of rule vertices in
V . Then,

WT,R(v) ≥ |{u |u ∈ (RVertices(T ′)\R)}|.

Proof of Lemma 16
We want to show that WT,R(v) is equal to at least the number of rule vertices in V ′ but
R. Recall that v is the root of T ′ and there exists exactly one vertex v′ ∈ V ′ such that
v′ ∈ childE(v) (due to Condition (iii) in Definition 3). Then, we consider two cases.

Case 1. Assume that v′ /∈ R. Then, we can derive the following.

WT,R(v) = max{WT,R(c) | c ∈ childE(v)} (by Definition 18)

≥ WT,R(v′) (as v′ ∈ childE(v))

≥ 1 + |{v′′ | v′′ ∈ (desT ′(v′)\R)}| (by Lemma 15)

= |{u |u ∈ (RVertices(T ′)\R)}|. (as v′ is the only child of v in T ′)

Case 2. Assume that v′ ∈ R. Then, we can derive the following.

WT,R(v) = max{WT,R(c) | c ∈ childE(v)} (by Definition 18)

≥ WT,R(v′) (as v′ ∈ childE(v))

≥ |{v′′ | v′′ ∈ (desT ′(v′)\R)}| (by Lemma 15)

= |{u |u ∈ (RVertices(T ′)\R)}|. (as v′ is the only child of v in T ′)

Lemma 17
Let Π be a ground ASP program, X be an answer set for Π, p be an atom in X , T be the
and-or explanation tree (with vertices V) for p with respect to Π and X , v be the root of T ,
T ′ = 〈V ′, E′, l,Π, X〉 be an explanation for p with respect to Π and X , and R be a set of
rule vertices in V . Then, WT,R(v) ≥ |RVertices(T ′)\R|.

17

Proof of Lemma 17
We show that WT,R(v) is equal to at least |RVertices(T ′)\R|. By Definition 4,
there exists an explanation tree T ′′ (with vertices V ′′) in T such that V ′ =

{v′ | v′ is a rule vertex inV ′′}. That is, RVertices(T ′) = RVertices(T ′′). By Lemma 16,
we know that WT,R(v) ≥ |{u |u ∈ (RVertices(T ′′)\R)}|. Thus, we conclude that
WT,R(v) ≥ |RVertices(T ′)\R|.

We can now prove our main result which simply indicates that at each iteration i of the
loop in Algorithm 5 the distance ∆D(Ri−1,Ki) is maximized.

Proposition 7
Let Π be a ground ASP program, X be an answer set for Π, p be an atom in X , and k

be a positive integer. Let n be the number of explanations for p with respect to Π and X .
Then, at the end of each iteration i (1 ≤ i ≤ min{n, k}) of the loop in Algorithm 5,
∆D(Ri−1,RVertices(Ki)) is maximized, i.e., there is no other explanation K ′ such that
∆D(Ri−1,RVertices(Ki)) < ∆D(Ri−1,RVertices(K ′)).

Proof of Proposition 7
The proof is by contradiction. Assume that there exists an explanation K ′

such that ∆D(Ri−1,RVertices(Ki)) < ∆D(Ri−1,RVertices(K ′)). That is,
|RVertices(K ′)\Ri−1| > |RVertices(Ki)\Ri−1|. Let vr be the root of T . Then,
by Lemma 17, WT,Ri−1(vr) ≥ |RVertices(K ′)\Ri−1|. Also, by Lemma 14,
we know that WT,Ri−1

(vr) = |RVertices(Ki)\Ri−1|. Therefore, we obtain that
|RVertices(Ki)\Ri−1| ≥ |RVertices(K ′)\Ri−1|. But, that contradicts the assump-
tion |RVertices(K ′)\Ri−1| > |RVertices(Ki)\Ri−1|. Thus, there is no K ′ such that
∆D(Ri−1,RVertices(Ki)) < ∆D(Ri−1,RVertices(K ′)), i.e., ∆D(Ri−1,RVertices(Ki))

is maximized.

Now, we provide the proof of the corollary that shows how to compute longest explana-
tions.

Corollary 1
Let Π be a ground ASP program, X be an answer set for Π, p be an atom in X , and k = 1.
Then, Algorithm 5 computes a longest explanation for p with respect to Π and X .

Proof of Corollary 1
Since k = 1, the loop in Algorithm 5 iterates once. At that iteration, by Proposition 6,
we know that an explanation K1 for p with respect to Π and X is computed. By Propo-
sition 7, we also know that ∆D(R0,RVertices(K1)) is maximized. That is, there ex-
ists no explanation K ′ for p with respect to Π and X such that |RVertices(K ′)\R0| >
|RVertices(K1)\R0|. Note that R0 is an empty set. Therefore, there exists no explanation
K ′ for p with respect to Π and X such that |RVertices(K ′)| > |RVertices(K1)|. As every
vertex of an explanation is a rule vertex, we conclude that K1 is a longest explanation for
p with respect to Π and X .

18

Next, we indicate the proof of the corollary that shows Algorithm 5 computes min{n, k}
different explanations such that for every i (1 ≤ i ≤ min{n, k}) the ith explanation is the
most distant explanation from the previously computed i− 1 explanations.

Corollary 2
Let Π be a ground ASP program, X be an answer set for Π, p be an atom in X , and k be a
positive integer. Let n be the number of explanations for p with respect to Π and X . Then,
Algorithm 5 computes min{n, k} different explanations K1, . . . ,Kmin{n,k} for p with re-

spect to Π and X such that for every j (2 ≤ j ≤ min{n, k}) ∆D(
⋃j−1

z=1 RVertices(Kz),Kj)

is maximized.

Proof of Corollary 2
By Proposition 6, we know that K1, . . . ,Kmin{n,k} are min{n, k} different explana-
tions for p with respect to Π and X . Also, by Proposition 7, for every i (2 ≤ i ≤
min{n, k}), we obtain that ∆D(Ri−1,Ki) is maximized. Due to Lines 1 and 10 of Al-
gorithm 5, Ri−1 =

⋃i−1
j=0 RVertices(Kj). Since R0 is an empty set, we conclude that

∆D(
⋃i−1

j=1 RVertices(Kj),Ki) is maximized.

A.2.4 Proof of Proposition 8 – Complexity of Algorithm 5

We prove Proposition 8 which shows that the time complexity of Algorithm 5 is exponen-
tial in the size of the given answer set.

Proposition 8
Given a ground ASP program Π, an answer set X for Π, an atom p in X and a positive
integer k, the time complexity of Algorithm 5 is O(k × |Π||X|+1 × |BΠ|).

Proof of Proposition 8
Algorithm 5 calls Algorithm 2 at Line 2. In the proof of Proposition 4, it is shown that the
worst case time complexity of Algorithm 2 is O(|Π||X|×BΠ). Moreover, Algorithm 5 has
a loop between Lines 4–10, which iterates at most k times. In every iteration of the loop,
Algorithm 6 and Algorithm 4 are called at Lines 5 and 7. Algorithm 6 simply traverses the
and-or explanation tree T recursively (cf. Lines 2, 3, 8 and 9 in Algorithm 6). The height
of T is O(|X|) and the branching factor of a vertex in T is O(|Π|). Also, at Line 8 in
Algorithm 6, we check whether a rule vertex in V is in R. As R is a subset of the rule
vertices in V , this check can be done in O(|Π| × |BΠ|) time. Thus, the time complexity
of Algorithm 6, in the worst case, is O(|Π||X| × |Π| × |BΠ|). Similar to Algorithm 6,
Algorithm 4 just traverses a portion of T (cf. Lines 3, 5, 9 and 10 in Algorithm 4). Thus,
the time complexity of every iteration of the loop in Algorithm 5 is O(|Π||X|+1 × |BΠ|).
As the loop iterates at most k times, the time complexity of Algorithm 5, in the worst case,
is O(k × |Π||X|+1 × |BΠ|).

A.3 Relations between Explanations and Justifications

In Section 10 of the paper, we have related explanations to justifications, resulting in Propo-
sitions 10 and 11. In the following, we show the proofs of these results.

19

A.3.1 Proof of Proposition 10 – Soundness of Algorithm 7

In the proof of Proposition 10, the idea is to show that Algorithm 7 returns at Line 17 an
explanation tree T ′ in the and-or explanation tree for p with respect to Π and X . That is, T ′

satisfies Conditions (i)–(iv) in Definition 3. Before providing the proof of Proposition 10,
we consider some useful lemmas and corollaries.

Lemma 18
Let Π be a ground normal ASP program, X be an answer set for Π, p be an atom in X ,
U be an assumption in Assumptions(Π, X), G = (V,E) be an offline justification
of p+ with respect to X and U , T = 〈V ′, E′, l,Π, X〉 be an output of Algorithm 7
and P = 〈v1, . . . , vn〉 be a path in T . Take any three consecutive elements vi, vi+1

and vi+2 in P such that vi and vi+2 are atom vertices and vi+1 is a rule vertex. Then,
(l(vi)

+, l(vi+2)+,+) ∈ E holds.

Proof of Lemma 18
As vi is an atom vertex, its out-going edges are formed at Line 15 of Algorithm 7. Then,
due to Lines 13 and 14, vi+1 is a rule vertex such that B(l(vi+1)) = support(l(vi)

+, G).
As vi+1 is a rule vertex, its out-going edges are formed at Line 10. Then, due to Lines 8

and 9, vi+2 is an atom vertex where l(vi+2) ∈ B+(l(vi+1)). Since B(l(vi+1)) =

support(l(vi)
+, G) and l(vi+2) ∈ B+(l(vi+1)), by Definition 10, (l(vi)

+, l(vi+2)+,+) ∈
E holds.

Corollary 3
Let Π be a ground normal ASP program, X be an answer set for Π, p be an atom in X ,
U be an assumption in Assumptions(Π, X), G = (N,E) be an offline justification of
p+ with respect to X and U , T = 〈V ′, E′, l,Π, X〉 be an output of Algorithm 7 and
P = 〈v1, . . . , vn〉 be a path in T where v1 and vn are atom vertices. Then, l(vn)+ is
reachable from l(v1)+ by a positive path in G.

Proof of Corollary 3
Note that an edge in E′ is either defined from an atom vertex to a rule vertex or vice
versa due to Lines 10 and 15 of Algorithm 7. By this observation, in P , as v1 is an
atom vertex, vi is an atom vertex (resp., rule vertex) if i is an odd number (resp., a
even number). Then, by Lemma 18, for 1 ≤ i ≤ n − 2 and i mod 2 6= 0 (i.e.,
i is an odd number), (l(vi)

+, l(vi+2)+,+) ∈ E. Thus, there exists a positive path〈
l(v1)+, l(v3)+, l(v5)+, . . . , l(v+

n−2), l(vn)+
〉

in G. That is, l(vn)+ is reachable from
l(v1)+ by a positive path in G.

Lemma 19
Let Π be a ground normal ASP program, X be an answer set for Π, p be an atom in X , U
be an assumption in Assumptions(Π, X), G = (N,E) be an offline justification of p+

with respect to X and U , T = 〈V ′, E′, l,Π, X〉 be an output of Algorithm 7 and v be an
atom vertex in V ′ such that v is the first element added into the queue Q in Algorithm 7.
Consider a sequence S = 〈v1 = v, v2, . . . , vn〉 of n elements where vi ∈ V ′ for 1 ≤ i ≤ n

20

such that vj+1 is added into Q right after vj for 1 ≤ j < n. Then, every vertex vi ∈ V ′

(1 < i ≤ n) is reachable from v by a path in T .

Proof of Lemma 19
The proof is by induction on the length of S.

Base case: Assume that S has two elements, i.e., S = 〈v1 = v, v2〉. Since v is the first
vertex added into Q by definition, it is the first vertex dequeued from Q at Line 5. Then,
since v is an atom vertex by definition, the second vertex is added into Q at Line 16. By
definition of S, v2 is the second vertex added into Q. Thus, by Line 15, (v, v2) ∈ E′, i.e.,
v2 is reachable from v by a path in T .

Induction step: As an induction hypothesis, assume that for a sequence S′ =

〈v1 = v, v2, . . . , vk〉 of k elements, where vi ∈ V ′ for 1 ≤ i ≤ k such that vj+1 is added
into Q right after vj for 1 ≤ j < k, every vertex vl ∈ V (1 < l ≤ k) is reachable from v

by a path in T . Let S′′ = 〈v1 = v, v2, . . . , vk+1〉 be a sequence of k + 1 elements, where
vi ∈ V ′ for 1 ≤ i ≤ k + 1 such that vj+1 is added into Q right after vj for 1 ≤ j < k + 1.
We show that v reaches every vertex in S′′ by using edges in E′. Consider the subsequence
S′′sub of S′′ that consists of the first k elements of S′′, i.e., a prefix of S′′ with length k. By
the induction hypothesis, every vertex vi ∈ S′′sub is reachable from v by a path in T . Now,
we show that vk+1 is reachable from v by a path in T . We consider two cases.

Case 1. Assume that vk+1 is an atom vertex. Then, vk+1 is added into V ′ at Line 11. So,
by Line 10, there exists a vertex v′ such that (v′, vk+1) ∈ E′. But, due to Line 5, v′ must be
added into Q prior to vk+1. That is, v′ ∈ S′′sub. So, by the induction hypothesis, v reaches
v′ by a path P in T . Thus, by P and (v′, vk+1), vk+1 is reachable from v by a path in T .

Case 2. Assume that vk+1 is a rule vertex. Then, vk+1 is added into V ′ at Line 16. So, by
Line 15, there exists a vertex v′ such that (v′, vk+1) ∈ E′. But, due to Line 5, v′ must be
added into Q prior to vk+1. That is, v′ ∈ S′′sub. So, by the induction hypothesis, v reaches
v′ by a path P in T . Thus, by P and (v′, vk+1), vk+1 is reachable from v by a path in T .

We now prove Proposition 10 that shows the soundness of Algorithm 7.

Proposition 10
Given a ground normal ASP program Π, an answer set X for Π, an atom p in X , an
assumption U in Assumption(Π, X), and an offline justification G = (V,E) of p+ with
respect to X and U , Algorithm 7 returns an explanation tree 〈V ′, E′, l,Π, X〉 in the and-or
explanation tree for p with respect to Π and X .

Proof of Proposition 10
We show what Algorithm 7 returns at Line 17, T ′ = 〈V ′, E′, l,Π, X〉, is an explanation
tree in the and-or explanation tree T = 〈VT , ET , l,Π, X〉 for p with respect to Π and X .
That is, T ′ satisfies Conditions (i)–(iv) in Definition 3. In the following, we study each
condition separately.

21

(ii) To show that the root of 〈V ′, E′〉 is a vertex whose label is p, we need to show three
cases hold; (1) there exists a vertex v in V ′ with label p, (2) every vertex v′ ∈ V ′ is
reachable from v by a path in T ′. (3) v has no in-going edge. In the following, we show
that each case holds.

Case 1. Observe that a vertex is in V ′ if and only if it is added into the queue Q. Then,
due to Lines 2 and 3, there exists a vertex v ∈ V ′ such that l(v) = p.

Case 2. The first element added into Q is an atom vertex v with l(v) = p, due to Lines 2

and 3. Note that a vertex is in V ′ if and only if it is added into Q. Then, as v is added
into Q, by the observation, v ∈ V ′. Now, pick a vertex v′ ∈ V ′. By the same observation,
v′ is also added into Q. Since v is the first element queued in Q, v′ is queued in V ′ later
on. Thus, by Lemma 19, v′ is reachable from v by a path in T ′.

Case 3. Assume otherwise. That is, (v′, v) ∈ E′ for some vertex v′ ∈ V ′. The edges in E′

are constructed at Lines 10 and 15. Then, as v is an atom vertex, v′ is a rule vertex. Observe
that a vertex is in V ′ if and only if it is added into Q. Then, since v′ is a rule vertex in V ′,
it is added into Q at Line 16. So, due to Line 15, there exists an atom vertex v′′ ∈ V ′

such that (v′′, v′) ∈ E′. Thus, as (v′′, v′), (v′, v) ∈ E′, there exists a path 〈v′′, v′, v〉 in T ′.
Then, by Corollary 3, l(v)+ is reachable from l(v′′)+ by a positive path P in G. Moreover,
as shown in Case 2 above, v′′ is reachable from v by a path 〈v1 = v, v2, . . . , vn = v′′〉 in
T ′. So, by Corollary 3, l(v′′)+ is reachable from l(v)+ by a positive path P ′ in G. Then,
by P and P ′, a positive cycle exists in G. As every offline justification is a safe offline
e-graph due to Definition 17, we reach a contradiction.

(i) By Condition (ii) in Definition 3, we know that the root of 〈V ′, E′〉 is a vertex v with
l(v) = p. Then, if we show that for every vertex v′ ∈ V ′, outE′(v′) is a subset of ET , then
we can conclude that 〈V ′, E′〉 is a subtree of 〈VT , ET 〉. Now, pick a vertex v′ ∈ V ′. We
consider two cases:

Case 1. Assume that v′ is an atom vertex. Take an out-going edge (v′, v′′) of v′ in E′.
To show that (v′, v′′) ∈ ET , we need to show that l(v′′) ∈ ΠX,ancT ′ (v′′)(l(v

′)), due
to Condition (ii) in Definition 2. For that, we should show that H(l(v′′)) = l(v′),
B+(l(v′′)) ⊆ X\ancT ′(v′′), B−(l(v′′)) ∩ X = ∅ and X |= Bcard(l(v′′)), due to
(8) in Section 4. As Π is a ground normal ASP program, it does not contain cardi-
nality expressions in its body. Thus, X |= Bcard(l(v′′)) trivially. In Algorithm 7, out-
going edges of atom vertices are formed at Line 15. Then, due to Lines 13 and 14,
H(l(v′′)) = l(v′) and B(l(v′′)) = support(l(v′)+, G). Since G is an offline justifica-
tion, G is an offline e-graph by Definition 17. Then, by Definition 13, G is an (X,U)-
based e-graph. So, by Definition 12, support(l(v′)+, G) is an LCE of l(v′)+ with re-
spect to (X,U), so does B(l(v′′)). According to Definition 11, as B(l(v′′)) 6= {assume},
B+(l(v′′)) ⊆ X and B−(l(v′′)) ∩ X = ∅. To complete this part, it remains to show
that B+(l(v′′)) ⊆ X\ancT ′(v′′). Since B+(l(v′′)) ⊆ X , it is enough to show that
B+(l(v′′)) ∩ ancT ′(v′′) = ∅. For that, assume B+(l(v′′)) ∩ ancT ′(v′′) 6= ∅. Let
a ∈ B+(l(v′′)) ∩ ancT ′(v′′). Since a ∈ B+(l(v′′)) and B(l(v′′)) = support(l(v′)+, G),
(l(v′)+, a+,+) ∈ E holds. As a ∈ ancT ′(v′′), there exists a vertex u ∈ V ′ where l(u) = a

such that a path P = 〈v1 = u, . . . , vn = v′〉 in T ′ exists. Then, due to Corollary 3, l(v′)+ is
reachable from a+ by a positive path in G. But, as (l(v′)+, a+,+) ∈ E, (a+, a+) ∈ E∗,+

22

holds, i.e., there is a positive cycle in the offline justification, which is a contradiction, due
to Definition 17.

Case 2. Assume that v′ is a rule vertex. Take an out-going edge (v′, v′′) of v′ in E′. To
show that (v′, v′′) ∈ ET , we need to show that l(v′′) ∈ B+(l(v′)), due to Condition (iii)

in Definition 2. Out-going edges of v′ are formed at Line 10 which is reached only by
satisfying the condition at Line 8. Then, due to Line 9, l(v′′) ∈ B+(l(v′)).

(iii) Observe that an element is added into Q once. Thus, we dequeue each atom vertex
only once. Then, due to Lines 12–16, every atom vertex v′ ∈ V ′ has exactly one out-going
edge, i.e., degE′(v

′) = 1.

(iv) Take a rule vertex v′ ∈ V ′. Its edges are formed at Line 10. Then, due to the condition
at Line 8 and the statement at Line 9, for every a ∈ B+(l(v′)), there exists a vertex v′′

such that l(v′′) = a. Then, the condition holds.

Also, we can show that the and-or explanation tree exists for every atom in an answer
set.

Proposition 1
Let Π be a ground ASP program and X be an answer set for Π. For every p be in X , the
and-or explanation tree for p with respect to Π and X is not empty.

Proof of Proposition 1
By Proposition 9, we know that there exists an offline justification of p+ with respect to
X and X−\WF−Π . Then, by Proposition 10, there is an explanation tree in the and-or
explanation tree for p with respect to Π and X . That is, the and-or explanation tree for p
with respect to Π and X is not empty.

A.3.2 Proof of Proposition 11 – Soundness of Algorithm 8

Before proving Proposition 11, we provide the necessary lemmas.

Lemma 20
Let Π be a ground normal ASP program, X be an answer set for Π, p be an atom in X ,
T = 〈V ′, E′, l,Π, X〉 be an explanation tree in the and-or explanation tree for p with
respect to Π and X such that for every v, v′ ∈ V ′, l(v) = l(v′) if and only if v = v′,
(V,E) be the output of Algorithm 8 called with inputs Π, X, p and T , and 〈v1, v2, v3〉 be a
path in T such that l(v1)+ ∈ V . Then, (l(v1)+, l(v3)+,+) ∈ E and l(v3)+ ∈ V .

Proof of Lemma 20
All of the nodes, except the one with label >, are added to V at Line 5 of Algorithm 8. As
l(v1)+ ∈ V , v1 is extracted from the queue Q at Line 4. Then, since 〈v1, v2, v3〉 is a path in
T and every atom vertex in V ′ has exactly one child due to Condition (iii) in Definition 3,
v2 is obtained at Line 6. By the condition at Line 9, every child of v2 is considered in the
loop. Accordingly, at Line 10, the edge (l(v1)+, l(v3)+,+) is added into E. Also, v3 is

23

added into Q at Line 11. Then, due to the condition at Line 3 and the statements at Lines 4

and 5, l(v3)+ ∈ V .

Corollary 4
Let Π be a ground normal ASP program, X be an answer set for Π, p be an atom in X ,
T = 〈V ′, E′, l,Π, X〉 be an explanation tree in the and-or explanation tree for p with
respect to Π and X such that for every v, v′ ∈ V ′, l(v) = l(v′) if and only if v = v′,
(V,E) be the output of Algorithm 8 called with inputs Π, X, p and T , and 〈v1, v2, . . . , vn〉
be a path in T such that l(v1)+ ∈ V . Then, 〈l(v1)+, l(v3)+, l(v5)+, . . . , l(vn)+〉 is a path
in (V,E).

Proof of Corollary 4
Since 〈v1, v2, v3〉 is a path in T and l(v1)+ ∈ V , by Lemma 20, (l(v1)+, l(v3)+,+) ∈
E and l(v3)+ ∈ V . Similarly, (l(v3)+, l(v5)+,+) ∈ E and l(v5)+ ∈ V . Then, this
incremental application of Lemma 20 leads that 〈l(v1)+, l(v3)+, l(v5)+, . . . , l(vn)+〉 is
a path in (V,E).

We now prove Proposition 11 which shows that Algorithm 8 creates an offline justifi-
cation of the given atom in the reduct of the given ASP program with respect to the given
answer set, provided that labels of the vertices of the given explanation tree are unique
labels, i.e., no two different vertices labels the same entity.

Proposition 11
Given a ground normal ASP program Π , an answer set X for Π, an atom p in X , and an
explanation tree 〈V ′, E′, l,Π, X〉 in the and-or explanation tree for p with respect to Π and
X such that for every v, v′ ∈ V ′, l(v) = l(v′) if and only if v = v′, Algorithm 8 returns an
offline justification of p+ in ΠX with respect to X and ∅.

Proof of Proposition 11
To show that the output (V,E) of Algorithm 8 at Line 13 is an offline justification of p+ in
ΠX with respect to X and ∅, one needs to show that the following conditions hold.

(1) ∅ ∈ Assumptions(ΠX , X);
(2) (V,E) is an e-graph for ΠX ;
(3) (V,E) is a (X, ∅)-based e-graph of p+;
(4) (V,E) is an offline e-graph of p+ with respect to X and ∅.

Condition (1) We show that ∅ ∈ Assumptions(ΠX , X). As ΠX is a positive program,
i.e., it does not contain any negative atoms, by Definition 14, T AΠX (X) = ∅. Also, due to
Definition 15, NR(ΠX , X) = ΠX . Then, by Definition 16, ∅ ∈ Assumptions(ΠX , X).

Condition (2) We show that (V,E) is an e-graph for ΠX . For that, (V,E) should satisfy
Conditions (i)− (iv) in Definition 9.

(i) Consider two cases.

24

Case 1. Take a node b+ ∈ V \{>}. It is added to V at Line 5. Then, there exists an
atom vertex v ∈ V ′ such that l(v) = b. By Condition (iii) in Definition 3, v has
exactly one child v′ in 〈V ′, E′〉, which is a rule vertex. Then, depending on whether
l(v′) is a fact or not, an out-going edge of b+ in E is formed at Line 8 or 10. So, b+

is not a sink.
Case 2. Let l be >. Then, it is added to V at Line 12. The edges in E are formed at
Lines 8 and 10. Accordingly, l has no out-going edge, i.e., it is a sink.
Therefore, (V,E) is an e-graph for ΠX .

(ii) Due to Lines 8 and 10, clearly, for every b ∈ V there is no edges in the form of
(b, assume,−) and (b,⊥,−) in E.

(iii) Similar to (ii), for every b ∈ V there is no edges in the form of (b, assume,+) and
(b,>,+) in E.

(iv) Let b+ ∈ V such that (b+,>,+) ∈ E. As out-going edges are created at Lines 8

and 10, (b,>,+) must be formed at Line 8. Then, there exists an atom vertex v ∈ V ′

such that l(v) = b and the label of the child v′ of v is a fact (Line 7). Then, since
the condition at Line 9 is not satisfied, it is not possible that b+ has another out-going
edge.

Condition (3) We show that (V,E) is an (X, ∅)-based e-graph of p+. By Condition (1)
above, we know that (V,E) is an e-graph. To show that (V,E) is an (X, ∅)-based e-graph
of p+, we need to show that Conditions (i) and (ii) in Definition 12 hold.

(i) Take a node c+ ∈ V . It is added to V at Line 5. Then, there exists an atom vertex
v′ ∈ V ′ such that l(v′) = c. By Condition (ii) in Definition 3, we know that the
root of 〈V ′, E′〉 is a vertex v where l(v) = p. So, v′ is reachable from v by a path
〈v1 = v, v2, v3, . . . , vn = v′〉 in 〈V ′, E′〉. Also, as v is added into Q at Line 2, we
know that l(v)+ ∈ V by Line 5. Then, by Corollary 4, 〈l(v)+, l(v3)+, . . . , l(v′)+〉 is
a path in (V,E). That is, c+ is reachable from p+.

(ii) Let G = (V,E). Take a node c+ ∈ V \{>}. Then, support(c+, G) =

{a | (c+, a+,+) ∈ E} or support(c+, G) = {>}.
Assume that support(c+, G) = {a | (c+, a+,+) ∈ E}. As c+ ∈ V \{>}, there
exists an atom vertex v ∈ V ′ such that l(v) = c. By Condition (iii) in Definition 3,
there exists exactly one child v′ of v in 〈V ′, E′〉. Then, due to the condition at Line 9,
for each a ∈ support(c+, G), (v′, v′′) ∈ E′ where v′′ ∈ V ′ with l(v′′) = a. Thus,
B+(l(v′)) = support(c+, G). By Condition (ii) in Definition 2, H(l(v′)) = c and
B+(l(v′)) ⊆ X . Hence, support(c+G) is an LCE of (X, ∅).

Condition (4) We show that (V,E) is an offline e-graph of p+ with respect to X and ∅.
By Condition (3) above, we know that (V,E) is an (X, ∅)-based e-graph of p+. Then, to
show that (V,E) is an offline e-graph of p+ with respect to X and ∅, we need to show
that (V,E) satisfies Conditions (i) and (ii) in Definition 13. As edges in E are formed
at Lines 8 and 10, for every b ∈ V there are no edges in the form of (b, assume,+) and
(b, assume,−) in E. Then, conditions are trivially satisfied.

