
1

Online appendix for the paper

Detection and Exploitation of Functional
Dependencies for Model Generation

published in Theory and Practice of Logic Programming

BROES DE CAT AND MAURICE BRUYNOOGHE
Department of Computer Science, KU Leuven, Belgium

(e-mail: {broes.decat,maurice.bruynooghe}@cs.kuleuven.be)

submitted 10 April 2013; revised 23 May 2013; accepted 23 June 2013

Appendix A FO(·) to FO transformations

In this section, we provide details on the strong FO(·)-to-FO transformation (see Defi-
nition 2) for aggregates and inductive definitions.

Aggregates. For aggregates, we build on ideas in (Pelov 2004). We only consider decompos-
able aggregate functions, i.e., aggregates for which agg(S) = agg({agg(S′), agg(S \S′)}),
for sets of domain elements S and S′ ⊂ S. Our transformation of agg({x ∈ T : ϕ : t})
is based on the decomposability of the considered aggregates and the fact that there is
a total order on all domain elements, with a function MIN (minimum) and a (partial)
function PRED (predecessor) and that this order can be extended to a total order over
tuples of domain elements. Assuming neutralagg is the neutral element of agg, we define
an accumulator function acc(T) : N as:

acc(MIN(T)) = t[x/MIN(T)] ←ϕ[x/MIN(T)]

acc(MIN(T)) = neutralagg ←¬ϕ[x/MIN(T)]

∀x ∈ T : acc(x) = agg(acc(PRED(x)), t)←ϕ ∧ ¬(x = MIN(T))

∀x ∈ T : acc(x) = acc(PRED(x)) ←¬ϕ ∧ ¬(x = MIN(T))

This definition is equivalent to the FO formulas

acc(MIN(T)) = v ≡ (v = t[x/MIN(T)] ∧ ϕ[x/MIN(T)])∨
(v = neutralagg ∧ ¬ϕ[x/MIN(T)]) and

acc(x) = v ≡ ¬(x = MIN(T))∧
(v = agg(acc(PRED(x)), t) ∧ ϕ) ∨ (v = acc(PRED(x)) ∧ ¬ϕ)

The aggregate term itself is then replaced by acc(MAX(T)).

Inductive definitions. The completion of a definition has models that are not well-founded
when the definition contains positive loops. To eliminate such models, we use the idea
of level mappings that is used in (Janhunen et al. 2009) for converting ground rule
sets to propositional logic and was elaborated for well-founded semantics in (Pelov and
Ternovska 2005). The idea is to introduce a function symbol lP (T) : N for every defined

2

predicate or function symbol P (T) (we only work out the predicate case in detail). This
function is axiomatised to be 0 if P (T) is false, and otherwise it states that lP (T) is
strictly larger than the lQ(...) of atoms that were positively used to derive the truth of
P (T). Interpretations that satisfy these constraints, together with the completion, do not
contain positive or mixed loops.

Without loss of generality, we can assume that each predicate (or function) is defined
by a single rule and that it suffices to consider the following cases. For simplicity, assume
lP (T) : N also exists for all non-defined symbols P (T), mapping to 0 for each tuple in T .

• ∀x : ¬P (x)⇒ lP (x) = 0 (we assume all well-founded models are total).
• ∀x : P (x)← ¬Q(x). The constraint is ∀x : P (x)⇒ lP (x) ≥ 0.

• ∀x : P (x)← ∀y : Q(x, y). The constraint is ∀x, y : P (x)⇒ lP (x) > lQ(x, y).
• ∀x : P (x)← ∃y : Q(x, y). The constraint is ∀x : P (x)⇒ ∃y : lP (x) > lQ(x, y).
• ∀x : P (x)← Q1(x)∨ . . .∨Qn(x). The constraint is ∀x : P (x)⇒ ((Q1(x)∧ lP (x) >

lQ1(x)) ∨ . . . ∨ (Qn(x) ∧ lP (x) > lQn(x))).
• ∀x : P (x)← Q1(x) ∧ . . . ∧Qn(x). The constraint is ∀x : P (x)⇒ lP (x) > lQ1

(x) ∧
. . . ∧ lP (x) > lQn

(x).

The advantage of the strong FO(·)-to-FO transformation is that equivalence is pre-
served, and hence also all functional dependencies. However, the size of the theory in-
creases, and the theorem prover has to reason on induction over the order of the natural
numbers. The theorem prover used in our current prototype cannot.

Appendix B Proof of Proposition 4

First, we introduce some notations. With I an interpretation, we denote with P I (fI)
the interpretation of predicate P (function f). Slightly abusing notation, with d a domain
element, we say that P (d) ∈ I iff the tuple d ∈ P I , and similar for f(d) = d ∈ I. Given a
term t with free variable x and a variable assignment {x/d}, we denote with t{x/d}I the
interpretation of t in I under that assignment (a domain element). Similar for a formula
ϕ, ϕ{x/d}I is the interpretation of ϕ under that assignment (a truth value).

Our rewriting performs a number of operations to flatten/unflatten terms. We start
with a lemma handling these operations.

Lemma 1
Flattening/unflattening operations on a theory T preserve its models.

Proof
We distinguish the following operations:

• Let T ′ be derived from T by the replacement of a rule ∀x : P (t) ← ϕ by ∀x, y :

P (t1, . . . , tj−1, y, tj+1, . . . , tn)← y = tj ∧ϕ. LetM be a model of T ; we show that
it is also a model of T ′. It suffices to show that every P (d), element ofM supported
by the original rule in T , is supported by the new rule in T ′. That P (d) is sup-
ported means there is a variable assignment {x/dx} such that P (t{x/dx}M) = P (d)

and that ϕ{x/dx}M = >. But then y = tj ∧ ϕ is true in M under the vari-
able assignment {x/dx, y/tj{x/dx}M}. We can conclude from this observation that
〈t1, . . . , tj−1, y, tj+1, . . . , tn〉 {x/dx, y/tj{x/dx}M}M = t{x/dx}M = d and that

3

P (d) is supported by the new rule of T ′. Hence,M is also a model of T ′. Similarly,
we can show that every model of T ′ is a model of T ; this completes the proof for
this case.
• Let T ′ be derived from T by the replacement of an atom a[t] by ∃y : a[t/y]∧ y = t.

Let I be an interpretation and let {x/d} be a variable assignment for the free
variables x of a[t]. If a[t]{x/d}I is true then a[t/y] ∧ y = t is true in I for the
variable assignment {x/d, y/t{x/d}I} and hence also ∃y : a[t/y]∧ y = t is true in I
for the variable assignment {x/d}. Similarly, one can show that a[t] is false under
variable assignment {x/d} in I iff ∃y : a[t/y]∧y = t is. Hence models are preserved
by this rewriting.

• Let T ′ be derived from T by the replacement of agg({x : ϕ : t}) by agg({x, y :

ϕ∧ y = t : y}). Let {x/d} be a variable assignment for which ϕ is true in I. In this
case t{x/d}I is added to the set to be aggregated1. It follows that ϕ∧y = t is true for
exactly one variable assignment extending {x/d}, namely {x/d, y/t{x/d}I}. Hence
y{x/d, y/t{x/d}I} is added to the set to be aggregated. But y{x/d, y/t{x/d}I} =

t{x/d}I hence the same value is added. Also, for all variable assignments {x/d}
for which ϕ is false, ϕ ∧ y = t is false for all variable assignments extending {x/d}
with an assignment for y. Hence the rewriting preserves the value of the aggregate
expression and the models of the theory.

Now, we can turn our attention to the the replacement of predicate and function
symbols by new ones in dep-reduce. Given the previous lemma, we can assume without
loss of generality that the arguments of rule heads are distinct variables.

Proof of Proposition 4
We distinguish several cases.

• The functional dependency d
〈
P (T), S, j

〉
holds in T with #(S) < n− 1 and T ′ is

derived by replacing everywhere P (t) by Pr(t
∣∣
{j}C) ∧ tj = fd(t

∣∣
S

) and adding the
function fd(T

∣∣
S

) : Tj . LetM be a total interpretation of T . Now construct a total
interpretation M′ of T ′ by copying M for all symbols except P and by adding
the atoms Pr(d

∣∣
{j}C) and fd(d

∣∣
S

) = d
∣∣
{j} for every atom P (d) inM. Note that fd

defined in this way is a function because of the functional dependency in T . The
expressions P (t) and Pr(t

∣∣
{j}C) ∧ tj = fd(t

∣∣
S

) have the same free variables, say x.
Moreover, given the relationship betweenM andM′, it holds that P (t){x/dx}M ≡
(Pr(t

∣∣
{j}C)∧tj = fd(t

∣∣
S

)){x/dx}M
′
for every variable assignment {x/dx} henceM

is a model of T iffM′ is a model of T ′. Now, letM be a model of T andM′ the
corresponding model of T ′. Adding the rule {∀x ∈ T : P (x) ← Pr(x

∣∣
[1,n−1]\{j}) ∧

fd(x
∣∣
S

) = xj}} to T ′ as prescribed by Definition 4, M′ is extended with every
atom P (d) that is true inM and both theories are strongly voc(T)-equivalent.
When P is a defined symbol, every rule P (x)← ϕ is replaced by the rules fd(x

∣∣
S

) =

xj ← ϕ and Pr(x
∣∣
{j}C)← ϕ (Definition 5). Given the correspondence betweenM

1 Nothing is added when t contains a function that is not defined for the variable assignment; for that
variable assignment, the atom y = t is false.

4

andM′, clearly, an atom P (d) is supported underM by the rule in T iff Pr(d
∣∣
{j}C)

and fd(d
∣∣
S

) = dj are supported under M′ by the two rules in T ′. Hence both
theories are also strongly voc(T)-equivalent in this case.
• The case of a functional dependency d

〈
P (T), S, j

〉
in T with #(S) = n− 1 is very

similar and the proof is omitted.
• The functional dependency d

〈
f(T) : Tn, S, j

〉
holds in T with #(S) < n−1, j 6= n,

n /∈ S, and T ′ is derived by adding the functions fd(T
∣∣
S

) : Tj and fr(T
∣∣
{j}C) : Tn

and replacing everywhere atoms a[f(t)] by a[f(t)/fr(t
∣∣
{j}C)] ∧ tj = fd(t

∣∣
S

). Also
here, given a total interpretationM of T , we can construct a total interpretation
M′ of T ′ by copying the interpretations of all symbols but f and extending it with
fd(d

∣∣
S

) = dj and fr(d
∣∣
{j}C) = dn for every atom f(d) = dn in M. Note that fd

and fr defined in this way are functions because f is a function and the functional
dependency holds in T . Also here, we can argue that a[f(t)] and a[f(t)/fr(t

∣∣
{j}C)]∧

tj = fd(t
∣∣
S

) have the same free variables x and hence the same truth value for
every variable assignment {x/dx} under respectively M and M′. Hence M is a
model of T iff M′ is a model of T ′. Adding the rule {∀x, xn ∈ T , Tn : f(x) =

xn ← fr(x
∣∣
{j}C) = xn ∧ fd(x

∣∣
S

) = xj} as prescribed by Definition 4, to T ′, M′

is extended with every atom f(d) = dn that is true in M and both theories are
strongly voc(T)-equivalent.
When f is a defined symbol, every rule f(x) = xn ← ϕ is replaced by the rules
fd(x

∣∣
S

) = xj ← ϕ and fr(x
∣∣
{j}C) = xn ← ϕ (Definition 5). Given the correspon-

dence between M and M′, clearly, an atom f(d) = dn is supported under M by
the rule in T iff fr(d

∣∣
{j}C) = dn and fd(d

∣∣
S

) = dj are supported underM′ by the
two rules in T ′. Hence both theories are strongly voc(T)-equivalent in this case.
• The case of a functional dependency d

〈
f(T) : Tn, S, j

〉
with #(S) = n − 1 and

j = n is very similar to the previous case and the proof is omitted.
• Also the case where the preprocessing step replaces atoms of the form x = f(t) by

Pf (t :: x) with Pf (T :: Tn) a new predicate is very similar to the above cases and
we also omit its proof.

It follows that rewriting a theory(T according to Definitions 3, 4, and 5 produce a strongly
voc(T)-equivalent theory.

5

Appendix C Handling defined functions symbols

In Example 5, the following theory, consisting of definition ∆, was obtained after exploit-
ing the functional dependencies.

fr(s) = 0 ←
∀x y : fr(x) = fr(y) + c(y, x) ← e(y, x)

∧ ∀y′ : ¬(y = y′) ∧ e(y′, x)⇒ c(y, x) + fr(y) ≤ c(y′, x) + fr(y′)

To the best of our knowledge, no search algorithm is capable of handling non-Herbrand,

defined functions otherwise than by first transforming them into their predicate graph
equivalent. Such a transformation increases the quantifier nesting and counteracts the
aim of using functions to reduce the size of the grounding.

However, the above theory can be transformed into a theory in which the definition
of fr is replaced by its completion and where a new predicate redfr (x), equivalent with
HasImage(fr(x)) (recall, a shorthand for ∃y : fr(x) = y), defines for which domain
elements fr is defined. The transformation increases the size of the grounding only by a
constant value.

comp∆,fr

∀x : redfr (x)⇔ HasImage(fr(x))
redfr (s) ←
∀x : redfr (x) ← ∃y : redfr (y) ∧ fr(x) = fr(y) + c(y, x) ∧ e(y, x)

∧ (∀y′ : ¬(y = y′) ∧ e(y′, x) ∧ redfr (y′)

⇒ c(y, x) + fr(y) ≤ c(y′, x) + fr(y′))

Equivalence is preserved because (i) redfr (x) is total and is true iff fr(x) is defined and

(ii) while there can be multiple rule instances of the original theory that define fr(d), in
any model all instances with a true body will define the same value for fr(d).

Appendix D Experimental results

The detailed results on the detection and rewriting algorithm are presented in table
D 1. They were based on the ASP-Core-2 benchmarks of the 2013 ASP-competition,
complemented with the scheduling example (“OO-Database”) and the packing running
example (“Packing”). For the latter, instances of the previous ASP competition were used,
for the former new instances were crafted. For each entailment request, the prover was
given a time limit of 2 seconds.

In Table D 2, the detailed results on the model expansion experiments are shown. For 6
benchmarks, they show the average results of using model generation using a grounding
to propositional PC(·) and using model generation with the detected functions with
grounding to a richer format. A timeout of 200 seconds was used.

6

Benchmark #varin #varout #f (#tot/#part) #calls time (sec)

Permutation-P.-Matching 21 8 3(3/0) 18 18.99
Valve-Location 27 24 1(1/0) 76 18.99
Connected-D.-M.-Still-Life 31 31 0(0/0) 24 43.98
Graceful-Graphs 32 21 2(1/1) 21 1.49
Bottle-Filling 26 14 4(4/0) 30 1.49
NoMystery 155 84 16(2/14) 181 363.05
Ricochet-Robots 109 77 13(0/13) 222 447.07
Reachability 5 5 0(0/0) 24 51.99
Visit-all 22 10 2(2/0) 19 36.99
KnightTourWithHoles 80 50 8(4/4) 63 118.02
Crossing-Minimization 38 28 1(0/1) 81 12.00
Solitaire 114 54 3(0/3) 88 197.05
Weighted-Sequence 49 29 6(6/0) 21 33.99
Stable-Marriage 20 4 3(0/3) 3 0.26
Incremental-Scheduling 89 60 4(4/0) 84 11.01
Maximal-Clique 7 7 0(0/0) 16 0.79
Graph-Colouring 9 4 1(0/0) 9 0.49
Database 15 2 5(5/0) 4 0.14
Packing 37 13 5(5/0) 35 14.01

Table D 1. Results on function detection and rewriting on all tested benchmarks. For each
encoding, we report on the number of quantified variables in the input theory (#varin),
the number that remained in the output theory (#varout). Furthermore, we report the
number of introduced function symbols, separated into total and partial functions, the
number of calls to the theorem prover and the total time for a complete run of the
detection and rewriting algorithm.

Benchmark pred. (#) func. (#) pred. (sec) func. (sec)

N01-Perm.-P.-Matching 2/5 5/5 10 624
N02-Valve-L.-Problem 1/5 5/5 800.81 54.47
N05-Graceful-Graphs 5/5 5/5 2.59 0.89
N20-Visit-All 5/5 5/5 3.18 2.01
OO-database 0/5 3/5 1000 415.47
Packing 0/5 5/5 1000 52.07

Table D 2. Results on model expansion for the benchmarks where functions were detected
that are supported in the current version of MiniSAT(ID) (total functions with an
integer codomain). For each, 5 instances were tested and the results report the number
of instances solved for model expansion using propositional grounding (“pred”) or where
the grounding can also contain functions (“func”). The last two columns indicate the total
time taken.

7

References

Janhunen, T., Niemelä, I., and Sevalnev, M. 2009. Computing stable models via reductions
to difference logic. In LPNMR, E. Erdem, F. Lin, and T. Schaub, Eds. LNCS, vol. 5753.
Springer, 142–154.

Pelov, N. 2004. Semantics of logic programs with aggregates. Ph.D. thesis, K.U.Leuven,
Leuven, Belgium.

Pelov, N. and Ternovska, E. 2005. Reducing inductive definitions to propositional satisfia-
bility. In ICLP, M. Gabbrielli and G. Gupta, Eds. LNCS, vol. 3668. Springer, 221–234.

	Appendix A to FO transformations
	Appendix B Proof of Proposition 4
	Appendix C Handling defined functions symbols
	Appendix D Experimental results
	References

