Online appendix for the paper

Rewriting and narrowing for constructor systems with call-time choice semantics

published in Theory and Practice of Logic Programming

FRANCISCO J. LÓPEZ-FRAGUAS, ENRIQUE MARTIN-MARTIN, JUAN RODRÍGUEZ-HORTALÁ and JAIME SÁNCHEZ-HERNÁNDEZ
Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid, Spain
(e-mail: fraguas@sip.ucm.es, emartinm@fdi.ucm.es,
juan.rodriguez.hortala@gmail.com, jaime@sip.ucm.es)

submitted 30 November 2010; revised 14 November 2011; accepted 4 July 2012

Appendix A Detailed proofs for the results

In the proofs we will use the usual notation for positions, subexpressions and repacements from (Baader and Nipkow 1998). The set of positions of an expression $e \in E x p$ is a set $O(e)$ of strings of positive integers defined as:

- If $e \equiv X \in \mathcal{V}$, then $O(e)=\epsilon$, where ϵ is the empty string.
- If $e \equiv h\left(e_{1}, \ldots, e_{n}\right)$ with $h \in \Sigma$, then

$$
O(e)=\{\epsilon\} \cup \bigcup_{i=1}^{n}\left\{i p \mid p \in O\left(e_{i}\right)\right\}
$$

The subexpression of e at position $p \in O(e)$, denoted $\left.e\right|_{p}$, is defined as:

$$
\begin{aligned}
\left.e\right|_{\epsilon} & =e \\
\left.h\left(e_{1}, \ldots, e_{n}\right)\right|_{i p} & =\left.e_{i}\right|_{p}
\end{aligned}
$$

For a position $p \in O(e)$, we define the replacement of the subexpression of e at position p by e^{\prime}-denoted $e\left[e^{\prime}\right]_{p}$ - as follows:

$$
\begin{aligned}
e\left[e^{\prime}\right]_{\epsilon} & =e^{\prime} \\
h\left(e_{1}, \ldots, e_{n}\right)\left[e^{\prime}\right]_{i p} & =h\left(e_{1}, \ldots, e_{i}\left[e^{\prime}\right]_{p}, \ldots, e_{n}\right)
\end{aligned}
$$

When performing proofs by induction we will usually use IH to refer to the induction hypothesis of the current induction. We will use an asterisk to denote the use of a let-rewriting rule one or more times, as in (Flat*). We will also use the following auxiliary results.

A. 1 Lemmas

The following lemmas are used in the proofs for the results in the article. Most of them are straightforwardly proved by induction, so we only detail the proof in the interesting cases.

Lemma 17
$\forall t \in C T e r m_{\perp} .|t|=t$.

Lemma 18

$\forall t \in C T e r m_{\perp} . \mathcal{P} \vdash_{C R W L_{l e t}} t \rightarrow t$.

Lemma 19
Given $\theta, \theta^{\prime} \in L S u b s t_{\perp}, e \in L E x p_{\perp}$, if $\theta \sqsubseteq \theta^{\prime}$ then $e \theta \sqsubseteq e \theta^{\prime}$.

Lemma 20

Given $\theta \in L S u b s t_{\perp}, e, e^{\prime} \in L E x p_{\perp}$, if $e \sqsubseteq e^{\prime}$ then $e \theta \sqsubseteq e^{\prime} \theta$.

Lemma 21

For every $e, e^{\prime} \in L \operatorname{Exp}_{\perp}, \mathcal{C} \in C$ ntxt, if $|e| \sqsubseteq\left|e^{\prime}\right|$ then $|\mathcal{C}[e]| \sqsubseteq\left|\mathcal{C}\left[e^{\prime}\right]\right|$.

Proof

We proceed by induction on the structure of \mathcal{C}. The base case is straightforward because of the hypothesis. For the Inductive Step we have:

- $\mathcal{C} \equiv h\left(\ldots, \mathcal{C}^{\prime}, \ldots\right)$. Directly by IH.
- $\mathcal{C} \equiv$ let $X=\mathcal{C}^{\prime}$ in e_{1}, so $\mathcal{C}[e] \equiv$ let $X=\mathcal{C}^{\prime}[e]$ in e_{1}. Then:

$$
\begin{aligned}
& |\mathcal{C}[e]|=\mid \text { let } X=\mathcal{C}^{\prime}[e] \text { in } e_{1}\left|=\left|e_{1}\right|\left[X /\left|\mathcal{C}^{\prime}[e]\right|\right]\right. \\
& \sqsubseteq_{I H^{(*)}}\left|e_{1}\right|\left[X /\left|\mathcal{C}^{\prime}\left[e^{\prime}\right]\right|\right]=\mid \text { let } X=\mathcal{C}^{\prime}\left[e^{\prime}\right] \text { in } e_{1}\left|=\left|\mathcal{C}\left[e^{\prime}\right]\right|\right.
\end{aligned}
$$

(*) By IH we have $\left|\mathcal{C}^{\prime}[e]\right| \sqsubseteq\left|\mathcal{C}^{\prime}\left[e^{\prime}\right]\right|$, therefore $\left[X /\left|\mathcal{C}^{\prime}[e]\right|\right] \sqsubseteq\left[X /\left|\mathcal{C}^{\prime}\left[e^{\prime}\right]\right|\right]$. Finally, by Lemma 19, $\left|e_{1}\right|\left[X /\left|\mathcal{C}^{\prime}[e]\right|\right] \sqsubseteq\left|e_{1}\right|\left[X /\left|\mathcal{C}^{\prime}\left[e^{\prime}\right]\right|\right]$.

- $\mathcal{C} \equiv$ let $X=e_{1}$ in \mathcal{C}^{\prime}. Similar to the previous case but using Lemma 20 to obtain $\left|\mathcal{C}^{\prime}[e]\right|\left[X /\left|e_{1}\right|\right] \sqsubseteq\left|\mathcal{C}^{\prime}\left[e^{\prime}\right]\right|\left[X /\left|e_{1}\right|\right]$ from the $\mathrm{IH}\left|\mathcal{C}^{\prime}[e]\right| \sqsubseteq\left|\mathcal{C}^{\prime}\left[e^{\prime}\right]\right|$.

Lemma 22
If $|e|=\left|e^{\prime}\right|$ then $|\mathcal{C}[e]|=\left|\mathcal{C}\left[e^{\prime}\right]\right|$
Proof
Since \sqsubseteq is a partial order, we know by reflexivity that $|e| \sqsubseteq\left|e^{\prime}\right|$ and $\left|e^{\prime}\right| \sqsubseteq|e|$. Then by Lemma 21 we have $|\mathcal{C}[e]| \sqsubseteq\left|\mathcal{C}\left[e^{\prime}\right]\right|$ and $\left|\mathcal{C}\left[e^{\prime}\right]\right| \sqsubseteq|\mathcal{C}[e]|$. Finally, by antisymmetry of the partial order \sqsubseteq we have that $|\mathcal{C}[e]|=\left|\mathcal{C}\left[e^{\prime}\right]\right|$.

Lemma 23

For all $e_{1}, e_{2} \in L E x p, X \in \mathcal{V},\left|e_{1}\left[X / e_{2}\right]\right| \equiv\left|e_{1}\right|\left[X /\left|e_{2}\right|\right]$

Proof

By induction on the structure of e_{1}. The most interesting case is when $e_{1} \equiv$ let $Y=$ s_{1} in s_{2}. By the variable convention $Y \notin \operatorname{dom}\left(\left[X / e_{2}\right]\right)$ and $Y \notin \operatorname{vran}\left(\left[X / e_{2}\right]\right)$, so:

$$
\begin{align*}
& \left|e_{1}\left[X / e_{2}\right]\right| \equiv \mid \text { let } Y=s_{1}\left[X / e_{2}\right] \text { in } s_{2}\left[X / e_{2}\right] \mid \\
& \equiv\left|s_{2}\left[X / e_{2}\right]\right|\left[Y /\left|s_{1}\left[X / e_{2}\right]\right|\right] \\
& \equiv I H\left|s_{2}\right|\left[X /\left|e_{2}\right|\right]\left[Y /\left(\left|s_{1}\right|\left[X /\left|e_{2}\right|\right]\right)\right] \\
& \equiv\left|s_{2}\right|\left[Y /\left|s_{1}\right|\right]\left[X /\left|e_{2}\right|\right] \tag{*}\\
& \equiv \mid \text { let } Y=s_{1} \text { in } s_{2}\left|\left[X /\left|e_{2}\right|\right] \equiv\right| e_{1} \mid\left[X /\left|e_{2}\right|\right]
\end{align*}
$$

$\left(^{*}\right)$ Using Lemma 1 with the matching $\left[e /\left|s_{2}\right|, \theta /\left[X /\left|e_{2}\right|\right], X / Y, e^{\prime} /\left|s_{1}\right|\right]$.

Lemma 24
Given $\theta \in L S u b s t_{\perp}, e, e^{\prime} \in L E x p_{\perp}$, if $e \sqsubseteq e^{\prime}$ then $e \theta \sqsubseteq e^{\prime} \theta$.

Lemma 25

For every $\sigma \in L S u b s t_{\perp}, \mathcal{C} \in C n t x t$ and $e \in L E x p_{\perp}$ such that $(\operatorname{dom}(\sigma) \cup \operatorname{vran}(\sigma)) \cap$ $B V(\mathcal{C})=\emptyset$ we have that $(\mathcal{C}[e]) \sigma \equiv \mathcal{C} \sigma[e \sigma]$.

Proof

By induction on the structure of \mathcal{C}. The most interesting cases are those concerning let-expressions:

- $\mathcal{C} \equiv$ let $X=\mathcal{C}^{\prime}$ in e_{1} : therefore $\mathcal{C}[e] \equiv$ let $X=\mathcal{C}^{\prime}[e]$ in e_{1}. Then

$$
\begin{gathered}
(\mathcal{C}[e]) \sigma \equiv \text { let } X=\left(\mathcal{C}^{\prime}[e]\right) \sigma \text { in } e_{1} \sigma \equiv_{I H}^{(*)} \text { let } X=\mathcal{C}^{\prime} \sigma[e \sigma] \text { in } e_{1} \sigma \\
\equiv\left(\text { let } X=\left(\mathcal{C}^{\prime}[]\right) \sigma \text { in } e_{1} \sigma\right)[e \sigma] \equiv{ }^{(* *)}\left(\left(\text { let } X=\mathcal{C}^{\prime}[] \text { in } e_{1}\right) \sigma\right)[e \sigma] \equiv \mathcal{C} \sigma[e \sigma]
\end{gathered}
$$

$(*)$: by definition $B V\left(\right.$ let $X=\mathcal{C}^{\prime}$ in e) $=B V\left(\mathcal{C}^{\prime}\right)$, so $(\operatorname{dom}(\sigma) \cup \operatorname{vran}(\sigma)) \cap$ $B V(\mathcal{C})=\emptyset=(\operatorname{dom}(\sigma) \cup \operatorname{vran}(\sigma)) \cap B V\left(\mathcal{C}^{\prime}\right)$.
$(* *)$: we can apply the last step because by hypothesis we can assure that we do not need any renaming to apply (let $X=\mathcal{C}^{\prime}[]$ in $\left.e_{1}\right) \sigma$.

- $\mathcal{C} \equiv$ let $X=e_{1}$ in \mathcal{C}^{\prime} : therefore $\mathcal{C}[e] \equiv$ let $X=e_{1}$ in $\mathcal{C}^{\prime}[e]$. Then

$$
\begin{gathered}
(\mathcal{C}[e]) \sigma \equiv \text { let } X=e_{1} \sigma \text { in }\left(\mathcal{C}^{\prime}[e]\right) \sigma \equiv_{I H} \text { let } X=e_{1} \sigma \text { in } \mathcal{C}^{\prime} \sigma[e \sigma] \\
\equiv\left(\text { let } X=e_{1} \sigma \text { in }\left(\mathcal{C}^{\prime}[]\right) \sigma\right)[e \sigma] \equiv^{(*)}\left(\left(\text { let } X=e_{1} \text { in } \mathcal{C}^{\prime}[]\right) \sigma\right)[e \sigma] \equiv \mathcal{C} \sigma[e \sigma]
\end{gathered}
$$

$(*)$: we can apply the last step because by hypothesis we can assure that we do not need any renaming to apply (let $X=e_{1}$ in $\left.\mathcal{C}^{\prime}[]\right) \sigma$.

Lemma 26

For any $e \in \operatorname{Exp}_{\perp}, t \in C$ Term \perp_{\perp} and program \mathcal{P}, if $\mathcal{P} \vdash e \rightarrow t$ then there is a derivation for $\mathcal{P} \vdash e \rightarrow t$ in which every free variable used belongs to $F V(e \rightarrow t)$.

Proof

A simple extension of the proof in (Dios-Castro and López-Fraguas 2007).

Lemma 27

For every $C R W L_{\text {let }}$ derivation $e \rightarrow t$ there exists $e^{\prime} \in L E x p_{\perp}$ which is syntactically equivalent to e module α-conversion, and a $C R W L_{\text {let }}$ derivation for $e^{\prime} \rightarrow t$ such that if \mathcal{B} is the set of bound variables used in $e^{\prime} \rightarrow t$ and \mathcal{E} is the set of free variables used in the instantiation of extra variables in $e^{\prime} \rightarrow t$ then $\mathcal{B} \cap(\mathcal{E} \cup \operatorname{var}(t))=\emptyset$.

Proof

By Lemma 26, if \mathcal{F} is the set of free variables used in $e^{\prime} \rightarrow t$, then $\mathcal{F} \subseteq F V\left(e^{\prime} \rightarrow t\right)$, in fact $\mathcal{F}=F V\left(e^{\prime} \rightarrow t\right)$, as $F V\left(e^{\prime}\right)$ and $F V(t)$ are used in the top derivation of the derivation tree for $e^{\prime} \rightarrow t$. As by definition $\mathcal{E} \cup \operatorname{var}(t) \subseteq \mathcal{F}$, if we prove $\mathcal{B} \cap \mathcal{F}=\emptyset$ then $\mathcal{B} \cap(\mathcal{E} \cup \operatorname{var}(t))=\emptyset$ is a trivial consequence. To prove that we will prove that for every $a \in L E x p_{\perp}$ used in the derivation for $e^{\prime} \rightarrow t$ we have $B V(a) \cap F V(a)=\emptyset$. We can build e^{\prime} using α-conversion to ensure that $B V\left(e^{\prime}\right) \cap F V\left(e^{\prime}\right)=\emptyset$. This can be easily maintained as an invariant during the derivation, as the new let-bindings that appear during the derivation are those introduced in the instances of the rule used during the OR steps, and be can ensure by α-conversion that $B V(a) \cap F V(a)=\emptyset$ for these instances too, as α-conversion leaves the hypersemantics untouched.

A.2 Proofs for Section 2.2

Theorem 1 (Compositionality of CRWL)
For any $\mathcal{C} \in C n t x t, e, e^{\prime} \in E x p_{\perp}$

$$
\llbracket \mathcal{C}[e] \rrbracket=\bigcup_{t \in \llbracket \llbracket \rrbracket} \llbracket \mathcal{C}[t] \rrbracket
$$

As a consequence: $\llbracket e \rrbracket=\llbracket e^{\prime} \rrbracket \Leftrightarrow \forall \mathcal{C} \in C n t x t . \llbracket \mathcal{C}[e] \rrbracket=\llbracket \mathcal{C}\left[e^{\prime}\right] \rrbracket$
Proof
We prove that $\mathcal{C}[e] \rightarrow t \Leftrightarrow \exists s \in C$ Term m_{\perp} such that $e \rightarrow s$ and $\mathcal{C}[s] \rightarrow t$.
$\Rightarrow)$ Induction on the size of the proof for $\mathcal{C}[e] \rightarrow t$.
Base case The base case only allows the proofs $\mathcal{C}[e] \rightarrow \perp$ using (B), $\mathcal{C}[e] \equiv X \rightarrow$ X using (RR) and $\mathcal{C}[e] \equiv c \rightarrow c$ with $c \in C S$ using (DC), that are clear. When $\mathcal{C}=[]$ the proof is trivial with $s=t$ and using Lemma 18.

Inductive step Direct application of the IH.
$\Leftarrow)$ By induction on the size of the proof for $\mathcal{C}[s] \rightarrow t$
Base case The base case only allows the proofs $\mathcal{C}[s] \rightarrow \perp, \mathcal{C}[s] \equiv X \rightarrow X$ and $\mathcal{C}[s] \equiv c \rightarrow c$ with $c \in C S$, that are clear. When $\mathcal{C}=[]$ we have that $\exists s \in C T e r m_{\perp}$ such that $e \rightarrow s$ and $s \rightarrow t$. Since $s \rightarrow t$ by Lemma 5 we have $t \sqsubseteq s$, and using Proposition $3 e \rightarrow t-$ as $e \sqsubseteq e$ because \sqsubseteq is a partial order.

Inductive step Direct application of the IH.

A. 3 Proofs for Section 3

Theorem 3

Let \mathcal{P} be a CRWL-program, $e \in E x p_{\perp}$ and $t \in C T e r m_{\perp}$. Then:

$$
\mathcal{P} \vdash_{C R W L} e \rightarrow t \text { iff } e \mapsto_{\mathcal{P}}^{*} t
$$

Proof

It is easy to see that \rightarrow^{*} coincides with the relation defined by the $B R C$-proof calculus of (González-Moreno et al. 1999), that is, $\mathcal{P} \vdash_{B R C} e \rightarrow e^{\prime} \leftrightarrow e \mapsto^{*} e^{\prime}$. But in that paper it is proved that $B R C$-derivability and CRWL-derivability (called there $G O R C$-derivability) are equivalent.

A. 4 Proofs for Section 4

Lemma 1 (Substitution lemma for let-expressions)
Let $e, e^{\prime} \in L E x p_{\perp}, \theta \in \operatorname{Subst}_{\perp}$ and $X \in \mathcal{V}$ such that $X \notin \operatorname{dom}(\theta) \cup \operatorname{vran}(\theta)$. Then:

$$
\left(e\left[X / e^{\prime}\right]\right) \theta \equiv e \theta\left[X / e^{\prime} \theta\right]
$$

Proof

By induction over the structure of e. The most interesting cases are the base cases:

- $e \equiv X$: Then $\left(e\left[X / e^{\prime}\right]\right) \theta \equiv\left(X\left[X / e^{\prime}\right]\right) \theta \equiv e^{\prime} \theta \equiv X\left[X / e^{\prime} \theta\right]$

$$
\equiv X \notin \operatorname{dom}(\theta) X \theta\left[X / e^{\prime} \theta\right] \equiv e \theta\left[X / e^{\prime} \theta\right]
$$

- $e \equiv Y \not \equiv X$: Then $\left(e\left[X / e^{\prime} t\right]\right) \theta \equiv\left(Y\left[X / e^{\prime}\right]\right) \theta \equiv Y \theta$
$\equiv_{X \notin \operatorname{ran}(\theta)} Y \theta\left[X / e^{\prime} \theta\right] \equiv e \theta\left[X / e^{\prime} \theta\right]$

A. 5 Proofs for Section 4.1

Lemma 2 (Closedness under CSubst of let-rewriting)
For any $e, e^{\prime} \in L E x p, \theta \in C S u b s t$ we have that $e \rightarrow^{l n} e^{\prime}$ implies $e \theta \rightarrow^{l n} e^{\prime} \theta$.
Proof
We prove that $e \rightarrow^{l} e^{\prime}$ implies $e \theta \rightarrow^{l} e^{\prime} \theta$ by a case distinction over the rule of the let-rewriting calculus applied:
(Fapp) Assume $f\left(t_{1}, \ldots, t_{n}\right) \rightarrow^{l} r$, using $\left(f\left(p_{1}, \ldots, p_{n}\right) \rightarrow e\right) \in \mathcal{P}$ and $\sigma \in$ CSubst such that $\forall i . p_{i} \sigma=t_{i}$ and $e \sigma=r$. But since $\sigma \theta \in C S u b s t$ and $\forall i . p_{i} \sigma \theta=t_{i} \theta$ then we can perform a (Fapp) step $f\left(t_{1}, \ldots, t_{n}\right) \theta \equiv f\left(t_{1} \theta, \ldots, t_{n} \theta\right) \rightarrow^{l} e \sigma \theta \equiv r \theta$.
(LetIn) Easily since $X \notin \operatorname{dom}(\theta)$ because X is fresh.
(Bind) Assume let $X=t$ in $e \rightarrow^{l} e[X / t]$ and some $\theta \in C$ Subst. Then $t \in C$ Term by the conditions of (Bind), hence $t \theta \in C$ Term too and we can perform a (Bind) step $\left(\right.$ let $X=t$ in e) $\theta \equiv$ let $X=t \theta$ in $e \theta \rightarrow^{l} e \theta[X / t \theta]$. Besides $X \notin(\operatorname{dom}(\theta) \cup$ $\operatorname{vran}(\theta))$ by the variable convention, and so $e \theta[X / t \theta] \equiv e[X / t] \theta$ by Lemma 1 , so are done.
(Elim) Easily as $X \notin F V\left(e_{2} \theta\right)$ because $X \notin \operatorname{vran}(\theta)$ by the variable convention.
(Flat) Similar to the previous case since $Y \notin F V\left(e_{3} \theta\right)$.
(Contx) Assume $\mathcal{C}[e] \rightarrow^{l} \mathcal{C}\left[e^{\prime}\right]$ because $e \rightarrow^{l^{\prime}} e^{\prime}$ by one of the previous rules, and some $\theta \in C$ Subst. Then we have already proved that $e \theta \rightarrow^{l} e^{\prime} \theta$. Besides by the variable convention we have $B V(\mathcal{C}) \cap(\operatorname{dom}(\theta) \cup \operatorname{vran}(\theta))=\emptyset$, hence by Lemma $25(\mathcal{C}[e]) \theta \equiv \mathcal{C} \theta[e \theta]$. Furthermore, if $e \rightarrow^{l} e^{\prime}$ was a (Fapp) step using $\sigma \in C$ Subst to build the instance of the program rule $(f(\bar{p}) \sigma \rightarrow r \sigma)$, then $\operatorname{vran}\left(\left.\sigma\right|_{\backslash \operatorname{var}(\bar{p})}\right) \cap$ $B V(\mathcal{C})=\emptyset$ by the conditions of (Contx), and therefore $\operatorname{vran}\left(\left.(\sigma \theta)\right|_{\operatorname{var}(\bar{p})}\right) \cap$ $B V(\mathcal{C})=\emptyset$. But as $\sigma \theta$ is the substitution used in the (Fapp) step $e \theta \rightarrow^{l} e^{\prime} \theta$, then $\mathcal{C} \theta[e \theta] \rightarrow^{l} \mathcal{C} \theta\left[e^{\prime} \theta\right]$ by (Contx). On the other hand, if $e \rightarrow^{l} e^{\prime}$ was not a (Fapp) step then $\mathcal{C} \theta[e \theta] \rightarrow^{l} \mathcal{C} \theta\left[e^{\prime} \theta\right]$ too, and finally we can apply Lemma 25 again to get $\mathcal{C} \theta\left[e^{\prime} \theta\right] \equiv\left(\mathcal{C}\left[e^{\prime}\right]\right) \theta$.
The proof for $e \rightarrow^{l n} e^{\prime}$ proceeds straightforwardly by induction on the length n of the derivation.

Proposition 2 (Termination of $\rightarrow^{\operatorname{lnf}}$)
Under any program we have that $\rightarrow^{\operatorname{lnf}}$ is terminating.

Proof

We define for any $e \in L E x p$ the size $\left(k_{1}, k_{2}, k_{3}\right)$, where
$k_{1} \equiv$ number of subexpressions in e to which (LetIn) is applicable.
$k_{2} \equiv$ number of lets in e.
$k_{3} \equiv$ sum of the levels of nesting of all let-subexpressions in e.
Sizes are lexicographically ordered. We prove now that application of (LetIn), (Bind), (Elim), (Flat) in any context (hence, also the application of (Contxt)) decreases the size, what proves termination of $\rightarrow^{\operatorname{lnf}}$. The effect of each rule in the size is summarized as follows (in each case, we stop at the decreasing component):

$$
\begin{array}{ll}
\text { (LetIn): } & (<,,,-) \\
\text { (Bind): } & (=,<,-) \\
\text { (Elim): } & (\leq,<,-) \\
\text { (Flat): } & (=,=,<)
\end{array}
$$

Lemma 3 (Peeling lemma)

For any $e, e^{\prime} \in L E x p$ if $e \downarrow^{\operatorname{lnf}} e^{\prime}$-i.e, e^{\prime} is a $\rightarrow^{\ln f}$ normal form for e - then e^{\prime} has the shape $e^{\prime} \equiv$ let $\overline{X=f(\bar{t})}$ in $e^{\prime \prime}$ such that $e^{\prime \prime} \in \mathcal{V}$ or $e^{\prime \prime} \equiv h\left(\overline{t^{\prime}}\right)$ with $h \in \Sigma$, $\bar{f} \subseteq F S$ and $\bar{t}, \overline{t^{\prime}} \subseteq C T e r m$.
Moreover if $e \equiv h\left(e_{1}, \ldots, e_{n}\right)$ with $h \in \Sigma$, then

$$
e \equiv h\left(e_{1}, \ldots, e_{n}\right) \rightarrow^{\ln f^{*}} \text { let } \overline{X=f(\bar{t})} \text { in } h\left(t_{1}, \ldots, t_{n}\right) \equiv e^{\prime}
$$

under the conditions above, and verifying also that $t_{i} \equiv e_{i}$ whenever $e_{i} \in C$ Term.

Proof

We prove it by contraposition: if an expression e does not have that shape, e is not a $\rightarrow^{\operatorname{lnf}}$ normal form. We define the set of expressions which are not cterms as:

$$
n t::=c(\ldots, n t, \ldots)
$$

$$
\mid f(\bar{e})
$$

|let $X=e_{1}$ in e_{2}
We also define the set of expressions which do not have the presented shape recursively as:

$$
\begin{aligned}
n e::= & h(\ldots, n t, \ldots) \\
& \mid \text { let } X=f(\bar{t}) \text { in ne } \\
& \mid \text { let } X=f(\ldots, n t, \ldots) \text { in } e \\
& \mid \text { let } X=c(\bar{e}) \text { in } e \\
& \mid \text { let } X=\left(\text { let } Y=e^{\prime} \text { in } e^{\prime \prime}\right) \text { in } e
\end{aligned}
$$

We prove by induction on the structure of an expression ne that it is always possible to perform a $\rightarrow^{\operatorname{lnf}}$ step:

Base case:

- $n e \equiv h(\ldots, n t, \ldots)$: there are various cases depending on $n t$:
- at some depth the non-cterm will contain a subexpression $c^{\prime}\left(\ldots, n t^{\prime}, \ldots\right)$ where $n t^{\prime}$ is a function application $f(\bar{e})$ or a let-rooted expression let $X=$ e_{1} in e_{2}. Therefore we can apply the rule (Contx) with (LetIn) in that position.
- $f(\bar{e})$: we can apply the rule (LetIn) and perform the step

$$
h(\ldots, f(\bar{e}), \ldots) \rightarrow^{\operatorname{lnf}} \operatorname{let} X=f(\bar{e}) \text { in } h(\ldots, X, \ldots)
$$

- let $X=e_{1}$ in e_{2} : the same as the previous case.
- let $X=f(\ldots, n t, \ldots)$ in e : we can perform a (Contx) with (LetIn) step in $f(\ldots, n t, \ldots)$ as in the previous $h(\ldots, n t, \ldots)$ case.
- let $X=c(\bar{e})$ in e : if \bar{e} are cterms \bar{t}, then $c(\bar{t})$ is a cterm and we can perform a (Bind) step let $X=c(\bar{t})$ in $e \rightarrow^{\operatorname{lnf}} e[X / c(\bar{t})]$. If \bar{e} contains any expression ne then we can perform a (Contx) with (LetIn) step as in the previous $h(\ldots, n t, \ldots)$ case.
- let $X=$ (let $Y=e^{\prime}$ in $\left.e^{\prime \prime}\right)$ in e : by the variable convention we can assume that $Y \notin F V(e)$, so we can perform a (Flat) step let $X=$ (let $Y=$ e^{\prime} in $e^{\prime \prime}$) in $e \rightarrow^{\text {lnf }}$ let $Y=e^{\prime}$ in let $X=e^{\prime \prime}$ in e.

Inductive step:

- let $X=f(\bar{t})$ in $n e:$ by IH we have that $n e \rightarrow^{\operatorname{lnf}} n e^{\prime}$, so by the rule (Contx) we can perform a step let $X=f(\bar{t})$ in ne $\rightarrow^{\text {lnf }}$ let $X=f(\bar{t})$ in $n e^{\prime}$.

Notice that if the original expression has the shape $h\left(e_{1}, \ldots, e_{n}\right)$ the arguments e_{i} which are cterms remain unchanged in the same position. The reason is that no rule can affect them: the only rule applicable at the top is (LetIn), and it can not place them in a let binding outside $h(\ldots)$; besides cterms do not match with the left-hand side of any rule, so they can not be rewritten by any rule.
Lemma 4 (Growing of shells)
Under any program \mathcal{P} and for any $e, e^{\prime} \in L E x p$
i) $e \rightarrow l^{l^{*}} e^{\prime}$ implies $|e| \sqsubseteq\left|e^{\prime}\right|$
ii) $e \rightarrow^{\ln f^{*}} e^{\prime}$ implies $|e| \equiv\left|e^{\prime}\right|$

Proof for Lemma 4

We prove the lemma for one step ($e \rightarrow^{l} e^{\prime}$ and $e \rightarrow^{\operatorname{lnf}} e^{\prime}$) by a case distinction over the rule of the let-rewriting calculus applied:
(Fapp) The step is $f\left(t_{1}, \ldots, t_{n}\right) \rightarrow^{l} r$, and $\left|f\left(t_{1}, \ldots, t_{n}\right)\right|=\perp \sqsubseteq|r|$.
(LetIn) The equality $\left|h\left(e_{1}, \ldots, e, \ldots, e_{n}\right)\right|=\mid$ let $X=e$ in $h\left(e_{1}, \ldots, X, \ldots, e_{n}\right) \mid$
follows easily by a case distinction on h.
(Bind) The step is let $X=t$ in $e \rightarrow^{l} e[X / t]$, so \mid let $X=t$ in $e|=|e|[X /|t|]=$ $|e[X / t]|$ by Lemma 23.
(Elim) The step is let $X=e_{1}$ in $e_{2} \rightarrow^{l} e_{2}$ with $X \notin F V\left(e_{2}\right)$. Then |let $X=$ e_{1} in $e_{2}\left|=\left|e_{2}\right|\left[X /\left|e_{1}\right|\right]=\left|e_{2}\right|\right.$. Since the variables in the shell of an expression is a subset of the variables in the original expression, we can conclude that if $X \notin F V\left(e_{2}\right)$ then $X \notin F V\left(\left|e_{2}\right|\right)$.
(Flat) The step is let $X=\left(\right.$ let $Y=e_{1}$ in $\left.e_{2}\right)$ in $e_{3} \rightarrow^{l}$ let $Y=e_{1}$ in (let $X=$ e_{2} in e_{3}) with $Y \notin F V\left(e_{3}\right)$. By the variable convention we can assume that $X \notin F V\left(l e t Y=e_{1}\right.$ in $\left.e_{2}\right)$-in particular $X \notin F V\left(e_{1}\right)$. Then:

$$
\begin{aligned}
& \mid \text { let } Y=e_{1} \text { in }\left(\text { let } X=e_{2} \text { in } e_{3}\right) \mid \\
& =\mid \text { let } X=e_{2} \text { in } e_{3} \mid\left[Y /\left|e_{1}\right|\right] \\
& =\left(\left|e_{3}\right|\left[X /\left|e_{2}\right|\right]\right)\left[Y /\left|e_{1}\right|\right]
\end{aligned}
$$

Notice that $X \notin \operatorname{dom}\left(\left[Y /\left|e_{1}\right|\right]\right)$ and $X \notin \operatorname{vran}\left(\left[Y /\left|e_{1}\right|\right]\right)=F V\left(\left|e_{1}\right|\right)$ because $X \notin F V\left(e_{1}\right)$ and $F V\left(\left|e_{1}\right|\right) \subseteq F V\left(e_{1}\right)$. Therefore we can use Lemma 1:

$$
\begin{array}{ll}
\left(\left|e_{3}\right|\left[X /\left|e_{2}\right|\right]\right)\left[Y /\left|e_{1}\right|\right] & \\
=\left(\left|e_{3}\right|\left[Y /\left|e_{1}\right|\right]\right)\left[X /\left(\left|e_{2}\right|\left[Y /\left|e_{1}\right|\right]\right)\right] & \\
=\left|e_{3}\right|\left[X /\left(\left|e_{2}\right|\left[Y /\left|e_{1}\right|\right]\right)\right] & Y \notin F V\left(e_{3}\right), \text { so } Y \notin F V\left(\left|e_{3}\right|\right) \\
=\left|e_{3}\right|\left[X / \mid \text { let } Y=e_{1} \text { in } e_{2} \mid\right] & \\
=\mid \text { let } X=\left(\text { let } Y=e_{1} \text { in } e_{2}\right) \text { in } e_{3} \mid &
\end{array}
$$

(Contx) The step is $\mathcal{C}[e] \rightarrow^{l} \mathcal{C}\left[e^{\prime}\right]$ with $e \rightarrow^{l} e^{\prime}$ using any of the previous rules. Then we have $|e| \sqsubseteq\left|e^{\prime}\right|$, and by Lemma $21 \mathcal{C}[e] \sqsubseteq \mathcal{C}\left[e^{\prime}\right]$. If the step is $\mathcal{C}[e] \rightarrow{ }^{\operatorname{lnf}} \mathcal{C}\left[e^{\prime}\right]$ then rule (Fapp) has not been used in the reduction $e \rightarrow^{\operatorname{lnf}} e^{\prime}$ and by the previous rules we have $|e|=\left|e^{\prime}\right|$. In that case by Lemma 22 we have $\mathcal{C}[e]=\mathcal{C}\left[e^{\prime}\right]$.
The extension of this result to $\rightarrow^{l^{*}}$ and $\rightarrow^{l n f^{*}}$ is a trivial induction over the number of steps of the derivation.

A. 6 Proofs for Section 4.2

Theorem 4 (CRWL vs. $C R W L_{\text {let }}$)
For any program \mathcal{P} without lets, and any $e \in E x p_{\perp}$:

$$
\llbracket e \rrbracket_{C R W L}^{\mathcal{P}}=\llbracket e \rrbracket_{C R W L_{l e t}}^{\mathcal{P}}
$$

Proof
As any calculus rule from CRWL is also a rule from CRWL $_{l e t}$, then any CRWL-proof is also a $\mathrm{CRWL}_{l e t}$-proof, therefore $\llbracket e \rrbracket_{C R W L} \subseteq \llbracket e \rrbracket_{C R W L_{l e t}}$. For the other inclusion, assume no let-binding is present in the program and let $e \in \operatorname{Exp}$. Then, for any
$t \in C T e r m_{\perp}$, as the rules of CRWL $_{\text {let }}$ do not introduce any let-binding and the rule (Let) is only used for let-rooted expressions, the CRWL $_{l e t}$-proof $\mathcal{P} \vdash_{C R W L_{l e t}} e \rightarrow t$ will be also a CRWL-proof for $\mathcal{P} \vdash_{C R W L_{l e t}} e \rightarrow t$, hence $\llbracket e \rrbracket_{C R W L_{l e t}} \subseteq \llbracket e \rrbracket_{C R W L}$ too.

The following Lemma is used to prove point iii) of Lemma 5. Notice that this Lemma uses the notions of hyperdenotation $(\llbracket \rrbracket)$ and hyperinclusion ((\subseteq) presented in the final part of Section 4.2.

Lemma 28

Under any program \mathcal{P} and for any $e \in L E x p_{\perp}$ we have that $\llbracket e \rrbracket \Subset \lambda \theta \cdot(|e \theta| \uparrow) \downarrow$.

Proof

We will use the following equivalent characterization of $(e \uparrow) \downarrow$:

$$
(e \uparrow) \downarrow=\left\{e_{1} \in L E x p_{\perp} \mid \exists e_{2} \in L E x p_{\perp} \cdot e \sqsubseteq e_{2} \wedge e_{1} \sqsubseteq e_{2}\right\}
$$

note that $\left\{e_{2} \in L E x p_{\perp} \mid e \sqsubseteq e_{2}\right\}$ is precisely the set $e \uparrow$. Besides note that:

$$
\begin{aligned}
& \llbracket e \rrbracket \Subset \lambda \theta \cdot(|e \theta| \uparrow) \downarrow \\
& \Leftrightarrow \forall \theta \in C S u b s t_{\perp} \cdot \llbracket e \theta \rrbracket \subseteq(|e \theta| \uparrow) \downarrow \\
& \Leftrightarrow \forall \theta \in C S u b s t_{\perp}, t \in C T e r m_{\perp} \cdot e \theta \rightarrow t \\
& \quad \Rightarrow t \in(|e \theta| \uparrow) \downarrow \\
& \Leftrightarrow \forall \theta \in C S u b s t_{\perp}, t \in C T e r m_{\perp} \cdot e \theta \rightarrow t \\
& \quad \Rightarrow \exists t^{\prime} \in C T e r m_{\perp} \cdot|e \theta| \sqsubseteq t^{\prime} \wedge t \sqsubseteq t^{\prime}
\end{aligned}
$$

where $t^{\prime} \in C$ Term ${ }_{\perp}$ is implied by $|e \theta| \sqsubseteq t^{\prime}$. To prove this last formulation first consider the case when $t \equiv \perp$. Then we are done with $t^{\prime} \equiv|e \theta|$ because then $|e \theta| \sqsubseteq$ $|e \theta| \equiv t^{\prime}$ and $t \equiv \perp \sqsubseteq|e \theta| \equiv t^{\prime}$.

For the other case we proceed by induction on the structure of e. Regarding the base cases:

- If $e \equiv \perp$ then $t \equiv \perp$ and we are in the previous case.
- If $e \equiv X \in \mathcal{V}$ then $e \theta \equiv \theta(X) \rightarrow t$, and as $\theta \in C S u b s t_{\perp}$ then $\theta(X) \in C T e r m_{\perp}$ which implies $t \sqsubseteq \theta(X)$ by Lemma 5 . But then we can take $t^{\prime} \equiv \theta(X)$ for which $t \sqsubseteq \theta(X) \equiv t^{\prime}$ and $|e \theta| \equiv|\theta(X)| \equiv \theta(X)$-by Lemma 17 since $\theta(X) \in$ $C T e r m_{\perp}-$, and $\theta(X) \sqsubseteq \theta(X) \equiv t^{\prime}$.
- If $e \equiv c \in D C$ then either $t \equiv \perp$ and we are in the previous case, or $t \equiv c$. But then we can take $t^{\prime} \equiv c$ for which $|e \theta| \equiv c \sqsubseteq c \equiv t^{\prime}$, and $t \equiv c \sqsubseteq c \equiv t^{\prime}$.
- If $e \equiv f \in F S$ then $|e \theta| \equiv|f| \equiv \perp$, and so $|e \theta| \uparrow=C$ Term ${ }_{\perp}$ and $(|e \theta| \uparrow) \downarrow=$ $C T e r m_{\perp} \supseteq \llbracket e \theta \rrbracket$, so we are done.
Concerning the inductive steps:
- If $e \equiv f\left(e_{1}, \ldots, e_{n}\right)$ for $f \in F S$ then $|e \theta| \equiv \perp$ and we proceed like in the case for $e \equiv f$.
- If $e \equiv c\left(e_{1}, \ldots, e_{n}\right)$ for $c \in D C$ then either $t \equiv \perp$ and we are in the previous case, or $t \equiv c\left(t_{1}, \ldots, t_{n}\right)$ such that $\forall i$. $e_{i} \theta \rightarrow t_{i}$. But then by IH we get $\forall i . \exists t_{i}^{\prime} .\left|e_{i} \theta\right| \sqsubseteq t_{i}^{\prime} \wedge t_{i} \sqsubseteq t_{i}^{\prime}$, so we can take $t^{\prime} \equiv c\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)$ for which $|e \theta| \equiv$ $c\left(\left|e_{1} \theta\right|, \ldots,\left|e_{n} \theta\right|\right) \sqsubseteq c\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right) \equiv t^{\prime}$ and $t \equiv c\left(t_{1}, \ldots, t_{n}\right) \sqsubseteq c\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right) \equiv$ t^{\prime}.
- If $e \equiv$ let $X=e_{1}$ in e_{2} then either $t \equiv \perp$ and we are in the previous case, or we have the following proof:

$$
\frac{e_{1} \theta \rightarrow t_{1} \quad e_{2} \theta\left[X / t_{1}\right] \rightarrow t}{e \theta \equiv \operatorname{let} X=e_{1} \theta \text { in } e_{2} \theta \rightarrow t} \text { Let }
$$

Then by IH over e_{1} we get that $\exists t_{1}^{\prime} \cdot\left|e_{1} \theta\right| \sqsubseteq t_{1}^{\prime} \wedge t_{1} \sqsubseteq t_{1}^{\prime}$. Hence $\left[X / t_{1}\right] \sqsubseteq\left[X / t_{1}^{\prime}\right]$ so by Proposition 5 we have that $e_{2} \theta\left[X / t_{1}\right] \rightarrow t$ implies $e_{2} \theta\left[X / t_{1}^{\prime}\right] \rightarrow t$. But then we can apply the IH over e_{2} with $\theta\left[X / t_{1}^{\prime}\right]$ to get some $t^{\prime} \in C T e r m_{\perp}$ such that $t \sqsubseteq t^{\prime}$ and $\left|e_{2} \theta\left[X / t_{1}^{\prime}\right]\right| \sqsubseteq t^{\prime}$, which implies:

$$
\begin{array}{ll}
t^{\prime} \sqsupseteq\left|e_{2} \theta\left[X / t_{1}^{\prime}\right]\right| & \\
\equiv\left|e_{2} \theta\right|\left[X /\left|t_{1}^{\prime}\right|\right] & \text { by Lemma } 23 \\
\equiv\left|e_{2} \theta\right|\left[X / t_{1}^{\prime}\right] & \text { by Lemma } 17 \text { as } t_{1}^{\prime} \in C \text { Term } \perp_{\perp} \\
\sqsupseteq\left|e_{2} \theta\right|\left[X /\left|e_{1} \theta\right|\right] & \text { as }\left|e_{1} \theta\right| \sqsubseteq t_{1}^{\prime} \\
\equiv \mid l e t X=e_{1} \theta \text { in } e_{2} \theta|\equiv| e \theta \mid &
\end{array}
$$

Lemma 5

For any program $e \in L E x p_{\perp}, t, t^{\prime} \in C T e r m_{\perp}$:

1. $t \rightarrow t^{\prime}$ iff $t^{\prime} \sqsubseteq t$.
2. $|e| \in \llbracket e \rrbracket$.
3. $\llbracket e \rrbracket \subseteq(|e| \uparrow) \downarrow$, where for a given $E \subseteq L E x p_{\perp}$ its upward closure is $E \uparrow=\left\{e^{\prime} \in\right.$ $\left.L E x p_{\perp} \mid \exists e \in E . e \sqsubseteq e^{\prime}\right\}$, its downward closure is $E \downarrow=\left\{e^{\prime} \in L E x p_{\perp} \mid \exists e \in\right.$ $\left.E . e^{\prime} \sqsubseteq e\right\}$, and those operators are overloaded for let-expressions as $e \uparrow=\{e\} \uparrow$ and $e \downarrow=\{e\} \downarrow$.

Proof

1. Easily by induction on the structure of t.
2. Straightforward by induction on the structure of e. In the case of let expressions, the proof uses $|e| \in C T e r m_{\perp}$ and Proposition 4 in order to apply the $\mathrm{CRWL}_{\text {let }}$ rule (Let).
3. By Lemma 28 we have that $\llbracket e \rrbracket \Subset \lambda \theta \cdot(|e \theta| \uparrow) \downarrow$. By definition of hyperinclusion -Definition 8- we know that $\llbracket e \rrbracket \epsilon \subseteq(\lambda \theta \cdot(|e \theta| \uparrow) \downarrow) \epsilon$, so $\llbracket e \rrbracket \epsilon=\llbracket e \epsilon \rrbracket \equiv \llbracket e \rrbracket \subseteq$ $(|e| \uparrow) \downarrow \equiv(|e \epsilon| \uparrow) \downarrow=(\lambda \theta .(|e \theta| \uparrow) \downarrow) \epsilon$.

Proposition 3 (Polarity of $C R W L_{l e t}$)
For any program $e, e^{\prime} \in L E x p_{\perp}, t, t^{\prime} \in C T e r m_{\perp}$, if $e \sqsubseteq e^{\prime}$ and $t^{\prime} \sqsubseteq t$ then $e \rightarrow t$ implies $e^{\prime} \rightarrow t^{\prime}$ with a proof of the same size or smaller-where the size of a $\mathrm{CRWL}_{l e t}$-proof is measured as the number of rules of the calculus used in the proof.

Proof
By induction on the size of the CRWL-derivation. All the cases are straightforward except the (Let) rule:
(Let) We have the derivation:

$$
\frac{e_{1} \rightarrow t_{1} \quad e_{2}\left[X / t_{1}\right] \rightarrow t}{e \equiv l e t \quad X=e_{1} \text { in } e_{2} \rightarrow t}(\text { Let })
$$

Since $e \sqsubseteq e^{\prime}$ then $e^{\prime} \equiv$ let $X=e_{1}^{\prime}$ in e_{2}^{\prime} with $e_{1} \sqsubseteq e_{1}^{\prime}$ and $e_{2} \sqsubseteq e_{2}^{\prime}$. As $e_{1} \sqsubseteq e_{1}^{\prime}$ and $t_{1} \sqsubseteq t_{1}$-because \sqsubseteq is reflexive - then by IH we have $e_{1}^{\prime} \rightarrow t_{1}$. We know that $e_{2} \sqsubseteq e_{2}^{\prime}$ so by Lemma 24 we have $e_{2}\left[X / t_{1}\right] \sqsubseteq e_{2}^{\prime}\left[X / t_{1}\right]$ and by IH $\mathcal{P} \vdash_{C R W L_{l e t}}$ $e_{2}^{\prime}\left[X / t_{1}\right] \rightarrow t^{\prime}$ such that $t^{\prime} \sqsubseteq t$. Therefore:

$$
\frac{e_{1}^{\prime} \rightarrow t_{1} \quad e_{2}^{\prime}\left[X / t_{1}\right] \rightarrow t^{\prime}}{e^{\prime} \equiv \operatorname{let} X=e_{1}^{\prime} \text { in } e_{2}^{\prime} \rightarrow t^{\prime}}(\text { Let })
$$

Proposition 4 (Closedness under c-substitutions)
For any $e \in L E x p_{\perp}, t \in C T e r m_{\perp}, \theta \in C S u b s t_{\perp}, t \in \llbracket e \rrbracket$ implies $t \theta \in \llbracket e \theta \rrbracket$.
Proof
By induction on the size of the $\mathrm{CRWL}_{\text {let }}$-proof. All the cases are straightforward except the (Let) rule:
(Let) In this case the expression is $e \equiv$ let $X=e_{1}$ in e_{2} so we have a derivation

$$
\frac{e_{1} \rightarrow t_{1} \quad e_{2}\left[X / t_{1}\right] \rightarrow t}{l e t ~} X=e_{1} \text { in } e_{2} \rightarrow t(\text { Let })
$$

By IH we have that $e_{1} \theta \rightarrow t_{1} \theta$ and $\left(e_{2}\left[X / t_{1}\right]\right) \theta \rightarrow t \theta$. By the variable convention we assume that $X \notin \operatorname{dom}(\theta) \cup \operatorname{vran}(\theta)$, so by Lemma $1 e_{2}\left[X / t_{1}\right] \theta \equiv e_{2} \theta\left[X / t_{1} \theta\right]$ and $e_{2} \theta\left[X / t_{1} \theta\right] \rightarrow t \theta$. Then we can construct the proof:

$$
\frac{e_{1} \theta \rightarrow t_{1} \theta \quad e_{2} \theta\left[X / t_{1} \theta\right] \rightarrow t \theta}{\text { let } X=e_{1} \theta \text { in } e_{2} \theta \rightarrow t \theta}(\text { Let })
$$

Theorem 5 (Weak Compositionality of $C R W L_{l e t}$)
For any $\mathcal{C} \in C n t x t, e \in L E x p_{\perp}$

$$
\llbracket \mathcal{C}[e] \rrbracket=\bigcup_{t \in \llbracket e \rrbracket} \llbracket \mathcal{C}[t] \rrbracket \quad \text { if } B V(\mathcal{C}) \cap F V(e)=\emptyset
$$

As a consequence, $\llbracket l e t X=e_{1}$ in $e_{2} \rrbracket=\bigcup_{t_{1} \in \llbracket e_{1} \rrbracket} \llbracket e_{2}\left[X / t_{1}\right] \rrbracket$.
Proof
We prove that $\mathcal{C}[e] \rightarrow t \Leftrightarrow \exists s \in C$ Term ${ }_{\perp}$ such that $e \rightarrow s$ and $\mathcal{C}[s] \rightarrow t$.
$\Rightarrow)$ By induction on the size of the proof for $\mathcal{C}[e] \rightarrow t$. The proof proceeds in a similar way to the proof for Theorem 1, page 4, so we only have to prove the (Let) case:
(Let) There are two cases depending on the context \mathcal{C} (since $\mathcal{C} \neq[]$):

- $\mathcal{C} \equiv$ let $X=C^{\prime}$ in e_{2}) Straightforward.
- $\mathcal{C} \equiv$ let $X=e_{1}$ in \mathcal{C}^{\prime}) The proof is

$$
\frac{e_{1} \rightarrow t_{1} \quad \mathcal{C}^{\prime}[e]\left[X / t_{1}\right] \rightarrow t}{\mathcal{C}[e] \equiv \operatorname{let} X=e_{1} \text { in } \mathcal{C}^{\prime}[e] \rightarrow t}(\text { Let })
$$

We assume that $X \notin \operatorname{var}\left(t_{1}\right)$ by the variable convention, since X is bound in \mathcal{C} and we can rename it freely. Moreover, we assume also that $X \notin B V\left(\mathcal{C}^{\prime}\right)$ because X is bound in \mathcal{C}, so we could rename the bound occurrences in \mathcal{C}^{\prime}. Therefore $\left(\operatorname{dom}\left(\left[X / t_{1}\right] \cup \operatorname{vran}\left(\left[X / t_{1}\right]\right)\right) \cap B V\left(\mathcal{C}^{\prime}\right)=\emptyset\right.$ and $\mathcal{C}^{\prime}[e]\left[X / t_{1}\right] \equiv$ $\left(\mathcal{C}^{\prime}\left[X / t_{1}\right]\right)\left[e\left[X / t_{1}\right]\right]$ by Lemma 25. Since $B V(\mathcal{C}) \cap F V(e)=\emptyset$ by the premise and $X \in B V(\mathcal{C})$ then $X \notin F V(e)$, so $\left(\mathcal{C}^{\prime}\left[X / t_{1}\right]\right)\left[e\left[X / t_{1}\right]\right] \equiv \mathcal{C}^{\prime}\left[X / t_{1}\right][e]$. Then by IH $\exists s \in C$ Term ${ }_{\perp}$ such that $e \rightarrow s$ and $\mathcal{C}^{\prime}\left[X / t_{1}\right][s] \rightarrow t$. Therefore we can build:

$$
\frac{e_{1} \rightarrow t_{1} \quad \mathcal{C}^{\prime}[s]\left[X / t_{1}\right] \equiv^{(*)} \mathcal{C}^{\prime}\left[X / t_{1}\right][s] \rightarrow t}{\mathcal{C}[s] \equiv \text { let } X=e_{1} \text { in } \mathcal{C}^{\prime}[s] \rightarrow t}(\text { Let })
$$

$\left(^{*}\right)$ Using Lemma 25 as above and the assumption that $X \notin \operatorname{var}(s)$ by the variable convention, since X is bound in \mathcal{C} and we can rename it freely.
$\Leftarrow)$ By induction on the size of the proof for $\mathcal{C}[s] \rightarrow t$. As before, the proof proceeds in a similar way to the proof for Theorem 1, page 4, so we only have to prove the (Let) case:
(Let) If we use (Let) then there are two cases depending on the context \mathcal{C} (since $\mathcal{C} \neq[]):$

- $\mathcal{C}=$ let $X=\mathcal{C}^{\prime}$ in e_{2}) Straighforward.
- $\mathcal{C}=$ let $X=e_{1}$ in \mathcal{C}^{\prime}) then we have $e \rightarrow s$ and

$$
\frac{e_{1} \rightarrow t_{1} \quad \mathcal{C}^{\prime}[s]\left[X / t_{1}\right] \rightarrow t}{\mathcal{C}[s] \equiv \operatorname{let} X=e_{1} \text { in } \mathcal{C}^{\prime}[s] \rightarrow t}(\text { Let })
$$

By the same reasoning as in the second case of the (Let) rule of the \Rightarrow) part of this theorem, $\mathcal{C}^{\prime}[s]\left[X / t_{1}\right] \equiv \mathcal{C}^{\prime}\left[X / t_{1}\right][s]$. Then by $\mathrm{IH} \mathcal{C}^{\prime}\left[X / t_{1}\right][e] \rightarrow t$. Again by the same reasoning we have $\mathcal{C}^{\prime}[e]\left[X / t_{1}\right] \equiv \mathcal{C}^{\prime}\left[X / t_{1}\right][e]$, so we can build the proof:

$$
\frac{e_{1} \rightarrow t_{1} \quad \mathcal{C}^{\prime}[e]\left[X / t_{1}\right] \equiv \mathcal{C}^{\prime}\left[X / t_{1}\right][e] \rightarrow t}{\mathcal{C}[e] \equiv \text { let } X=e_{1} \text { in } \mathcal{C}^{\prime}[e] \rightarrow t}(\text { Let })
$$

This ends the proof of the main part of the theorem. With respect to the con-
sequence $\llbracket l e t X=e_{1}$ in $e_{2} \rrbracket_{C R W L_{l e t}}=\bigcup_{t_{1} \in \llbracket e_{1} \rrbracket c R W L_{l e t}} \llbracket e_{2}\left[X / t_{1}\right] \rrbracket_{C R W L_{l e t}}$ we have:

$$
\begin{aligned}
& \llbracket l e t X=e_{1} \text { in } e_{2} \rrbracket_{C R W L_{l e t}} \\
& \left.=\llbracket\left(l e t X=[] \text { in } e_{2}\right)\left[e_{1}\right]\right]_{C R W L_{\text {ct }}} \\
& =\bigcup_{t_{1} \in \llbracket e_{1} \rrbracket_{C R W L_{\text {let }}}} \llbracket l e t X=t_{1} \text { in } e_{2} \rrbracket_{C R W L_{\text {let }}} \quad \text { by Theorem } 5 \\
& =\bigcup_{t_{1} \in \llbracket e_{1} \rrbracket \text { CRWU Let }} \llbracket e_{2}\left[X / t_{1}\right] \rrbracket_{C R W L_{\text {let }}} \quad \text { by Proposition } 8
\end{aligned}
$$

In the last step we replace let $X=t_{1}$ in e_{2} by $e_{2}\left[X / t_{1}\right]$ which is a (Bind) step of $\rightarrow{ }^{\operatorname{lnf}}$, so by Proposition 8 it preserves the denotation.

For Proposition 5, in this Appendix we prove a generalization of the statement appearing in Section 4.2 (page 21). However, it is easy to check that Proposition 5 in Section 4.2 follows easily from points 2 and 3 here.
Proposition 5 (Monotonicity for substitutions of $C R W L_{l e t}$)
For any program $e \in L E x p_{\perp}, t \in C T e r m_{\perp}, \sigma, \sigma^{\prime} \in L S u b s t_{\perp}$

1. If $\forall X \in \mathcal{V}, s \in C T e r m_{\perp}$ given $\sigma(X) \rightarrow s$ with size K we also have $\sigma^{\prime}(X) \rightarrow s$ with size $K^{\prime} \leq K$, then $e \sigma \rightarrow t$ with size L implies $e \sigma^{\prime} \rightarrow t$ with size $L^{\prime} \leq L$.
2. If $\sigma \sqsubseteq \sigma^{\prime}$ then $e \sigma \rightarrow t$ implies $e \sigma^{\prime} \rightarrow t$ with a proof of the same size or smaller.
3. If $\sigma \unlhd \sigma^{\prime}$ then $\llbracket e \sigma \rrbracket \subseteq \llbracket e \sigma^{\prime} \rrbracket$.

Proof

1. If $e \equiv X \in \mathcal{V}$, assume $X \sigma \rightarrow t$, then $X \sigma^{\prime} \rightarrow t$ with a proof of the same size or smaller, by hypothesis. Otherwise we proceed by induction on the structure of the proof $e \sigma \rightarrow t$.

Base cases

(B) Then $t \equiv \perp$ and $e \sigma^{\prime} \rightarrow \perp$ with a proof of size 1 just applying rule (B).
(RR) Then $e \in \mathcal{V}$ and we are in the previous case.
(DC) Then $e \equiv c \in C S^{0}$, as $e \notin \mathcal{V}$, hence $e \sigma \equiv c \equiv e \sigma^{\prime}$ and every proof for $e \sigma \rightarrow t$ is a proof for $e \sigma^{\prime} \rightarrow t$.

Inductive steps

(DC) Then $e \equiv c\left(e_{1}, \ldots, e_{n}\right)$, as $e \notin \mathcal{V}$, and we have:

$$
\frac{e_{1} \sigma \rightarrow t_{1} \ldots e_{n} \sigma \rightarrow t_{n}}{e \sigma \equiv c\left(e_{1} \sigma, \ldots, e_{n} \sigma\right) \rightarrow c\left(t_{1}, \ldots, t_{n}\right) \equiv t}(D C)
$$

By IH or the proof of the other cases $\forall i \in\{1, \ldots, n\}$ we have $e_{i} \sigma^{\prime} \rightarrow t_{i}$ with a proof of the same size or smaller, so we can built a proof for $e \sigma^{\prime} \equiv c\left(e_{1} \sigma^{\prime}, \ldots, e_{n} \sigma^{\prime}\right) \rightarrow c\left(t_{1}, \ldots, t_{n}\right) \equiv t$ using (DC), with a size equal or smaller than the size of the starting proof.
(OR) Similar to the previous case.
(Let) Then $e \equiv$ let $X=e_{1}$ in e_{2}, as $e \notin \mathcal{V}$, and we have:

$$
\frac{e_{1} \sigma \rightarrow t_{1} \quad e_{2} \sigma\left[X / t_{1}\right] \rightarrow t}{l e t ~} X=e_{1} \sigma \text { in } e_{2} \sigma \rightarrow t(\text { Let })
$$

By IH we have $e_{1} \sigma \rightarrow t_{1}$. By the variable convention we assume that $X \notin \operatorname{dom}(\sigma) \cup \operatorname{vran}(\sigma)$ and $X \notin \operatorname{dom}\left(\sigma^{\prime}\right) \cup \operatorname{vran}\left(\sigma^{\prime}\right)$. Then it is easy to check that $\forall Y \in \mathcal{V}, s, t \in C T e r m_{\perp}$, given $Y(\sigma[X / t]) \rightarrow s$ with size K we also have $Y\left(\sigma^{\prime}[X / t]\right) \rightarrow s$ with size $K^{\prime} \leq K$. Then by IH we have $e_{2} \sigma^{\prime}\left[X / t_{1}\right] \rightarrow t$. Therefore we can construct a proof with a size equal or smaller than the starting one:

$$
\frac{e_{1} \sigma^{\prime} \rightarrow t_{1} \quad e_{2} \sigma^{\prime}\left[X / t_{1}\right] \rightarrow t}{\text { let } X=e_{1} \sigma^{\prime} \text { in } e_{2} \sigma^{\prime} \rightarrow t}(\text { Let })
$$

2. By induction on the size of the $\mathrm{CRWL}_{\text {let }}$-proof. The cases for classical CRWL appear in (Vado-Vírseda 2002), so we only have to prove the case for the (Let) rule:
(Let) In this case the expression is $e \equiv \operatorname{let} X=e_{1}$ in e_{2} so we have a proof

$$
\frac{e_{1} \sigma \rightarrow t_{1} \quad e_{2} \sigma\left[X / t_{1}\right] \rightarrow t}{\operatorname{let} X=e_{1} \sigma \text { in } e_{2} \sigma \rightarrow t}(\text { Let })
$$

By IH we have that $e_{1} \sigma \rightarrow t_{1}$. By the variable convention we can assume that $B V(e) \cap(\operatorname{dom}(\sigma) \cup \operatorname{vran}(\sigma))=\emptyset$ and $B V(e) \cap\left(\operatorname{dom}\left(\sigma^{\prime}\right) \cup \operatorname{vran}\left(\sigma^{\prime}\right)\right)=\emptyset$. With the previous properties it is easy to see that $\sigma\left[X / t_{1}\right] \sqsubseteq \sigma^{\prime}\left[X / t_{1}\right]$, so by IH $e_{2} \sigma^{\prime}\left[X / t_{1}\right] \rightarrow t$. Therefore we can build the proof:

$$
\frac{e_{1} \sigma^{\prime} \rightarrow t_{1} \quad e_{2} \sigma^{\prime}\left[X / t_{1}\right] \rightarrow t}{\text { let } X=e_{1} \sigma^{\prime} \text { in } e_{2} \sigma^{\prime} \rightarrow t}(\text { Let })
$$

3. By induction on the structure of e :
$e \equiv X \in \mathcal{V}$ - In this case $\llbracket X \sigma \rrbracket_{C R W L_{l e t}} \subseteq \llbracket X \sigma^{\prime} \rrbracket_{C R W L_{l e t}}$ because by the hypothesis $\sigma \unlhd \sigma^{\prime}$.
$e \equiv h\left(e_{1}, \ldots, e_{n}\right)$ - Applying Theorem 5 with $\mathcal{C} \equiv h\left([], e_{2} \sigma, \ldots, e_{n} \sigma\right)$ we have
 cause $B V(\mathcal{C})=\emptyset$. On the other hand, by Theorem 5 we also know that

$$
\begin{aligned}
\llbracket h\left(e_{1} \sigma^{\prime}, e_{2} \sigma, \ldots, e_{n} \sigma\right) \rrbracket_{C R W L_{\text {let }}} & =\llbracket \mathcal{C}\left[e_{1} \sigma^{\prime}\right] \rrbracket_{C R W L_{l e t}} \\
& =\bigcup_{t \in \llbracket e_{1} \sigma^{\prime} \rrbracket_{C R W L_{l e t}}}^{\mathcal{C}[t] \rrbracket_{C R W L_{l e t}}}
\end{aligned}
$$

$$
\bigcup_{t \in \llbracket e_{1} \sigma \rrbracket_{C R W L_{l e t}}} \llbracket \mathcal{C}[t] \rrbracket_{C R W L_{l e t}} \subseteq \bigcup_{t \in \llbracket e_{1} \sigma^{\prime} \rrbracket_{C R W L_{\text {let }}}} \llbracket \mathcal{C}[t] \rrbracket_{C R W L_{\text {let }}}
$$

so $\llbracket h\left(e_{1} \sigma, e_{2} \sigma, \ldots, e_{n} \sigma\right) \rrbracket_{C R W L_{l e t}} \subseteq \llbracket h\left(e_{1} \sigma^{\prime}, e_{2} \sigma, \ldots, e_{n} \sigma\right) \rrbracket_{C R W L_{l e t}}$. Using the same reasoning in the rest of subexpressions $e_{i} \sigma$ we can prove:
 $\llbracket h\left(e_{1} \sigma^{\prime}, e_{2} \sigma^{\prime}, e_{3} \sigma \ldots, e_{n} \sigma\right) \rrbracket_{C R W L_{l e t}} \subseteq \llbracket h\left(\ldots, e_{3} \sigma^{\prime}, e_{4} \sigma \ldots, e_{n} \sigma\right) \rrbracket_{C R W L_{l e t}}$
$\left.\llbracket \ldots, e_{n-1} \sigma^{\prime}, e_{n} \sigma\right) \rrbracket_{C R W L_{l e t}} \subseteq \llbracket h\left(e_{1} \sigma^{\prime}, \ldots, e_{n} \sigma^{\prime}\right) \rrbracket_{C R W L_{l e t}}$
Then by transitivity of \subseteq we have:

$$
\begin{aligned}
& \llbracket h\left(e_{1}, \ldots, e_{n}\right) \sigma \rrbracket_{C R W L_{k t}} \equiv \llbracket h\left(e_{1} \sigma, \ldots, e_{n} \sigma\right) \rrbracket_{C R W L_{l e t}} \subseteq \\
& \llbracket h\left(e_{1} \sigma^{\prime}, \ldots, e_{n} \sigma^{\prime}\right) \rrbracket_{C R W L_{k t t}} \equiv \llbracket h\left(e_{1}, \ldots, e_{n}\right) \sigma^{\prime} \rrbracket_{C R W L_{l e t}} .
\end{aligned}
$$

$e \equiv$ let $X=e_{1}$ in e_{2} - As Theorem 5 states, $\llbracket l e t X=e_{1} \sigma$ in $e_{2} \sigma \rrbracket_{C R W L_{l e t}}=$ $\cup \quad \llbracket e_{2} \sigma\left[X / t_{1}\right] \rrbracket_{C R W L_{l e t}}$. By the Induction Hypothesis we have that $\left.t_{1} \in \llbracket \mathbb{e}_{1} \sigma\right]$ CRWL $L_{l e t}$
$\llbracket e_{1} \sigma \rrbracket_{C R W L_{l e t}} \subseteq \llbracket e_{1} \sigma^{\prime} \rrbracket_{C R W L_{\text {let }}}$. Due to the variable convention we assume that $X \notin \operatorname{dom}(\sigma) \cup \operatorname{vran}(\sigma)$ and $X \notin \operatorname{dom}\left(\sigma^{\prime}\right) \cup \operatorname{vran}\left(\sigma^{\prime}\right)$, so it is easy to check that $\sigma[X / t] \unlhd \sigma^{\prime}[X / t]$ for any $t \in C$ Term. Then by the Induction Hypothesis we know that $\llbracket e_{2} \sigma[X / t\rfloor \rrbracket_{C R W L_{l e t}} \subseteq \llbracket e_{2} \sigma^{\prime}[X / t] \rrbracket_{C R W L_{l e t}}$. Therefore

$$
\begin{aligned}
& \begin{aligned}
\llbracket\left(\text { let } X=e_{1} \text { in } e_{2}\right) \sigma \rrbracket_{C R W L_{l e t}} & =\bigcup_{\left.t_{1} \in \llbracket e_{1} \sigma\right]_{C R W L_{l e t}}} \llbracket e_{2} \sigma\left[X / t_{1}\right] \rrbracket_{C R W L_{l e t}} \\
& \subseteq e_{t_{1} \sigma^{\prime}\left[X / e_{1} \sigma^{\prime} \rrbracket C R W L_{l e t}\right.}\left[X / \rrbracket_{1}\right] \rrbracket_{C R W L_{l e t}}
\end{aligned} \\
& =\llbracket l e t X=e_{1} \sigma^{\prime} \text { in } e_{2} \sigma^{\prime} \rrbracket_{C R W L_{l e t}} \\
& =\llbracket\left(l e t X=e_{1} \text { in } e_{2}\right) \sigma^{\prime} \rrbracket_{C R W L_{\text {let }}}
\end{aligned}
$$

Theorem 6 (Compositionality of hypersemantics)
For all $\mathcal{C} \in C n t x t, e \in L E x p_{\perp}$

$$
\llbracket \mathbb{C}[] \mathbb{\rrbracket}=\llbracket \mathbb{C} \mathbb{C} \llbracket \mathbb{C} \mathbb{d}
$$

As a consequence: $\llbracket e \rrbracket=\llbracket e^{\prime} \rrbracket \Leftrightarrow \forall \mathcal{C} \in C n t x t . \llbracket C[e] \rrbracket=\llbracket C\left[e^{\prime}\right] \rrbracket$.
Proof
By induction over the structure of contexts. The base case is $\mathcal{C}=[]$, so $\llbracket \mathcal{C}[e] \rrbracket=$ $\llbracket e \rrbracket=\llbracket \llbracket \rrbracket \llbracket \llbracket \rrbracket=\llbracket C \mathbb{C} \rrbracket \llbracket \llbracket$, as $\llbracket[\downarrow]$ is the identity function by definition. Regarding the inductive step:

- $\mathcal{C}=h\left(e_{1}, \ldots, \mathcal{C}^{\prime}, \ldots, e_{n}\right)$: Then

$$
\begin{aligned}
& \llbracket \mathcal{C} \rrbracket \llbracket \mathbb{e} \rrbracket=\lambda \theta . \underset{t \in \llbracket \mathcal{C}^{\prime}\|\llbracket\| \|}{ } \llbracket h\left(e_{1} \theta, \ldots, t, \ldots, e_{n} \theta\right) \rrbracket \\
& =\lambda \theta . \bigcup_{t \in \llbracket \mathcal{C}^{\prime}(e) \rrbracket \theta} \llbracket h\left(e_{1} \theta, \ldots, t, \ldots, e_{n} \theta\right) \rrbracket \quad \text { by } \mathrm{IH} \\
& =\lambda \theta . \bigcup_{t \in\left[\left(C^{\prime}(e)\right) \theta\right]} \llbracket h\left(e_{1} \theta, \ldots, t, \ldots, e_{n} \theta\right) \rrbracket \quad \text { by definition } \\
& =\lambda \theta \cdot \llbracket h\left(e_{1} \theta, \ldots,\left(\mathcal{C}^{\prime}[e]\right) \theta, \ldots, e_{n} \theta\right) \rrbracket \quad \text { by Lemma } 5 \\
& =\lambda \theta \cdot \llbracket(\mathcal{C}[e]) \theta \rrbracket=\llbracket \mathbb{C}[e] \rrbracket
\end{aligned}
$$

- $\mathcal{C}=$ let $X=\mathcal{C}^{\prime}$ in s : Then

$$
\begin{aligned}
& \llbracket \mathcal{C} \rrbracket \llbracket e \rrbracket=\lambda \theta . \quad \bigcup \quad \llbracket l e t X=t \text { in } s \theta \rrbracket \quad \text { by definition } \\
& =\lambda \theta . \quad \llbracket s \|[X / t] \rrbracket \square \quad \text { by rule }(\text { Bind }){ }^{(*)} \\
& =\lambda \theta . \bigcup_{t \in \llbracket C H}^{t} \mathbb{U} \| s \theta[X / t] \rrbracket \quad \text { by } \mathrm{IH} \\
& =\lambda \theta . \bigcup_{\left.t \in \llbracket\left[\left(C^{\prime} \mid e\right]\right) \theta\right]} \llbracket s \theta[X / t] \rrbracket \quad \text { by definition } \\
& =\lambda \theta \cdot \llbracket l e t X=\left(\mathcal{C}^{\prime}[e]\right) \theta \text { in } s \theta \rrbracket \quad \text { by Lemma } 5 \\
& =\llbracket C[e] \rrbracket
\end{aligned}
$$

$\left.{ }^{*}\right)$: by Proposition $8 \llbracket$ let $X=t$ in $s \theta \rrbracket=\llbracket s \theta[X / t] \rrbracket$ since let $X=t$ in $s \theta \rightarrow^{\operatorname{lnf}}$ $s \theta[X / t]$.

- $\mathcal{C}=$ let $X=s$ in $\mathcal{C}^{\prime}:$ Then

$$
\begin{array}{ll}
\llbracket \mathcal{C} \rrbracket \llbracket e \rrbracket=\lambda \theta \cdot \bigcup_{t \in \llbracket s \mathbb{L}} \llbracket \mathcal{C}^{\prime} \rrbracket \llbracket e \rrbracket(\theta[X / t]) & \\
=\lambda \theta \cdot \bigcup_{t \in \llbracket s \llbracket \theta} \llbracket \mathcal{C}^{\prime}[e] \rrbracket(\theta[X / t]) & \text { by IH } \\
=\lambda \theta \cdot \bigcup_{t \in \llbracket s \rrbracket \theta} \llbracket\left(\mathcal{C}^{\prime}[e]\right)(\theta[X / t]) \rrbracket & \text { by definition } \\
=\lambda \theta \cdot \bigcup_{t \in \llbracket s \theta \rrbracket} \llbracket\left(\mathcal{C}^{\prime}[e]\right)(\theta[X / t]) \rrbracket & \text { by definition } \\
=\lambda \theta \cdot \bigcup_{t \in \llbracket s \theta \rrbracket} \llbracket\left(\left(\mathcal{C}^{\prime}[e]\right) \theta\right)[X / t] \rrbracket & \\
=\lambda \theta \cdot \llbracket l e t X=s \theta \text { in }\left(\mathcal{C}^{\prime}[e]\right) \theta \rrbracket & \text { by Lemma } 5 \\
=\llbracket \mathcal{C}[e] \rrbracket &
\end{array}
$$

Proposition 6

Consider two sets A, B, and let \mathcal{F} be the set of functions $A \rightarrow \mathcal{P}(B)$. Then:
i) \Subset is indeed a partial order on \mathcal{F}, and Δf is indeed a decomposition of $f \in \mathcal{F}$, i.e., UU $(\Delta f)=f$.
ii) Monotonicity of hyperunion wrt. inclusion: for any $\mathcal{I}_{1}, \mathcal{I}_{2} \subseteq \mathcal{F}$

$$
\mathcal{I}_{1} \subseteq \mathcal{I}_{2} \text { implies } \cup \mathcal{I}_{1} \Subset \cup \mathcal{I}_{2}
$$

iii) Distribution of unions: for any $\mathcal{I}_{1}, \mathcal{I}_{2} \subseteq \mathcal{F}$

$$
\uplus\left(\mathcal{I}_{1} \cup \mathcal{I}_{2}\right)=\left(\uplus \mathcal{I}_{1}\right) \mathbb{U}\left(\cup \mathcal{I}_{2}\right)
$$

iv) Monotonicity of decomposition wrt. hyperinclusion: for any $f_{1}, f_{2} \in \mathcal{F}$

$$
f_{1} \Subset f_{2} \text { implies } \Delta f_{1} \subseteq \Delta f_{2}
$$

Proof
i) The binary relation \Subset is a partial order on \mathcal{F} because:

- It is reflexive, as for any function f and any $x \in A$ we have that $f(x)=$ $f(x)$, and thus $f(x) \subseteq f(x)$, therefore $f \Subset f$.
- It is transitive because given some functions f_{1}, f_{2}, f_{3} such that $f_{1} \Subset f_{2}$ and $f_{2} \Subset f_{3}$, then for any $x \in A$ we have $f_{1}(x) \subseteq f_{2}(x) \subseteq f_{3}(x)$ by definition of \Subset, hence $f_{1} \Subset f_{3}$.
- It is antisymmetric wrt. extensional function equality, because for any pair of hypersemantics f_{1}, f_{2} such that $f_{1} \Subset f_{2}$ and $f_{2} \Subset f_{1}$ and any $x \in A$ we have that $f_{1}(x) \subseteq f_{2}(x)$ and $f_{2}(x) \subseteq f_{1}(x)$ by definition of \Subset, hence $f_{1}(x)=f_{2}(x)$ by antisymmetry of \subseteq and $f_{1}=f_{2}$.
In order to prove that Δf is indeed a decomposition of $f \in \mathcal{F}$ we first perform a little massaging by using the definitions of \mathbb{U} and Δ.

$$
U(\Delta f)=U\{\hat{\lambda} a .\{b\} \mid a \in A, b \in f(a)\}=\lambda x \in A . \bigcup_{a \in A} \bigcup_{b \in f(a)}(\hat{\lambda} a .\{b\}) x
$$

Now we will use the fact that \Subset is a partial order, and therefore it is antisymmetric, so mutual inclusion by \Subset implies equality.

- $f \Subset \cup(\Delta f)$: Given arbitraries $a \in A, b \in f(a)$ then

$$
\begin{array}{ll}
(\cup(\Delta f)) a=\bigcup_{x \in A} \bigcup_{y \in f(x)}(\hat{\lambda} x \cdot\{y\}) a & \\
\supseteq \bigcup_{y \in f(a)}(\hat{\lambda} a \cdot\{y\}) a & \text { as } a \in A \\
=\bigcup_{y \in f(a)}\{y\} \ni b & \text { as } b \in f(a)
\end{array}
$$

- U $(\Delta f) \Subset f:$ Given arbitraries $a \in A, b \in(U(\Delta f)) a$ then we have that $b \in \bigcup_{x \in A} \bigcup_{y \in f(x)}(\hat{\lambda} x .\{y\}) a$, therefore $\exists x \in A, y \in f(x)$ such that $b \in$ $(\hat{\lambda} x .\{y\}) a$. But then $a \equiv x$-otherwise $(\hat{\lambda} x .\{y\}) a=\emptyset-$ and $y \equiv b-$ because $b \in(\hat{\lambda} x .\{y\}) a=\{y\}$ —, and so $y \in f(x)$ implies $b \in f(a)$.
ii) Given an arbitrary $a \in A$ then

$$
\begin{array}{ll}
\left(U \mathcal{I}_{1}\right) a=\bigcup_{f \in \mathcal{I}_{1}} f(a) & \text { by definition of } \cup \\
\subseteq \bigcup_{f \in \mathcal{I}_{2}} f(a) & \text { as } \mathcal{I}_{1} \subseteq \mathcal{I}_{2} \\
=\left(\mathbb{\mathcal { I } _ { 2 }) a}\right. & \text { by definition of } \cup
\end{array}
$$

iii)

$$
\begin{array}{ll}
\cup\left(\mathcal{I}_{1} \cup \mathcal{I}_{2}\right)=\lambda a . \bigcup_{f \in\left(\mathcal{I}_{1} \cup \mathcal{I}_{2}\right)} f(a) & \text { by definition of UU } \\
=\lambda a . \bigcup_{f \in \mathcal{I}_{1}} f(a) \cup \bigcup_{f \in \mathcal{I}_{2}} f(a) & \\
=\lambda a .\left(\cup \mathcal{I}_{1}\right) a \cup\left(\cup \mathcal{I}_{2}\right) a & \text { by definition of UU } \\
=\left(\cup \mathcal{I}_{1}\right) \mathbb{U}\left(\cup \mathcal{I}_{2}\right) & \text { by definition of ש }
\end{array}
$$

iv) Suppose an arbitrary $\hat{\lambda} a .\{b\} \in \Delta f_{1}$ with $a \in A$ and $b \in f_{1}(a)$ by definition. Since $f_{1} \Subset f_{2}$ then $f_{1}(a) \subseteq f_{2}(a)$. Therefore $b \in f_{2}(a)$ and $\hat{\lambda} a .\{b\} \in \Delta f_{2}$.

Proposition 7 (Distributivity under context of hypersemantics union)

$$
\llbracket \mathcal{C} \rrbracket(\mathbb{U} H)=\underset{\varphi \in H}{\cup} \mathbb{C} \rrbracket \varphi
$$

Proof

We proceed by induction on the structure of \mathcal{C}. Regarding the base case, then $\mathcal{C}=[]$ and so:

$$
\begin{aligned}
& \llbracket \mathcal{C} \rrbracket(\mathbb{U} H)=\mathbb{U} H \quad \text { by definition of } \llbracket \mathcal{C} \rrbracket \\
& ={\underset{\varphi \in H}{ } \varphi}^{U_{0}} \\
& =\bigcup_{\varphi \in H} \llbracket \mathbb{C} \rrbracket \varphi \quad \text { by definition of } \llbracket \mathcal{C} \rrbracket
\end{aligned}
$$

For the inductive step we have several possibilities.

- $\mathcal{C} \equiv h\left(e_{1}, \ldots, \mathcal{C}^{\prime}, \ldots, e_{n}\right)$: then

$$
\begin{aligned}
& =\lambda \theta . \quad \cup \quad \llbracket h\left(e_{1} \theta, \ldots, t, \ldots, e_{n} \theta\right) \rrbracket \quad \text { by } \mathrm{IH} \\
& t \in\left(\left(\mathbb{U}\left\{\mathbb{C}^{\prime} \mathbb{C}^{\prime} \varphi \mid \varphi \in H\right\}\right) \theta\right) \\
& =\lambda \theta . \bigcup_{t \in\left(\cup \mathbb{C} \mathcal{C}^{\prime} \llbracket \varphi \theta\right)} \llbracket h\left(e_{1} \theta, \ldots, t, \ldots, e_{n} \theta\right) \rrbracket \quad \text { by definition of } \mathbb{U} \\
& =\lambda \theta \cdot \bigcup_{\varphi \in H} \bigcup_{t \in \mathbb{C} \mathbb{C}} \mathbb{M}_{\varphi \theta} \llbracket h\left(e_{1} \theta, \ldots, t, \ldots, e_{n} \theta\right) \rrbracket \\
& =\lambda \theta \cdot \bigcup_{\varphi \in H} \llbracket \mathbb{C} \rrbracket \varphi \theta \quad \text { by definition of } \llbracket \mathbb{C} \rrbracket \\
& =\underset{\varphi \in H}{\bigcup} \llbracket \mathbb{C} \rrbracket \varphi \quad \text { by definition of } \mathbb{U}
\end{aligned}
$$

- $\mathcal{C} \equiv$ let $X=\mathcal{C}^{\prime}$ in e : then

$=\bigcup_{\varphi \in H}^{\cup \in H} \llbracket \mathbb{C} \mathbb{C} \quad \quad$ by definition of \mathbb{U}
- $\mathcal{C} \equiv$ let $X=e$ in \mathcal{C}^{\prime} : then
$\llbracket \mathbb{C} \rrbracket(\mathbb{U} H)=\lambda \theta . \underset{t \in \llbracket \mathbb{U} \| \theta}{\bigcup} \mathbb{C} C^{\prime} \rrbracket(\mathbb{U} H)(\theta[X / t]) \quad$ by definition of $\llbracket \mathcal{C} \rrbracket$
$=\lambda \theta . \bigcup_{t \in \llbracket \in \mathbb{l}}\left(\mathbb{U}\left\{\llbracket \mathcal{C}^{\prime} \rrbracket \varphi \mid \varphi \in H\right\}\right)(\theta[X / t]) \quad$ by IH
$=\lambda \theta . \bigcup_{t \in \llbracket \in \mathbb{\|} \theta} \bigcup_{\varphi \in H} \mathbb{C} \mathcal{C}^{\prime} \rrbracket \varphi(\theta[X / t]) \quad$ by definition of \mathbb{U}
$=\lambda \theta \cdot \bigcup \cup \cup H \in \mathbb{U} \mathbb{U} \mathbb{C} C^{\prime} \rrbracket \varphi(\theta[X / t]) \quad$ as H is independent from t
$=\lambda \theta \cdot \bigcup \bigcup \cup \mathbb{U} \in \mathbb{C} \rrbracket \varphi \theta \quad$ by definition of $\llbracket \mathcal{C} \rrbracket$
$=\bigcup_{\varphi \in H}^{U} \llbracket \subset \mathbb{C} \rrbracket \varphi \quad$ by definition of \mathbb{U}

A. 7 Proofs for Section 4.3

Theorem 9 (Hyper-Soundness of let-rewriting)
For all $e, e^{\prime} \in L E x p$, if $e \rightarrow l^{l^{*}} e^{\prime}$ then $\llbracket e^{\prime} \rrbracket \Subset \llbracket e \rrbracket$.
Proof
We first prove the theorem for a single step of \rightarrow^{l}. We proceed assumming some
$\theta \in C S u b s t_{\perp}$ such that $e^{\prime} \theta \rightarrow t$ and then proving $e \theta \rightarrow t$. The case where $t \equiv \perp$ holds trivially using the rule \mathbf{B}, so we will prove the rest by a case distinction on the rule of the let-rewriting calculus applied:
(Fapp) Assume $f\left(t_{1}, \ldots, t_{n}\right) \rightarrow^{l} r$ with $\left(f\left(p_{1}, \ldots, p_{n}\right) \rightarrow e\right) \in \mathcal{P}, \sigma \in C$ Subst, such that $\forall i . p_{i} \sigma \equiv t_{i}$ and $e \sigma \equiv r$, and $\theta \in C S u b t s_{\perp}$ such that $r \theta \rightarrow t$. Then as $\sigma \theta \in C S u b t s_{\perp}, \forall i . p_{i} \sigma \theta \equiv t_{i} \theta$ and $e \sigma \theta \equiv r \theta$ we can use the (OR) rule to build the following proof:

$$
\frac{\frac{\text { Lemma 18 }}{t_{1} \theta \rightarrow t_{1} \theta} \quad \ldots \quad \frac{\text { Lemma 18 }}{t_{n} \theta \rightarrow t_{n} \theta} \quad r \theta \rightarrow t}{f\left(t_{1} \theta, \ldots, t_{n} \theta\right) \rightarrow t}(O R)
$$

(LetIn) Assume $h(\ldots, e, \ldots) \rightarrow^{l}$ let $X=e$ in $h(\ldots, X, \ldots)$ by (LetIn) and $\theta \in$ $C S u b t s_{\perp}$ such that $($ let $X=e$ in $h(\ldots, X, \ldots)) \theta \rightarrow t$. This proof must be of the shape of:

$$
\left.\frac{e \theta \rightarrow t_{1} \quad h\left(d_{1} \theta, \ldots, X \theta, \ldots, d_{n} \theta\right)\left[X / t_{1}\right] \rightarrow t}{l e t} X=e \theta \text { in } h\left(d_{1} \theta, \ldots, X \theta, \ldots, d_{n} \theta\right) \rightarrow t\right)
$$

for some $d_{1}, \ldots, d_{n} \in L E x p, t_{1} \in C T e r m_{\perp}$. Besides $X \notin(\operatorname{dom}(\theta) \cup v r a n(\theta))$ by the variable convention ${ }^{5}$, hence $X \theta \equiv X$ and so $h\left(d_{1} \theta, \ldots, X \theta, \ldots, d_{n} \theta\right)\left[X / t_{1}\right] \equiv$ $h\left(d_{1} \theta, \ldots, t_{1}, \ldots, d_{n} \theta\right)$, as X is fresh by the conditions in (LetIn) and so it does not appear in any d_{i}. Now we have two possibilities:
a) $h \equiv c \in D C$: Then $h\left(d_{1} \theta, \ldots, t_{1}, \ldots, d_{n} \theta\right) \rightarrow t$ must proved by (DC):

$$
\frac{d_{1} \theta \rightarrow s_{1} \ldots t_{1} \rightarrow t_{1}^{\prime} \ldots d_{n} \theta \rightarrow s_{n}}{c\left(d_{1} \theta, \ldots, t_{1}, \ldots, d_{n} \theta\right) \rightarrow c\left(s_{1}, \ldots, t_{1}^{\prime}, \ldots, s_{n}\right) \equiv t}(D C)
$$

for some $s_{1}, \ldots, s_{n}, t_{1}^{\prime} \in C$ Term ${ }_{\perp}$. Then $t_{1} \rightarrow t_{1}^{\prime}$ implies $t_{1}^{\prime} \sqsubseteq t_{1}$ by Lemma 5 , hence $e \theta \rightarrow t_{1}$ implies $e \theta \rightarrow t_{1}^{\prime}$ by Proposition 3, and we can build the following proof:

$$
\frac{d_{1} \theta \rightarrow s_{1} \ldots e \theta \rightarrow t_{1}^{\prime} \ldots d_{n} \theta \rightarrow s_{n}}{h(\ldots, e, \ldots) \theta \equiv c\left(d_{1} \theta, \ldots, e \theta, \ldots, d_{n} \theta\right) \rightarrow c\left(s_{1}, \ldots, t_{1}^{\prime}, \ldots, s_{n}\right) \equiv t}
$$

b) $h \equiv f \in F S$: Then $h\left(d_{1} \theta, \ldots, t_{1}, \ldots, d_{n} \theta\right) \rightarrow t$ must be proved by (OR):

$$
\frac{d_{1} \theta \rightarrow s_{1} \sigma \quad \ldots \quad t_{1} \rightarrow t_{1}^{\prime} \sigma \quad \ldots \quad d_{n} \theta \rightarrow s_{n} \sigma \quad r \sigma \rightarrow t}{f\left(d_{1} \theta, \ldots, t_{1}, \ldots, d_{n} \theta\right) \rightarrow t}(O R)
$$

for some $s_{1} \sigma, \ldots, s_{n} \sigma, t_{1}^{\prime} \sigma \in \operatorname{CTerm}_{\perp},\left(f\left(s_{1}, \ldots, t_{1}^{\prime}, \ldots s_{n}\right) \rightarrow r\right) \in \mathcal{P}, \sigma \in$ CSubst $_{\perp}$. Then we can prove $e \theta \rightarrow t_{1}^{\prime} \sigma$ like in the previous case, to build the following proof:

$$
\frac{d_{1} \theta \rightarrow s_{1} \sigma \ldots \quad \ldots \theta \rightarrow t_{1}^{\prime} \sigma \ldots \quad \ldots \quad d_{n} \theta \rightarrow s_{n} \sigma \quad r \sigma \rightarrow t}{h(\ldots, e, \ldots) \theta \equiv f\left(d_{1} \theta, \ldots, e \theta, \ldots, d_{n} \theta\right) \rightarrow t}(O R)
$$

[^0](Bind) Assume let $X=t_{1}$ in $e \rightarrow^{l} e\left[X / t_{1}\right]$ by (Bind) and $\theta \in$ CSubst $_{\perp}$ such that $\left(e\left[X / t_{1}\right]\right) \theta \rightarrow t$. Then $X \notin(\operatorname{dom}(\theta) \cup \operatorname{vran}(\theta))$ by the variable convention, so we can apply Lemma 1 (Substitution lemma) to get $e \theta\left[X / t_{1} \theta\right] \equiv\left(e\left[X / t_{1}\right]\right) \theta$. Besides $t_{1} \in C$ Term and $\theta \in$ CSubst $_{\perp}$ by hypothesis, hence $t_{1} \theta \in C$ Term \perp_{\perp} and we can build the following proof:
$$
\frac{\frac{\text { Lemma 18 }}{t_{1} \theta \rightarrow t_{1} \theta} \quad e \theta\left[X / t_{1} \theta\right] \equiv\left(e\left[X / t_{1}\right]\right) \theta \rightarrow t}{\text { let } X=t_{1} \theta \text { in } e \theta \rightarrow t}(\text { Let })
$$
(Elim) Assume let $X=e_{1}$ in $e_{2} \rightarrow^{l} e_{2}$ by (Elim) and $\theta \in C S u b t s_{\perp}$ such that $e_{2} \theta \rightarrow t$. Then $X \notin \operatorname{vran}(\theta)$ by the variable convention and $X \notin F V\left(e_{2}\right)$ by the condition of (Elim), hence $e_{2} \theta[X / \perp] \equiv e_{2} \theta$ and we can build the following proof:
$$
\frac{\overline{e_{1} \theta \rightarrow \perp}(B) \quad e_{2} \theta[X / \perp] \equiv e_{2} \theta \rightarrow t}{\text { let } X=e_{1} \theta \text { in } e_{2} \theta \rightarrow t}(\text { Let })
$$
(Flat) Assume let $X=\left(\right.$ let $Y=e_{1}$ in $\left.e_{2}\right)$ in $e_{3} \rightarrow^{l}$ let $Y=e_{1}$ in (let $X=e_{2}$ in $\left.e_{3}\right)$ by (Flat) and $\theta \in C S u b t s_{\perp}$ such that $\left(\right.$ let $Y=e_{1}$ in $\left(\right.$ let $X=e_{2}$ in $\left.\left.e_{3}\right)\right) \theta \rightarrow t$. This proof must be must be of the shape of:
$$
\frac{e_{1} \theta \rightarrow t_{1}}{\text { let } Y=e_{1} \theta \text { in }\left(\text { let } X=e_{2} \theta \text { in } e_{3} \theta\right) \rightarrow t}\left(\text { let } X=e_{2} \theta \text { in } e_{3} \theta\right)\left[Y / t_{1}\right] \rightarrow t(\text { Let })(\text { Let })
$$
for some $t_{1}, t_{2} \in C T e r m_{\perp}$. Besides $Y \notin \operatorname{vran}(\theta)$ by the variable convention and $Y \notin F V\left(e_{3}\right)$ by the condition of (Flat), hence $e_{3} \theta\left[Y / t_{1}\right] \equiv e_{3} \theta$ and we can build the following proof:
\[

$$
\begin{aligned}
& \frac{\text { Hypothesis }}{\frac{e_{1} \theta \rightarrow t_{1}}{\text { let } Y=e_{1} \theta \text { in } e_{2} \theta \rightarrow t_{2}}} \begin{array}{l}
\text { let } X=\left(\text { let } Y=e_{1} \theta \text { in } e_{2} \theta\right) \text { in } e_{3} \theta \rightarrow t \\
e_{3} \theta\left[Y / t_{1}\right] \rightarrow t_{2} \\
\text { let } \theta\left[X / t_{2}\right] \equiv e_{3} \theta\left[Y / t_{1}\right]\left[X / t_{2}\right] \rightarrow t
\end{array}(\text { Let }) .
\end{aligned}
$$
\]

(Contx) By the proof of the other cases, $\llbracket e^{\prime} \rrbracket \Subset \llbracket e \rrbracket$, but then $\llbracket \mathcal{C}\left[e^{\prime}\right] \rrbracket \Subset \llbracket \mathcal{C}[e] \rrbracket$ by Lemma 7, and we are done.

The proof for several steps is a trivial induction on the length of the derivation $e \rightarrow l^{l^{*}} e^{\prime}$.

Proposition 8 (The $\rightarrow^{\operatorname{lnf}}$ relation preserves hyperdenotation)
For all $e, e^{\prime} \in L E x p$, if $e \rightarrow^{\ln f^{*}} e^{\prime}$ then $\llbracket e \rrbracket=\llbracket e^{\prime} \rrbracket$-and therefore $\llbracket e \rrbracket=\llbracket e^{\prime} \rrbracket$.
Proof
We first prove the lemma for one step of $\rightarrow^{\operatorname{lnf}}$ by case distinction over the rule applied to reduce e to e^{\prime}. By Theorem 9 we already have that $\forall e, e^{\prime} \in L E x p$ if $e \rightarrow^{\ln f} e^{\prime}$ then $\llbracket e^{\prime} \rrbracket \Subset \llbracket e \rrbracket$, so all that is left is proving that $\llbracket e \rrbracket \Subset \llbracket e^{\prime} \rrbracket$ also, and finally applying the transitivity of \Subset, as it is a partial order by Lemma 6 -i. We proceed assumming some $\theta \in$ CSubst $_{\perp}$ such that $e \theta \rightarrow t$ and then proving $e^{\prime} \theta \rightarrow t$. The case where $t \equiv \perp$ holds trivially using the rule (B), so we will prove the other by a case distinction on the rule of the let calculus applied:
(LetIn) Assume $h\left(d_{1}, \ldots, e, \ldots, d_{n}\right) \rightarrow^{l}$ let $X=e$ in $h\left(d_{1}, \ldots, X, \ldots, d_{n}\right)$ by the
(LetIn) rule and $\theta \in C S u b t s_{\perp}$ such that

$$
h\left(d_{1}, \ldots, e, \ldots, d_{n}\right) \theta \equiv h\left(d_{1} \theta, \ldots, e \theta, \ldots, d_{n} \theta\right) \rightarrow t
$$

Then by the compositionality of Theorem 5 we have that $\exists t_{1} \in \llbracket e \theta \rrbracket$ such that $h\left(d_{1} \theta, \ldots, t_{1}, \ldots, d_{n} \theta\right) \rightarrow t$. Besides X is fresh and $X \notin(\operatorname{dom}(\theta) \cup \operatorname{vran}(\theta))$ by the variable convention, hence

$$
\left(\text { let } X=e \operatorname{in} h\left(d_{1}, \ldots, X, \ldots, d_{n}\right)\right) \theta \equiv \text { let } X=e \theta \text { in } h\left(d_{1} \theta, \ldots, X, \ldots, d_{n} \theta\right)
$$

and

$$
h\left(d_{1} \theta, \ldots, X, \ldots, d_{n} \theta\right)\left[X / t_{1}\right] \equiv h\left(d_{1} \theta, \ldots, t_{1}, \ldots, d_{n} \theta\right)
$$

and so we can do:

$$
\frac{\frac{\text { hypothesis }}{e \theta \rightarrow t_{1}} \xrightarrow{\left(\text { let } X=e \operatorname{in} h\left(d_{1}, \ldots, X, \ldots, d_{n}\right)\right) \theta \equiv \operatorname{let} X=e \theta \text { in } h\left(d_{1} \theta, \ldots, X, \ldots, d_{n} \theta\right) \rightarrow t}}{\text { hypothesis }} \text { (Let) }
$$

(Bind) Assume let $X=t_{1}$ in $e \rightarrow^{l} e\left[X / t_{1}\right]$ by (Bind) and $\theta \in C$ Subst ${ }_{\perp}$ such that (let $X=$ t_{1} in e) $\theta \equiv$ let $X=t_{1} \theta$ in $e \theta \rightarrow t$. Then it must be with a proof of the following shape:

$$
\frac{t_{1} \theta \rightarrow t_{1}^{\prime} \quad e \theta\left[X / t_{1}^{\prime}\right] \rightarrow t}{l e t ~} X=t_{1} \theta \text { in } e \theta \rightarrow t(\text { Let })
$$

But $\theta \in C$ Subst t_{\perp} and $t_{1} \in C$ Term implies $t_{1} \theta \in C$ Term ${ }_{\perp}$, and so $t_{1} \theta \rightarrow t_{1}^{\prime}$ implies $t_{1}^{\prime} \sqsubseteq$ $t_{1} \theta$ by Lemma 5-1. Hence $\left[X / t_{1}^{\prime}\right] \sqsubseteq\left[X / t_{1} \theta\right]$ and so $e \theta\left[X / t_{1}^{\prime}\right] \rightarrow t$ implies $e \theta\left[X / t_{1} \theta\right] \rightarrow t$ by the monoticity of Proposition 5. Besides $X \notin(\operatorname{dom}(\theta) \cup \operatorname{vran}(\theta))$ by the variable convention, and so we can apply Lemma 1 (substitution lemma) to get $\left(e\left[X / t_{1}\right]\right) \theta \equiv$ $e \theta\left[X / t_{1} \theta\right]$, so we are done.
(Elim) Assume let $X=e_{1}$ in $e_{2} \rightarrow^{l} e_{2}$ by (Elim) and $\theta \in C$ Subts s_{\perp} such that (let $X=$ e_{1} in $\left.e_{2}\right) \theta \equiv$ let $X=e_{1} \theta$ in $e_{2} \theta \rightarrow t$. Then it must be with a proof of the following shape:

$$
\frac{e_{1} \theta \rightarrow t_{1} \quad e_{2} \theta\left[X / t_{1}\right] \rightarrow t}{l e t ~} X=e_{1} \theta \text { in } e_{2} \theta \rightarrow t(\text { Let })
$$

Then $X \notin \operatorname{vran}(\theta)$ by the variable convention and $X \notin F V\left(e_{2}\right)$ by the condition of (Elim), hence $e_{2} \theta \equiv e_{2} \theta\left[X / t_{1}\right] \rightarrow t$, so we are done.
(Flat) Straightforward since $e_{3} \theta\left[Y / t_{1}\right] \equiv e_{3} \theta$ because $Y \notin \operatorname{vran}(\theta)$ by the variable convention and $Y \notin F V\left(e_{3}\right)$ by the condition of (Flat).
(Contr) By the proof of the other cases, $\llbracket e \rrbracket \Subset \llbracket e^{\prime} \rrbracket$, but then $\llbracket \mathcal{C}[e] \rrbracket \Subset \llbracket \mathcal{C}\left[e^{\prime}\right] \rrbracket$ by Lemma 7 , and we are done.

The following lemmas - Lemmas 29, 30, 31 and 32— will be used to prove Lemma 8.

Lemma 29

Let linear $e, e_{1} \in E x p$ such that $e \theta \sqsubseteq e_{1}$ for $\theta \in$ Subst $_{\perp}$. Then $\exists \theta^{\prime} \in S u b s t$ such that $e \theta^{\prime} \equiv e_{1}$ and $\theta \sqsubseteq \theta^{\prime}$.

Proof

By induction on the structure of e. For the base case ($e \equiv X \in \mathcal{V}$) we define a function $r e p_{\perp}: E x p_{\perp} \rightarrow E x p \rightarrow E x p \operatorname{rep}_{\perp}\left(e, e^{\prime}\right)$ that replaces the occurrences of \perp in e by the expression e^{\prime}. We define this function recursively on the structure of e :

- $r e p_{\perp}\left(\perp, e^{\prime}\right)=e^{\prime}$
- $r e p_{\perp}\left(Z, e^{\prime}\right)=Z$
- $\operatorname{rep}_{\perp}\left(h\left(e_{1}, \ldots, e_{n}\right), e^{\prime}\right)=h\left(r e p_{\perp}\left(e_{1}, e^{\prime}\right), \ldots, r e p_{\perp}\left(e_{n}, e^{\prime}\right)\right)$

It is easy to check that $r e p_{\perp}\left(e, e^{\prime}\right)=e^{\prime \prime}$ implies $e \sqsubseteq e^{\prime \prime}$. Then we define $\theta^{\prime} \in S u b s t$ as:

$$
\theta^{\prime}(Y)= \begin{cases}e_{1} & \text { if } X \equiv Y \\ r e p_{\perp}(\theta(Y), Y) & \text { if } Y \in \operatorname{dom}(\theta) \backslash\{X\}\end{cases}
$$

Trivially $e \theta^{\prime} \equiv X \theta^{\prime} \equiv e_{1}$ and $\theta \sqsubseteq \theta^{\prime}$ because $e \theta \sqsubseteq e_{1}$ by the premise and $\theta(Y) \sqsubseteq$ $r e p_{\perp}(\theta(Y), Y)$.

Regarding the inductive step -e $\equiv h\left(e_{1}, \ldots, e_{n}\right)$ - we know that

$$
e \theta \equiv h\left(e_{1} \theta, \ldots, e_{n} \theta\right) \sqsubseteq e_{1} \equiv h\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)
$$

so $e_{i} \theta \sqsubseteq e_{i}^{\prime}$. Then by IH $\exists \theta_{i}^{\prime} \in S u b s t$ such that $e_{i} \theta_{i}^{\prime} \equiv e_{i}^{\prime}$ and $\theta \sqsubseteq \theta_{i}^{\prime}$. Then we define θ^{\prime} as:

$$
\theta^{\prime}(Y)= \begin{cases}\theta_{1}^{\prime}(Y) & \text { if } Y \in \operatorname{var}\left(e_{1}\right) \\ \theta_{2}^{\prime}(Y) & \text { if } Y \in \operatorname{var}\left(e_{2}\right) \\ \ldots & \text { if } Y \in \operatorname{var}\left(e_{n}\right) \\ \theta_{n}^{\prime}(Y) & \text { if } Y \in \operatorname{dom}(\theta) \backslash \operatorname{var}(e)\end{cases}
$$

The substitution θ^{\prime} is well defined because e is linear. Then $e \theta^{\prime} \equiv h\left(e_{1} \theta^{\prime}, \ldots, e_{n} \theta^{\prime}\right) \equiv$ $h\left(e_{1} \theta_{1}^{\prime}, \ldots, e_{n} \theta_{n}^{\prime}\right)=h\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right) \equiv e_{1}$ and $\theta \sqsubseteq \theta^{\prime}$ by IH and the fact that $\theta(Y) \sqsubseteq$ $r e p_{\perp}(\theta(Y), Y)$.

Lemma 30
For any $e \in L E x p_{\perp}, F V(|e|) \subseteq F V(e)$.
Proof
Straightforward by induction on the structure of e.

Lemma 31
Given $e \in L E x p, \theta \in L_{\text {Subst }}^{\perp},|e \theta|=|e| \hat{\theta}$ where $\hat{\theta}$ is defined as $X \hat{\theta}=|X \theta|$

Proof

By induction on the structure of e. We have two base cases:

- $e \equiv X \in \mathcal{V}$. Then $|e \theta| \equiv|X \theta|=X \hat{\theta}=|X| \theta \equiv|e| \hat{\theta}$.
- $e \equiv f\left(e_{1}, \ldots, e_{n}\right)$. Then $|e \theta| \equiv\left|f\left(e_{1}, \ldots, e_{n}\right) \theta\right|=\left|f\left(e_{1} \theta, \ldots, e_{n} \theta\right)\right|=\perp=\perp \hat{\theta}=$ $\left|f\left(e_{1}, \ldots, e_{n}\right)\right| \hat{\theta} \equiv|e| \hat{\theta}$.

Regarding the inductive step we have:

- $e \equiv c\left(e_{1}, \ldots, e_{n}\right)$. Straightforward.
- $e \equiv$ let $X=e_{1}$ in e_{2}. Then $|e \theta|=\mid\left(\right.$ let $X=e_{1}$ in $\left.e_{2}\right) \theta|=|$ let $X=$ $e_{1} \theta$ in $e_{2} \theta\left|=\left|e_{2} \theta\right|\left[X /\left|e_{1} \theta\right|\right]\right.$. By IH we have that $| e_{1} \theta\left|=\left|e_{1}\right| \hat{\theta}\right.$ and $| e_{2} \theta\left|=\left|e_{2}\right| \hat{\theta}\right.$, so $\left|e_{2} \theta\right|\left[X /\left|e_{1} \theta\right|\right]=\left|e_{2} \theta\right|=\left(\left|e_{2}\right| \hat{\theta}\right)\left[X /\left|e_{1}\right| \hat{\theta}\right]$. By the variable convention we can assume that $X \notin \operatorname{dom}(\theta) \cup \operatorname{vran}(\theta)$, and since $\operatorname{dom}(\hat{\theta})=\operatorname{dom}(\theta)$ and $\operatorname{vran}(\hat{\theta}) \subseteq \operatorname{vran}(\theta)$-using Lemma 30 - we can use Lemma 1 and ob$\operatorname{tain}\left(\left|e_{2}\right| \hat{\theta}\right)\left[X /\left|e_{1}\right| \hat{\theta}\right]=\left(\left|e_{2}\right|\left[X /\left|e_{1}\right|\right]\right) \hat{\theta}$. Finally, $\left(\left|e_{2}\right|\left[X /\left|e_{1}\right|\right]\right) \hat{\theta}=\mid$ let $X=$ e_{1} in $e_{2}|\hat{\theta}=|e| \hat{\theta}$.

Lemma 32

Given $e \in L E x p, \theta \in L S u b s t_{\perp}$, if $|e|=\perp$ then $|e \theta|=\perp$.

Proof

By induction on the structure of e. Notice that e cannot be a variable X or an applied constructor symbol $c\left(e_{1}, \ldots, e_{n}\right)$ because in those cases $|e| \neq \perp$. The base case $e \equiv f\left(e_{1}, \ldots, e_{n}\right)$ is straightforward. Regarding the inductive step we have $e \equiv$ let $X=e_{1}$ in e_{2} such that \mid let $X=e_{1}$ in $e_{2}\left|=\left|e_{2}\right|\left[X /\left|e_{1}\right|\right]=\perp\right.$. Then $|e \theta|=\mid\left(\operatorname{let} X=e_{1}\right.$ in $\left.e_{2}\right) \theta|=|$ let $X=e_{1} \theta$ in $e_{2} \theta\left|=\left|e_{2} \theta\right|\left[X /\left|e_{1} \theta\right|\right]\right.$. By Lemma $23\left|e_{2} \theta\right|\left[X /\left|e_{1} \theta\right|\right]=\left|\left(e_{2} \theta\right)\left[X / e_{1} \theta\right]\right|$, and since $X \notin \operatorname{dom}(\theta) \cup \operatorname{vran}(\theta)$ by the variable convention then we can apply Lemma 1 and $\left|\left(e_{2} \theta\right)\left[X / e_{1} \theta\right]\right|=\left|\left(e_{2}\left[X / e_{1}\right]\right) \theta\right|$. Finally by Lemma $31\left|\left(e_{2}\left[X / e_{1}\right]\right) \theta\right|=\left|e_{2}\left[X / e_{1}\right]\right| \hat{\theta}$, and by Lemma $23\left|e_{2}\left[X / e_{1}\right]\right| \hat{\theta}=$ $\left(\left|e_{2}\right|\left[X /\left|e_{1}\right|\right]\right) \hat{\theta}=\perp \hat{\theta}=\perp$.

Lemma 8 (Completeness lemma for let-rewriting)

For all $e \in L E x p$ and $t \in C T e r m_{\perp}$ such that $t \not \equiv \perp$,

$$
e \rightarrow t \text { implies } e \rightarrow^{l^{*}} \text { let } \overline{X=a} \text { in } t^{\prime}
$$

for some $t^{\prime} \in C$ Term and $\bar{a} \subseteq L E x p$ in such a way that $t \sqsubseteq \mid$ let $\overline{X=a}$ in $t^{\prime} \mid$ and $\left|a_{i}\right|=\perp$ for every $a_{i} \in \bar{a}$. As a consequence, $t \sqsubseteq t^{\prime}[\overline{X / \perp}]$.

Proof

By induction on the size s of the $C R W L_{l e t}$-proof, that we measure as the number of $C R W L_{\text {let }}$ rules applied. Concerning the base cases:
(B) This contradicts the hypothesis because then $t \equiv \perp$, so we are done. In the rest of the proof we will assume that $t \not \equiv \perp$ because otherwise we would be in this case.
(RR) Then we have $X \rightarrow X$. But then $X \rightarrow{ }^{l}{ }^{0} X$ and $X \sqsubseteq X \equiv|X|$, so we are done with $\bar{X}=\emptyset$.
(DC) Then we have $c \rightarrow c$. But then $c \rightarrow{ }^{l}{ }^{0} c$ and $c \sqsubseteq c \equiv|c|$, so we are done with $\bar{X}=\emptyset$.

Now we treat the inductive step:
(DC) Then we have $e \equiv c\left(e_{1}, \ldots, e_{n}\right)$ and the $C R W L_{l e t}$-proof has the shape:

$$
\frac{e_{1} \rightarrow t_{1}, \ldots, e_{n} \rightarrow t_{n}}{c\left(e_{1}, \ldots, e_{n}\right) \rightarrow c\left(t_{1}, \ldots, t_{n}\right)}(D C)
$$

In the general case some t_{i} will be equal to \perp and some others will be different. For the sake of simplicity we consider the case when $n=2$ with $t_{1}=\perp$ and $t_{2} \not \equiv \perp$, the proof can be easily extended to the general case. Then we have $c\left(e_{1}, e_{2}\right) \rightarrow$ $c\left(\perp, t_{2}\right)$, so by IH over the second argument we get $e_{2} \rightarrow^{l^{*}}$ let $\overline{X_{2}=a_{2}}$ in t_{2}^{\prime} with $t_{2}^{\prime} \in C$ Term, $\left|a_{2_{i}}\right|=\perp$ for every $a_{2_{i}} \in \overline{a_{2}}$ and \mid let $\overline{X_{2}=a_{2}}$ in $t_{2}^{\prime} \mid=t_{2}^{\prime}\left[\overline{\left.X_{2} / \perp\right]} \sqsupseteq t_{2}\right.$. So:

$$
\begin{array}{ll}
c\left(e_{1}, e_{2}\right) \rightarrow^{l^{*}} c\left(e_{1}, \text { let } \overline{X_{2}}=a_{2} \text { in } t_{2}^{\prime}\right) & \text { by IH } \\
\rightarrow^{l} \text { let } Y=\left(\text { let } \overline{X_{2}=a_{2}} \text { in } t_{2}^{\prime}\right) \text { in } c\left(e_{1}, Y\right) & \text { by (LetIn) } \\
\rightarrow^{l^{*}} \text { let } \overline{X_{2}=a_{2}} \text { in let } Y=t_{2}^{\prime} \text { in } c\left(e_{1}, Y\right) & \text { by (Flat*) } \\
\rightarrow^{l} \text { let } \overline{X_{2}=a_{2}} \text { in } c\left(e_{1}, t_{2}^{\prime}\right) & \text { by (Bind) }
\end{array}
$$

Then there are several possible cases:
a) $e_{1} \equiv f_{1}\left(\overline{e_{1}}\right)$: Then let $\overline{X_{2}=a_{2}}$ in $c\left(f_{1}\left(\overline{e_{1}}\right), t_{2}^{\prime}\right) \rightarrow^{l}$ let $\overline{X_{2}=a_{2}}$ in let $Z=$ $f_{1}\left(\overline{e_{1}}\right)$ in $c\left(Z, t_{2}^{\prime}\right)$, by (LetIn). So we are done as $\left|a_{2_{i}}\right|=\perp$ for every $a_{2_{i}}$ by the IH, $\left|f_{1}\left(\overline{e_{1}}\right)\right|=\perp$ and \mid let $\overline{X_{2}=a_{2}}$ in let $Z=f_{1}\left(\overline{e_{1}}\right)$ in $c\left(Z, t_{2}^{\prime}\right) \mid=$ $c\left(Z, t_{2}^{\prime}\right)\left[\overline{X_{2} / \perp}, Z / \perp\right] \sqsupseteq c\left(\perp, t_{2}\right)$ because $t_{2}^{\prime}\left[\overline{\left.X_{2} / \perp\right]} \sqsupseteq t_{2}\right.$ by the IH, and Z is fresh and so it does not appear in t_{2}^{\prime}
b) $e_{1} \equiv t_{1}^{\prime} \in C$ Term: Then we are done as $\left|a_{2_{i}}\right|=\perp$ for every $a_{2_{i}} \in \overline{a_{2}}$ by the IH, and \mid let $\overline{X_{2}=a_{2}}$ in $c\left(t_{1}^{\prime}, t_{2}^{\prime}\right) \mid=c\left(t_{1}^{\prime}, t_{2}^{\prime}\right)\left[\overline{X_{2} / \perp}\right] \sqsupseteq c\left(\perp, t_{2}\right)$, because $t_{2}^{\prime}\left[\overline{X_{2} / \perp}\right] \sqsupseteq t_{2}$ by the IH
c) $e_{1} \equiv c_{1}\left(\overline{e_{1}}\right) \notin \underline{C T e r m}$ with $c_{1} \in C S$: Then by Lemma 3 we have the derivation $c_{1}\left(\overline{e_{1}}\right) \rightarrow{ }^{l^{*}}$ let $\overline{X_{1}=f_{1}\left(\overline{t_{1}^{\prime}}\right)}$ in $c_{1}\left(\overline{t_{1}}\right)$. But then:

$$
\begin{array}{ll}
\text { let } \overline{X_{2}=a_{2}} \text { in } c\left(c_{1}\left(\overline{e_{1}}\right), t_{2}^{\prime}\right) & \\
\rightarrow^{l^{*}} \text { let } \overline{X_{2}=a_{2}} \text { in } c\left(l e t \overline{X_{1}=f_{1}\left(\overline{t_{1}^{\prime}}\right.} \text { in } c_{1}\left(\overline{t_{1}}\right), t_{2}^{\prime}\right) & \text { Lemma } 3 \\
\rightarrow^{l} \text { let } \overline{X_{2}=a_{2}} \text { in let } Y=\left(\text { let } \overline{X_{1}}=f_{1}\left(\overline{t_{1}^{\prime}}\right)\right. & \text { in } \left.c_{1}\left(\overline{t_{1}}\right)\right) \text { in } c\left(Y, t_{2}^{\prime}\right) \text { by (LetIn) } \\
\rightarrow^{l^{*}} \text { let } \overline{X_{2}=a_{2}} \text { in let } \overline{X_{1}=f_{1}\left(\overline{t_{1}^{\prime}}\right)} \text { in let } Y=c_{1}\left(\overline{t_{1}}\right) \text { in } c\left(Y, t_{2}^{\prime}\right) & \text { by (Flat*) } \\
\rightarrow^{l} \text { let } \overline{X_{2}=a_{2}} \text { in let } \overline{X_{1}=f_{1}\left(\overline{t_{1}^{\prime}}\right)} \text { in } c\left(c_{1}\left(\overline{t_{1}}\right), t_{2}^{\prime}\right) & \text { by (Bind) }
\end{array}
$$

In the last step notice that Y is fresh and it cannot appear in t_{2}^{\prime}. Then we are done as $\left|f_{i} \underline{\left(\overline{t_{i}^{\prime}}\right)}\right|=\perp,\left|a_{2_{i}}\right|=\perp$ for every $a_{2_{i}} \in \overline{a_{2}}$ by the IH, and \mid let $\overline{X_{2}=a_{2}}$ in let $\overline{X_{1}=f_{1}\left(\overline{t_{1}^{\prime}}\right)}$ in $c\left(c_{1}\left(\overline{t_{1}}\right), t_{2}^{\prime}\right) \mid=c\left(c_{1}\left(\overline{t_{1}}\right), t_{2}^{\prime}\right)\left[\overline{X_{1} / \perp}\right]\left[\overline{X_{2} / \perp}\right]$ $\sqsupseteq c\left(\perp, t_{2}\right)$ because $t_{2}^{\prime}\left[\overline{X_{2} / \perp}\right] \sqsupseteq t_{2}$ by the IH, and no variable in $\overline{X_{1}}$ appears in t_{2}^{\prime} by α-conversion, as those are bound variables which were present in $c_{1}\left(\overline{e_{1}}\right)$ or that appeared after applying Lemma 3 to it, and this expression was placed in a position parallel to the position of t_{2}^{\prime}.
d) $e_{1} \equiv$ let $X=e_{11}$ in e_{12} : Then by Lemma 3 let $X=e_{11}$ in $e_{12} \rightarrow^{l^{*}}$ let $\overline{X_{1}=f_{1}\left(\overline{t_{1}^{\prime}}\right)}$ in $e^{\prime \prime}$ where $e^{\prime \prime} \in \mathcal{V}$ or $e^{\prime \prime} \equiv h_{1}\left(\overline{t_{1}}\right)$. Then:

$$
\begin{array}{ll}
\text { let } \overline{X_{2}=a_{2}} \text { in } c(l e t ~ \\
\text { le } & \left.e_{11} \text { in } e_{12}, t_{2}^{\prime}\right) \\
\left.\rightarrow^{l^{*}} \text { let } \overline{X_{2}=a_{2}} \text { in } c\left(\text { let } \overline{X_{1}=f_{1}\left(\overline{t_{1}^{\prime}}\right.}\right) \text { in } e^{\prime \prime}, t_{2}^{\prime}\right) & \text { by Lemma } 3 \\
\rightarrow \text { let } \overline{X_{2}=a_{2}} \text { in let } Y=\left(\text { let } \overline{X_{1}}=f_{1}\left(\overline{t_{1}^{\prime}}\right)\right. & \text { in } \left.e^{\prime \prime}\right) \text { in } c\left(Y, t_{2}^{\prime}\right) \\
\rightarrow^{l^{*}} \text { let } \overline{X_{2}=a_{2}} \text { in let } \overline{\left.X_{1}=f_{1} \overline{t_{1}^{\prime}}\right)} \text { in let let } Y=e^{\prime \prime} \text { in } c\left(Y, t_{2}^{\prime}\right) & \text { by (Flat* })
\end{array}
$$

Then we have two possibilities depending on $e^{\prime \prime}$:
i) $e^{\prime \prime} \equiv Z \in \mathcal{V}$: Then we can do:

$$
\begin{aligned}
& \text { let } \overline{X_{2}=a_{2}} \text { in let } \overline{X_{1}=f_{1}\left(\overline{t_{1}^{\prime}}\right)} \text { in let } Y=Z \text { in } c\left(Y, t_{2}^{\prime}\right) \\
& \rightarrow^{l} \text { let } \overline{X_{2}=a_{2}} \text { in let } \overline{X_{1}=f_{1}\left(\overline{t_{1}^{\prime}}\right)} \text { in } c\left(Z, t_{2}^{\prime}\right) \quad \text { by (Bind) }
\end{aligned}
$$

Then we are done as $\left|f_{1}\left(\overline{t_{1}^{\prime}}\right)\right|=\perp,\left|a_{2_{i}}\right|=\perp$ for every $a_{2_{i}} \in \overline{a_{2}}$ by IH, and \mid let $\overline{X_{2}=a_{2}}$ in let $\overline{X_{1}=f_{1}\left(\overline{t_{1}^{\prime}}\right)}$ in $c\left(Z, t_{2}^{\prime}\right) \mid=c\left(Z, t_{2}^{\prime}\right)\left[\overline{X_{1} / \perp}\right]\left[\overline{X_{2} / \perp}\right] \sqsupseteq$ $c\left(\perp, t_{2}\right)$, as $t_{2}^{\prime}\left[\overline{X_{2} / \perp}\right] \sqsupseteq t_{2}$ by IH, and no variable in $\overline{X_{1}}$ appears in t_{2}^{\prime} by α-conversion, like in the case c).
ii) $e^{\prime \prime} \equiv h_{1}\left(\overline{t_{1}}\right)$: there are two possible cases:
A) $h_{1}=f_{1} \in F S$: We are done as $\left|f_{1}\left(\overline{t_{1}^{\prime}}\right)\right|=\perp,\left|a_{2_{i}}\right|=\perp$ for every $a_{2_{i}} \in \overline{a_{2}}$ by $\mathrm{IH},\left|f_{1}\left(\overline{t_{1}}\right)\right|=\perp$, and \mid let $\overline{X_{2}=a_{2}}$ in let $X_{1}=f_{1}\left(\overline{t_{1}^{\prime}}\right)$ in let $Y=$ $f_{1}\left(\overline{t_{1}}\right)$ in $c\left(Y, t_{2}^{\prime}\right) \mid=c\left(Y, t_{2}^{\prime}\right)[Y / \perp]\left[\overline{X_{1}} / \bar{\perp}\right]\left[\overline{X_{2}} / \bar{\perp}\right] \sqsupseteq c\left(\perp, t_{2}\right)$, as by IH $t_{2}^{\prime}\left[\overline{X_{2}} / \bar{\perp}\right] \sqsupseteq t_{2}, Y$ is fresh and so it does not appear in t_{2}^{\prime}, and no variable in $\overline{X_{1}}$ appears in t_{2}^{\prime} as in the case i).
B) $h_{1}=c_{1} \in D C$: Then we can do a (Bind) step:

$$
\begin{aligned}
& \text { let } \overline{X_{2}=a_{2}} \text { in let } \overline{X_{1}=f_{1}\left(\overline{t_{1}^{\prime}}\right)} \text { in let } Y=c_{1}\left(\overline{t_{1}}\right) \text { in } c\left(Y, t_{2}^{\prime}\right) \\
& \rightarrow{ }^{l} \text { let } \overline{X_{2}=a_{2}} \text { in let } \overline{X_{1}=a_{1}} \text { in } c\left(c_{1}\left(\overline{t_{1}}\right), t_{2}^{\prime}\right)
\end{aligned}
$$

Then we are done as $\left|f_{1}\left(\overline{t_{1}^{\prime}}\right)\right|=\perp,\left|a_{2_{i}}\right|=\perp$ for every $a_{2_{i}} \in \overline{a_{2}}$ by IH, and

$$
\begin{aligned}
& \mid \text { let } \overline{X_{2}}=a_{2} \text { in let } \overline{X_{1}=f_{1}\left(\overline{t_{1}^{\prime}}\right)} \text { in } c\left(c_{1}\left(\overline{t_{1}}\right), t_{2}^{\prime}\right) \mid \\
= & c\left(c_{1}\left(\overline{t_{1}}\right), t_{2}^{\prime}\right)\left[\overline{X_{1} / \perp}\right]\left[\overline{\left.X_{2} / \perp\right]}\right. \\
\sqsupseteq & c\left(\perp, t_{2}\right)
\end{aligned}
$$

as $t_{2}^{\prime}\left[\overline{X_{2} / \perp}\right] \sqsupseteq t_{2}$ by IH, and no variable in $\overline{X_{1}}$ appears in t_{2}^{\prime}, as we saw in i).
(OR) If f has no arguments $(n=0)$ then we have:

$$
\frac{r \theta \rightarrow t}{f \rightarrow t}(O R)
$$

with $(f \rightarrow r) \in \mathcal{P}$ and $\theta \in$ CSubst $_{\perp}$. Let us define $\theta^{\prime} \in$ CSubst as the substitution which is equal to θ except that every \perp introduced by θ is replaced with some constructor symbol or variable. Then $\theta \sqsubseteq \theta^{\prime}$, so by Proposition 5 we have $r \theta^{\prime} \rightarrow t$ with a proof of the same size. But then applying the IH to this proof we get $r \theta^{\prime} \rightarrow l^{l^{*}}$ let $\overline{X=a}$ in t^{\prime} under the conditions of the lemma. Hence $f \rightarrow^{l} r \theta^{\prime} \rightarrow l^{*}$ let $\overline{X=a}$ in t^{\prime} applying (Fapp) in the first step, and we are done.

If $n>0$, we will proceed as in the case for (DC), doing a preliminary version for $f\left(e_{1}, e_{2}\right) \rightarrow t$ which can be easily extended for the general case. Then we have:

$$
\frac{e_{1} \rightarrow \perp e_{2} \rightarrow t_{2} \quad r \theta \rightarrow t}{f\left(e_{1}, e_{2}\right) \rightarrow t}(O R)
$$

such that $t_{2} \not \equiv \perp$, and with $\left(f\left(p_{1}, p_{2}\right) \rightarrow r\right) \in \mathcal{P}, \theta \in$ CSubst $_{\perp}$, such that $p_{1} \theta=\perp$ and $p_{2} \theta=t_{2}$. Then applying the IH to $e_{2} \rightarrow t_{2}$ we get that $e_{2} \rightarrow^{l^{*}}$ let $\overline{X_{2}=a_{2}}$ in t_{2}^{\prime} such that $\left|a_{2_{i}}\right|=\perp$ for every $a_{2_{i}}$ and \mid let $\overline{X_{2}=a_{2}}$ in $t_{2}^{\prime} \mid=$ $t_{2}^{\prime}\left[\overline{X_{2} / \perp}\right] \sqsupseteq t_{2}$. Then we can do:

$$
\begin{array}{ll}
f\left(e_{1}, e_{2}\right) \rightarrow^{l^{*}} f\left(e_{1}, \text { let } \overline{X_{2}}=a_{2} \text { in } t_{2}^{\prime}\right) & \text { by IH } \\
\rightarrow^{l} \text { let } Y=\left(\text { let } \bar{X}_{2}=a_{2} \text { in } t_{2}^{\prime}\right) \text { in } f\left(e_{1}, Y\right) & \text { by (LetIn) } \\
\rightarrow^{l^{*}} \text { let } \overline{X_{2}=a_{2}} \text { in let } Y=t_{2}^{\prime} \text { in } f\left(e_{1}, Y\right) & \text { by (Flat*) } \\
\rightarrow^{l} \text { let } \overline{X_{2}=a_{2}} \text { in } f\left(e_{1}, t_{2}^{\prime}\right) & \text { by (Bind) }
\end{array}
$$

Then applying Lemma 3 we get

$$
f\left(e_{1}, t_{2}^{\prime}\right) \rightarrow^{l^{*}} \text { let } \overline{X_{1}=f_{1}\left(\overline{t^{\prime}}\right)} \text { in } f\left(t_{1}^{\prime}, t_{2}^{\prime}\right)
$$

Now as $t_{2}^{\prime}\left[\overline{X_{2} / \perp}\right] \sqsupseteq t_{2}$ then $\left(t_{1}^{\prime}, t_{2}^{\prime}\right) \sqsupseteq\left(\perp, t_{2}\right)$, so by Lemma 29 there must exist $\theta^{\prime} \in C S u b s t$ such that $\theta \sqsubseteq \theta^{\prime}$ and $\left(p_{1}, p_{2}\right) \theta^{\prime} \equiv\left(t_{1}^{\prime}, t_{2}^{\prime}\right)$. Then by Proposition 5 , as $r \theta \rightarrow t$ then $r \theta^{\prime} \rightarrow t$ with a proof of the same size. As $\theta^{\prime} \in C$ Subst and $e \in L E x p$ (because it is part of the program) then $r \theta^{\prime} \in L E x p$ and we can apply the IH to that proof getting that $r \theta^{\prime} \rightarrow l^{l^{*}}$ let $\overline{X=a}$ in t^{\prime} such that $\left|a_{i}\right|=\perp$ for every a_{i} and \mid let $\overline{X=a}$ in $t^{\prime} \mid=t^{\prime}[\overline{X / \perp}] \sqsupseteq t$. Then we can do:

$$
\begin{array}{ll}
\text { let } \overline{X_{2}=a_{2}} \text { in } f\left(e_{1}, t_{2}^{\prime}\right) & \\
\rightarrow l^{l^{*}} \text { let } \overline{X_{2}=a_{2}} \text { in let } \overline{X_{1}=f_{1}\left(\overline{t^{\prime}}\right)} \text { in } f\left(t_{1}^{\prime}, t_{2}^{\prime}\right) & \text { by Lemma } 3 \\
\equiv \text { let } \overline{X_{2}=a_{2}} \text { in let } \overline{X_{1}=f_{1}\left(\overline{t^{\prime}}\right)} \text { in } f\left(p_{1}, p_{2}\right) \theta^{\prime} & \\
\rightarrow \rightarrow^{l} \text { let } \overline{X_{2}=a_{2}} \text { in let } \overline{X_{1}=f_{1}\left(\overline{t^{\prime}}\right)} \text { in } r \theta^{\prime} & \text { by (Fapp) } \\
\rightarrow l^{*} \text { let } \overline{X_{2}=a_{2}} \text { in let } \overline{X_{1}=f_{1}\left(\overline{t^{\prime}}\right)} \text { in let } \overline{X=a} \text { in } t^{\prime} & \text { by } 2^{\text {nd }} \mathrm{IH}
\end{array}
$$

Then $\left|a_{2_{i}}\right|=\perp$ for every $a_{2_{i}} \in \overline{a_{2}}$ by IH, $\left|f_{1}\left(\overline{t^{\prime}}\right)\right|=\perp$ and $\left|a_{i}\right|=\perp$ for every a_{i} by IH. Besides the variables in $\overline{X_{1}} \cup \overline{X_{2}}$ either belong to $B V\left(e_{1}\right) \cup B V\left(e_{2}\right)$ or are fresh, hence none of them may appear in t (by Lemma 27 over $f\left(e_{1}, e_{2}\right) \rightarrow t$ or by freshness). So $t^{\prime}[\overline{X / \perp}] \sqsupseteq t$ implies that $\forall p \in O\left(t^{\prime}\right)$ such that $\left.t^{\prime}\right|_{p}=Y$ for some $Y \in$ $\overline{X_{1}} \cup \overline{X_{2}}$ then $\left.t\right|_{p}=\perp$. But then \mid let $\overline{X_{2}=a_{2}}$ in let $\overline{X_{1}=a_{1}}$ in let $\overline{X=a}$ in $t^{\prime} \mid \equiv$ $t^{\prime}[\overline{X / \perp}]\left[\overline{X_{1} / \perp}\right]\left[\overline{X_{2} / \perp}\right] \sqsupseteq t$.
(Let) Then $e \equiv$ let $X=e_{1}$ in e_{2} and we have a proof of the following shape:

$$
\frac{e_{1} \rightarrow t_{1} \quad e_{2}\left[X / t_{1}\right] \rightarrow t}{\text { let } X=e_{1} \text { in } e_{2} \rightarrow t}(\text { Let })
$$

Then we have two possibilities:
a) $t_{1} \equiv \perp$: Then $e_{2}\left[X / t_{1}\right] \equiv e_{2}[X / \perp] \sqsubseteq e_{2}$. Hence, as $e_{2}\left[X / t_{1}\right] \rightarrow t$ and $\left[X / t_{1}\right] \sqsubseteq$ ϵ, by Proposition 5 we get $e_{2} \epsilon \equiv e_{2} \rightarrow t$ with a proof of the same size or smaller, and so by IH we get $e_{2} \rightarrow^{l^{*}}$ let $\overline{X=a}$ in t^{\prime}, with $t^{\prime} \in C$ Term, $\left|a_{i}\right| \equiv \perp$ for every a_{i} and \mid let $\overline{X=a}$ in $t^{\prime} \mid \equiv t^{\prime}[\overline{X / \perp}] \sqsupseteq t$, and we can do:

$$
\text { let } X=e_{1} \text { in } e_{2} \rightarrow^{l^{*}} \text { let } X=e_{1} \text { in let } \overline{X=a} \text { in } t^{\prime}
$$

Besides $X \notin \operatorname{var}(t)$ by Lemma 27 over let $X=e_{1}$ in $e_{2} \rightarrow t$, and then $t^{\prime}[\overline{X / \perp}] \sqsupseteq t$ implies $\forall p \in O\left(t^{\prime}\right)$ such that $\left.t^{\prime}\right|_{p} \equiv X$ then $\left.t\right|_{p} \equiv \perp$, and we have several possible cases:
i) $e_{1}=f_{1}\left(\overline{e_{1}}\right)$: Then we are donde because $|\bar{a}| \equiv \bar{\perp}$ by $\mathrm{IH},\left|f_{1}\left(\overline{e_{1}}\right)\right| \equiv \perp$ and \mid let $X=f_{1}\left(\overline{e_{1}}\right)$ in let $\overline{X=a}$ in $t^{\prime} \mid \equiv t^{\prime}[\overline{X / \perp}][X / \perp] \sqsupseteq t$, as $t^{\prime}[\overline{X / \perp}] \sqsupseteq t$ and $\forall p \in O\left(t^{\prime}\right)$ such that $\left.t^{\prime}\right|_{p} \equiv X$ then $\left.t\right|_{p} \equiv \perp$, as we saw above.
ii) $e_{1}=t_{1}^{\prime} \in$ CTerm: But then

$$
\text { let } X=t_{1}^{\prime} \text { in let } \overline{X=a} \text { in } t^{\prime} \rightarrow^{l} \text { let } \overline{X=a\left[X / t_{1}^{\prime}\right]} \text { in } t^{\prime}\left[X / t_{1}^{\prime}\right] \quad \text { by (Bind) }
$$

and we are done because $|\bar{a}| \equiv \bar{\perp}$ by IH, and so $\left|\bar{a}\left[X / t_{1}^{\prime}\right]\right| \equiv \bar{\perp}$ by Lemma 32 . Besides, as in $i), t^{\prime}[\overline{X / \perp}] \sqsupseteq t$ combined with the fact that $\forall p \in O\left(t^{\prime}\right)$ such that $\left.t^{\prime}\right|_{p} \equiv X$ we have $\left.t\right|_{p} \equiv \perp$, implies that \mid let $\overline{X=a\left[X / t_{1}^{\prime}\right]}$ in $t^{\prime}\left[X / t_{1}^{\prime}\right] \mid \equiv$ $t^{\prime}\left[X / t_{1}^{\prime}\right][\overline{X / \perp}] \sqsupseteq t$.
iii) $e_{1}=c_{1}\left(\overline{e_{1}}\right) \notin C$ Term with $c_{1} \in C S$: Then by Lemma 3 we have $c_{1}\left(\overline{e_{1}}\right) \rightarrow l^{l^{*}}$ let $\overline{X_{1}=f_{1}\left(\overline{t_{1}}\right)}$ in $c_{1}\left(\overline{t_{1}}\right)$, hence
let $X=c_{1}\left(\overline{e_{1}}\right)$ in let $\overline{X=a}$ in t^{\prime}
$\rightarrow l^{*}$ let $\underline{X=\left(\text { let } \overline{X_{1}}=f_{1}\left(\overline{t_{1}}\right)\right.}$ in $\left.c_{1}\left(\overline{t_{1}}\right)\right)$ in let $\overline{X=a}$ in $t^{\prime} \quad$ by Lemma 3
$\rightarrow l^{l^{*}}$ let $\overline{X_{1}=f_{1}\left(\overline{t_{1}}\right)}$ in let $X=c_{1}\left(\overline{t_{1}}\right)$ in let $\overline{X=a}$ in $t^{\prime} \quad$ by (Flat*)
\rightarrow^{l} let $\overline{X_{1}=f_{1}\left(\overline{t_{1}}\right)}$ in let $\overline{X=a\left[X / c_{1}\left(\overline{t_{1}}\right)\right]}$ in $t^{\prime}\left[X / c_{1}\left(\overline{t_{1}}\right)\right] \quad$ by (Bind)
As by IH $|\bar{a}| \equiv \bar{\perp}$ then $\left|\overline{a\left[X / c_{1}\left(\overline{t_{1}}\right)\right]}\right| \equiv \bar{\perp}$ by Lemma 32. At this point we have to check that \mid let $\overline{X_{1}=a_{1}}$ in let $\overline{X=a\left[X / c_{1}\left(\overline{t_{1}}\right)\right]}$ in $t^{\prime}\left[X / c_{1}\left(\overline{t_{1}}\right)\right] \mid$ $\equiv t^{\prime}\left[X / c_{1}\left(\overline{t_{1}}\right)\right][\overline{X / \perp}]\left[\overline{X_{1} / \perp}\right] \sqsupseteq t$. The variables in $\overline{X_{1}}$ either belong to $B V\left(c_{1}\left(\overline{e_{1}}\right)\right)$ or are fresh, hence by α-conversion none of them may appear in t^{\prime}, because in let $X=c_{1}\left(\overline{e_{1}}\right)$ in let $\overline{X=a}$ in t^{\prime} the expression t^{\prime} has no access to the variables bound in $c_{1}\left(\overline{e_{1}}\right)$. Hence $t^{\prime}\left[X / c_{1}\left(\overline{t_{1}}\right)\right][\overline{X / \perp}]\left[\overline{X_{1} / \perp}\right] \equiv$ $t^{\prime}\left[X / t^{\prime \prime}\right][\overline{X / \perp}]$, for some $t^{\prime \prime} \in C$ Term $_{\perp}$. But then, as in ii), $t^{\prime}[\overline{X / \perp}] \sqsupseteq t$ combined with the fact that $\forall p \in O\left(t^{\prime}\right)$ such that $\left.t^{\prime}\right|_{p} \equiv X$ we have $\left.t\right|_{p} \equiv \perp$, implies that $t^{\prime}\left[X / t^{\prime \prime}\right][\overline{X / \perp}] \sqsupseteq t$.
iv) $e_{1} \equiv$ let $Y=e_{11}$ in e_{12} : Then by Lemma 3 we have let $Y=e_{11}$ in $e_{12} \rightarrow^{l^{*}}$ let $\overline{X_{1}=f_{1}\left(\overline{t_{1}}\right)}$ in $h_{1}\left(\overline{t_{1}}\right)$, and so
let $X=\left(\right.$ let $Y=e_{11}$ in $\left.e_{12}\right)$ in let $\overline{X=a}$ in t^{\prime} $\rightarrow l^{*^{*}}$ let $X=\left(\right.$ let $\overline{X_{1}=f_{1}\left(\overline{t_{1}}\right)}$ in $\left.h_{1}\left(\overline{t_{1}}\right)\right)$ in let $\overline{X=a}$ in t^{\prime} by Lemma 3 $\rightarrow l^{*}$ let $\overline{X_{1}=f_{1}\left(\overline{t_{1}}\right)}$ in let $X=h_{1}\left(\overline{t_{1}}\right)$ in let $\overline{X=a}$ in $t^{\prime} \quad$ by (Flat*)
Then either $h \in C S$ and we are like in iii) before the final (Bind) step, or $h \in F S$ and $\left|h_{1}\left(\overline{t_{1}}\right)\right|=\perp$ and $|\bar{a}|=\bar{\perp}$ (by IH), and \mid let $\overline{X_{1}=a_{1}}$ in let $X=$ $h_{1}\left(\overline{t_{1}}\right)$ in let $\overline{X=a}$ in $t^{\prime} \mid \equiv t^{\prime}[\overline{X / \perp}][X / \perp]\left[\overline{X_{1} / \perp}\right] \equiv t^{\prime}[\overline{X / \perp}][X / \perp]$ because $\overline{X_{1}} \cap \operatorname{var}\left(t^{\prime}\right)=\emptyset$, as we saw in $\left.i i i\right)$. But then, as in $\left.i i\right), t^{\prime}[\overline{X / \perp}] \sqsupseteq t$ combined with the fact that $\forall p \in O\left(t^{\prime}\right)$ such that $\left.t^{\prime}\right|_{p} \equiv X$ we have $\left.t\right|_{p} \equiv \perp$, implies that $t^{\prime}[\overline{X / \perp}][X / \perp] \sqsupseteq t$.
b) $t_{1} \not \equiv \perp$: Then by IH we get $e_{1} \rightarrow^{l^{*}}$ let $\overline{X_{1}=a_{1}}$ in t_{1}^{\prime}, with $t_{1}^{\prime} \in C$ Term, $\left|a_{1_{i}}\right| \equiv \perp$ for every $a_{1_{i}}$ and \mid let $\overline{X_{1}=a_{1}}$ in $t_{1}^{\prime} \mid \equiv t_{1}^{\prime}\left[\overline{\left.X_{1} / \perp\right]} \sqsupseteq t_{1}\right.$. Hence $t_{1} \sqsubseteq t_{1}^{\prime}$
and so $e_{2}\left[X / t_{1}\right] \sqsubseteq e_{2}\left[X / t_{1}^{\prime}\right]$, but then $e_{2}\left[X / t_{1}\right] \rightarrow t$ implies $e_{2}\left[X / t_{1}^{\prime}\right] \rightarrow t$ with a proof of the same size or smaller, by Proposition 3. Therefore we may apply the IH to that proof to get $e_{2}\left[X / t_{1}^{\prime}\right] \rightarrow l^{l^{*}}$ let $\overline{X=a}$ in t^{\prime}, with $t^{\prime} \in C T e r m$, $\left|a_{i}\right| \equiv \perp$ for every a_{i} and \mid let $\overline{X=a}$ in $t^{\prime} \mid \equiv t^{\prime}[\overline{X / \perp}] \sqsupseteq t$. But then we can do:

$$
\begin{array}{ll}
\text { let } X=e_{1} \text { in } e_{2} \rightarrow l^{l^{*}} \text { let } X=\left(\text { let } \overline{X_{1}=a_{1}} \text { in } t_{1}^{\prime}\right) \text { in } e_{2} & \text { by IH } \\
\rightarrow^{l^{*}} \text { let } \overline{X_{1}=a_{1}} \text { in let } X=t_{1}^{\prime} \text { in } e_{2} & \text { by (Flat*) } \\
\rightarrow^{l} \text { let } \overline{X_{1}=a_{1}} \text { in } e_{2}\left[X / t_{1}^{\prime}\right] & \text { by (Bind) } \\
\rightarrow^{l^{*}} \text { let } \overline{X_{1}=a_{1}} \text { in let } \overline{X=a} \text { in } t^{\prime} & \text { by IH }
\end{array}
$$

Then by the IH's we have $|\bar{a}|=\bar{\perp}$ and $\left|\overline{a_{1}}\right|=\bar{\perp}$. Besides the variables in $\overline{X_{1}}$ either belong to $B V\left(e_{1}\right)$ or are fresh, hence none of them may appear in t (by Lemma 27 over let $X=e_{1}$ in $e_{2} \rightarrow t$ or by freshness). So $t^{\prime}[\overline{X / \perp}] t$ implies that $\forall p \in O\left(t^{\prime}\right)$ such that $\left.t^{\prime}\right|_{p}=Y$ for some $Y \in \overline{X_{1}}$ then $\left.t\right|_{p}=\perp$. But then \mid let $\overline{X_{1}=a_{1}}$ in let $\overline{X=a}$ in $t^{\prime} \mid \equiv t^{\prime}[\overline{X / \perp}]\left[\overline{X_{1} / \perp}\right] \sqsupseteq t$.

A. 8 Proofs for Section 5

Lemma 10
If $B V(\mathcal{C}) \cap F V\left(e_{1}\right)=\emptyset$ and $X \notin F V(\mathcal{C})$ then $\llbracket \mathcal{C}\left[\right.$ let $X=e_{1}$ in $\left.e_{2}\right] \rrbracket=\llbracket$ let $X=$ e_{1} in $\mathcal{C}\left[e_{2}\right] \rrbracket$

Proof
One step of the rule (Dist) can be replaced by two steps (CLetIn) + (Bind):
$\mathcal{C}\left[\right.$ let $X=e_{1}$ in $\left.e_{2}\right] \rightarrow^{l}$ let $U=e_{1}$ in $\mathcal{C}\left[\right.$ let $X=U$ in $\left.e_{2}\right] \rightarrow^{l}$ let $U=e_{1}$ in $\mathcal{C}\left[e_{2}[X / U]\right]$
followed by a renaming of U by X in the last expression. Then the lemma follows from preservation of hypersemantics by (CLetIn) and (Bind) (Lemma 9 and Proposition 8).

Proposition 9 ((Hyper)semantic properties of ?)
For any $e_{1}, e_{2} \in L E x p_{\perp}$
i) $\llbracket e_{1} ? e_{2} \rrbracket=\llbracket e_{1} \rrbracket \cup \llbracket e_{2} \rrbracket$
ii) $\llbracket e_{1} ? e_{2} \rrbracket=\llbracket e_{1} \rrbracket \mathbb{\Perp} \llbracket e_{2} \rrbracket$

Proof

i) Direct from definition of ? and the CRWL-proof calculus.
ii)

$$
\begin{array}{ll}
\llbracket e_{1} ? e_{2} \rrbracket=\lambda \theta \cdot \llbracket\left(e_{1} ? e_{2}\right) \theta \rrbracket & \text { by definition of } \mathbb{I} \rrbracket \\
=\lambda \theta \cdot \llbracket e_{1} \theta ? e_{2} \theta \rrbracket & \\
=\lambda \theta \cdot\left(\llbracket e_{1} \theta \rrbracket \cup \llbracket e_{2} \theta \rrbracket\right) & \text { by } i \\
=\lambda \theta \cdot\left(\llbracket e_{1} \rrbracket \theta \cup \llbracket e_{2} \rrbracket \theta\right) & \text { by definition of } \mathbb{I} \rrbracket \\
=\llbracket e_{1} \rrbracket \mathbb{U} \llbracket e_{2} \rrbracket &
\end{array}
$$

A. 9 Proofs for Section 6

Theorem 14 (Soundness of the let-narrowing relation \rightsquigarrow^{l})
For any $e, e^{\prime} \in L E x p, e \rightsquigarrow l_{\theta}^{l^{*}} e^{\prime}$ implies $e \theta \rightarrow^{l^{*}} e^{\prime}$.
Proof
First we prove the soundness of narrowing for one step, proceeding by a case distinction over the rule used in $e \rightsquigarrow^{l}{ }_{\theta} e^{\prime}$. The cases of (Elim), (Bind), (Flat) and (LetIn) are trivial, since narrowing and rewriting coincide for these rules.
(Narr) Then we have $f(\bar{t}) \rightsquigarrow^{l}{ }_{\theta} r \theta$ for $(f(\bar{p}) \rightarrow r) \in \mathcal{P}$ fresh, $\theta \in C$ Subst such that $f(\bar{t}) \theta \equiv f(\bar{p}) \theta$. But then $(f(\bar{p}) \rightarrow r) \theta \equiv f(\bar{p}) \theta \rightarrow r \theta \equiv f(\bar{t}) \theta \rightarrow r \theta$, so we can do $e \theta \equiv f(\bar{t}) \theta \rightarrow^{l} r \theta \equiv e^{\prime}$ by (Fapp).
(Contxt) Then we have $\mathcal{C}[e] \rightsquigarrow^{l}{ }_{\theta} \mathcal{C} \theta\left[e^{\prime}\right]$ because $e \rightsquigarrow^{l}{ }_{\theta} e^{\prime}$. Let us do a case distinction over the rule applied in $e \rightsquigarrow^{l}{ }_{\theta} e^{\prime}$:
a) $e \rightsquigarrow^{l}{ }_{\theta} e^{\prime} \equiv f(\bar{t}) \rightsquigarrow^{l}{ }_{\theta} r \theta$ by (Narr), for $(f(\bar{p}) \rightarrow r) \in \mathcal{P}$ fresh, so $f(\bar{t}) \theta \rightarrow^{l} r \theta$ by (Fapp). Then $\left.(\mathcal{C}[e]) \theta \equiv(\mathcal{C}[e]) \theta\right|_{\backslash \operatorname{var}(\bar{p})}$, because the variables in $\operatorname{var}(\bar{p})$ are fresh as $(f(\bar{p}) \rightarrow r)$ is. But then, as $\operatorname{dom}(\theta) \cap B V(\mathcal{C})=\emptyset$ and $v \operatorname{Ran}\left(\left.\theta\right|_{\backslash \operatorname{var}(\bar{p})}\right) \cap$ $B V(\mathcal{C})=\emptyset$ by the conditions in (Contx), and $\operatorname{dom}(\theta) \cap B V(\mathcal{C})=\emptyset$ implies $\operatorname{dom}\left(\left.\theta\right|_{\backslash \operatorname{var}(\bar{p})}\right) \cap B V(\mathcal{C})=\emptyset$, we can apply Lemma 25 getting $\left.(\mathcal{C}[e]) \theta\right|_{\backslash \operatorname{var}(\bar{p})} \equiv$ $\left.\mathcal{C} \theta\right|_{\left.\operatorname{var}(\bar{p})\left[\left.e \theta\right|_{\backslash \operatorname{var}(\bar{p})}\right] \equiv \mathcal{C} \theta\right|_{\backslash \operatorname{var}(\bar{p})}\left[\left.f(\bar{t}) \theta\right|_{\operatorname{var}^{(\bar{p})}}\right] \equiv \mathcal{C} \theta[f(\bar{t}) \theta] \text {, because the vari- }}$ ables in $\operatorname{var}(\bar{p})$ are fresh. Besides $\operatorname{vran}\left(\left.\theta\right|_{\backslash \operatorname{var}(\bar{p})}\right) \cap B V(\mathcal{C})=\emptyset$, so we can apply (Contx) combined with an inner (Fapp) to do $(\mathcal{C}[e]) \theta \equiv \mathcal{C} \theta[f(\bar{t}) \theta] \rightarrow^{l} \mathcal{C} \theta[r \theta] \equiv$ $\mathcal{C} \theta\left[e^{\prime}\right]$.
b) In case a different rule was applied in $e \rightsquigarrow_{\theta}^{l} e^{\prime}$ then $\theta=\epsilon$. By the proof of the other cases we have $e \theta \equiv e \rightarrow^{l} e^{\prime}$, so $(\mathcal{C}[e]) \theta \equiv \mathcal{C}[e] \rightarrow^{l} \mathcal{C}\left[e^{\prime}\right] \equiv \mathcal{C} \theta\left[e^{\prime}\right]$ (remember $\theta=\epsilon$).
Now we prove the lemma for any number of steps \rightarrow^{l}, proceeding by induction over the length n of $e \rightsquigarrow_{\theta}^{l^{n}} e^{\prime}$. The case $e \rightsquigarrow_{\epsilon}^{l^{0}} e \equiv e^{\prime}$ is straightforward because $e \rightarrow l^{l^{0}} e \equiv e^{\prime}$. For $n>0$ we have the derivation $e \rightsquigarrow_{\sigma}^{l} e^{\prime \prime} \rightsquigarrow_{l}^{l^{n-1}} e^{\prime}$ with $\theta=\gamma \circ \sigma$. By the proof for one step $e \sigma \rightarrow^{l} e^{\prime \prime}$, and by the closeness under CSubst of let-rewriting (Lemma 2) $e \sigma \gamma \rightarrow^{l} e^{\prime \prime} \gamma$. By IH $e^{\prime \prime} \gamma \rightarrow^{l^{*}} e^{\prime}$, so we can link $e \theta \equiv e \sigma \gamma \rightarrow^{l} e^{\prime \prime} \gamma \rightarrow^{l^{*}} e^{\prime}$.

Lemma 11 (Lifting lemma for the let-rewriting relation \rightarrow^{l})
Let $e, e^{\prime} \in L E x p$ such that $e \theta \rightarrow l^{l^{*}} e^{\prime}$ for some $\theta \in C S u b s t$, and let $\mathcal{W}, \mathcal{B} \subseteq \mathcal{V}$ with $\operatorname{dom}(\theta) \cup F V(e) \subseteq \mathcal{W}, B V(e) \subseteq \mathcal{B}$ and $(\operatorname{dom}(\theta) \cup \operatorname{vran}(\theta)) \cap \mathcal{B}=\emptyset$, and for each (Fapp) step of $e \theta \rightarrow^{l^{*}} e^{\prime}$ using a rule $R \in \mathcal{P}$ and a substitution $\gamma \in C$ Subst then $\operatorname{vran}\left(\left.\gamma\right|_{v \operatorname{Extra}(R)}\right) \cap \mathcal{B}=\emptyset$. Then there exist a derivation $e \rightsquigarrow_{l^{*}} e^{\prime \prime}$ and $\theta^{\prime} \in$ CSubst such that:
(i) $e^{\prime \prime} \theta^{\prime}=e^{\prime}$
(ii) $\sigma \theta^{\prime}=\theta[\mathcal{W}]$
(iii) $\left(\operatorname{dom}\left(\theta^{\prime}\right) \cup \operatorname{vran}\left(\theta^{\prime}\right)\right) \cap \mathcal{B}=\emptyset$

Besides, the let-narrowing derivation can be chosen to use mgu's at each (Narr) step.

Proof

Let us do a case distinction over the rule applied in $e \theta \rightarrow^{l} e^{\prime}$:
$($ Fapp $) ~ e \equiv f(\bar{t})$, so:

With an (Fapp) step $e \theta \equiv f(\bar{t}) \theta \rightarrow^{l} r \gamma$ with $(f(\bar{p}) \rightarrow r) \in \mathcal{P}, \gamma \in C$ Subst, such that $f(\bar{t}) \theta \equiv f(\bar{p}) \gamma$ and $f(\bar{p}) \rightarrow r$ is a fresh variant. We can assume that $\operatorname{dom}(\gamma) \subseteq$ $F V(f(\bar{p}) \rightarrow r)$ without loss of generality. But then $\operatorname{dom}(\theta) \cap \operatorname{dom}(\gamma)=\emptyset$, and so $\theta \uplus \gamma$ is correctly defined, and it is a unifier of $f(\bar{t})$ and $f(\bar{p})$. So, there must exist $\sigma=m g u(f(\bar{t}), f(\bar{p}))$, which we can use to perform a (Narr) step, because $\sigma \in C S u b s t$ and $f(\bar{t}) \sigma \equiv f(\bar{p}) \sigma$.

$$
e \equiv f(\bar{t}) \rightsquigarrow{ }_{\sigma}^{l} r \sigma \equiv e^{\prime \prime}
$$

As this unifier is an mgu then $\operatorname{dom}(\sigma) \subseteq F V(f(\bar{t})) \cup F V(f(\bar{p}))$, $\operatorname{vran}(\sigma) \subseteq$ $F V(f(\bar{t})) \cup F V(f(\bar{p}))$ and $\sigma \lesssim(\theta \uplus \gamma)$, so there must exist $\theta_{1}^{\prime} \in C S u b s t$ such that $\sigma \theta_{1}^{\prime}=\theta \uplus \gamma$. Besides we can define $\theta_{0}^{\prime}=\left.\theta\right|_{\backslash\left(\operatorname{dom}\left(\theta_{1}^{\prime}\right) \cup F V(f(\bar{t}))\right)}$ and then we can take $\theta^{\prime}=\theta_{0}^{\prime} \uplus \theta_{1}^{\prime}$ which is correctly defined as obviously $\operatorname{dom}\left(\theta_{0}^{\prime}\right) \cap \operatorname{dom}\left(\theta_{1}^{\prime}\right)=\emptyset$. Besides $\operatorname{dom}\left(\theta_{0}^{\prime}\right) \cap\left(F V(f(\bar{t})) \cup F V(f(\bar{p}))=\emptyset\right.$, as if $Y \in F V(f(\bar{t}))$ then $Y \notin \operatorname{dom}\left(\theta_{0}^{\prime}\right)$ by definition; and if $Y \in F V(f(\bar{p}))$ then $Y \notin \operatorname{dom}(\theta)$ as \bar{p} belong to the fresh variant, and so $Y \notin \operatorname{dom}\left(\theta_{0}^{\prime}\right)$. Then the conditions in Lemma 11 hold:

- Condition i) $e^{\prime \prime} \theta^{\prime} \equiv e^{\prime}$: As $e^{\prime \prime} \theta^{\prime} \equiv r \sigma \theta^{\prime} \equiv r \sigma \theta_{1}^{\prime}$ because given $Y \in F V(r \sigma)$, if $\overline{Y \in F V(r)}$ then it belongs to the fresh variant and so $Y \notin \operatorname{dom}(\theta) \supseteq \operatorname{dom}\left(\theta_{0}^{\prime}\right)$; and if $Y \in \operatorname{vran}(\sigma) \subseteq F V(f(\bar{t})) \cup F V(f(\bar{p}))$ then $Y \notin \operatorname{dom}\left(\theta_{0}^{\prime}\right)$ because $\operatorname{dom}\left(\theta_{0}^{\prime}\right) \cap(F V(f(\bar{t})) \cup F V(f(\bar{p})))=\emptyset$. But $r \sigma \theta_{1}^{\prime} \equiv r(\theta \uplus \gamma) \equiv r \gamma \equiv e^{\prime}$, because $\sigma \theta_{1}^{\prime}=\theta \uplus \gamma$ and r is part of the fresh variant.
- Condition ii) $\sigma \theta^{\prime}=\theta[\mathcal{W}]$: Given $Y \in \mathcal{W}$, if $Y \in F V(f(\bar{t}))$ then $Y \notin \operatorname{dom}(\gamma)$ and so $Y \theta \equiv Y(\theta \uplus \gamma) \equiv Y \sigma \theta_{1}^{\prime}$, as $\sigma \theta_{1}^{\prime}=\theta \uplus \gamma$. But $Y \sigma \theta_{1}^{\prime} \equiv Y \sigma \theta^{\prime}$ because given $Z \in \operatorname{var}(Y \sigma)$, if $Z \equiv Y$ then as $Y \in F V(f(\bar{t}))$ then $Z \equiv Y \notin \operatorname{dom}\left(\theta_{0}^{\prime}\right)$ by definition of θ_{0}^{\prime}; if $Z \in \operatorname{vran}(\sigma)$ then $Z \notin \operatorname{dom}\left(\theta_{0}^{\prime}\right)$, as we saw before.
On the other hand, $(\mathcal{W} \backslash F V(f(\bar{t}))) \cap(F V(f(\bar{t})) \cup F V(f(\bar{p})))=(\mathcal{W} \backslash F V(f(\bar{t})) \cap$ $F V(f(\bar{t}))) \cup(\mathcal{W} \backslash F V(f(\bar{t})) \cap F V(f(\bar{p})))=\emptyset \cup \emptyset=\emptyset$, because $F V(f(\bar{p}))$ are part of the fresh variant. So, if $Y \in \mathcal{W} \backslash F V(f(\bar{t}))$, then $Y \notin \operatorname{dom}(\sigma) \subseteq$ $F V(f(\bar{t})) \cup F V(f(\bar{p}))$. Now if $Y \in \operatorname{dom}\left(\theta_{0}^{\prime}\right)$ then $Y \theta \equiv Y \theta_{0}^{\prime}$ (by definition of θ_{0}^{\prime}), $Y \theta_{0}^{\prime} \equiv Y \theta^{\prime}$ (as $\left.Y \in \operatorname{dom}\left(\theta_{0}^{\prime}\right)\right), Y \theta^{\prime} \equiv Y \sigma \theta^{\prime}$ (as $\left.Y \notin \operatorname{dom}(\sigma)\right)$. If $Y \in \operatorname{dom}\left(\theta_{1}^{\prime}\right), Y \theta \equiv Y(\theta \uplus \gamma)$ (as $Y \in \mathcal{W} \backslash F V(f(\bar{t}))$ implies it does not appear in the fresh instance), $Y(\theta \uplus \gamma) \equiv Y \sigma \theta_{1}^{\prime}$ (as $\left.\sigma \theta_{1}^{\prime}=\theta \uplus \gamma\right), Y \sigma \theta_{1}^{\prime} \equiv Y \theta_{1}^{\prime}$ (as $Y \notin \operatorname{dom}(\sigma)), Y \theta_{1}^{\prime} \equiv Y \theta^{\prime}\left(\right.$ as $\left.Y \in \operatorname{dom}\left(\theta_{1}^{\prime}\right)\right)$ and $Y \theta^{\prime} \equiv Y \sigma \theta^{\prime}($ as $Y \notin \operatorname{dom}(\sigma))$.

And if $Y \notin\left(\operatorname{dom}\left(\theta_{0}^{\prime}\right) \cup \operatorname{dom}\left(\theta_{1}^{\prime}\right)\right)$ then $Y \notin \operatorname{dom}\left(\theta^{\prime}\right)$, and as $Y \notin \operatorname{dom}(\sigma)$ and $Y \theta \equiv Y(\theta \uplus \gamma)$, then $Y \theta \equiv Y(\theta \uplus \gamma) \equiv Y \sigma \theta_{1}^{\prime} \equiv Y \equiv Y \sigma \theta^{\prime}$.

- Condition iii.1) $\operatorname{dom}\left(\theta^{\prime}\right) \cap \mathcal{B}=\emptyset$. Remember $\theta^{\prime}=\theta_{0}^{\prime} \uplus \theta_{1}^{\prime}$:
$-\operatorname{dom}\left(\theta_{0}^{\prime}\right) \cap \mathcal{B}=\emptyset$: Given $Y \in \operatorname{dom}\left(\theta_{0}^{\prime}\right)$ then $Y \in \operatorname{dom}(\theta)$ by definition of θ_{0}^{\prime}, and so $Y \notin \mathcal{B}$, because $\operatorname{dom}(\theta) \cap \mathcal{B}=\emptyset$ by hypothesis.
$-\operatorname{dom}\left(\theta_{1}^{\prime}\right) \cap \mathcal{B}=\emptyset:$ As σ is an mgu and $\sigma \lesssim \theta \uplus \gamma$, then $\operatorname{dom}(\sigma) \subseteq \operatorname{dom}(\theta \uplus \gamma)$. Given $Z \in \mathcal{B}$ then $Z \notin \operatorname{dom}(\theta)$, as $\operatorname{dom}(\theta) \cap \mathcal{B}=\emptyset$ by hypothesis, and $Z \notin \operatorname{dom}(\gamma) \subseteq F V(f(\bar{p}) \rightarrow r)$ which are fresh, so $Z \notin \operatorname{dom}(\sigma)$. But then, as $\sigma \theta_{1}^{\prime}=\theta \uplus \gamma, Z \equiv Z(\theta \uplus \gamma) \equiv Z \sigma \theta_{1}^{\prime} \equiv Z \theta_{1}^{\prime}$, so $Z \notin \operatorname{dom}\left(\theta_{1}^{\prime}\right)$.
- Condition iii.2) $\operatorname{vran}\left(\theta^{\prime}\right) \cap \mathcal{B}=\emptyset$. Remember $\theta^{\prime}=\theta_{0}^{\prime} \uplus \theta_{1}^{\prime}$:
$-\operatorname{vran}\left(\theta_{0}^{\prime}\right) \cap \mathcal{B}=\emptyset$: Given $Y \in \operatorname{dom}\left(\theta_{0}^{\prime}\right)$ then $Y \theta_{0}^{\prime} \equiv Y \theta$ by definition of θ_{0}^{\prime}. As $\operatorname{vran}(\theta) \cap \mathcal{B}=\emptyset$ by hypothesis then it must happen $\operatorname{var}(Y \theta) \cap \mathcal{B}=\emptyset$, so $\operatorname{var}\left(Y \theta_{0}^{\prime}\right) \cap \mathcal{B}=\emptyset$.
$-\operatorname{vran}\left(\theta_{1}^{\prime}\right) \cap \mathcal{B}=\emptyset:$ As $\sigma \theta_{1}^{\prime}=\theta \uplus \gamma$ then we can assume $\operatorname{dom}\left(\theta_{1}^{\prime}\right) \subseteq \operatorname{vran}(\sigma) \cup$ $(\operatorname{dom}(\theta \uplus \gamma) \backslash \operatorname{dom}(\sigma))$.
- Let $X \in \operatorname{dom}\left(\theta_{1}^{\prime}\right) \cap \operatorname{vran}(\sigma)$ be such that $X \theta_{1}^{\prime} \equiv r[Z]$ with $Z \in \mathcal{B}$. We will see that this $Z \in \mathcal{B}$ can appear in $X \theta_{1}^{\prime}$ without leading to contradiction. The intuition is, as $\operatorname{vran}(\theta) \cap \mathcal{B}=\emptyset$ and $\operatorname{vran}\left(\left.\gamma\right|_{v E x t r a(R)}\right) \cap \mathcal{B}=$ \emptyset, then every $Z \in \mathcal{B}$ must come from an appearance in e of the same variable, transmitted to e^{\prime} by the matching substitution γ, and so transmitted to $e^{\prime \prime}$ by σ.

As $X \in \operatorname{vran}(\sigma)$ then there must exist $Y \in \operatorname{dom}(\sigma)$ such that $Y \longmapsto \sigma$ $r_{1}[X]_{p} \longmapsto{ }^{\theta_{1}^{\prime}} r_{2}[s[Z]]_{p}$. But as $\sigma \theta_{1}^{\prime}=\theta \uplus \gamma$ then $Y \longmapsto \longmapsto^{\theta \uplus \gamma} r_{2}[s[Z]]_{p}$. Then, $Z \in \operatorname{vran}(\theta \uplus \gamma)$, but $Z \in \mathcal{B}, \operatorname{vran}(\theta) \cap \mathcal{B}=\emptyset, \operatorname{vran}\left(\left.\gamma\right|_{v E x t r a(R)}\right) \cap$ $\mathcal{B}=\emptyset, \operatorname{dom}(\gamma) \subseteq F V(f(\bar{p}) \rightarrow s)$, so it must happen $Z \in \operatorname{vran}\left(\left.\gamma\right|_{F V(\bar{p})}\right)$, and as a consequence $Y \in F V(\bar{p})$. Let $o \in O(f(\bar{p}))$ (set of positions in $f(\bar{p}))$ be such that $\left.f(\bar{p})\right|_{o} \equiv Y$, then:
$\left.\left.\cdot((f(\bar{t})) \sigma)\right|_{o} \equiv((f(\bar{p})) \sigma)\right|_{o} \equiv\left(\left.(f(\bar{p}))\right|_{o}\right) \sigma \equiv Y \sigma \equiv r_{1}[X]_{p}$.

- As $f(\bar{t}) \notin \operatorname{dom}(\gamma)$, which are the fresh variables of the variant of the program rule, $\left.\left.\left.((f(\bar{t})) \theta)\right|_{o} \equiv((f(\bar{t}))(\theta \uplus \gamma))\right|_{o} \equiv((f(\bar{p}))(\theta \uplus \gamma))\right|_{o} \equiv$ $\left(\left.(f(\bar{p}))\right|_{o}\right)(\theta \uplus \gamma) \equiv Y(\theta \uplus \gamma) \equiv r_{2}[s[Z]]_{p}$
So, as $X \in \operatorname{dom}\left(\theta_{1}^{\prime}\right)$ then $X \notin \mathcal{B}$ and $Z \in \mathcal{B}$ has been introduced by θ, but this is impossible as $\operatorname{vran}(\theta) \cap \mathcal{B}=\emptyset$.
- Let $Y \in \operatorname{dom}(\theta) \backslash \operatorname{dom}(\sigma)$ be. Then $Y \theta \equiv Y(\theta \uplus \gamma)($ as $Y \in \operatorname{dom}(\theta)$, $Y(\theta \uplus \gamma) \equiv Y \sigma \theta_{1}^{\prime}$ (as $\left.\sigma \theta_{1}^{\prime}=\theta \uplus \gamma\right), Y \sigma \theta_{1}^{\prime} \equiv Y \theta_{1}^{\prime}$ (as $Y \notin \operatorname{dom}(\sigma)$. But then no variable in \mathcal{B} can appear in $Y \theta_{1}^{\prime} \equiv Y \theta$ as $(\operatorname{dom}(\theta) \cup \operatorname{vran}(\theta)) \cap$ $\mathcal{B}=\emptyset$.
- Let $Y \in \operatorname{dom}(\gamma) \backslash \operatorname{dom}(\sigma)$ be. Then $Y \gamma \equiv Y(\theta \uplus \gamma) \equiv Y \sigma \theta_{1}^{\prime} \equiv Y \theta_{1}^{\prime}$, reasoning like in the previous case. As $\operatorname{dom}(\gamma) \subseteq F V(f(\bar{p}) \rightarrow s)$ it can happen:
- $Y \notin F V(f(\bar{p}))$: Then no variable in \mathcal{B} can appear in $Y \gamma$ because $\operatorname{vran}\left(\left.\gamma\right|_{v \operatorname{Extra}(R)}\right) \cap \mathcal{B}=\emptyset$ by the hypothesis.
- $Y \in F V(f(\bar{p}))$: Let $Z \in \mathcal{B}$ appearing in $Y \gamma$, then Z appears in $f(\bar{t})$, so it must happen $Y \in \operatorname{dom}(\sigma)$ because otherwise σ could not be a unifier of $f(\bar{t})$ and $f(\bar{p})$. But this is a contradiction so this case is impossible.
(LetIn) In this case $e \theta \equiv h\left(e_{1} \theta, \ldots, e \theta, \ldots, e_{n} \theta\right)$ and $e \equiv h\left(e_{1}, \ldots, e, \ldots, e_{n}\right)$. Then the let-rewriting step is

$$
e \theta \equiv h\left(e_{1} \theta, \ldots, e \theta, \ldots, e_{n} \theta\right) \rightarrow^{l} \text { let } X=e \theta \text { in } h\left(e_{1} \theta, \ldots, X, \ldots, e_{n} \theta\right) \equiv e^{\prime}
$$

with $h \in \Sigma, e \theta \equiv f\left(\overline{e^{\prime}}\right)-f \in F S-$ or $e \theta \equiv$ let $Y=e_{1}^{\prime}$ in e_{2}^{\prime}, and X is a fresh variable. Notice that $e \theta$ is a let-rooted expression or a $f\left(\overline{e^{\prime}}\right)$ iff e is a letrooted expression or a function application, as $\theta \in C$ Term. Then we can apply a let-narrowing step:

$$
e \equiv h\left(e_{1}, \ldots, e, \ldots, e_{n}\right) \rightsquigarrow_{\sigma}^{l} \text { let } X=e \text { in } h\left(e_{1}, \ldots, X, \ldots, e_{n}\right) \equiv e^{\prime \prime}
$$

with $\sigma \equiv \epsilon$ and $\theta^{\prime} \equiv \theta$. Then the conditions in Lemma 11 hold:
i) $e^{\prime \prime} \theta^{\prime} \equiv\left(\right.$ let $\left.X=e \operatorname{in} h\left(e_{1}, \ldots, X, \ldots, e_{n}\right)\right) \theta \equiv$
let $X=e \theta$ in $h\left(e_{1} \theta, \ldots, X \theta, \ldots, e_{n} \theta\right) \equiv$
let $X=e \theta$ in $h\left(e_{1} \theta, \ldots, X, \ldots, e_{n} \theta\right) \equiv e^{\prime}$, since X is fresh an it cannot appear in $\operatorname{dom}\left(\theta^{\prime}\right)$.
ii) $\sigma \theta^{\prime} \equiv \epsilon \theta \equiv \theta=\theta[\mathcal{W}]$.
iii) $\left(\operatorname{dom}\left(\theta^{\prime}\right) \cup \operatorname{vran}\left(\theta^{\prime}\right)\right) \cap \mathcal{B}=(\operatorname{dom}(\theta) \cup \operatorname{vran}(\theta)) \cap \mathcal{B}=\emptyset$ by hypothesis.
(Bind) In this case $e \theta \equiv$ let $X=t \theta$ in $e_{2} \theta$ and $e \equiv$ let $X=t$ in e_{2}. Then the let-rewriting step is let $X=t \theta$ in $e_{2} \theta \rightarrow^{l} e_{2} \theta[X / t \theta]$ with $t \theta \in C T e r m$. As $\theta \in C$ Term, if $t \theta \in C$ Term then $t \in C$ Term, so we can apply a let-narrowing step:

$$
e \equiv l e t X=t \text { in } e_{2} \rightsquigarrow{ }_{\sigma}^{l} e_{2}[X / t] \equiv e^{\prime \prime}
$$

with $\sigma \equiv \epsilon$ and $\theta^{\prime} \equiv \theta$. Then the conditions in Lemma 11 hold:
i) $e^{\prime \prime} \theta^{\prime} \equiv e_{2}[X / t] \theta$. By the variable convention we can assume that $X \notin \operatorname{dom}(\theta) \cup$ $\operatorname{vran}(\theta)$, so by Lemma $1 e_{2}[X / t] \theta \equiv e_{2} \theta[X / t \theta] \equiv e^{\prime}$.
ii) and iii) As before.
(Elim) We have $e \theta \equiv$ let $X=e_{1} \theta$ in $e_{2} \theta$, so $e \equiv$ let $X=e_{1}$ in e_{2}. Then the let-rewriting step is $e \theta \equiv$ let $X=e_{1} \theta$ in $e_{2} \theta \rightarrow{ }^{l} e_{2} \theta$ with $X \notin F V\left(e_{2} \theta\right)$. By the variable convention $(\operatorname{dom}(\theta) \cup \operatorname{vran}(\theta)) \cap B V(e)=\emptyset$, so as $X \in B V(e)$ then $X \notin \operatorname{dom}(\theta) \cup \operatorname{vran}(\theta)$. Then $X \notin F V\left(e_{2} \theta\right)$ implies $X \notin F V\left(e_{2}\right)$ and we can apply a let-narrowing step:

$$
e \equiv \text { let } X=e_{1} \text { in } e_{2} \rightsquigarrow{ }_{\sigma}^{l} e_{2} \equiv e^{\prime \prime}
$$

with $\sigma \equiv \epsilon$ and $\theta^{\prime} \equiv \theta$. Then the conditions in Lemma 11 hold trivially.
(Flat) In this case $e \theta \equiv$ let $X=\left(\right.$ let $Y=e_{1} \theta$ in $\left.e_{2} \theta\right)$ in $e_{3} \theta$ and $e \equiv$ let $X=$ (let $Y=e_{1}$ in e_{2}) in e_{3}. The let-rewriting step is $e \theta \equiv$ let $X=($ let $Y=$ $e_{1} \theta$ in $\left.e_{2} \theta\right)$ in $e_{3} \theta \rightarrow^{l}$ let $Y=e_{1} \theta$ in let $X=e_{2} \theta$ in $e_{3} \theta \equiv e^{\prime}$ with $Y \notin F V\left(e_{3} \theta\right)$. By a similar reasoning as in the (Elim) case we conclude that $Y \notin \operatorname{dom}(\theta) \cup$
$\operatorname{vran}(\theta)$, so $Y \notin F V\left(e_{3}\right)$. Then we can apply a let-narrowing step:

$$
e \equiv \text { let } X=\left(\text { let } Y=e_{1} \text { in } e_{2}\right) \text { in } e_{3} \rightsquigarrow{ }_{\sigma}^{l} \text { let } Y=e_{1} \text { in let } X=e_{2} \text { in } e_{3} \equiv e^{\prime \prime}
$$

with $\sigma \equiv \epsilon$ and $\theta^{\prime} \equiv \theta$. Then the conditions in Lemma 11 hold trivially.
(Contx) Then we have $e \equiv \mathcal{C}[s]$. By the variable convention $(\operatorname{dom}(\theta) \cup \operatorname{vran}(\theta)) \cap$ $B V(e)=\emptyset$, so by lemma $25 e \theta \equiv(\mathcal{C}[s]) \theta \equiv \mathcal{C} \theta[s \theta]$, and the step was

$$
e \theta \equiv \mathcal{C} \theta[s \theta] \rightarrow^{l} \mathcal{C} \theta\left[s^{\prime}\right] \equiv e^{\prime}, \text { because } s \theta \rightarrow^{l} s^{\prime}
$$

Then we know that the lemma holds for $s \theta \rightarrow^{l} s^{\prime}$, by the proof of the other cases, so taking $\mathcal{W}^{\prime}=\mathcal{W} \cup F V(s)$ and $\mathcal{B}^{\prime}=\mathcal{B}$ (as $\left.B V(s) \subseteq B V(\mathcal{C}[s])\right)$ we can do $s \rightsquigarrow^{l}{ }_{\sigma} s^{\prime \prime}$ for some θ_{2}^{\prime} under the conditions stipulated. Now we can put this step into (Contx) to do:

$$
e \equiv \mathcal{C}[s] \rightsquigarrow^{l}{ }_{\sigma_{2}} \mathcal{C} \sigma_{2}\left[s^{\prime \prime}\right] \equiv e^{\prime \prime} \text { taking } \sigma=\sigma_{2} \text { and } \theta^{\prime}=\theta_{2}^{\prime}
$$

because if $s \rightsquigarrow{ }^{l}{ }_{\sigma_{2}} s^{\prime \prime}$ was a (Narr) step which lifts a (Fapp) step that uses the fresh variant $(f(\bar{p}) \rightarrow r) \in \mathcal{P}$ and adjusts with $\gamma \in$ CSubst, then:

- $\operatorname{dom}\left(\sigma_{2}\right) \cap B V(\mathcal{C})=\emptyset:$ As $\sigma_{2}=m g u(s, f(\bar{p}))$ then $\operatorname{dom}\left(\sigma_{2}\right) \subseteq F V(s) \cup$ $F V(f(\bar{p}))$. As $\sigma_{2} \lesssim \theta \uplus \gamma$ and it is an mgu then $\operatorname{dom}\left(\sigma_{2}\right) \subseteq \operatorname{dom}(\theta \uplus \gamma)$. If $X \in F V(s) \cap \operatorname{dom}\left(\sigma_{2}\right)$ then $X \notin \operatorname{dom}(\gamma) \subseteq F V(f(\bar{p}) \rightarrow r)$, so it must happen $X \in \operatorname{dom}(\theta)$; but then $X \notin B V(\mathcal{C})$ because $\operatorname{dom}(\theta) \cap B V(\mathcal{C})=\emptyset$ by the variable convention.
Otherwise it could happen $X \in F V(f(\bar{p})) \cap \operatorname{dom}\left(\sigma_{2}\right)$, then X appears in the fresh variant and so it cannot appear in \mathcal{C}.
- $\operatorname{vran}\left(\left.\sigma_{2}\right|_{(\operatorname{var}(\bar{p})}\right) \cap B V(\mathcal{C})=\emptyset:$ As $\operatorname{dom}\left(\sigma_{2}\right) \subseteq F V(s) \cup F V(f(\bar{p}))$ then we have $\operatorname{vran}\left(\left.\sigma_{2}\right|_{\operatorname{var}(\bar{p})}\right)=\operatorname{vran}\left(\left.\sigma_{2}\right|_{F V(s)}\right)$. But as $\sigma_{2}=m g u(s, f(\bar{p}))$ then $\operatorname{vran}\left(\left.\sigma\right|_{F V(s)}\right) \subseteq F V(f(\bar{p}))$, which are part of the fresh variant, so every variable in $\operatorname{vran}\left(\left.\sigma_{2}\right|_{\operatorname{var}(\bar{p})}\right)$ is fresh and so cannot appear in \mathcal{C}.
Then the conditions in Lemma 11 hold:
ii) $\sigma \theta^{\prime}=\theta[\mathcal{W}]$: Because $\mathcal{W} \subseteq \mathcal{W}^{\prime}$, and $\sigma_{2} \theta_{2}^{\prime}=\theta\left[\mathcal{W}^{\prime}\right]$, by the proof of the other cases.
i) $e^{\prime \prime} \theta^{\prime} \equiv e^{\prime}$: As $B V\left(\mathcal{C} \sigma_{2}\right)=B V(\mathcal{C})$, by the variable convention, $B V(\mathcal{C}) \subseteq$ $B V(e) \subseteq B V(\mathcal{B})$, by the hypothesis, and $\left(\operatorname{dom}\left(\theta_{2}^{\prime}\right) \cup \operatorname{vran}\left(\theta_{2}^{\prime}\right)\right) \cap \mathcal{B}=\emptyset$, by the proof of the other cases, then $\left(\operatorname{dom}\left(\theta_{2}^{\prime}\right) \cup \operatorname{vran}\left(\theta_{2}^{\prime}\right)\right) \cap B V\left(\mathcal{C} \sigma_{2}\right)=\emptyset$. But then:

$$
e^{\prime \prime} \theta^{\prime} \equiv\left(\mathcal{C} \sigma_{2}\left[s^{\prime \prime}\right]\right) \theta_{2}^{\prime} \equiv \underbrace{\mathcal{C} \sigma_{2} \theta_{2}^{\prime}}_{\mathcal{C} \theta} \underbrace{s^{\prime \prime} \theta_{2}^{\prime}}_{s^{\prime}}] \equiv e^{\prime}
$$

Because we have $s^{\prime \prime} \theta_{2}^{\prime} \equiv s^{\prime}$, by the proof of the other cases, and because $F V(\mathcal{C}) \subseteq F V(e) \subseteq \mathcal{W}$ and $\sigma_{2} \theta_{2}^{\prime}=\theta[\mathcal{W}]$, as we saw in the previous case (remember $\sigma=\sigma_{2}$ and $\theta^{\prime}=\theta_{2}^{\prime}$).
iii) $\left(\operatorname{dom}\left(\theta^{\prime}\right) \cup \operatorname{vran}\left(\theta^{\prime}\right)\right) \cap \mathcal{B}=\emptyset$: Because $\theta^{\prime}=\theta_{2}^{\prime}$ and the proof of the other cases.

The proof for any number of steps proceeds by induction over the number n of steps of the derivation $e \theta \rightarrow^{l n} e^{\prime}$. The base case where $n=0$ is straightforward, as
then we have $e \theta \rightarrow{ }^{l}$ e $e \theta \equiv e^{\prime}$ so we can do $e \rightsquigarrow l_{\epsilon}^{0} e \equiv e^{\prime \prime}$, so $\sigma=\epsilon$ and taking $\theta^{\prime}=\theta$ the lemma holds. In the inductive step we have $e \theta \rightarrow^{l} e_{1} \rightarrow^{l^{*}} e^{\prime}$, and we will try to build the following diagram:

By the previous proof for one step we have $e \rightsquigarrow{ }^{l}{ }_{\sigma_{1}} e_{1}^{\prime \prime}$ and $\theta_{1}^{\prime} \in C$ Subst under the conditions stipulated. In order to this with the IH we define the sets $\mathcal{B}_{1}=\mathcal{B} \cup B V\left(e_{1}\right)$ and $\mathcal{W}_{1}=\left(\mathcal{W} \backslash \operatorname{dom}\left(\sigma_{1}\right)\right) \cup \operatorname{vran}\left(\sigma_{1}\right) \cup v E$, where $v E$ is the set of extra variables in the fresh variant $f(\bar{p}) \rightarrow s$ used in $e \rightsquigarrow l{ }_{\sigma_{1}} e_{1}^{\prime \prime}$, if it was a (Narr) step; or empty otherwise. We also define $\theta_{1}=\left.\theta_{1}^{\prime}\right|_{\mathcal{W}_{1}}$. Then:

- $F V\left(e_{1}^{\prime \prime}\right) \cup \operatorname{dom}\left(\theta_{1}\right) \subseteq \mathcal{W}_{1}$: We have $\operatorname{dom}\left(\theta_{1}\right) \subseteq \mathcal{W}_{1}$ by definition of θ_{1}. On the other hand we have $F V\left(e_{1}^{\prime \prime}\right) \subseteq \mathcal{W}_{1}$ because given $X \in F V\left(e_{1}^{\prime \prime}\right)$ we have two possibilities:
a) $X \in F V(e))$: then $X \notin \operatorname{dom}\left(\sigma_{1}\right)$ since otherwise it disappears in the step $e \rightsquigarrow{ }^{l}{ }_{\sigma_{1}} e^{\prime \prime}$. As $\operatorname{dom}(\theta) \cup F V(e) \subseteq \mathcal{W}$ then $X \in \mathcal{W} \backslash \operatorname{dom}\left(\sigma_{1}\right)$, so $X \in \mathcal{W}_{1}$.
b) $X \notin F V(e))$: then there are two possibilities:
i) X has been inserted by σ_{1}, so $X \in \operatorname{vran}\left(\sigma_{1}\right)$ and $X \in \mathcal{W}_{1}$.
ii) X has been inserted as an extra variable in a (Narr) step. Since the narrowing substitution is a mgu then σ_{1} cannot affect X, so $X \in \mathcal{W}_{1}$ because $X \in v E$.
- $e_{1}^{\prime \prime} \theta_{1} \equiv e_{1}$: Because as we have seen, $F V\left(e_{1}^{\prime \prime}\right) \subseteq \mathcal{W}_{1}$, and so $\left.e_{1}^{\prime \prime} \theta_{1} \equiv e_{1}^{\prime \prime} \theta_{1}^{\prime}\right|_{\mathcal{W}_{1}} \equiv$ $e_{1}^{\prime \prime} \theta_{1}^{\prime} \equiv e_{1}$, by the proof for one step.
- $B V\left(e_{1}^{\prime \prime}\right) \subseteq \mathcal{B}_{1}$: As $\theta_{1}^{\prime} \in C S u b s t, e_{1}^{\prime \prime} \theta_{1}^{\prime} \equiv e_{1}$ and no CSubst can introduce any binding then $B V\left(e_{1}\right)=B V\left(e_{1}^{\prime \prime}\right)$. But $\mathcal{B}_{1}=\mathcal{B} \cup B V\left(e_{1}\right)$, so $B V\left(e_{1}^{\prime \prime}\right)=$ $B V\left(e_{1}\right) \subseteq \mathcal{B}_{1}$.
- $\left(\operatorname{dom}\left(\theta_{1}\right) \cup \operatorname{vran}\left(\theta_{1}\right)\right) \cap \mathcal{B}_{1}=\emptyset$: As $\theta_{1}^{\prime} \in C$ Subst, $e_{1}^{\prime \prime} \theta_{1}^{\prime} \equiv e_{1}$ and no CSubst can introduce any binding then $B V\left(e_{1}\right)=B V\left(e_{1}^{\prime \prime}\right)$. Then it can happen:
a) $B V\left(e_{1}^{\prime \prime}\right) \subseteq B V(e)$: Then $\mathcal{B}=\mathcal{B}_{1}$, as $B V\left(e_{1}\right)=B V\left(e_{1}^{\prime \prime}\right) \subseteq B V(e) \subseteq \mathcal{B}$ by hypothesis. Then, as $\left(\operatorname{dom}\left(\theta_{1}^{\prime}\right) \cup \operatorname{vran}\left(\theta_{1}^{\prime}\right)\right) \cap \mathcal{B}=\emptyset$ by the proof for one step, then $\left(\operatorname{dom}\left(\theta_{1}^{\prime}\right) \cup \operatorname{vran}\left(\theta_{1}^{\prime}\right)\right) \cap \mathcal{B}_{1}=\emptyset$, and so $\left(\operatorname{dom}\left(\theta_{1}\right) \cup \operatorname{vran}\left(\theta_{1}\right)\right) \cap \mathcal{B}_{1}=\emptyset$, because $\theta_{1}=\theta_{1}^{\prime} \mid \mathcal{W}_{1}$ and so its domain and variable range is smaller than the domain of θ_{1}^{\prime}.
b) $B V\left(e_{1}^{\prime \prime}\right) \supset B V(e)$: Then $e \rightsquigarrow l{ }_{\sigma_{1}} e_{1}^{\prime \prime}$ must have been a (LetIn) step and so $\sigma=\epsilon$ and $\theta_{1}^{\prime}=\theta$. As the new bounded variable Z is fresh wrt. θ then it is also fresh for $\theta_{1}^{\prime}=\theta$, and so $\mathcal{B}_{1}=\mathcal{B} \cup\{Z\}$ has no intersection with $\operatorname{dom}\left(\theta_{1}^{\prime}\right) \cup \operatorname{vran}\left(\theta_{1}^{\prime}\right)$ nor with $\operatorname{dom}\left(\theta_{1}\right) \cup \operatorname{vran}\left(\theta_{1}\right)$, which is smaller.
- $\sigma_{1} \theta_{1}=\theta[\mathcal{W}]:$ It is enough to see that $\sigma_{1} \theta_{1}=\sigma_{1} \theta_{1}^{\prime}[\mathcal{W}]$, because we have $\sigma_{1} \theta_{1}^{\prime}=\theta[\mathcal{W}]$ by the proof for one step, and this is true because given $X \in \mathcal{W}$:
a) If $X \in \operatorname{dom}\left(\sigma_{1}\right)$ then $F V\left(X \sigma_{1}\right) \subseteq \operatorname{vran}\left(\sigma_{1}\right) \subseteq \mathcal{W}_{1}$, so as $\theta_{1}=\theta_{1}^{\prime} \mid \mathcal{W}_{1}$ then $\left.X \sigma_{1} \theta_{1} \equiv X \sigma_{1} \theta_{1}^{\prime}\right|_{\mathcal{W}_{1}} \equiv X \sigma_{1} \theta_{1}^{\prime}$.
b) If $X \in \mathcal{W} \backslash \operatorname{dom}\left(\sigma_{1}\right)$ then $X \in \mathcal{W}_{1}$ by definition, and so $X \sigma_{1} \theta_{1} \equiv X \theta_{1}$ (as $\left.X \notin \operatorname{dom}\left(\sigma_{1}\right)\right),\left.X \theta_{1} \equiv X \theta_{1}^{\prime}\right|_{\mathcal{W}_{1}} \equiv X \theta_{1}^{\prime}\left(\right.$ as $\left.X \in \mathcal{W}_{1}\right)$, and $X \theta_{1}^{\prime} \equiv X \sigma \theta_{1}^{\prime}$ (as $\left.X \notin \operatorname{dom}\left(\sigma_{1}\right)\right)$.

So we have $e_{1}^{\prime \prime} \theta_{1} \equiv e_{1}$ and $e_{1} \rightarrow^{l^{*}} e^{\prime}$, but then we can apply the induction hypothesis to $e_{1}^{\prime \prime} \theta_{1} \rightarrow l^{l^{*}} e^{\prime}$ using \mathcal{W}_{1} and \mathcal{B}_{1}, which fulfill the hypothesis of the lemma, as we have seen. Then we get $e_{1}^{\prime \prime} \rightsquigarrow l_{\sigma_{2}}^{*} e_{2}^{\prime \prime}$ and $\theta_{2}^{\prime} \in C S u b s t$ under the conditions stipulated. But then we have:

$$
e \rightsquigarrow{ }_{\sigma_{1}}^{l} e_{1}^{\prime \prime} \rightsquigarrow{ }_{\sigma_{2}}^{l^{*}} e_{2}^{\prime \prime} \text { taking } e^{\prime \prime} \equiv e_{2}^{\prime \prime}, \sigma=\sigma_{1} \sigma_{2} \text { and } \theta^{\prime}=\theta_{2}^{\prime}
$$

for which we can prove the conditions in Lemma 11:
i) $e^{\prime \prime} \theta^{\prime} \equiv e^{\prime}:$ As $e^{\prime \prime} \theta^{\prime} \equiv e_{2}^{\prime \prime} \theta_{2}^{\prime} \equiv e^{\prime}$ by IH.
ii) $\sigma \theta^{\prime}=\theta[\mathcal{W}]$: That is, $\sigma_{1} \sigma_{2} \theta_{2}^{\prime}=\theta[\mathcal{W}]$. As we have $\sigma_{1} \theta_{1}=\theta[\mathcal{W}]$, as we saw before, all that is left is proving $\sigma_{1} \sigma_{2} \theta_{2}^{\prime}=\sigma_{1} \theta_{1}[\mathcal{W}]$, which happens because given $X \in \mathcal{W}$:
a) If $X \in \operatorname{dom}\left(\sigma_{1}\right)$ then $F V\left(X \sigma_{1}\right) \subseteq \operatorname{vran}\left(\sigma_{1}\right) \subseteq \mathcal{W}_{1}$, so as $\sigma_{2} \theta_{2}^{\prime}=\theta_{1}\left[\mathcal{W}_{1}\right]$ by IH , then $\left(X \sigma_{1}\right) \sigma_{2} \theta_{2}^{\prime} \equiv\left(X \sigma_{1}\right) \theta_{1}$.
b) If $X \in \mathcal{W} \backslash \operatorname{dom}\left(\sigma_{1}\right)$ then $X \in \mathcal{W}_{1}$ by definition, and so, as $\sigma_{2} \theta_{2}^{\prime}=\theta_{1}\left[\mathcal{W}_{1}\right]$ by IH, then $X \sigma_{1} \sigma_{2} \theta_{2}^{\prime} \equiv X \sigma_{2} \theta_{2}^{\prime}$ (as $X \notin \operatorname{dom}\left(\sigma_{1}\right)$), $X \sigma_{2} \theta_{2}^{\prime} \equiv X \theta_{1}$ (as $\left.X \in \mathcal{W}_{1}\right), X \theta_{1} \equiv X \sigma_{1} \theta_{1}\left(\right.$ as $\left.X \notin \operatorname{dom}\left(\sigma_{1}\right)\right)$.
iii) $\left(\operatorname{dom}\left(\theta^{\prime}\right) \cup \operatorname{vran}\left(\theta^{\prime}\right)\right) \cap \mathcal{B}=\emptyset$: That is $\left(\operatorname{dom}\left(\theta_{2}^{\prime}\right) \cup \operatorname{vran}\left(\theta_{2}^{\prime}\right)\right) \cap \mathcal{B}=\emptyset$, which happens as $\left(\operatorname{dom}\left(\theta_{2}^{\prime}\right) \cup \operatorname{vran}\left(\theta_{2}^{\prime}\right)\right) \cap \mathcal{B}_{1}=\emptyset$ by IH and $\mathcal{B} \subseteq \mathcal{B}_{1}$.

A. 10 Proofs for Section 7

The let-binding elimination transformation $\widehat{-}$ satisfies the following interesting properties, which illustrate that its definition is sound.

Lemma 33

For all $e, e^{\prime} \in L \operatorname{Exp}, \mathcal{C} \in C n t x t, X \in \mathcal{V}$ we have:
i) $|\widehat{e}| \equiv|e|$.
ii) If $e \in \operatorname{Exp}$ then $\widehat{e} \equiv e$.
iii) $F V(\widehat{e}) \subseteq F V(e)$
iv) $\widehat{e\left[X / e^{\prime}\right]}=\widehat{e}\left[X / e^{\prime}\right]$.

Proof
i-iii) Easily by induction on the structure of e.
iv) A trivial induction on the structure of e, using Lemma 1 for the case when e has the shape $e \equiv$ let $X=e_{1}$ in e_{2}.

Lemma 12 (Copy lemma)

For all $e, e_{1}, e_{2} \in E x p, X \in \mathcal{V}$:
i) $e_{1} \rightarrow e_{2}$ implies $e\left[X / e_{1}\right] \rightarrow^{*} e\left[X / e_{2}\right]$.
ii) $e_{1} \rightarrow^{*} e_{2}$ implies $e\left[X / e_{1}\right] \rightarrow^{*} e\left[X / e_{2}\right]$.

Proof

To prove i) we proceed by induction on the structure of e. Concerning the base cases:

- If $e \equiv X$ then $e\left[X / e_{1}\right] \equiv e_{1} \rightarrow e_{2} \equiv e\left[X / e_{2}\right]$, by hypothesis.
- If $e \equiv Y \in \mathcal{V} \backslash\{X\}$ then $e\left[X / e_{1}\right] \equiv Y \rightarrow^{0} Y \equiv e\left[X / e_{2}\right]$.
- Otherwise $e \equiv h$ for some $h \in \Sigma$, so $e\left[X / e_{1}\right] \equiv h \rightarrow^{0} h \equiv e\left[X / e_{2}\right]$

Regarding the inductive step, then $e \equiv h\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)$ and so

$$
\begin{array}{lr}
e\left[X / e_{1}\right] \equiv h\left(e_{1}^{\prime}\left[X / e_{1}\right], \ldots, e_{n}^{\prime}\left[X / e_{1}\right]\right) & \\
\rightarrow^{*} h\left(e_{1}^{\prime}\left[X / e_{2}\right], \ldots, e_{n}^{\prime}\left[X / e_{2}\right]\right) & \text { by IH, } n \text { times } \\
\equiv e\left[X / e_{2}\right] &
\end{array}
$$

The proof for $i i$) follows the same structure.
Lemma 13 (One-Step Soundness of let-rewriting wrt. term rewriting)
For all $e, e^{\prime} \in L E x p$ we have that $e \rightarrow^{l} e^{\prime}$ implies $\widehat{e} \rightarrow^{*} \widehat{e}^{\prime}$.
Proof
We proceed by a case distinction over the rule of let-rewriting used in the step $e \rightarrow^{l} e^{\prime}$.
(Fapp) Then we have:

$$
e \equiv f(\bar{p}) \theta \rightarrow^{l} r \theta \equiv e^{\prime} \text { for some }(f(\bar{p}) \rightarrow r) \in \mathcal{P}, \theta \in \text { CSubst }
$$

But then $f(\bar{p}) \theta, r \theta \in E x p$, therefore $\widehat{f(\bar{p}) \theta} \equiv f(\bar{p}) \theta$ and $\widehat{r \theta} \equiv r \theta$, by Lemma 33 ii), and so we can link $\widehat{e} \equiv \widehat{f(\bar{p}) \theta} \equiv f(\bar{p}) \theta \rightarrow r \theta \equiv \widehat{r \theta} \equiv \widehat{e^{\prime}}$, by a term rewriting step.
(LetIn) Then we have:

$$
e \equiv h\left(e_{1}, \ldots, e_{k}, \ldots, e_{n}\right) \rightarrow^{l} \text { let } X=e_{k} \text { in } h\left(e_{1}, \ldots, X, \ldots, e_{n}\right) \equiv e^{\prime}
$$

where X is a fresh variable (among other conditions). But then

$$
\begin{aligned}
& \widehat{e^{\prime}} \equiv h\left(e_{1}, \ldots, \widehat{, X}, \ldots, e_{n}\right)\left[X / \widehat{e_{k}}\right] \equiv h\left(\widehat{e_{1}}, \ldots, X, \ldots, \widehat{e_{n}}\right)\left[X / \widehat{e_{k}}\right] \\
& \equiv h\left(\widehat{e_{1}}, \ldots, \widehat{e_{k}}, \ldots, \widehat{e_{n}}\right) \\
& \equiv h\left(e_{1}, \ldots, e_{k}, \ldots, e_{n}\right) \equiv \widehat{e}
\end{aligned}
$$

Therefore $\widehat{e} \rightarrow{ }^{0} \widehat{e} \equiv \widehat{e^{\prime}}$.
(Bind) Then we have:

$$
e \equiv \text { let } X=t \text { in } e_{1} \rightarrow^{l} e_{1}[X / t] \equiv e^{\prime} \text { with } t \in C T e r m
$$

But then $\widehat{e} \equiv \widehat{e_{1}}[X / \widehat{t}] \equiv \widehat{e_{1}[X / t]} \equiv \widehat{e^{\prime}}$, by Lemma $\left.33 i v\right)$, hence $\widehat{e} \rightarrow^{0} \widehat{e} \equiv \widehat{e^{\prime}}$.
(Elim) Then we have:

$$
e \equiv \text { let } X=e_{1} \text { in } e_{2} \rightarrow^{l} e_{2} \equiv e^{\prime} \text { with } X \notin F V\left(e_{2}\right)
$$

But then

$$
\begin{array}{ll}
\widehat{e} \equiv \widehat{e_{2}}\left[X / \widehat{e_{1}}\right] & \\
\equiv e_{2}\left[X / e_{1}\right] & \text { by Lemma 33iv) } \\
\equiv \widehat{e_{2}} \equiv \widehat{e^{\prime}} & \text { as } X \notin F V\left(e_{2}\right)
\end{array}
$$

Therefore $\widehat{e} \rightarrow^{0} \widehat{e} \equiv \widehat{e^{\prime}}$.
(Flat) Then we have:

$$
e \equiv \text { let } X=\left(\text { let } Y=e_{1} \text { in } e_{2}\right) \text { in } e_{3} \rightarrow^{l} \text { let } Y=e_{1} \text { in }\left(\text { let } X=e_{2} \text { in } e_{3}\right) \equiv e^{\prime}
$$

where $Y \notin F V\left(e_{3}\right)$. But then

$$
\begin{array}{ll}
\widehat{e} \equiv \widehat{e_{3}}\left[X / \text { let } Y \widehat{e_{1}} \text { in } e_{2}\right] \equiv \widehat{e_{3}}\left[X /\left(\widehat{e_{2}}\left[Y / \widehat{e_{1}}\right]\right)\right] & \\
\equiv \widehat{e_{3}}\left[X / \widehat{e_{2}}\right]\left[Y / \widehat{e_{1}}\right] & \left.Y \neq F V\left(\widehat{e_{3}}\right) \text { by Lemma } 33 \text { iii }\right) \\
\equiv\left(\text { let } X=e_{2} \text { in } e_{3}\right)\left[Y / \widehat{e_{1}}\right] \equiv \widehat{e^{\prime}} &
\end{array}
$$

Therefore $\widehat{e} \rightarrow^{0} \widehat{e} \equiv \widehat{e^{\prime}}$.
(Contx) Then we have:

$$
e \equiv \mathcal{C}\left[e_{1}\right] \rightarrow^{l} \mathcal{C}\left[e_{2}\right] \equiv e^{\prime}
$$

with $e_{1} \rightarrow^{l} e_{2}$ by some of the previous rules, therefore $\widehat{e_{1}} \rightarrow^{*} \widehat{e_{2}}$ by the proof of the previous cases. We will prove that $\widehat{e_{1}} \rightarrow^{*} \widehat{e_{2}}$ implies $\widehat{\mathcal{C}\left[e_{1}\right]} \rightarrow^{*} \widehat{\mathcal{C}\left[e_{2}\right]}$, thus getting $\widehat{e} \rightarrow^{*} \widehat{e^{\prime}}$ as a trivial consequence.
We proceed by induction on the structure of \mathcal{C}. Regarding the base case then $\mathcal{C} \equiv[]$ and so $\widehat{\mathcal{C}\left[e_{1}\right]} \equiv \widehat{e_{1}} \rightarrow^{*} \widehat{e_{2}} \equiv \widehat{\mathcal{C}\left[e_{2}\right]}$ by hypothesis. For the inductive step:

- If $\mathcal{C} \equiv$ let $X=\mathcal{C}^{\prime}$ in a then by IH we get $\widehat{\mathcal{C}^{\prime}\left[e_{1}\right]} \rightarrow^{*} \widehat{\mathcal{C}^{\prime}\left[e_{2}\right]}$, and so

$$
\begin{aligned}
& \widehat{\mathcal{C}\left[e_{1}\right]} \equiv \widehat{a}\left[X / \widehat{\mathcal{C}^{\prime}\left[e_{1}\right]}\right] \\
& \rightarrow^{*} \widehat{a}\left[X / \widehat{\mathcal{C}^{\prime}\left[e_{2}\right]}\right] \text { by IH and Lemma } 12 \\
& \equiv \widehat{\mathcal{C}\left[e_{2}\right]}
\end{aligned}
$$

Notice that it is precisely because of this case that we cannot say that $e \rightarrow^{l} e^{\prime}$ implies $\widehat{e} \rightarrow^{*} \widehat{e^{\prime}}$ in zero or one steps, because the copies of $\widehat{\mathcal{C}^{\prime}\left[e_{1}\right]}$ made by the substitution $\left[X / \widehat{\mathcal{C}^{\prime}\left[e_{1}\right]}\right]$ may force the zero or one steps derivation from $\widehat{\mathcal{C}^{\prime}\left[e_{1}\right]}$ to be repeated several times in derivation $\widehat{a}\left[X / \widehat{\mathcal{C}^{\prime}\left[e_{1}\right]}\right] \rightarrow^{*} \widehat{a}\left[X / \widehat{\mathcal{C}^{\prime}\left[e_{2}\right]}\right]$. This is typical situation when mimicking term graph rewriting derivations by term rewriting.

- If $\mathcal{C} \equiv$ let $X=a$ in \mathcal{C}^{\prime} then $\widehat{\mathcal{C}\left[e_{1}\right]} \equiv \widehat{\mathcal{C}^{\prime}\left[e_{1}\right]}[X / \widehat{a}] \rightarrow \rightarrow^{*} \widehat{\mathcal{C}^{\prime}\left[e_{2}\right]}[X / \widehat{a}] \equiv \widehat{\mathcal{C}\left[e_{2}\right]}$, by IH combined with closedness under substitutions of term rewriting.
- Otherwise $\mathcal{C} \equiv h\left(a_{1}, \ldots, \mathcal{C}^{\prime}, \ldots, a_{n}\right)$ and then $\widehat{\mathcal{C}\left[e_{1}\right]} \equiv h\left(\widehat{a_{1}}, \ldots, \widehat{\mathcal{C}^{\prime}\left[e_{1}\right]}, \ldots, \widehat{a_{n}}\right)$ $\rightarrow^{*} h\left(\widehat{a_{1}}, \ldots, \widehat{\mathcal{C}^{\prime}\left[e_{2}\right]}, \ldots, \widehat{a_{n}}\right) \equiv \widehat{\mathcal{C}\left[e_{2}\right]}$ by IH.

For all $\sigma \in S u b s t_{\perp}, \theta \in \llbracket \sigma \rrbracket$, we have that $\theta \unlhd \sigma$.

Proof

Given some $X \in \mathcal{V}$, we have two possibilities. If $X \in \operatorname{dom}(\theta)$ then taking any $t \in C$ Term ${ }_{\perp}$ such that $\mathcal{P} \vdash_{C R W L} \theta(X) \rightarrow t$, by Lemma 5 we have $t \sqsubseteq \theta(X)$, because $\theta \in \llbracket \sigma \rrbracket \subseteq C S u b s t_{\perp}$. But $\theta \in \llbracket \sigma \rrbracket$ implies $\mathcal{P} \vdash_{C R W L} \sigma(X) \rightarrow \theta(X)$, therefore $\mathcal{P} \vdash_{C R W L} \sigma(X) \rightarrow t$ by the polarity from Proposition 3, which holds for CRWL too. Hence $\llbracket \theta(X) \rrbracket \subseteq \llbracket \sigma(X) \rrbracket$.

On the other hand, if $X \notin \operatorname{dom}(\theta)$ then for any $t \in C T e r m_{\perp}$ such that $\mathcal{P} \vdash_{C R W L}$ $\theta(X) \equiv X \rightarrow t$ we have that $t \equiv \perp$ or $t \equiv X$. If $t \equiv \perp$ then $\mathcal{P} \vdash_{C R W L} \sigma(X) \rightarrow t$ by rule (B). Otherwise $\theta \in \llbracket \sigma \rrbracket$ implies $\mathcal{P} \vdash_{C R W L} \sigma(X) \rightarrow \theta(X) \equiv X \equiv t$. Hence $\llbracket \theta(X) \rrbracket \subseteq \llbracket \sigma(X) \rrbracket$.

Proposition 11
For all $\sigma \in D S u s b t_{\perp}, \llbracket \sigma \rrbracket$ is a directed set.
Proof
For any preorder \leq, any directed set D wrt. it and any elements $e_{1}, e_{2} \in D$ by $e_{1} \sqcup_{D} e_{2}$ we denote the element $e_{3} \in D$ such that $e_{1} \leq e_{3}$ and $e_{2} \leq e_{3}$ that must exist because D is directed.

Now, given any $\sigma \in D S u b s t_{\perp}$ we have that $\forall X \in \mathcal{V}, \llbracket \sigma(X) \rrbracket$ is a directed set, because if $X \in \operatorname{dom}(\sigma)$ then we can apply the definition of $D S u b s t_{\perp}$ and otherwise $\llbracket X \rrbracket=\{X, \perp\}$, which is directed. Now given $\theta_{1}, \theta_{2} \in \llbracket \sigma \rrbracket$ we can define $\theta_{3} \in$ CSubst $_{\perp}$ as $\theta_{3}(X)=\theta_{1}(X) \sqcup_{\sigma(X)} \theta_{2}(X)$, which fulfills:

1. $\theta_{i} \sqsubseteq \theta_{3}$ for $i \in\{1,2\}$, because for any $X \in \mathcal{V}$ we have that $\llbracket \sigma(X) \rrbracket$ is directed (as we saw above) and $\theta_{i}(X) \in \llbracket \sigma(X) \rrbracket$ (because $\theta_{1}, \theta_{2} \in \llbracket \sigma \rrbracket$), therefore $\theta_{i}(X) \sqsubseteq \theta_{1}(X) \sqcup_{\sigma(X)} \theta_{2}(X)=\theta_{3}(X)$ by definition.
2. $\theta_{3} \in \llbracket \sigma \rrbracket$, because $\forall X \in \mathcal{V}, \theta_{3}(X)=\theta_{1}(X) \sqcup_{\sigma(X)} \theta_{2}(X) \in \llbracket \sigma(X) \rrbracket$ by definition.

We will use the following lemma about non-triviality of substitution denotations as an auxiliary result for proving Lemma 15.

Lemma 34

For all $\sigma \in S u b s t_{\perp}$ we have that $\llbracket \sigma \rrbracket \neq \emptyset$ and given $\bar{X}=\operatorname{dom}(\sigma)$ then $[\overline{X / \perp}] \in \llbracket \sigma \rrbracket$.

Proof

It is enough to prove that if $\bar{X}=\operatorname{dom}(\sigma)$ then $[\overline{X / \perp}] \in \llbracket \sigma \rrbracket$. First of all $[\overline{X / \perp}] \in$ $C S u b s t_{\perp}$ by definition. Now consider some $Y \in \mathcal{V}$.
i) If $Y \in \bar{X}$ then $\sigma(Y) \rightarrow \perp \equiv Y[\overline{X / \perp}]$, by rule (B).
ii) Otherwise $Y \notin \bar{X}=\operatorname{dom}(\sigma)$, hence $\sigma(Y) \equiv Y \rightarrow Y \equiv Y[\overline{X / \perp}]$, by rule (RR).

Lemma 15

For all $\sigma \in D S u s b t_{\perp}, e \in E x p_{\perp}, t \in C T e r m_{\perp}$,

$$
\text { if } e \sigma \rightarrow t \text { then } \exists \theta \in \llbracket \sigma \rrbracket \text { such that } e \theta \rightarrow t
$$

Proof

We proceed by a case distinction over e :

- If $e \equiv X \in \operatorname{dom}(\sigma)$: Then $e \sigma \equiv \sigma(X) \rightarrow t$, so we can define:

$$
\theta(Y)= \begin{cases}t & \text { if } Y \equiv X \\ \perp & \text { if } Y \in \operatorname{dom}(\sigma) \backslash\{X\} \\ Y & \text { otherwise }\end{cases}
$$

Then $\theta \in \llbracket \sigma \rrbracket$ because obviously $\theta \in C S u s b t_{\perp}$, and given $Z \in \mathcal{V}$.
a) If $Z \equiv X$ then $\sigma(Z) \equiv \sigma(X) \rightarrow t \equiv \theta(Z)$ by hypothesis.
b) If $Z \in(\operatorname{dom}(\sigma) \backslash\{X\})$ then $\sigma(Z) \rightarrow \perp \equiv \theta(Z)$ by rule (B).
c) Otherwise $Z \notin \operatorname{dom}(\sigma)$ and then $\sigma(Z) \equiv Z \rightarrow Z \equiv \theta(Z)$ by rule (RR).

But then $e \theta \equiv \theta(X) \equiv t \rightarrow t$ by Lemma 5 -which also holds for CRWL, because CRWL and CRWL $_{l e t}$ coincide for c-terms-, as $t \in C T e r m_{\perp}$.

- If $e \equiv X \notin \operatorname{dom}(\sigma)$: Then given $\bar{Y}=\operatorname{dom}(\sigma)$ we have $[\overline{Y / \perp}] \in \llbracket \sigma \rrbracket$ by Lemma 34 , so we can take $\theta=\{[\overline{Y / \perp}]\}$ for which $\llbracket e \sigma \rrbracket=\llbracket X \sigma \rrbracket=\llbracket X \rrbracket=\llbracket X[\overline{Y / \perp}\rfloor \rrbracket=$ $\llbracket X \theta \rrbracket$.
- If $e \notin \mathcal{V}$ then we proceed by induction over the structure of $e \sigma \rightarrow t$:

Base cases

(B) Then $t \equiv \perp$, so given $\bar{Y}=\operatorname{dom}(\sigma)$ we can take $\theta=\{[\overline{Y / \perp}]\}$ for which $e \theta \rightarrow \perp$ by rule (B).
(RR) Then $e \in \mathcal{V}$ and we are in the previous case.
(DC) Similar to the case for $e \equiv X \notin \operatorname{dom}(\sigma)$.

Inductive steps

(DC) Then $e \equiv c\left(e_{1}, \ldots, e_{n}\right)$, as $e \notin \mathcal{V}$, and we have:

$$
\frac{e_{1} \sigma \rightarrow t_{1} \ldots e_{n} \sigma \rightarrow t_{n}}{e \sigma \equiv c\left(e_{1} \sigma, \ldots, e_{n} \sigma\right) \rightarrow c\left(t_{1}, \ldots, t_{n}\right) \equiv t} D C
$$

Then by IH or the proof of the other cases we have that $\forall i \in\{1, \ldots, n\}$. $\exists \theta_{i} \in \llbracket \sigma \rrbracket$ such that $e_{i} \theta_{i} \rightarrow t_{i}$. But as $\sigma \in D S u s b t_{\perp}$ then $\llbracket \sigma \rrbracket$ is directed by Lemma 11 , therefore there must exist some $\theta \in \llbracket \sigma \rrbracket$ such that $\forall i \in$ $\{1, \ldots, n\} . \theta_{i} \sqsubseteq \theta$, and so by Proposition 5 -which also holds for CRWL, by Theorem 4 - we have $\forall i \in\{1, \ldots, n\} . e_{i} \theta \rightarrow t_{i}$, so we can build the following proof:

$$
\frac{e_{1} \theta \rightarrow t_{1} \ldots e_{n} \theta \rightarrow t_{n}}{e \theta \equiv c\left(e_{1} \theta, \ldots, e_{n} \theta\right) \rightarrow c\left(t_{1}, \ldots, t_{n}\right) \equiv t} D C
$$

(OR) Very similar to the proof of the previous case. We also have $e \equiv$ $f\left(e_{1}, \ldots, e_{n}\right)($ as $e \notin \mathcal{V})$ and given a proof for $e \sigma \equiv f\left(e_{1}, \ldots, e_{n}\right) \sigma \rightarrow t$, so we can apply the IH or the proof of the other cases to every $e_{i} \sigma \rightarrow p_{i} \mu$ to get some $\theta_{i} \in \llbracket \sigma \rrbracket$ such that $e_{i} \theta_{i} \rightarrow p_{i} \mu$. Then we can use Lemma 11 and Proposition 5 to use the obtained θ to compute the same values for the arguments of f, thus using the same substitution $\mu \in$ CSubst $_{\perp}$ for parameter passing in (OR).

Theorem 19
Let \mathcal{P} be a CRWL-deterministic program, and $e, e^{\prime} \in E x p, t \in C T e r m$. Then:
a) $e \rightarrow^{*} e^{\prime}$ implies $e \rightarrow^{l^{*}} e^{\prime \prime}$ for some $e^{\prime \prime} \in L E x p$ with $\left|e^{\prime \prime}\right| \sqsupseteq\left|e^{\prime}\right|$.
b) $e \rightarrow^{*} t$ iff $e \rightarrow^{l^{*}} t$ iff $\mathcal{P} \vdash_{C R W L} e \rightarrow t$.

Proof
a) Assume $e \rightarrow^{*} e^{\prime}$. By Lemma 16, $\llbracket e^{\rrbracket} \rrbracket \subseteq \llbracket e \rrbracket$ and by Lemma 5 we have $\left|e^{\prime}\right| \in \llbracket e^{\prime} \rrbracket$, then $\left|e^{\prime}\right| \in \llbracket e \rrbracket$. Therefore, by Theorem 12 there exists $e^{\prime \prime} \in L E x p$ such that $e \rightarrow l^{l^{*}} e^{\prime \prime}$ with $\left|e^{\prime \prime}\right| \sqsupseteq\left|e^{\prime}\right|$.
b) The parts $e \rightarrow^{l^{*}} t$ iff $\mathcal{P} \vdash_{C R W L} e \rightarrow t$, and $e \rightarrow_{l^{*}} t$ implies $e \rightarrow^{*} t$ have been already proved for arbitrary programs in Theorems 12 and 17 respectively. What remains to be proved is that $e \rightarrow^{*} t$ implies $e \rightarrow^{l^{*}} t$ (or the equivalent $\left.\mathcal{P} \vdash_{C R W L} e \rightarrow t\right)$. Assume $e \rightarrow^{*} t$. Then $\llbracket t \rrbracket \subseteq \llbracket e \rrbracket$ by Lemma 16. Now, by Lemma $5 t \in \llbracket t \rrbracket$, and therefore $t \in \llbracket e \rrbracket$, which exactly means that $\mathcal{P} \vdash_{C R W L}$ $e \rightarrow t$.

[^0]: ${ }^{5}$ Actually, to prove this theorem properly, we cannot restrict the substitution to fulfill these restrictions, so in fact we rename the bound variables in an α-conversion fashion and use the equivalence $e\left[X / e^{\prime}\right] \equiv e[X / Y]\left[Y / e^{\prime}\right]$ (with Y the new bound variable), to use the hypothesis. This will be done implicitly when needed during the remaining of the proof.

