
1

Online appendix for the paper

Rewriting and narrowing for constructor
systems with call-time choice semantics
published in Theory and Practice of Logic Programming

FRANCISCO J. LÓPEZ-FRAGUAS, ENRIQUE MARTIN-MARTIN,

JUAN RODRÍGUEZ-HORTALÁ and JAIME SÁNCHEZ-HERNÁNDEZ

Departamento de Sistemas Informáticos y Computación

Universidad Complutense de Madrid, Spain

(e-mail: fraguas@sip.ucm.es, emartinm@fdi.ucm.es,
juan.rodriguez.hortala@gmail.com, jaime@sip.ucm.es)

submitted 30 November 2010; revised 14 November 2011; accepted 4 July 2012

Appendix A Detailed proofs for the results

In the proofs we will use the usual notation for positions, subexpressions and

repacements from (Baader and Nipkow 1998). The set of positions of an expression

e ∈ Exp is a set O(e) of strings of positive integers defined as:

• If e ≡ X ∈ V, then O(e) = ε, where ε is the empty string.

• If e ≡ h(e1, . . . , en) with h ∈ Σ, then

O(e) = {ε} ∪
n⋃
i=1

{ip | p ∈ O(ei)}

The subexpression of e at position p ∈ O(e), denoted e|p, is defined as:

e|ε = e

h(e1, . . . , en)|ip = ei|p

For a position p ∈ O(e), we define the replacement of the subexpression of e at

position p by e′ —denoted e[e′]p— as follows:

e[e′]ε = e′

h(e1, . . . , en)[e′]ip = h(e1, . . . , ei[e
′]p, . . . , en)

When performing proofs by induction we will usually use IH to refer to the

induction hypothesis of the current induction. We will use an asterisk to denote the

use of a let-rewriting rule one or more times, as in (Flat*). We will also use the

following auxiliary results.

2

A.1 Lemmas

The following lemmas are used in the proofs for the results in the article. Most of

them are straightforwardly proved by induction, so we only detail the proof in the

interesting cases.

Lemma 17

∀t ∈ CTerm⊥. |t| = t.

Lemma 18

∀t ∈ CTerm⊥. P `CRWLlet
t _ t.

Lemma 19

Given θ, θ′ ∈ LSubst⊥, e ∈ LExp⊥, if θ v θ′ then eθ v eθ′.

Lemma 20

Given θ ∈ LSubst⊥, e, e′ ∈ LExp⊥, if e v e′ then eθ v e′θ.

Lemma 21

For every e, e′ ∈ LExp⊥, C ∈ Cntxt, if |e| v |e′| then |C[e]| v |C[e′]|.

Proof

We proceed by induction on the structure of C. The base case is straightforward

because of the hypothesis. For the Inductive Step we have:

• C ≡ h(. . . , C′, . . .). Directly by IH.

• C ≡ let X = C′ in e1, so C[e] ≡ let X = C′[e] in e1. Then:

|C[e]| = |let X = C′[e] in e1| = |e1|[X/|C′[e]|]
vIH (∗) |e1|[X/|C′[e′]|] = |let X = C′[e′] in e1| = |C[e′]|

(∗) By IH we have |C′[e]| v |C′[e′]|, therefore [X/|C′[e]|] v [X/|C′[e′]|]. Finally,

by Lemma 19, |e1|[X/|C′[e]|] v |e1|[X/|C′[e′]|].
• C ≡ let X = e1 in C′. Similar to the previous case but using Lemma 20 to

obtain |C′[e]| [X/|e1|] v |C′[e′]|[X/|e1|] from the IH |C′[e]| v |C′[e′]|.

Lemma 22

If |e| = |e′| then |C[e]| = |C[e′]|

Proof

Since v is a partial order, we know by reflexivity that |e| v |e′| and |e′| v |e|. Then

by Lemma 21 we have |C[e]| v |C[e′]| and |C[e′]| v |C[e]|. Finally, by antisymmetry

of the partial order v we have that |C[e]| = |C[e′]|.

3

Lemma 23

For all e1, e2 ∈ LExp,X ∈ V, |e1[X/e2]| ≡ |e1|[X/|e2|]

Proof

By induction on the structure of e1. The most interesting case is when e1 ≡ let Y =

s1 in s2. By the variable convention Y 6∈ dom([X/e2]) and Y 6∈ vran([X/e2]), so:

|e1[X/e2]| ≡ |let Y = s1[X/e2] in s2[X/e2]|
≡ |s2[X/e2]|[Y/|s1[X/e2]|]
≡IH |s2|[X/|e2|][Y/(|s1|[X/|e2|])]
≡ |s2|[Y/|s1|][X/|e2|] (*)

≡ |let Y = s1 in s2|[X/|e2|] ≡ |e1|[X/|e2|]

(*) Using Lemma 1 with the matching [e/|s2|, θ/[X/|e2|], X/Y, e′/|s1|].

Lemma 24

Given θ ∈ LSubst⊥, e, e′ ∈ LExp⊥, if e v e′ then eθ v e′θ.

Lemma 25

For every σ ∈ LSubst⊥, C ∈ Cntxt and e ∈ LExp⊥ such that (dom(σ)∪vran(σ))∩
BV (C) = ∅ we have that (C[e])σ ≡ Cσ[eσ].

Proof

By induction on the structure of C. The most interesting cases are those concerning

let-expressions:

• C ≡ let X = C′ in e1: therefore C[e] ≡ let X = C′[e] in e1. Then

(C[e])σ ≡ let X = (C′[e])σ in e1σ ≡(∗)
IH let X = C′σ[eσ] in e1σ

≡ (let X = (C′[])σ in e1σ)[eσ] ≡(∗∗) ((let X = C′[] in e1)σ)[eσ] ≡ Cσ[eσ]

(∗): by definition BV (let X = C′ in e) = BV (C′), so (dom(σ) ∪ vran(σ)) ∩
BV (C) = ∅ = (dom(σ) ∪ vran(σ)) ∩BV (C′).
(∗∗): we can apply the last step because by hypothesis we can assure that we

do not need any renaming to apply (let X = C′[] in e1)σ.

• C ≡ let X = e1 in C′: therefore C[e] ≡ let X = e1 in C′[e]. Then

(C[e])σ ≡ let X = e1σ in (C′[e])σ ≡IH let X = e1σ in C′σ[eσ]

≡ (let X = e1σ in (C′[])σ)[eσ] ≡(∗) ((let X = e1 in C′[])σ)[eσ] ≡ Cσ[eσ]

(∗): we can apply the last step because by hypothesis we can assure that we

do not need any renaming to apply (let X = e1 in C′[])σ.

Lemma 26

For any e ∈ Exp⊥, t ∈ CTerm⊥ and program P, if P ` e _ t then there is a

derivation for P ` e _ t in which every free variable used belongs to FV (e _ t).

4

Proof
A simple extension of the proof in (Dios-Castro and López-Fraguas 2007).

Lemma 27
For every CRWLlet derivation e _ t there exists e′ ∈ LExp⊥ which is syntactically

equivalent to e module α-conversion, and a CRWLlet derivation for e′ _ t such

that if B is the set of bound variables used in e′ _ t and E is the set of free variables

used in the instantiation of extra variables in e′ _ t then B ∩ (E ∪ var(t)) = ∅.

Proof
By Lemma 26, if F is the set of free variables used in e′ _ t, then F ⊆ FV (e′ _ t),

in fact F = FV (e′ _ t), as FV (e′) and FV (t) are used in the top derivation of the

derivation tree for e′ _ t. As by definition E ∪ var(t) ⊆ F , if we prove B ∩ F = ∅
then B ∩ (E ∪ var(t)) = ∅ is a trivial consequence. To prove that we will prove that

for every a ∈ LExp⊥ used in the derivation for e′ _ t we have BV (a)∩FV (a) = ∅.
We can build e′ using α-conversion to ensure that BV (e′)∩FV (e′) = ∅. This can be

easily maintained as an invariant during the derivation, as the new let-bindings that

appear during the derivation are those introduced in the instances of the rule used

during the OR steps, and be can ensure by α-conversion that BV (a) ∩ FV (a) = ∅
for these instances too, as α-conversion leaves the hypersemantics untouched.

A.2 Proofs for Section 2.2

Theorem 1 (Compositionality of CRWL)

For any C ∈ Cntxt, e, e′ ∈ Exp⊥

[[C[e]]] =
⋃
t∈[[e]]

[[C[t]]]

As a consequence: [[e]] = [[e′]]⇔ ∀C ∈ Cntxt.[[C[e]]] = [[C[e′]]]

Proof
We prove that C[e] _ t⇔ ∃s ∈ CTerm⊥ such that e _ s and C[s] _ t.

⇒) Induction on the size of the proof for C[e] _ t.

Base case The base case only allows the proofs C[e] _ ⊥ using (B), C[e] ≡ X _
X using (RR) and C[e] ≡ c _ c with c ∈ CS using (DC), that are clear. When

C = [] the proof is trivial with s = t and using Lemma 18.

Inductive step Direct application of the IH.

⇐) By induction on the size of the proof for C[s] _ t

Base case The base case only allows the proofs C[s] _ ⊥, C[s] ≡ X _ X and

C[s] ≡ c _ c with c ∈ CS, that are clear. When C = [] we have that ∃s ∈ CTerm⊥
such that e _ s and s _ t. Since s _ t by Lemma 5 we have t v s, and using

Proposition 3 e _ t —as e v e because v is a partial order.

Inductive step Direct application of the IH.

5

A.3 Proofs for Section 3

Theorem 3

Let P be a CRWL-program, e ∈ Exp⊥ and t ∈ CTerm⊥. Then:

P `CRWL e _ t iff e�∗P t

Proof

It is easy to see that �∗ coincides with the relation defined by the BRC-proof

calculus of (González-Moreno et al. 1999), that is, P `BRC e _ e′ ↔ e �∗ e′.
But in that paper it is proved that BRC-derivability and CRWL-derivability (called

there GORC-derivability) are equivalent.

A.4 Proofs for Section 4

Lemma 1 (Substitution lemma for let-expressions)

Let e, e′ ∈ LExp⊥, θ ∈ Subst⊥ and X ∈ V such that X 6∈ dom(θ)∪ vran(θ). Then:

(e[X/e′])θ ≡ eθ[X/e′θ]

Proof

By induction over the structure of e. The most interesting cases are the base cases:

• e ≡ X: Then (e[X/e′])θ ≡ (X[X/e′])θ ≡ e′θ ≡ X[X/e′θ]

≡X 6∈dom(θ) Xθ[X/e
′θ] ≡ eθ[X/e′θ]

• e ≡ Y 6≡ X: Then (e[X/e′t])θ ≡ (Y [X/e′])θ ≡ Y θ
≡X 6∈ran(θ) Y θ[X/e

′θ] ≡ eθ[X/e′θ]

A.5 Proofs for Section 4.1

Lemma 2 (Closedness under CSubst of let-rewriting)

For any e, e′ ∈ LExp, θ ∈ CSubst we have that e→l ne′ implies eθ→l ne′θ.

Proof

We prove that e→l e′ implies eθ→l e′θ by a case distinction over the rule of the

let-rewriting calculus applied:

(Fapp) Assume f(t1, . . . , tn)→l r, using (f(p1, . . . , pn)→ e) ∈ P and σ ∈ CSubst
such that ∀i.piσ = ti and eσ = r. But since σθ ∈ CSubst and ∀i.piσθ = tiθ then

we can perform a (Fapp) step f(t1, . . . , tn)θ ≡ f(t1θ, . . . , tnθ)→l eσθ ≡ rθ.
(LetIn) Easily since X 6∈ dom(θ) because X is fresh.

(Bind) Assume let X = t in e→l e[X/t] and some θ ∈ CSubst. Then t ∈ CTerm
by the conditions of (Bind), hence tθ ∈ CTerm too and we can perform a (Bind)

step (let X = t in e)θ ≡ let X = tθ in eθ→l eθ[X/tθ]. Besides X 6∈ (dom(θ) ∪
vran(θ)) by the variable convention, and so eθ[X/tθ] ≡ e[X/t]θ by Lemma 1, so

are done.

6

(Elim) Easily as X 6∈ FV (e2θ) because X 6∈ vran(θ) by the variable convention.

(Flat) Similar to the previous case since Y 6∈ FV (e3θ).

(Contx) Assume C[e]→l C[e′] because e→l ′e′ by one of the previous rules, and

some θ ∈ CSubst. Then we have already proved that eθ→l e′θ. Besides by the

variable convention we have BV (C) ∩ (dom(θ) ∪ vran(θ)) = ∅, hence by Lemma

25 (C[e])θ ≡ Cθ[eθ]. Furthermore, if e→l e′ was a (Fapp) step using σ ∈ CSubst
to build the instance of the program rule (f(p)σ → rσ), then vran(σ|\var(p)) ∩
BV (C) = ∅ by the conditions of (Contx), and therefore vran((σθ)|\var(p)) ∩
BV (C) = ∅. But as σθ is the substitution used in the (Fapp) step eθ→l e′θ,

then Cθ[eθ]→l Cθ[e′θ] by (Contx). On the other hand, if e→l e′ was not a (Fapp)

step then Cθ[eθ]→l Cθ[e′θ] too, and finally we can apply Lemma 25 again to get

Cθ[e′θ] ≡ (C[e′])θ.

The proof for e→l ne′ proceeds straightforwardly by induction on the length n

of the derivation.

Proposition 2 (Termination of →lnf)

Under any program we have that →lnf is terminating.

Proof

We define for any e ∈ LExp the size (k1, k2, k3), where

k1 ≡ number of subexpressions in e to which (LetIn) is applicable.

k2 ≡ number of lets in e.

k3 ≡ sum of the levels of nesting of all let-subexpressions in e.

Sizes are lexicographically ordered. We prove now that application of (LetIn),

(Bind), (Elim), (Flat) in any context (hence, also the application of (Contxt))

decreases the size, what proves termination of →lnf . The effect of each rule in the

size is summarized as follows (in each case, we stop at the decreasing component):

(LetIn): (<, ,)

(Bind): (=, <,)

(Elim): (≤, <,)

(Flat): (=,=, <)

Lemma 3 (Peeling lemma)

For any e, e′ ∈ LExp if e ↓lnf e′ —i.e, e′ is a →lnf normal form for e— then e′

has the shape e′ ≡ let X = f(t) in e′′ such that e′′ ∈ V or e′′ ≡ h(t′) with h ∈ Σ,

f ⊆ FS and t, t′ ⊆ CTerm.

Moreover if e ≡ h(e1, . . . , en) with h ∈ Σ, then

e ≡ h(e1, . . . , en)→lnf ∗ let X = f(t) in h(t1, . . . , tn) ≡ e′

under the conditions above, and verifying also that ti ≡ ei whenever ei ∈ CTerm.

Proof

We prove it by contraposition: if an expression e does not have that shape, e is not

a →lnf normal form. We define the set of expressions which are not cterms as:

7

nt ::= c(. . . , nt, . . .)

| f(e)

| let X = e1 in e2

We also define the set of expressions which do not have the presented shape

recursively as:
ne ::= h(. . . , nt, . . .)

| let X = f(t) in ne

| let X = f(. . . , nt, . . .) in e

| let X = c(e) in e

| let X = (let Y = e′ in e′′) in e
We prove by induction on the structure of an expression ne that it is always

possible to perform a →lnf step:

Base case:

• ne ≡ h(. . . , nt, . . .): there are various cases depending on nt:

— at some depth the non-cterm will contain a subexpression c′(. . . , nt′, . . .)

where nt′ is a function application f(e) or a let-rooted expression let X =

e1 in e2. Therefore we can apply the rule (Contx) with (LetIn) in that

position.

— f(e): we can apply the rule (LetIn) and perform the step

h(. . . , f(e), . . .)→lnf let X = f(e) in h(. . . , X, . . .)

— let X = e1 in e2: the same as the previous case.

• let X = f(. . . , nt, . . .) in e: we can perform a (Contx) with (LetIn) step in

f(. . . , nt, . . .) as in the previous h(. . . , nt, . . .) case.
• let X = c(e) in e: if e are cterms t, then c(t) is a cterm and we can perform

a (Bind) step let X = c(t) in e →lnf e[X/c(t)]. If e contains any expres-

sion ne then we can perform a (Contx) with (LetIn) step as in the previous

h(. . . , nt, . . .) case.
• let X = (let Y = e′ in e′′) in e: by the variable convention we can as-

sume that Y /∈ FV (e), so we can perform a (Flat) step let X = (let Y =

e′ in e′′) in e→lnf let Y = e′ in let X = e′′ in e.

Inductive step:

• let X = f(t) in ne: by IH we have that ne →lnf ne′, so by the rule (Contx)

we can perform a step let X = f(t) in ne→lnf let X = f(t) in ne′.

Notice that if the original expression has the shape h(e1, . . . , en) the arguments

ei which are cterms remain unchanged in the same position. The reason is that no

rule can affect them: the only rule applicable at the top is (LetIn), and it can not

place them in a let binding outside h(. . .); besides cterms do not match with the

left-hand side of any rule, so they can not be rewritten by any rule.

Lemma 4 (Growing of shells)

Under any program P and for any e, e′ ∈ LExp

i) e→l∗ e′ implies |e| v |e′|
ii) e→lnf ∗ e′ implies |e| ≡ |e′|

8

Proof for Lemma 4

We prove the lemma for one step (e→l e′ and e→lnf e′) by a case distinction over

the rule of the let-rewriting calculus applied:

(Fapp) The step is f(t1, . . . , tn)→l r, and |f(t1, . . . , tn)| =⊥v |r|.
(LetIn) The equality |h(e1, . . . , e, . . . , en)| = |let X = e in h(e1, . . . , X, . . . , en)|

follows easily by a case distinction on h.

(Bind) The step is let X = t in e→l e[X/t], so |let X = t in e| = |e|[X/|t|] =

|e[X/t]| by Lemma 23.

(Elim) The step is let X = e1 in e2→l e2 with X /∈ FV (e2). Then |let X =

e1 in e2| = |e2|[X/|e1|] = |e2|. Since the variables in the shell of an expression

is a subset of the variables in the original expression, we can conclude that if

X /∈ FV (e2) then X /∈ FV (|e2|).
(Flat) The step is let X = (let Y = e1 in e2) in e3 →l let Y = e1 in (let X =

e2 in e3) with Y /∈ FV (e3). By the variable convention we can assume that

X /∈ FV (let Y = e1 in e2) —in particular X /∈ FV (e1). Then:

|let Y = e1 in (let X = e2 in e3)|
= |let X = e2 in e3|[Y/|e1|]
= (|e3|[X/|e2|])[Y/|e1|]

Notice that X /∈ dom([Y/|e1|]) and X /∈ vran([Y/|e1|]) = FV (|e1|) because

X /∈ FV (e1) and FV (|e1|) ⊆ FV (e1). Therefore we can use Lemma 1:

(|e3|[X/|e2|])[Y/|e1|]
= (|e3|[Y/|e1|])[X/(|e2|[Y/|e1|])] By Lemma 1

= |e3|[X/(|e2|[Y/|e1|])] Y /∈ FV (e3), so Y /∈ FV (|e3|)
= |e3|[X/|let Y = e1 in e2|]
= |let X = (let Y = e1 in e2) in e3|

(Contx) The step is C[e]→l C[e′] with e→l e′ using any of the previous rules. Then

we have |e| v |e′|, and by Lemma 21 C[e] v C[e′]. If the step is C[e] →lnf C[e′]
then rule (Fapp) has not been used in the reduction e→lnf e′ and by the previous

rules we have |e| = |e′|. In that case by Lemma 22 we have C[e] = C[e′].

The extension of this result to→l∗ and→lnf ∗ is a trivial induction over the number

of steps of the derivation.

A.6 Proofs for Section 4.2

Theorem 4 (CRWL vs. CRWLlet)

For any program P without lets, and any e ∈ Exp⊥:

[[e]]PCRWL = [[e]]PCRWLlet

Proof

As any calculus rule from CRWL is also a rule from CRWLlet, then any CRWL-proof

is also a CRWLlet-proof, therefore [[e]]CRWL ⊆ [[e]]CRWLlet
. For the other inclusion,

assume no let-binding is present in the program and let e ∈ Exp. Then, for any

9

t ∈ CTerm⊥, as the rules of CRWLlet do not introduce any let-binding and the rule

(Let) is only used for let-rooted expressions, the CRWLlet-proof P `CRWLlet
e _ t

will be also a CRWL-proof for P `CRWLlet
e _ t, hence [[e]]CRWLlet

⊆ [[e]]CRWL too.

The following Lemma is used to prove point iii) of Lemma 5. Notice that this

Lemma uses the notions of hyperdenotation ([[[]]]) and hyperinclusion (b) presented

in the final part of Section 4.2.

Lemma 28
Under any program P and for any e ∈ LExp⊥ we have that [[[e]]] b λθ.(|eθ|↑)↓.

Proof
We will use the following equivalent characterization of (e↑)↓:

(e↑)↓= {e1 ∈ LExp⊥ | ∃e2 ∈ LExp⊥. e v e2 ∧ e1 v e2}

note that {e2 ∈ LExp⊥ | e v e2} is precisely the set e↑. Besides note that:

[[[e]]] b λθ.(|eθ|↑)↓
⇔ ∀θ ∈ CSubst⊥. [[eθ]] ⊆ (|eθ|↑)↓
⇔ ∀θ ∈ CSubst⊥, t ∈ CTerm⊥. eθ _ t

⇒ t ∈ (|eθ|↑)↓
⇔ ∀θ ∈ CSubst⊥, t ∈ CTerm⊥. eθ _ t

⇒ ∃t′ ∈ CTerm⊥. |eθ| v t′ ∧ t v t′

where t′ ∈ CTerm⊥ is implied by |eθ| v t′. To prove this last formulation first

consider the case when t ≡⊥. Then we are done with t′ ≡ |eθ| because then |eθ| v
|eθ| ≡ t′ and t ≡⊥v |eθ| ≡ t′.

For the other case we proceed by induction on the structure of e. Regarding the

base cases:

• If e ≡⊥ then t ≡⊥ and we are in the previous case.
• If e ≡ X ∈ V then eθ ≡ θ(X) _ t, and as θ ∈ CSubst⊥ then θ(X) ∈ CTerm⊥

which implies t v θ(X) by Lemma 5. But then we can take t′ ≡ θ(X) for

which t v θ(X) ≡ t′ and |eθ| ≡ |θ(X)| ≡ θ(X) —by Lemma 17 since θ(X) ∈
CTerm⊥—, and θ(X) v θ(X) ≡ t′.

• If e ≡ c ∈ DC then either t ≡⊥ and we are in the previous case, or t ≡ c. But

then we can take t′ ≡ c for which |eθ| ≡ c v c ≡ t′, and t ≡ c v c ≡ t′.
• If e ≡ f ∈ FS then |eθ| ≡ |f | ≡⊥, and so |eθ|↑= CTerm⊥ and (|eθ|↑)↓=
CTerm⊥ ⊇ [[eθ]], so we are done.

Concerning the inductive steps:

• If e ≡ f(e1, . . . , en) for f ∈ FS then |eθ| ≡⊥ and we proceed like in the case

for e ≡ f .
• If e ≡ c(e1, . . . , en) for c ∈ DC then either t ≡⊥ and we are in the previous

case, or t ≡ c(t1, . . . , tn) such that ∀i. eiθ _ ti. But then by IH we get

∀i. ∃t′i. |eiθ| v t′i ∧ ti v t′i, so we can take t′ ≡ c(t′1, . . . , t
′
n) for which |eθ| ≡

c(|e1θ|, . . . , |enθ|) v c(t′1, . . . , t
′
n) ≡ t′ and t ≡ c(t1, . . . , tn) v c(t′1, . . . , t

′
n) ≡

t′.

10

• If e ≡ let X = e1 in e2 then either t ≡⊥ and we are in the previous case, or

we have the following proof:

e1θ _ t1 e2θ[X/t1] _ t

eθ ≡ let X = e1θ in e2θ _ t
Let

Then by IH over e1 we get that ∃t′1. |e1θ| v t′1∧t1 v t′1. Hence [X/t1] v [X/t′1]

so by Proposition 5 we have that e2θ[X/t1] _ t implies e2θ[X/t
′
1] _ t. But

then we can apply the IH over e2 with θ[X/t′1] to get some t′ ∈ CTerm⊥ such

that t v t′ and |e2θ[X/t
′
1]| v t′, which implies:

t′ w |e2θ[X/t
′
1]|

≡ |e2θ|[X/|t′1|] by Lemma 23

≡ |e2θ|[X/t′1] by Lemma 17 as t′1 ∈ CTerm⊥
w |e2θ|[X/|e1θ|] as |e1θ| v t′1
≡ |let X = e1θ in e2θ| ≡ |eθ|

Lemma 5

For any program e ∈ LExp⊥, t, t′ ∈ CTerm⊥:

1. t _ t′ iff t′ v t.
2. |e| ∈ [[e]].

3. [[e]] ⊆ (|e|↑)↓, where for a given E ⊆ LExp⊥ its upward closure is E↑= {e′ ∈
LExp⊥| ∃e ∈ E. e v e′}, its downward closure is E↓= {e′ ∈ LExp⊥| ∃e ∈
E. e′ v e}, and those operators are overloaded for let-expressions as e↑= {e}↑
and e↓= {e}↓.

Proof

1. Easily by induction on the structure of t.

2. Straightforward by induction on the structure of e. In the case of let expres-

sions, the proof uses |e| ∈ CTerm⊥ and Proposition 4 in order to apply the

CRWLlet rule (Let).

3. By Lemma 28 we have that [[[e]]] b λθ.(|eθ|↑)↓. By definition of hyperinclusion

—Definition 8— we know that [[[e]]]ε ⊆ (λθ.(|eθ|↑)↓)ε, so [[[e]]]ε = [[eε]] ≡ [[e]] ⊆
(|e|↑)↓≡ (|eε|↑)↓= (λθ.(|eθ|↑)↓)ε.

Proposition 3 (Polarity of CRWLlet)

For any program e, e′ ∈ LExp⊥, t, t′ ∈ CTerm⊥, if e v e′ and t′ v t then e _ t

implies e′ _ t′ with a proof of the same size or smaller—where the size of a

CRWLlet-proof is measured as the number of rules of the calculus used in the

proof.

Proof

By induction on the size of the CRWL-derivation. All the cases are straightforward

except the (Let) rule:

11

(Let) We have the derivation:

e1 _ t1 e2[X/t1] _ t

e ≡ let X = e1 in e2 _ t
(Let)

Since e v e′ then e′ ≡ let X = e′1 in e′2 with e1 v e′1 and e2 v e′2. As e1 v e′1
and t1 v t1 —because v is reflexive— then by IH we have e′1 _ t1. We know

that e2 v e′2 so by Lemma 24 we have e2[X/t1] v e′2[X/t1] and by IH P `CRWLlet

e′2[X/t1] _ t′ such that t′ v t. Therefore:

e′1 _ t1 e′2[X/t1] _ t′

e′ ≡ let X = e′1 in e
′
2 _ t′

(Let)

Proposition 4 (Closedness under c-substitutions)

For any e ∈ LExp⊥, t ∈ CTerm⊥, θ ∈ CSubst⊥, t ∈ [[e]] implies tθ ∈ [[eθ]].

Proof

By induction on the size of the CRWLlet-proof. All the cases are straightforward

except the (Let) rule:

(Let) In this case the expression is e ≡ let X = e1 in e2 so we have a derivation

e1 _ t1 e2[X/t1] _ t

let X = e1 in e2 _ t
(Let)

By IH we have that e1θ _ t1θ and (e2[X/t1])θ _ tθ. By the variable convention

we assume that X /∈ dom(θ) ∪ vran(θ), so by Lemma 1 e2[X/t1]θ ≡ e2θ[X/t1θ]

and e2θ[X/t1θ] _ tθ. Then we can construct the proof:

e1θ _ t1θ e2θ[X/t1θ] _ tθ

let X = e1θ in e2θ _ tθ
(Let)

Theorem 5 (Weak Compositionality of CRWLlet)

For any C ∈ Cntxt, e ∈ LExp⊥

[[C[e]]] =
⋃
t∈[[e]]

[[C[t]]] if BV (C) ∩ FV (e) = ∅

As a consequence, [[let X = e1 in e2]] =
⋃
t1∈[[e1]][[e2[X/t1]]].

Proof

We prove that C[e] _ t⇔ ∃s ∈ CTerm⊥ such that e _ s and C[s] _ t.

⇒) By induction on the size of the proof for C[e] _ t. The proof proceeds in a

similar way to the proof for Theorem 1, page 4, so we only have to prove the (Let)

case:

(Let) There are two cases depending on the context C (since C 6= []):

• C ≡ let X = C ′ in e2) Straightforward.

12

• C ≡ let X = e1 in C′) The proof is

e1 _ t1 C′[e][X/t1] _ t

C[e] ≡ let X = e1 in C′[e] _ t
(Let)

We assume that X /∈ var(t1) by the variable convention, since X is bound in

C and we can rename it freely. Moreover, we assume also that X /∈ BV (C′)
because X is bound in C, so we could rename the bound occurrences in

C′. Therefore (dom([X/t1] ∪ vran([X/t1])) ∩ BV (C′) = ∅ and C′[e][X/t1] ≡
(C′[X/t1])[e[X/t1]] by Lemma 25. Since BV (C) ∩ FV (e) = ∅ by the premise

and X ∈ BV (C) then X /∈ FV (e), so (C′[X/t1])[e[X/t1]] ≡ C′[X/t1][e]. Then

by IH ∃s ∈ CTerm⊥ such that e _ s and C′[X/t1][s] _ t. Therefore we can

build:

e1 _ t1 C′[s][X/t1] ≡(∗) C′[X/t1][s] _ t

C[s] ≡ let X = e1 in C′[s] _ t
(Let)

(*) Using Lemma 25 as above and the assumption that X /∈ var(s) by the

variable convention, since X is bound in C and we can rename it freely.

⇐) By induction on the size of the proof for C[s] _ t. As before, the proof proceeds

in a similar way to the proof for Theorem 1, page 4, so we only have to prove the

(Let) case:

(Let) If we use (Let) then there are two cases depending on the context C (since

C 6= []):

• C = let X = C′ in e2) Straighforward.

• C = let X = e1 in C′) then we have e _ s and

e1 _ t1 C′[s][X/t1] _ t

C[s] ≡ let X = e1 in C′[s] _ t
(Let)

By the same reasoning as in the second case of the (Let) rule of the ⇒) part

of this theorem, C′[s][X/t1] ≡ C′[X/t1][s]. Then by IH C′[X/t1][e] _ t. Again

by the same reasoning we have C′[e][X/t1] ≡ C′[X/t1][e], so we can build the

proof:

e1 _ t1 C′[e][X/t1] ≡ C′[X/t1][e] _ t

C[e] ≡ let X = e1 in C′[e] _ t
(Let)

This ends the proof of the main part of the theorem. With respect to the con-

13

sequence [[let X = e1 in e2]]CRWLlet
=
⋃
t1∈[[e1]]CRWLlet

[[e2[X/t1]]]CRWLlet
we have:

[[let X = e1 in e2]]CRWLlet

= [[(let X = [] in e2)[e1]]]CRWLlet

=
⋃

t1∈[[e1]]CRWLlet

[[let X = t1 in e2]]CRWLlet
by Theorem 5

=
⋃

t1∈[[e1]]CRWLlet

[[e2[X/t1]]]CRWLlet
by Proposition 8

In the last step we replace let X = t1 in e2 by e2[X/t1] which is a (Bind) step of

→lnf , so by Proposition 8 it preserves the denotation.

For Proposition 5, in this Appendix we prove a generalization of the statement

appearing in Section 4.2 (page 21). However, it is easy to check that Proposition 5

in Section 4.2 follows easily from points 2 and 3 here.

Proposition 5 (Monotonicity for substitutions of CRWLlet)

For any program e ∈ LExp⊥, t ∈ CTerm⊥, σ, σ′ ∈ LSubst⊥

1. If ∀X ∈ V, s ∈ CTerm⊥ given σ(X) _ s with size K we also have σ′(X) _ s

with size K ′ ≤ K, then eσ _ t with size L implies eσ′ _ t with size L′ ≤ L.

2. If σ v σ′ then eσ _ t implies eσ′ _ t with a proof of the same size or smaller.

3. If σ E σ′ then [[eσ]] ⊆ [[eσ′]].

Proof

1. If e ≡ X ∈ V, assume Xσ _ t, then Xσ′ _ t with a proof of the same size or

smaller, by hypothesis. Otherwise we proceed by induction on the structure

of the proof eσ _ t.

Base cases

(B) Then t ≡⊥ and eσ′ _⊥ with a proof of size 1 just applying rule (B).

(RR) Then e ∈ V and we are in the previous case.

(DC) Then e ≡ c ∈ CS0, as e 6∈ V, hence eσ ≡ c ≡ eσ′ and every proof

for eσ _ t is a proof for eσ′ _ t.

Inductive steps

(DC) Then e ≡ c(e1, . . . , en), as e 6∈ V, and we have:

e1σ _ t1 . . . enσ _ tn
eσ ≡ c(e1σ, . . . , enσ) _ c(t1, . . . , tn) ≡ t

(DC)

By IH or the proof of the other cases ∀i ∈ {1, . . . , n} we have eiσ
′ _ ti

with a proof of the same size or smaller, so we can built a proof for

eσ′ ≡ c(e1σ
′, . . . , enσ

′) _ c(t1, . . . , tn) ≡ t using (DC), with a size equal

or smaller than the size of the starting proof.

(OR) Similar to the previous case.

(Let) Then e ≡ let X = e1 in e2, as e 6∈ V, and we have:

e1σ _ t1 e2σ[X/t1] _ t

let X = e1σ in e2σ _ t
(Let)

14

By IH we have e1σ _ t1. By the variable convention we assume that

X /∈ dom(σ) ∪ vran(σ) and X /∈ dom(σ′) ∪ vran(σ′). Then it is easy to

check that ∀Y ∈ V, s, t ∈ CTerm⊥, given Y (σ[X/t]) _ s with size K

we also have Y (σ′[X/t]) _ s with size K ′ ≤ K. Then by IH we have

e2σ
′[X/t1] _ t. Therefore we can construct a proof with a size equal or

smaller than the starting one:

e1σ
′ _ t1 e2σ

′[X/t1] _ t

let X = e1σ
′ in e2σ

′ _ t
(Let)

2. By induction on the size of the CRWLlet-proof. The cases for classical CRWL

appear in (Vado-Vı́rseda 2002), so we only have to prove the case for the

(Let) rule:

(Let) In this case the expression is e ≡ let X = e1 in e2 so we have a proof

e1σ _ t1 e2σ[X/t1] _ t

let X = e1σ in e2σ _ t
(Let)

By IH we have that e1σ _ t1. By the variable convention we can assume

that BV (e)∩(dom(σ)∪vran(σ)) = ∅ and BV (e)∩(dom(σ′)∪vran(σ′)) = ∅.
With the previous properties it is easy to see that σ[X/t1] v σ′[X/t1], so

by IH e2σ
′[X/t1] _ t. Therefore we can build the proof:

e1σ
′ _ t1 e2σ

′[X/t1] _ t

let X = e1σ
′ in e2σ

′ _ t
(Let)

3. By induction on the structure of e:

e ≡ X ∈ V - In this case [[Xσ]]CRWLlet
⊆ [[Xσ′]]CRWLlet

because by the hy-

pothesis σ E σ′.
e ≡ h(e1, . . . , en) - Applying Theorem 5 with C ≡ h([], e2σ, . . . , enσ) we have

[[h(e1σ, . . . , enσ)]]CRWLlet
= [[C[e1σ]]]CRWLlet

=
⋃

t∈[[e1σ]]CRWLlet

[[C[t]]]CRWLlet
be-

cause BV (C) = ∅. On the other hand, by Theorem 5 we also know that

[[h(e1σ
′, e2σ, . . . , enσ)]]CRWLlet

= [[C[e1σ
′]]]CRWLlet

=
⋃

t∈[[e1σ′]]CRWLlet

[[C[t]]]CRWLlet

Since by IH we have [[e1σ]]CRWLlet
⊆ [[e1σ

′]]CRWLlet
it is easy to check that⋃

t∈[[e1σ]]CRWLlet

[[C[t]]]CRWLlet
⊆

⋃
t∈[[e1σ′]]CRWLlet

[[C[t]]]CRWLlet

so [[h(e1σ, e2σ, . . . , enσ)]]CRWLlet
⊆ [[h(e1σ

′, e2σ, . . . , enσ)]]CRWLlet
. Using the

same reasoning in the rest of subexpressions eiσ we can prove:

[[h(e1σ
′, e2σ, . . . , enσ)]]CRWLlet

⊆ [[h(e1σ
′, e2σ

′, e3σ . . . , enσ)]]CRWLlet

[[h(e1σ
′, e2σ

′, e3σ . . . , enσ)]]CRWLlet
⊆ [[h(. . . , e3σ

′, e4σ . . . , enσ)]]CRWLlet

. . .

[[. . . , en−1σ
′, enσ)]]CRWLlet

⊆ [[h(e1σ
′, . . . , enσ

′)]]CRWLlet

Then by transitivity of ⊆ we have:

15

[[h(e1, . . . , en)σ]]CRWLlet
≡ [[h(e1σ, . . . , enσ)]]CRWLlet

⊆
[[h(e1σ

′, . . . , enσ
′)]]CRWLlet

≡ [[h(e1, . . . , en)σ′]]CRWLlet
.

e ≡ let X = e1 in e2 - As Theorem 5 states, [[let X = e1σ in e2σ]]CRWLlet
=⋃

t1∈[[e1σ]]CRWLlet

[[e2σ[X/t1]]]CRWLlet
. By the Induction Hypothesis we have that

[[e1σ]]CRWLlet
⊆ [[e1σ

′]]CRWLlet
. Due to the variable convention we assume

that X /∈ dom(σ) ∪ vran(σ) and X /∈ dom(σ′) ∪ vran(σ′), so it is easy to

check that σ[X/t]Eσ′[X/t] for any t ∈ CTerm. Then by the Induction Hy-

pothesis we know that [[e2σ[X/t]]]CRWLlet
⊆ [[e2σ

′[X/t]]]CRWLlet
. Therefore

[[(let X = e1 in e2)σ]]CRWLlet
=

⋃
t1∈[[e1σ]]CRWLlet

[[e2σ[X/t1]]]CRWLlet

⊆
⋃

t1∈[[e1σ′]]CRWLlet

[[e2σ
′[X/t1]]]CRWLlet

= [[let X = e1σ
′ in e2σ

′]]CRWLlet

= [[(let X = e1 in e2)σ′]]CRWLlet

Theorem 6 (Compositionality of hypersemantics)

For all C ∈ Cntxt, e ∈ LExp⊥

[[[C[e]]]] = [[[C]]][[[e]]]

As a consequence: [[[e]]] = [[[e′]]]⇔ ∀C ∈ Cntxt.[[[C[e]]]] = [[[C[e′]]]].

Proof

By induction over the structure of contexts. The base case is C = [], so [[[C[e]]]] =

[[[e]]] = [[[[]]]][[[e]]] = [[[C]]][[[e]]], as [[[[]]]] is the identity function by definition. Regarding

the inductive step:

• C = h(e1, . . . , C′, . . . , en): Then

[[[C]]][[[e]]] = λθ.
⋃

t∈[[[C′]]][[[e]]]θ
[[h(e1θ, . . . , t, . . . , enθ)]]

= λθ.
⋃

t∈[[[C′[e]]]]θ
[[h(e1θ, . . . , t, . . . , enθ)]] by IH

= λθ.
⋃

t∈[[(C′[e])θ]]
[[h(e1θ, . . . , t, . . . , enθ)]] by definition

= λθ.[[h(e1θ, . . . , (C′[e])θ, . . . , enθ)]] by Lemma 5

= λθ.[[(C[e])θ]] = [[[C[e]]]]

• C = let X = C′ in s: Then

[[[C]]][[[e]]] = λθ.
⋃

t∈[[[C′]]][[[e]]]θ
[[let X = t in sθ]] by definition

= λθ.
⋃

t∈[[[C′]]][[[e]]]θ
[[sθ[X/t]]] by rule (Bind)(∗)

= λθ.
⋃

t∈[[[C′[e]]]]θ
[[sθ[X/t]]] by IH

= λθ.
⋃

t∈[[(C′[e])θ]]
[[sθ[X/t]]] by definition

= λθ.[[let X = (C′[e])θ in sθ]] by Lemma 5

= [[[C[e]]]]

16

(*): by Proposition 8 [[let X = t in sθ]] = [[sθ[X/t]]] since let X = t in sθ →lnf

sθ[X/t].
• C = let X = s in C′: Then

[[[C]]][[[e]]] = λθ.
⋃

t∈[[[s]]]θ

[[[C′]]][[[e]]](θ[X/t])

= λθ.
⋃

t∈[[[s]]]θ

[[[C′[e]]]](θ[X/t]) by IH

= λθ.
⋃

t∈[[[s]]]θ

[[(C′[e])(θ[X/t])]] by definition

= λθ.
⋃

t∈[[sθ]]

[[(C′[e])(θ[X/t])]] by definition

= λθ.
⋃

t∈[[sθ]]

[[((C′[e])θ)[X/t]]]

= λθ.[[let X = sθ in (C′[e])θ]] by Lemma 5

= [[[C[e]]]]

Proposition 6

Consider two sets A,B, and let F be the set of functions A→ P(B). Then:

i) b is indeed a partial order on F , and ∆f is indeed a decomposition of f ∈ F ,

i.e., d (∆f) = f .
ii) Monotonicity of hyperunion wrt. inclusion: for any I1, I2 ⊆ F

I1 ⊆ I2 implies d I1 bd I2

iii) Distribution of unions: for any I1, I2 ⊆ F

d (I1 ∪ I2) = (d I1) d (d I2)

iv) Monotonicity of decomposition wrt. hyperinclusion: for any f1, f2 ∈ F

f1 b f2 implies ∆f1 ⊆ ∆f2

Proof

i) The binary relation b is a partial order on F because:

• It is reflexive, as for any function f and any x ∈ A we have that f(x) =

f(x), and thus f(x) ⊆ f(x), therefore f b f .

• It is transitive because given some functions f1, f2, f3 such that f1 b f2

and f2 b f3, then for any x ∈ A we have f1(x) ⊆ f2(x) ⊆ f3(x) by

definition of b, hence f1 b f3.

• It is antisymmetric wrt. extensional function equality, because for any pair

of hypersemantics f1, f2 such that f1 b f2 and f2 b f1 and any x ∈ A
we have that f1(x) ⊆ f2(x) and f2(x) ⊆ f1(x) by definition of b, hence

f1(x) = f2(x) by antisymmetry of ⊆ and f1 = f2.

In order to prove that ∆f is indeed a decomposition of f ∈ F we first perform

a little massaging by using the definitions of d and ∆.

d (∆f) =d {λ̂a.{b} | a ∈ A, b ∈ f(a)} = λx ∈ A.
⋃
a∈A

⋃
b∈f(a)

(λ̂a.{b})x

17

Now we will use the fact that b is a partial order, and therefore it is anti-

symmetric, so mutual inclusion by b implies equality.

• f bd (∆f): Given arbitraries a ∈ A, b ∈ f(a) then

(d (∆f))a =
⋃
x∈A

⋃
y∈f(x)

(λ̂x.{y})a

⊇
⋃

y∈f(a)

(λ̂a.{y})a as a ∈ A

=
⋃

y∈f(a)

{y} 3 b as b ∈ f(a)

• d (∆f) b f : Given arbitraries a ∈ A, b ∈ (d (∆f))a then we have

that b ∈
⋃
x∈A

⋃
y∈f(x)

(λ̂x.{y})a, therefore ∃x ∈ A, y ∈ f(x) such that b ∈

(λ̂x.{y})a. But then a ≡ x —otherwise (λ̂x.{y})a = ∅— and y ≡ b —

because b ∈ (λ̂x.{y})a = {y}—, and so y ∈ f(x) implies b ∈ f(a).

ii) Given an arbitrary a ∈ A then

(d I1)a =
⋃
f∈I1

f(a) by definition of d

⊆
⋃
f∈I2

f(a) as I1 ⊆ I2

= (d I2)a by definition of d
iii)

d (I1 ∪ I2) = λa.
⋃

f∈(I1∪I2)

f(a) by definition of d

= λa.
⋃
f∈I1

f(a) ∪
⋃
f∈I2

f(a)

= λa.(d I1)a ∪ (d I2)a by definition of d
= (d I1) d (d I2) by definition of d

iv) Suppose an arbitrary λ̂a.{b} ∈ ∆f1 with a ∈ A and b ∈ f1(a) by definition.

Since f1 b f2 then f1(a) ⊆ f2(a). Therefore b ∈ f2(a) and λ̂a.{b} ∈ ∆f2.

Proposition 7 (Distributivity under context of hypersemantics union)

[[[C]]](d H) = d
ϕ∈H

[[[C]]]ϕ

Proof

We proceed by induction on the structure of C. Regarding the base case, then C = []

and so:

[[[C]]](d H) =d H by definition of [[[C]]]
= d

ϕ ∈ H
ϕ

= d
ϕ ∈ H

[[[C]]]ϕ by definition of [[[C]]]

For the inductive step we have several possibilities.

18

• C ≡ h(e1, . . . , C′, . . . , en): then

[[[C]]](d H) = λθ.
⋃

t∈[[[C′]]](d H)θ

[[h(e1θ, . . . , t, . . . , enθ)]] by definition of [[[C]]]

= λθ.
⋃

t∈((d {[[[C′]]]ϕ | ϕ∈H})θ)

[[h(e1θ, . . . , t, . . . , enθ)]] by IH

= λθ.
⋃

t∈(
⋃

ϕ∈H
[[[C′]]]ϕθ)

[[h(e1θ, . . . , t, . . . , enθ)]] by definition of d

= λθ.
⋃
ϕ∈H

⋃
t∈[[[C′]]]ϕθ

[[h(e1θ, . . . , t, . . . , enθ)]]

= λθ.
⋃
ϕ∈H

[[[C]]]ϕθ by definition of [[[C]]]

= d
ϕ ∈ H

[[[C]]]ϕ by definition of d

• C ≡ let X = C′ in e: then

[[[C]]](d H) = λθ.
⋃

t∈[[[C′]]](d H)θ

[[let X = t in eθ]] by definition of [[[C]]]

= λθ.
⋃

t∈((d {[[[C′]]]ϕ | ϕ∈H})θ)

[[let X = t in eθ]] by IH

= λθ.
⋃

t∈(
⋃

ϕ∈H
[[[C′]]]ϕθ)

[[let X = t in eθ]] by definition of d

= λθ.
⋃
ϕ∈H

⋃
t∈[[[C′]]]ϕθ

[[let X = t in eθ]]

= λθ.
⋃
ϕ∈H

[[[C]]]ϕθ by definition of [[[C]]]

= d
ϕ ∈ H

[[[C]]]ϕ by definition of d

• C ≡ let X = e in C′: then

[[[C]]](d H) = λθ.
⋃

t∈[[[e]]]θ

[[[C′]]](d H)(θ[X/t]) by definition of [[[C]]]

= λθ.
⋃

t∈[[[e]]]θ

(d {[[[C′]]]ϕ | ϕ ∈ H})(θ[X/t]) by IH

= λθ.
⋃

t∈[[[e]]]θ

⋃
ϕ∈H

[[[C′]]]ϕ(θ[X/t]) by definition of d

= λθ.
⋃
ϕ∈H

⋃
t∈[[[e]]]θ

[[[C′]]]ϕ(θ[X/t]) as H is independent from t

= λθ.
⋃
ϕ∈H

[[[C]]]ϕθ by definition of [[[C]]]

= d
ϕ ∈ H

[[[C]]]ϕ by definition of d

A.7 Proofs for Section 4.3

Theorem 9 (Hyper-Soundness of let-rewriting)

For all e, e′ ∈ LExp, if e→l∗ e′ then [[[e′]]] b [[[e]]].

Proof

We first prove the theorem for a single step of →l . We proceed assumming some

19

θ ∈ CSubst⊥ such that e′θ _ t and then proving eθ _ t. The case where t ≡⊥
holds trivially using the rule B, so we will prove the rest by a case distinction on

the rule of the let-rewriting calculus applied:

(Fapp) Assume f(t1, . . . , tn)→l r with (f(p1, . . . , pn)→ e) ∈ P, σ ∈ CSubst, such

that ∀i.piσ ≡ ti and eσ ≡ r, and θ ∈ CSubts⊥ such that rθ _ t. Then as

σθ ∈ CSubts⊥,∀i.piσθ ≡ tiθ and eσθ ≡ rθ we can use the (OR) rule to build the

following proof:

Lemma 18
t1θ _ t1θ . . .

Lemma 18
tnθ _ tnθ rθ _ t

f(t1θ, . . . , tnθ) _ t
(OR)

(LetIn) Assume h(. . . , e, . . .)→l let X = e in h(. . . , X, . . .) by (LetIn) and θ ∈
CSubts⊥ such that (let X = e in h(. . . , X, . . .))θ _ t. This proof must be of the

shape of:

eθ _ t1 h(d1θ, . . . , Xθ, . . . , dnθ)[X/t1] _ t

let X = eθ in h(d1θ, . . . , Xθ, . . . , dnθ) _ t
(Let)

for some d1, . . . , dn ∈ LExp, t1 ∈ CTerm⊥. Besides X 6∈ (dom(θ) ∪ vran(θ)) by

the variable convention5, hence Xθ ≡ X and so h(d1θ, . . . , Xθ, . . . , dnθ)[X/t1] ≡
h(d1θ, . . . , t1, . . . , dnθ), as X is fresh by the conditions in (LetIn) and so it does

not appear in any di. Now we have two possibilities:

a) h ≡ c ∈ DC : Then h(d1θ, . . . , t1, . . . , dnθ) _ t must proved by (DC):

d1θ _ s1 . . . t1 _ t′1 . . . dnθ _ sn

c(d1θ, . . . , t1, . . . , dnθ) _ c(s1, . . . , t
′
1, . . . , sn) ≡ t

(DC)

for some s1, . . . , sn, t
′
1 ∈ CTerm⊥. Then t1 _ t′1 implies t′1 v t1 by Lemma

5, hence eθ _ t1 implies eθ _ t′1 by Proposition 3, and we can build the

following proof:

d1θ _ s1 . . . eθ _ t′1 . . . dnθ _ sn

h(. . . , e, . . .)θ ≡ c(d1θ, . . . , eθ, . . . , dnθ) _ c(s1, . . . , t
′
1, . . . , sn) ≡ t

b) h ≡ f ∈ FS : Then h(d1θ, . . . , t1, . . . , dnθ) _ t must be proved by (OR):

d1θ _ s1σ . . . t1 _ t′1σ . . . dnθ _ snσ rσ _ t

f(d1θ, . . . , t1, . . . , dnθ) _ t
(OR)

for some s1σ, . . . , snσ, t
′
1σ ∈ CTerm⊥, (f(s1, . . . , t

′
1, . . . sn) → r) ∈ P, σ ∈

CSubst⊥. Then we can prove eθ _ t′1σ like in the previous case, to build the

following proof:

d1θ _ s1σ . . . eθ _ t′1σ . . . dnθ _ snσ rσ _ t

h(. . . , e, . . .)θ ≡ f(d1θ, . . . , eθ, . . . , dnθ) _ t
(OR)

5 Actually, to prove this theorem properly, we cannot restrict the substitution to fulfill these
restrictions, so in fact we rename the bound variables in an α-conversion fashion and use the
equivalence e[X/e′] ≡ e[X/Y][Y/e′] (with Y the new bound variable), to use the hypothesis.
This will be done implicitly when needed during the remaining of the proof.

20

(Bind) Assume let X = t1 in e→l e[X/t1] by (Bind) and θ ∈ CSubst⊥ such that

(e[X/t1])θ _ t. Then X 6∈ (dom(θ) ∪ vran(θ)) by the variable convention, so we

can apply Lemma 1 (Substitution lemma) to get eθ[X/t1θ] ≡ (e[X/t1])θ. Besides

t1 ∈ CTerm and θ ∈ CSubst⊥ by hypothesis, hence t1θ ∈ CTerm⊥ and we can

build the following proof:

Lemma 18
t1θ _ t1θ eθ[X/t1θ] ≡ (e[X/t1])θ _ t

let X = t1θ in eθ _ t
(Let)

(Elim) Assume let X = e1 in e2→l e2 by (Elim) and θ ∈ CSubts⊥ such that

e2θ _ t. Then X 6∈ vran(θ) by the variable convention and X 6∈ FV (e2) by the

condition of (Elim), hence e2θ[X/ ⊥] ≡ e2θ and we can build the following proof:

e1θ _⊥ (B)
e2θ[X/ ⊥] ≡ e2θ _ t

let X = e1θ in e2θ _ t
(Let)

(Flat) Assume let X = (let Y = e1 in e2) in e3→l let Y = e1 in (let X = e2 in e3)

by (Flat) and θ ∈ CSubts⊥ such that (let Y = e1 in (let X = e2 in e3))θ _ t.

This proof must be must be of the shape of:

e1θ _ t1

e2θ[Y/t1] _ t2 e3θ[Y/t1][X/t2] _ t

(let X = e2θ in e3θ)[Y/t1] _ t
(Let)

let Y = e1θ in (let X = e2θ in e3θ) _ t
(Let)

for some t1, t2 ∈ CTerm⊥. Besides Y 6∈ vran(θ) by the variable convention and

Y 6∈ FV (e3) by the condition of (Flat), hence e3θ[Y/t1] ≡ e3θ and we can build

the following proof:

Hypothesis

e1θ _ t1

Hypothesis

e2θ[Y/t1] _ t2
let Y = e1θ in e2θ _ t2

(Let)
e3θ[X/t2] ≡ e3θ[Y/t1][X/t2] _ t

let X = (let Y = e1θ in e2θ) in e3θ _ t
(Let)

(Contx) By the proof of the other cases, [[[e′]]] b [[[e]]], but then [[[C[e′]]]] b [[[C[e]]]] by

Lemma 7, and we are done.

The proof for several steps is a trivial induction on the length of the derivation

e→l∗ e′.

Proposition 8 (The →lnf relation preserves hyperdenotation)

For all e, e′ ∈ LExp, if e →lnf ∗ e′ then [[[e]]] = [[[e′]]]—and therefore [[e]] = [[e′]].

Proof

We first prove the lemma for one step of →lnf by case distinction over the rule

applied to reduce e to e′. By Theorem 9 we already have that ∀e, e′ ∈ LExp if

e →lnf e′ then [[[e′]]] b [[[e]]], so all that is left is proving that [[[e]]] b [[[e′]]] also, and

finally applying the transitivity of b, as it is a partial order by Lemma 6-i. We

proceed assumming some θ ∈ CSubst⊥ such that eθ _ t and then proving e′θ _ t.

The case where t ≡⊥ holds trivially using the rule (B), so we will prove the other

by a case distinction on the rule of the let calculus applied:

21

(LetIn) Assume h(d1, . . . , e, . . . , dn)→l let X = e in h(d1, . . . , X, . . . , dn) by the

(LetIn) rule and θ ∈ CSubts⊥ such that

h(d1, . . . , e, . . . , dn)θ ≡ h(d1θ, . . . , eθ, . . . , dnθ) _ t

Then by the compositionality of Theorem 5 we have that ∃t1 ∈ [[eθ]] such that

h(d1θ, . . . , t1, . . . , dnθ) _ t. Besides X is fresh and X 6∈ (dom(θ) ∪ vran(θ)) by

the variable convention, hence

(let X = e in h(d1, . . . , X, . . . , dn))θ ≡ let X = eθ in h(d1θ, . . . , X, . . . , dnθ)

and

h(d1θ, . . . , X, . . . , dnθ)[X/t1] ≡ h(d1θ, . . . , t1, . . . , dnθ)

and so we can do:

hypothesis

eθ _ t1

hypothesis

h(d1θ, . . . ,X, . . . , dnθ)[X/t1] ≡ h(d1θ, . . . , t1, . . . , dnθ) _ t

(let X = e in h(d1, . . . , X, . . . , dn))θ ≡ let X = eθ in h(d1θ, . . . ,X, . . . , dnθ) _ t
(Let)

(Bind) Assume let X = t1 in e→l e[X/t1] by (Bind) and θ ∈ CSubst⊥ such that (let X =
t1 in e)θ ≡ let X = t1θ in eθ _ t. Then it must be with a proof of the following shape:

t1θ _ t′1 eθ[X/t′1] _ t

let X = t1θ in eθ _ t
(Let)

But θ ∈ CSubst⊥ and t1 ∈ CTerm implies t1θ ∈ CTerm⊥, and so t1θ _ t′1 implies t′1 v
t1θ by Lemma 5-1. Hence [X/t′1] v [X/t1θ] and so eθ[X/t′1] _ t implies eθ[X/t1θ] _ t
by the monoticity of Proposition 5. Besides X 6∈ (dom(θ) ∪ vran(θ)) by the variable
convention, and so we can apply Lemma 1 (substitution lemma) to get (e[X/t1])θ ≡
eθ[X/t1θ], so we are done.

(Elim) Assume let X = e1 in e2→l e2 by (Elim) and θ ∈ CSubts⊥ such that (let X =
e1 in e2)θ ≡ let X = e1θ in e2θ _ t. Then it must be with a proof of the following
shape:

e1θ _ t1 e2θ[X/t1] _ t

let X = e1θ in e2θ _ t
(Let)

Then X 6∈ vran(θ) by the variable convention and X 6∈ FV (e2) by the condition of
(Elim), hence e2θ ≡ e2θ[X/t1] _ t, so we are done.

(Flat) Straightforward since e3θ[Y/t1] ≡ e3θ because Y 6∈ vran(θ) by the variable con-
vention and Y 6∈ FV (e3) by the condition of (Flat).

(Contx) By the proof of the other cases, [[[e]]] b [[[e′]]], but then [[[C[e]]]] b [[[C[e′]]]] by Lemma
7, and we are done.

The following lemmas —Lemmas 29, 30, 31 and 32— will be used to prove Lemma

8.

Lemma 29

Let linear e, e1 ∈ Exp such that eθ v e1 for θ ∈ Subst⊥. Then ∃θ′ ∈ Subst such

that eθ′ ≡ e1 and θ v θ′.

22

Proof

By induction on the structure of e. For the base case (e ≡ X ∈ V) we define a

function rep⊥ : Exp⊥ → Exp → Exp rep⊥(e, e′) that replaces the occurrences of

⊥ in e by the expression e′. We define this function recursively on the structure of

e:

• rep⊥(⊥, e′) = e′

• rep⊥(Z, e′) = Z

• rep⊥(h(e1, . . . , en), e′) = h(rep⊥(e1, e
′), . . . , rep⊥(en, e

′))

It is easy to check that rep⊥(e, e′) = e′′ implies e v e′′. Then we define θ′ ∈ Subst
as:

θ′(Y) =

{
e1 if X ≡ Y
rep⊥(θ(Y), Y) if Y ∈ dom(θ)r {X}

Trivially eθ′ ≡ Xθ′ ≡ e1 and θ v θ′ because eθ v e1 by the premise and θ(Y) v
rep⊥(θ(Y), Y).

Regarding the inductive step —e ≡ h(e1, . . . , en)— we know that

eθ ≡ h(e1θ, . . . , enθ) v e1 ≡ h(e′1, . . . , e
′
n)

so eiθ v e′i. Then by IH ∃θ′i ∈ Subst such that eiθ
′
i ≡ e′i and θ v θ′i. Then we define

θ′ as:

θ′(Y) =


θ′1(Y) if Y ∈ var(e1)

θ′2(Y) if Y ∈ var(e2)

. . .

θ′n(Y) if Y ∈ var(en)

rep⊥(θ(Y), Y) if Y ∈ dom(θ)r var(e)
The substitution θ′ is well defined because e is linear. Then eθ′ ≡ h(e1θ

′, . . . , enθ
′) ≡

h(e1θ
′
1, . . . , enθ

′
n) = h(e′1, . . . , e

′
n) ≡ e1 and θ v θ′ by IH and the fact that θ(Y) v

rep⊥(θ(Y), Y).

Lemma 30

For any e ∈ LExp⊥, FV (|e|) ⊆ FV (e).

Proof

Straightforward by induction on the structure of e.

Lemma 31

Given e ∈ LExp, θ ∈ LSubst⊥, |eθ| = |e|θ̂ where θ̂ is defined as Xθ̂ = |Xθ|

Proof

By induction on the structure of e. We have two base cases:

• e ≡ X ∈ V. Then |eθ| ≡ |Xθ| = Xθ̂ = |X|θ ≡ |e|θ̂.
• e ≡ f(e1, . . . , en). Then |eθ| ≡ |f(e1, . . . , en)θ| = |f(e1θ, . . . , enθ)| =⊥=⊥ θ̂ =

|f(e1, . . . , en)|θ̂ ≡ |e|θ̂.

Regarding the inductive step we have:

23

• e ≡ c(e1, . . . , en). Straightforward.

• e ≡ let X = e1 in e2. Then |eθ| = |(let X = e1 in e2)θ| = |let X =

e1θ in e2θ| = |e2θ|[X/|e1θ|]. By IH we have that |e1θ| = |e1|θ̂ and |e2θ| = |e2|θ̂,
so |e2θ|[X/|e1θ|] = |e2θ| = (|e2|θ̂)[X/|e1|θ̂]. By the variable convention we

can assume that X /∈ dom(θ) ∪ vran(θ), and since dom(θ̂) = dom(θ) and

vran(θ̂) ⊆ vran(θ) —using Lemma 30— we can use Lemma 1 and ob-

tain (|e2|θ̂)[X/|e1|θ̂] = (|e2|[X/|e1|])θ̂. Finally, (|e2|[X/|e1|])θ̂ = |let X =

e1 in e2|θ̂ = |e|θ̂.

Lemma 32

Given e ∈ LExp, θ ∈ LSubst⊥, if |e| =⊥ then |eθ| =⊥.

Proof

By induction on the structure of e. Notice that e cannot be a variable X or an

applied constructor symbol c(e1, . . . , en) because in those cases |e| 6=⊥. The base

case e ≡ f(e1, . . . , en) is straightforward. Regarding the inductive step we have

e ≡ let X = e1 in e2 such that |let X = e1 in e2| = |e2|[X/|e1|] =⊥. Then

|eθ| = |(letX = e1 in e2)θ| = |let X = e1θ in e2θ| = |e2θ|[X/|e1θ|]. By Lemma

23 |e2θ|[X/|e1θ|] = |(e2θ)[X/e1θ]|, and since X /∈ dom(θ) ∪ vran(θ) by the vari-

able convention then we can apply Lemma 1 and |(e2θ)[X/e1θ]| = |(e2[X/e1])θ|.
Finally by Lemma 31 |(e2[X/e1])θ| = |e2[X/e1]|θ̂, and by Lemma 23 |e2[X/e1]|θ̂ =

(|e2|[X/|e1|])θ̂ =⊥ θ̂ =⊥.

Lemma 8 (Completeness lemma for let-rewriting)

For all e ∈ LExp and t ∈ CTerm⊥ such that t 6≡⊥,

e _ t implies e→l∗ let X = a in t′

for some t′ ∈ CTerm and a ⊆ LExp in such a way that t v |let X = a in t′| and

|ai| =⊥ for every ai ∈ a. As a consequence, t v t′[X/ ⊥].

Proof

By induction on the size s of the CRWLlet-proof, that we measure as the number

of CRWLlet rules applied. Concerning the base cases:

(B) This contradicts the hypothesis because then t ≡⊥, so we are done. In the

rest of the proof we will assume that t 6≡⊥ because otherwise we would be in this

case.

(RR) Then we have X _ X. But then X→l 0
X and X v X ≡ |X|, so we are

done with X = ∅.
(DC) Then we have c _ c. But then c→l 0

c and c v c ≡ |c|, so we are done with

X = ∅.

Now we treat the inductive step:

24

(DC) Then we have e ≡ c(e1, . . . , en) and the CRWLlet-proof has the shape:

e1 _ t1, . . . , en _ tn
c(e1, . . . , en) _ c(t1, . . . , tn)

(DC)

In the general case some ti will be equal to ⊥ and some others will be different. For

the sake of simplicity we consider the case when n = 2 with t1 = ⊥ and t2 6≡ ⊥,

the proof can be easily extended to the general case. Then we have c(e1, e2) _
c(⊥, t2), so by IH over the second argument we get e2 →l∗ let X2 = a2 in t

′
2 with

t′2 ∈ CTerm, |a2i
| =⊥ for every a2i

∈ a2 and |let X2 = a2 in t
′
2| = t′2[X2/ ⊥] w t2.

So:

c(e1, e2)→l∗ c(e1, let X2 = a2 in t
′
2) by IH

→l let Y = (let X2 = a2 in t
′
2) in c(e1, Y) by (LetIn)

→l∗ let X2 = a2 in let Y = t′2 in c(e1, Y) by (Flat*)

→l let X2 = a2 in c(e1, t
′
2) by (Bind)

Then there are several possible cases:

a) e1 ≡ f1(e1): Then let X2 = a2 in c(f1(e1), t′2)→l let X2 = a2 in let Z =

f1(e1) in c(Z, t′2), by (LetIn). So we are done as |a2i | =⊥ for every a2i

by the IH, |f1(e1)| =⊥ and |let X2 = a2 in let Z = f1(e1) in c(Z, t′2)| =

c(Z, t′2)[X2/ ⊥, Z/ ⊥] w c(⊥, t2) because t′2[X2/ ⊥] w t2 by the IH, and Z is

fresh and so it does not appear in t′2
b) e1 ≡ t′1 ∈ CTerm: Then we are done as |a2i

| =⊥ for every a2i
∈ a2 by

the IH, and |let X2 = a2 in c(t′1, t
′
2)| = c(t′1, t

′
2)[X2/ ⊥] w c(⊥, t2), because

t′2[X2/ ⊥] w t2 by the IH

c) e1 ≡ c1(e1) 6∈ CTerm with c1 ∈ CS: Then by Lemma 3 we have the derivation

c1(e1)→l∗ let X1 = f1(t′1) in c1(t1). But then:

let X2 = a2 in c(c1(e1), t′2)

→l∗ let X2 = a2 in c(let X1 = f1(t′1) in c1(t1), t′2) Lemma 3

→l let X2 = a2 in let Y = (let X1 = f1(t′1) in c1(t1)) in c(Y, t′2) by (LetIn)

→l∗ let X2 = a2 in let X1 = f1(t′1) in let Y = c1(t1) in c(Y, t′2) by (Flat*)

→l let X2 = a2 in let X1 = f1(t′1) in c(c1(t1), t′2) by (Bind)

In the last step notice that Y is fresh and it cannot appear in t′2. Then

we are done as |fi(t′i)| =⊥, |a2i
| =⊥ for every a2i

∈ a2 by the IH, and

|let X2 = a2 in let X1 = f1(t′1) in c(c1(t1), t′2)| = c(c1(t1), t′2)[X1/ ⊥][X2/ ⊥]

w c(⊥, t2) because t′2[X2/ ⊥] w t2 by the IH, and no variable in X1 appears in

t′2 by α-conversion, as those are bound variables which were present in c1(e1)

or that appeared after applying Lemma 3 to it, and this expression was placed

in a position parallel to the position of t′2.

d) e1 ≡ let X = e11 in e12: Then by Lemma 3 let X = e11 in e12 →l∗

let X1 = f1(t′1) in e′′ where e′′ ∈ V or e′′ ≡ h1(t1). Then:

25

let X2 = a2 in c(let X = e11 in e12, t
′
2)

→l∗ let X2 = a2 in c(let X1 = f1(t′1) in e′′, t′2) by Lemma 3

→l let X2 = a2 in let Y = (let X1 = f1(t′1) in e′′) in c(Y, t′2) by (LetIn)

→l∗ let X2 = a2 in let X1 = f1(t′1) in let Y = e′′ in c(Y, t′2) by (Flat∗)

Then we have two possibilities depending on e′′:

i) e′′ ≡ Z ∈ V: Then we can do:

let X2 = a2 in let X1 = f1(t′1) in let Y = Z in c(Y, t′2)

→l let X2 = a2 in let X1 = f1(t′1) in c(Z, t′2) by (Bind)

Then we are done as |f1(t′1)| =⊥, |a2i
| =⊥ for every a2i

∈ a2 by IH, and

|let X2 = a2 in let X1 = f1(t′1) in c(Z, t′2)| = c(Z, t′2)[X1/ ⊥][X2/ ⊥] w
c(⊥, t2), as t′2[X2/ ⊥] w t2 by IH, and no variable in X1 appears in t′2 by

α-conversion, like in the case c).

ii) e′′ ≡ h1(t1): there are two possible cases:

A) h1 = f1 ∈ FS: We are done as |f1(t′1)| =⊥, |a2i
| =⊥ for every a2i

∈ a2

by IH, |f1(t1)| =⊥, and |let X2 = a2 in let X1 = f1(t′1) in let Y =

f1(t1) in c(Y, t′2)| = c(Y, t′2)[Y/ ⊥][X1/⊥][X2/⊥] w c(⊥, t2), as by IH

t′2[X2/⊥] w t2, Y is fresh and so it does not appear in t′2, and no

variable in X1 appears in t′2 as in the case i).

B) h1 = c1 ∈ DC: Then we can do a (Bind) step:

let X2 = a2 in let X1 = f1(t′1) in let Y = c1(t1) in c(Y, t′2)

→l let X2 = a2 in let X1 = a1 in c(c1(t1), t′2)

Then we are done as |f1(t′1)| =⊥, |a2i | =⊥ for every a2i ∈ a2 by IH,

and

|let X2 = a2 in let X1 = f1(t′1) in c(c1(t1), t′2)|
= c(c1(t1), t′2)[X1/ ⊥][X2/ ⊥]

w c(⊥, t2)

as t′2[X2/ ⊥] w t2 by IH, and no variable in X1 appears in t′2, as we

saw in i).

(OR) If f has no arguments (n = 0) then we have:

rθ _ t
f _ t

(OR)

with (f _ r) ∈ P and θ ∈ CSubst⊥. Let us define θ′ ∈ CSubst as the sub-

stitution which is equal to θ except that every ⊥ introduced by θ is replaced

with some constructor symbol or variable. Then θ v θ′, so by Proposition 5 we

have rθ′ _ t with a proof of the same size. But then applying the IH to this

proof we get rθ′ →l∗ let X = a in t′ under the conditions of the lemma. Hence

f→l rθ′ →l∗ let X = a in t′ applying (Fapp) in the first step, and we are done.

26

If n > 0, we will proceed as in the case for (DC), doing a preliminary version for

f(e1, e2) _ t which can be easily extended for the general case. Then we have:

e1 _⊥ e2 _ t2 rθ _ t

f(e1, e2) _ t
(OR)

such that t2 6≡⊥, and with (f(p1, p2) → r) ∈ P, θ ∈ CSubst⊥, such that

p1θ =⊥ and p2θ = t2. Then applying the IH to e2 _ t2 we get that e2 →l∗

let X2 = a2 in t′2 such that |a2i | =⊥ for every a2i and |let X2 = a2 in t′2| =

t′2[X2/ ⊥] w t2. Then we can do:

f(e1, e2)→l∗ f(e1, let X2 = a2 in t
′
2) by IH

→l let Y = (let X2 = a2 in t
′
2) in f(e1, Y) by (LetIn)

→l∗ let X2 = a2 in let Y = t′2 in f(e1, Y) by (Flat*)

→l let X2 = a2 in f(e1, t
′
2) by (Bind)

Then applying Lemma 3 we get

f(e1, t
′
2)→l∗ let X1 = f1(t′) in f(t′1, t

′
2)

Now as t′2[X2/ ⊥] w t2 then (t′1, t
′
2) w (⊥, t2), so by Lemma 29 there must exist

θ′ ∈ CSubst such that θ v θ′ and (p1, p2)θ′ ≡ (t′1, t
′
2). Then by Proposition 5, as

rθ _ t then rθ′ _ t with a proof of the same size. As θ′ ∈ CSubst and e ∈ LExp
(because it is part of the program) then rθ′ ∈ LExp and we can apply the IH

to that proof getting that rθ′ →l∗ let X = a in t′ such that |ai| =⊥ for every ai
and |let X = a in t′| = t′[X/ ⊥] w t. Then we can do:

let X2 = a2 in f(e1, t
′
2)

→l∗ let X2 = a2 in let X1 = f1(t′) in f(t′1, t
′
2) by Lemma 3

≡ let X2 = a2 in let X1 = f1(t′) in f(p1, p2)θ′

→l let X2 = a2 in let X1 = f1(t′) in rθ′ by (Fapp)

→l∗ let X2 = a2 in let X1 = f1(t′) in let X = a in t′ by 2nd IH

Then |a2i | =⊥ for every a2i ∈ a2 by IH, |f1(t′)| =⊥ and |ai| =⊥ for every ai by

IH. Besides the variables in X1∪X2 either belong to BV (e1)∪BV (e2) or are fresh,

hence none of them may appear in t (by Lemma 27 over f(e1, e2) _ t or by fresh-

ness). So t′[X/ ⊥] w t implies that ∀p ∈ O(t′) such that t′|p = Y for some Y ∈
X1 ∪X2 then t|p =⊥. But then |let X2 = a2 in let X1 = a1 in let X = a in t′| ≡
t′[X/ ⊥][X1/ ⊥][X2/ ⊥] w t.

(Let) Then e ≡ let X = e1 in e2 and we have a proof of the following shape:

e1 _ t1 e2[X/t1] _ t

let X = e1 in e2 _ t
(Let)

Then we have two possibilities:

a) t1 ≡⊥: Then e2[X/t1] ≡ e2[X/ ⊥] v e2. Hence, as e2[X/t1] _ t and [X/t1] v
ε, by Proposition 5 we get e2ε ≡ e2 _ t with a proof of the same size or

smaller, and so by IH we get e2 →l∗ let X = a in t′, with t′ ∈ CTerm,

|ai| ≡⊥ for every ai and |let X = a in t′| ≡ t′[X/ ⊥] w t, and we can do:

let X = e1 in e2 →l∗ let X = e1 in let X = a in t′

27

Besides X 6∈ var(t) by Lemma 27 over let X = e1 in e2 _ t, and then

t′[X/ ⊥] w t implies ∀p ∈ O(t′) such that t′|p ≡ X then t|p ≡⊥, and we have

several possible cases:

i) e1 = f1(e1): Then we are donde because |a| ≡ ⊥ by IH, |f1(e1)| ≡⊥ and

|let X = f1(e1) in let X = a in t′| ≡ t′[X/ ⊥][X/ ⊥] w t, as t′[X/ ⊥] w t

and ∀p ∈ O(t′) such that t′|p ≡ X then t|p ≡⊥, as we saw above.

ii) e1 = t′1 ∈ CTerm: But then

let X = t′1 in let X = a in t′→l let X = a[X/t′1] in t′[X/t′1] by (Bind)

and we are done because |a| ≡ ⊥ by IH, and so |a[X/t′1]| ≡ ⊥ by Lemma 32.

Besides, as in i), t′[X/ ⊥] w t combined with the fact that ∀p ∈ O(t′) such

that t′|p ≡ X we have t|p ≡⊥, implies that |let X = a[X/t′1] in t′[X/t′1]| ≡
t′[X/t′1][X/ ⊥] w t.

iii) e1 = c1(e1) 6∈ CTerm with c1 ∈ CS: Then by Lemma 3 we have c1(e1)→l∗

let X1 = f1(t1) in c1(t1), hence

let X = c1(e1) in let X = a in t′

→l∗ let X = (let X1 = f1(t1) in c1(t1)) in let X = a in t′ by Lemma 3

→l∗ let X1 = f1(t1) in let X = c1(t1) in let X = a in t′ by (Flat∗)

→l let X1 = f1(t1) in let X = a[X/c1(t1)] in t′[X/c1(t1)] by (Bind)

As by IH |a| ≡ ⊥ then |a[X/c1(t1)]| ≡ ⊥ by Lemma 32. At this point

we have to check that |let X1 = a1 in let X = a[X/c1(t1)] in t′[X/c1(t1)]|
≡ t′[X/c1(t1)][X/ ⊥][X1/ ⊥] w t. The variables in X1 either belong to

BV (c1(e1)) or are fresh, hence by α-conversion none of them may appear

in t′, because in let X = c1(e1) in let X = a in t′ the expression t′ has no

access to the variables bound in c1(e1). Hence t′[X/c1(t1)][X/ ⊥][X1/ ⊥] ≡
t′[X/t′′][X/ ⊥], for some t′′ ∈ CTerm⊥. But then, as in ii), t′[X/ ⊥] w t

combined with the fact that ∀p ∈ O(t′) such that t′|p ≡ X we have t|p ≡⊥,

implies that t′[X/t′′][X/ ⊥] w t.
iv) e1 ≡ let Y = e11 in e12: Then by Lemma 3 we have let Y = e11 in e12 →l∗

let X1 = f1(t1) in h1(t1), and so

let X = (let Y = e11 in e12) in let X = a in t′

→l∗ let X = (let X1 = f1(t1) in h1(t1)) in let X = a in t′ by Lemma 3

→l∗ let X1 = f1(t1) in let X = h1(t1) in let X = a in t′ by (Flat∗)

Then either h ∈ CS and we are like in iii) before the final (Bind) step, or

h ∈ FS and |h1(t1)| =⊥ and |a| = ⊥ (by IH), and |let X1 = a1 in let X =

h1(t1) in let X = a in t′| ≡ t′[X/ ⊥][X/ ⊥][X1/ ⊥] ≡ t′[X/ ⊥][X/ ⊥]

because X1∩var(t′) = ∅, as we saw in iii). But then, as in ii), t′[X/ ⊥] w t
combined with the fact that ∀p ∈ O(t′) such that t′|p ≡ X we have t|p ≡⊥,

implies that t′[X/ ⊥][X/ ⊥] w t.
b) t1 6≡⊥: Then by IH we get e1 →l∗ let X1 = a1 in t′1, with t′1 ∈ CTerm,

|a1i
| ≡⊥ for every a1i

and |let X1 = a1 in t
′
1| ≡ t′1[X1/ ⊥] w t1. Hence t1 v t′1

28

and so e2[X/t1] v e2[X/t′1], but then e2[X/t1] _ t implies e2[X/t′1] _ t with

a proof of the same size or smaller, by Proposition 3. Therefore we may apply

the IH to that proof to get e2[X/t′1] →l∗ let X = a in t′, with t′ ∈ CTerm,

|ai| ≡⊥ for every ai and |let X = a in t′| ≡ t′[X/ ⊥] w t. But then we can do:

let X = e1 in e2 →l∗ let X = (let X1 = a1 in t
′
1) in e2 by IH

→l∗ let X1 = a1 in let X = t′1 in e2 by (Flat∗)

→l let X1 = a1 in e2[X/t′1] by (Bind)

→l∗ let X1 = a1 in let X = a in t′ by IH

Then by the IH’s we have |a| = ⊥ and |a1| = ⊥. Besides the variables in X1

either belong to BV (e1) or are fresh, hence none of them may appear in t (by

Lemma 27 over let X = e1 in e2 _ t or by freshness). So t′[X/ ⊥] w t implies

that ∀p ∈ O(t′) such that t′|p = Y for some Y ∈ X1 then t|p =⊥. But then

|let X1 = a1 in let X = a in t′| ≡ t′[X/ ⊥][X1/ ⊥] w t.

A.8 Proofs for Section 5

Lemma 10

If BV (C) ∩ FV (e1) = ∅ and X 6∈ FV (C) then [[[C[let X = e1 in e2]]]] = [[[let X =

e1 in C[e2]]]]

Proof

One step of the rule (Dist) can be replaced by two steps (CLetIn) + (Bind):

C[let X = e1 in e2]→l let U = e1 in C[let X = U in e2]→l let U = e1 in C[e2[X/U]]

followed by a renaming of U by X in the last expression. Then the lemma fol-

lows from preservation of hypersemantics by (CLetIn) and (Bind) (Lemma 9 and

Proposition 8).

Proposition 9 ((Hyper)semantic properties of ?)

For any e1, e2 ∈ LExp⊥

i) [[e1 ? e2]] = [[e1]] ∪ [[e2]]

ii) [[[e1 ? e2]]] = [[[e1]]] d [[[e2]]]

Proof

i) Direct from definition of ? and the CRWL-proof calculus.

ii)

[[[e1 ? e2]]] = λθ.[[(e1 ? e2)θ]] by definition of [[[]]]

= λθ.[[e1θ ? e2θ]]

= λθ.([[e1θ]] ∪ [[e2θ]]) by i)

= λθ.([[[e1]]]θ ∪ [[[e2]]]θ) by definition of [[[]]]

= [[[e1]]] d [[[e2]]] by definition of d

29

A.9 Proofs for Section 6

Theorem 14 (Soundness of the let-narrowing relation l)

For any e, e′ ∈ LExp, e l∗

θ e′ implies eθ→l ∗e′.

Proof
First we prove the soundness of narrowing for one step, proceeding by a case dis-

tinction over the rule used in e l
θ e
′. The cases of (Elim), (Bind), (Flat) and

(LetIn) are trivial, since narrowing and rewriting coincide for these rules.

(Narr) Then we have f(t) l
θ rθ for (f(p)→ r) ∈ P fresh, θ ∈ CSubst such that

f(t)θ ≡ f(p)θ. But then (f(p) → r)θ ≡ f(p)θ → rθ ≡ f(t)θ → rθ, so we can do

eθ ≡ f(t)θ→l rθ ≡ e′ by (Fapp).

(Contxt) Then we have C[e] l
θ Cθ[e′] because e l

θe
′. Let us do a case distinc-

tion over the rule applied in e l
θ e
′:

a) e l
θ e
′ ≡ f(t) l

θ rθ by (Narr), for (f(p) → r) ∈ P fresh, so f(t)θ→l rθ

by (Fapp). Then (C[e])θ ≡ (C[e])θ|\var(p), because the variables in var(p) are

fresh as (f(p)→ r) is. But then, as dom(θ)∩BV (C) = ∅ and vRan(θ|\var(p))∩
BV (C) = ∅ by the conditions in (Contx), and dom(θ) ∩ BV (C) = ∅ implies

dom(θ|\var(p))∩BV (C) = ∅, we can apply Lemma 25 getting (C[e])θ|\var(p) ≡
Cθ|\var(p)[eθ|\var(p)] ≡ Cθ|\var(p)[f(t)θ|\var(p)] ≡ Cθ[f(t)θ], because the vari-

ables in var(p) are fresh. Besides vran(θ|\var(p))∩BV (C) = ∅, so we can apply

(Contx) combined with an inner (Fapp) to do (C[e])θ ≡ Cθ[f(t)θ]→l Cθ[rθ] ≡
Cθ[e′].

b) In case a different rule was applied in e l
θ e
′ then θ = ε. By the proof of the

other cases we have eθ ≡ e→l e′, so (C[e])θ ≡ C[e]→l C[e′] ≡ Cθ[e′] (remember

θ = ε).

Now we prove the lemma for any number of steps →l , proceeding by induction

over the length n of e ln

θ e′. The case e l0

ε e ≡ e′ is straightforward because

e→l0 e ≡ e′. For n > 0 we have the derivation e l
σ e
′′ ln−1

γ e′ with θ = γ ◦σ. By

the proof for one step eσ→l e′′, and by the closeness under CSubst of let-rewriting

(Lemma 2) eσγ→l e′′γ. By IH e′′γ →l∗ e′, so we can link eθ ≡ eσγ→l e′′γ →l∗ e′.

Lemma 11 (Lifting lemma for the let-rewriting relation →l)

Let e, e′ ∈ LExp such that eθ →l∗ e′ for some θ ∈ CSubst, and let W,B ⊆ V with

dom(θ) ∪ FV (e) ⊆ W, BV (e) ⊆ B and (dom(θ) ∪ vran(θ)) ∩ B = ∅, and for each

(Fapp) step of eθ →l∗ e′ using a rule R ∈ P and a substitution γ ∈ CSubst then

vran(γ|vExtra(R))∩B = ∅. Then there exist a derivation e l∗
σ e
′′ and θ′ ∈ CSubst

such that:

(i) e′′θ′ = e′ (ii) σθ′ = θ[W] (iii) (dom(θ′) ∪ vran(θ′)) ∩ B = ∅

Besides, the let-narrowing derivation can be chosen to use mgu’s at each (Narr)

step.

30

Proof

Let us do a case distinction over the rule applied in eθ→l e′:

(Fapp) e ≡ f(t), so:

f(t)e ≡ rσ ≡ e′′

f(t)θ rγ ≡ e′

l
σ

l

θ θ′

With an (Fapp) step eθ ≡ f(t)θ→l rγ with (f(p) → r) ∈ P, γ ∈ CSubst, such

that f(t)θ ≡ f(p)γ and f(p)→ r is a fresh variant. We can assume that dom(γ) ⊆
FV (f(p) → r) without loss of generality. But then dom(θ) ∩ dom(γ) = ∅, and

so θ] γ is correctly defined, and it is a unifier of f(t) and f(p). So, there must

exist σ = mgu(f(t), f(p)), which we can use to perform a (Narr) step, because

σ ∈ CSubst and f(t)σ ≡ f(p)σ.

e ≡ f(t) l
σ rσ ≡ e′′

As this unifier is an mgu then dom(σ) ⊆ FV (f(t)) ∪ FV (f(p)), vran(σ) ⊆
FV (f(t))∪FV (f(p)) and σ . (θ]γ), so there must exist θ′1 ∈ CSubst such that

σθ′1 = θ]γ. Besides we can define θ′0 = θ|\(dom(θ′1)∪FV (f(t))) and then we can take

θ′ = θ′0]θ′1 which is correctly defined as obviously dom(θ′0)∩dom(θ′1) = ∅. Besides

dom(θ′0) ∩ (FV (f(t)) ∪ FV (f(p)) = ∅, as if Y ∈ FV (f(t)) then Y 6∈ dom(θ′0) by

definition; and if Y ∈ FV (f(p)) then Y 6∈ dom(θ) as p belong to the fresh variant,

and so Y /∈ dom(θ′0). Then the conditions in Lemma 11 hold:

• Condition i) e′′θ′ ≡ e′: As e′′θ′ ≡ rσθ′ ≡ rσθ′1 because given Y ∈ FV (rσ), if

Y ∈ FV (r) then it belongs to the fresh variant and so Y /∈ dom(θ) ⊇ dom(θ′0);

and if Y ∈ vran(σ) ⊆ FV (f(t)) ∪ FV (f(p)) then Y /∈ dom(θ′0) because

dom(θ′0) ∩ (FV (f(t)) ∪ FV (f(p))) = ∅. But rσθ′1 ≡ r(θ] γ) ≡ rγ ≡ e′,

because σθ′1 = θ] γ and r is part of the fresh variant.

• Condition ii) σθ′ = θ[W]: Given Y ∈ W, if Y ∈ FV (f(t)) then Y /∈ dom(γ)

and so Y θ ≡ Y (θ] γ) ≡ Y σθ′1, as σθ′1 = θ] γ. But Y σθ′1 ≡ Y σθ′ because

given Z ∈ var(Y σ), if Z ≡ Y then as Y ∈ FV (f(t)) then Z ≡ Y /∈ dom(θ′0)

by definition of θ′0; if Z ∈ vran(σ) then Z 6∈ dom(θ′0), as we saw before.

On the other hand, (W\FV (f(t)))∩(FV (f(t))∪FV (f(p))) = (W\FV (f(t))∩
FV (f(t))) ∪ (W \ FV (f(t)) ∩ FV (f(p))) = ∅ ∪ ∅ = ∅, because FV (f(p)) are

part of the fresh variant. So, if Y ∈ W \ FV (f(t)), then Y 6∈ dom(σ) ⊆
FV (f(t)) ∪ FV (f(p)). Now if Y ∈ dom(θ′0) then Y θ ≡ Y θ′0 (by definition

of θ′0), Y θ′0 ≡ Y θ′ (as Y ∈ dom(θ′0)), Y θ′ ≡ Y σθ′ (as Y 6∈ dom(σ)). If

Y ∈ dom(θ′1), Y θ ≡ Y (θ]γ) (as Y ∈ W\FV (f(t)) implies it does not appear

in the fresh instance), Y (θ] γ) ≡ Y σθ′1 (as σθ′1 = θ] γ), Y σθ′1 ≡ Y θ′1 (as

Y 6∈ dom(σ)), Y θ′1 ≡ Y θ′ (as Y ∈ dom(θ′1)) and Y θ′ ≡ Y σθ′ (as Y 6∈ dom(σ)).

31

And if Y 6∈ (dom(θ′0) ∪ dom(θ′1)) then Y 6∈ dom(θ′), and as Y 6∈ dom(σ) and

Y θ ≡ Y (θ] γ), then Y θ ≡ Y (θ] γ) ≡ Y σθ′1 ≡ Y ≡ Y σθ′.
• Condition iii.1) dom(θ′) ∩ B = ∅. Remember θ′ = θ′0] θ′1:

— dom(θ′0) ∩ B = ∅: Given Y ∈ dom(θ′0) then Y ∈ dom(θ) by definition of

θ′0, and so Y 6∈ B, because dom(θ) ∩ B = ∅ by hypothesis.

— dom(θ′1)∩B = ∅: As σ is an mgu and σ . θ]γ, then dom(σ) ⊆ dom(θ]γ).

Given Z ∈ B then Z 6∈ dom(θ), as dom(θ) ∩ B = ∅ by hypothesis, and

Z /∈ dom(γ) ⊆ FV (f(p) → r) which are fresh, so Z 6∈ dom(σ). But then,

as σθ′1 = θ] γ, Z ≡ Z(θ] γ) ≡ Zσθ′1 ≡ Zθ′1, so Z 6∈ dom(θ′1).

• Condition iii.2) vran(θ′) ∩ B = ∅. Remember θ′ = θ′0] θ′1:

— vran(θ′0) ∩ B = ∅: Given Y ∈ dom(θ′0) then Y θ′0 ≡ Y θ by definition of θ′0.

As vran(θ) ∩ B = ∅ by hypothesis then it must happen var(Y θ) ∩ B = ∅,
so var(Y θ′0) ∩ B = ∅.

— vran(θ′1)∩B = ∅: As σθ′1 = θ]γ then we can assume dom(θ′1) ⊆ vran(σ)∪
(dom(θ] γ) \ dom(σ)).

– Let X ∈ dom(θ′1) ∩ vran(σ) be such that Xθ′1 ≡ r[Z] with Z ∈ B. We

will see that this Z ∈ B can appear in Xθ′1 without leading to contra-

diction. The intuition is, as vran(θ)∩B = ∅ and vran(γ|vExtra(R))∩B =

∅, then every Z ∈ B must come from an appearance in e of the same

variable, transmitted to e′ by the matching substitution γ, and so

transmitted to e′′ by σ.

As X ∈ vran(σ) then there must exist Y ∈ dom(σ) such that Y 7−→σ

r1[X]p 7−→θ′1 r2[s[Z]]p. But as σθ′1 = θ] γ then Y 7−→θ]γ r2[s[Z]]p.

Then, Z ∈ vran(θ]γ), but Z ∈ B, vran(θ)∩B = ∅, vran(γ|vExtra(R))∩
B = ∅, dom(γ) ⊆ FV (f(p)→ s), so it must happen Z ∈ vran(γ|FV (p)),

and as a consequence Y ∈ FV (p). Let o ∈ O(f(p)) (set of positions in

f(p)) be such that f(p)|o ≡ Y , then:

· ((f(t))σ)|o ≡ ((f(p))σ)|o ≡ ((f(p))|o)σ ≡ Y σ ≡ r1[X]p.

· As f(t) 6∈ dom(γ), which are the fresh variables of the variant of the

program rule, ((f(t))θ)|o ≡ ((f(t))(θ] γ))|o ≡ ((f(p))(θ] γ))|o ≡
((f(p))|o)(θ] γ) ≡ Y (θ] γ) ≡ r2[s[Z]]p

So, as X ∈ dom(θ′1) then X 6∈ B and Z ∈ B has been introduced by θ,

but this is impossible as vran(θ) ∩ B = ∅.
– Let Y ∈ dom(θ) \ dom(σ) be. Then Y θ ≡ Y (θ] γ) (as Y ∈ dom(θ),

Y (θ] γ) ≡ Y σθ′1 (as σθ′1 = θ] γ), Y σθ′1 ≡ Y θ′1 (as Y 6∈ dom(σ). But

then no variable in B can appear in Y θ′1 ≡ Y θ as (dom(θ)∪vran(θ))∩
B = ∅.

– Let Y ∈ dom(γ) \ dom(σ) be. Then Y γ ≡ Y (θ] γ) ≡ Y σθ′1 ≡ Y θ′1,

reasoning like in the previous case. As dom(γ) ⊆ FV (f(p)→ s) it can

happen:

· Y 6∈ FV (f(p)): Then no variable in B can appear in Y γ because

vran(γ|vExtra(R)) ∩ B = ∅ by the hypothesis.

32

· Y ∈ FV (f(p)): Let Z ∈ B appearing in Y γ, then Z appears in f(t),

so it must happen Y ∈ dom(σ) because otherwise σ could not be a

unifier of f(t) and f(p). But this is a contradiction so this case is

impossible.

(LetIn) In this case eθ ≡ h(e1θ, . . . , eθ, . . . , enθ) and e ≡ h(e1, . . . , e, . . . , en). Then

the let-rewriting step is

eθ ≡ h(e1θ, . . . , eθ, . . . , enθ)→l let X = eθ in h(e1θ, . . . , X, . . . , enθ) ≡ e′

with h ∈ Σ, eθ ≡ f(e′) —f ∈ FS— or eθ ≡ let Y = e′1 in e′2, and X is a

fresh variable. Notice that eθ is a let-rooted expression or a f(e′) iff e is a let-

rooted expression or a function application, as θ ∈ CTerm. Then we can apply

a let-narrowing step:

e ≡ h(e1, . . . , e, . . . , en) l
σ let X = e in h(e1, . . . , X, . . . , en) ≡ e′′

with σ ≡ ε and θ′ ≡ θ. Then the conditions in Lemma 11 hold:

i) e′′θ′ ≡ (let X = e in h(e1, . . . , X, . . . , en))θ ≡
let X = eθ in h(e1θ, . . . , Xθ, . . . , enθ) ≡
let X = eθ in h(e1θ, . . . , X, . . . , enθ) ≡ e′, since X is fresh an it cannot appear

in dom(θ′).

ii) σθ′ ≡ εθ ≡ θ = θ[W].

iii) (dom(θ′) ∪ vran(θ′)) ∩ B = (dom(θ) ∪ vran(θ)) ∩ B = ∅ by hypothesis.

(Bind) In this case eθ ≡ let X = tθ in e2θ and e ≡ let X = t in e2. Then

the let-rewriting step is let X = tθ in e2θ→l e2θ[X/tθ] with tθ ∈ CTerm. As

θ ∈ CTerm, if tθ ∈ CTerm then t ∈ CTerm, so we can apply a let-narrowing

step:

e ≡ let X = t in e2
l
σ e2[X/t] ≡ e′′

with σ ≡ ε and θ′ ≡ θ. Then the conditions in Lemma 11 hold:

i) e′′θ′ ≡ e2[X/t]θ. By the variable convention we can assume that X /∈ dom(θ)∪
vran(θ), so by Lemma 1 e2[X/t]θ ≡ e2θ[X/tθ] ≡ e′.

ii) and iii) As before.

(Elim) We have eθ ≡ let X = e1θ in e2θ, so e ≡ let X = e1 in e2. Then the

let-rewriting step is eθ ≡ let X = e1θ in e2θ→l e2θ with X /∈ FV (e2θ). By the

variable convention (dom(θ) ∪ vran(θ)) ∩ BV (e) = ∅, so as X ∈ BV (e) then

X /∈ dom(θ) ∪ vran(θ). Then X /∈ FV (e2θ) implies X /∈ FV (e2) and we can

apply a let-narrowing step:

e ≡ let X = e1 in e2
l
σ e2 ≡ e′′

with σ ≡ ε and θ′ ≡ θ. Then the conditions in Lemma 11 hold trivially.

(Flat) In this case eθ ≡ let X = (let Y = e1θ in e2θ) in e3θ and e ≡ let X =

(let Y = e1 in e2) in e3. The let-rewriting step is eθ ≡ let X = (let Y =

e1θ in e2θ) in e3θ→l let Y = e1θ in let X = e2θ in e3θ ≡ e′ with Y /∈ FV (e3θ).

By a similar reasoning as in the (Elim) case we conclude that Y /∈ dom(θ) ∪

33

vran(θ), so Y /∈ FV (e3). Then we can apply a let-narrowing step:

e ≡ let X = (let Y = e1 in e2) in e3
l
σ let Y = e1 in let X = e2 in e3 ≡ e′′

with σ ≡ ε and θ′ ≡ θ. Then the conditions in Lemma 11 hold trivially.

(Contx) Then we have e ≡ C[s]. By the variable convention (dom(θ)∪ vran(θ))∩
BV (e) = ∅, so by lemma 25 eθ ≡ (C[s])θ ≡ Cθ[sθ], and the step was

eθ ≡ Cθ[sθ]→l Cθ[s′] ≡ e′, because sθ→l s′

Then we know that the lemma holds for sθ→l s′, by the proof of the other cases,

so taking W ′ = W ∪ FV (s) and B′ = B (as BV (s) ⊆ BV (C[s])) we can do

s l
σ2s
′′ for some θ′2 under the conditions stipulated. Now we can put this step

into (Contx) to do:

e ≡ C[s] l
σ2Cσ2[s′′] ≡ e′′ taking σ = σ2 and θ′ = θ′2

because if s l
σ2
s′′ was a (Narr) step which lifts a (Fapp) step that uses the fresh

variant (f(p)→ r) ∈ P and adjusts with γ ∈ CSubst, then:

• dom(σ2) ∩ BV (C) = ∅: As σ2 = mgu(s, f(p)) then dom(σ2) ⊆ FV (s) ∪
FV (f(p)). As σ2 . θ] γ and it is an mgu then dom(σ2) ⊆ dom(θ] γ). If

X ∈ FV (s)∩dom(σ2) then X 6∈ dom(γ) ⊆ FV (f(p)→ r), so it must happen

X ∈ dom(θ); but then X 6∈ BV (C) because dom(θ) ∩ BV (C) = ∅ by the

variable convention.

Otherwise it could happen X ∈ FV (f(p)) ∩ dom(σ2), then X appears in the

fresh variant and so it cannot appear in C.
• vran(σ2|\var(p)) ∩ BV (C) = ∅: As dom(σ2) ⊆ FV (s) ∪ FV (f(p)) then we

have vran(σ2|\var(p)) = vran(σ2|FV (s)). But as σ2 = mgu(s, f(p)) then

vran(σ|FV (s)) ⊆ FV (f(p)), which are part of the fresh variant, so every

variable in vran(σ2|\var(p)) is fresh and so cannot appear in C.
Then the conditions in Lemma 11 hold:

ii) σθ′ = θ[W]: Because W ⊆ W ′, and σ2θ
′
2 = θ[W ′], by the proof of the other

cases.

i) e′′θ′ ≡ e′: As BV (Cσ2) = BV (C), by the variable convention, BV (C) ⊆
BV (e) ⊆ BV (B), by the hypothesis, and (dom(θ′2) ∪ vran(θ′2)) ∩ B = ∅, by

the proof of the other cases, then (dom(θ′2) ∪ vran(θ′2)) ∩ BV (Cσ2) = ∅. But

then:

e′′θ′ ≡ (Cσ2[s′′])θ′2 ≡ Cσ2θ
′
2︸ ︷︷ ︸

Cθ

[s′′θ′2︸︷︷︸
s′

] ≡ e′

Because we have s′′θ′2 ≡ s′, by the proof of the other cases, and because

FV (C) ⊆ FV (e) ⊆ W and σ2θ
′
2 = θ[W], as we saw in the previous case

(remember σ = σ2 and θ′ = θ′2).

iii) (dom(θ′) ∪ vran(θ′)) ∩ B = ∅: Because θ′ = θ′2 and the proof of the other

cases.

The proof for any number of steps proceeds by induction over the number n of

steps of the derivation eθ→l ne′. The base case where n = 0 is straightforward, as

34

then we have eθ→l 0
eθ ≡ e′ so we can do e l0

ε e ≡ e′′, so σ = ε and taking θ′ = θ

the lemma holds. In the inductive step we have eθ→l e1 →l∗ e′, and we will try to

build the following diagram:

e e′′1 e′′2 ≡ e′′

eθ e1 e′

l
σ1

l∗

σ2

l

∗
l

θ θ1 θ′2 = θ′

By the previous proof for one step we have e l
σ1e
′′
1 and θ′1 ∈ CSubst under the

conditions stipulated. In order to this with the IH we define the sets B1 = B∪BV (e1)

and W1 = (W \ dom(σ1)) ∪ vran(σ1) ∪ vE, where vE is the set of extra variables

in the fresh variant f(p) → s used in e l
σ1
e′′1 , if it was a (Narr) step; or empty

otherwise. We also define θ1 = θ′1|W1
. Then:

• FV (e′′1)∪ dom(θ1) ⊆ W1: We have dom(θ1) ⊆ W1 by definition of θ1. On the

other hand we have FV (e′′1) ⊆ W1 because given X ∈ FV (e′′1) we have two

possibilities:

a) X ∈ FV (e)): then X /∈ dom(σ1) since otherwise it disappears in the step

e l
σ1
e′′. As dom(θ) ∪ FV (e) ⊆ W then X ∈ W \ dom(σ1), so X ∈ W1.

b) X /∈ FV (e)) : then there are two possibilities:

i) X has been inserted by σ1, so X ∈ vran(σ1) and X ∈ W1.

ii) X has been inserted as an extra variable in a (Narr) step. Since the

narrowing substitution is a mgu then σ1 cannot affect X, so X ∈ W1

because X ∈ vE.

• e′′1θ1 ≡ e1: Because as we have seen, FV (e′′1) ⊆ W1, and so e′′1θ1 ≡ e′′1θ′1|W1
≡

e′′1θ
′
1 ≡ e1, by the proof for one step.

• BV (e′′1) ⊆ B1: As θ′1 ∈ CSubst, e′′1θ
′
1 ≡ e1 and no CSubst can introduce

any binding then BV (e1) = BV (e′′1). But B1 = B ∪ BV (e1), so BV (e′′1) =

BV (e1) ⊆ B1.

• (dom(θ1) ∪ vran(θ1)) ∩ B1 = ∅: As θ′1 ∈ CSubst, e′′1θ′1 ≡ e1 and no CSubst

can introduce any binding then BV (e1) = BV (e′′1). Then it can happen:

a) BV (e′′1) ⊆ BV (e): Then B = B1, as BV (e1) = BV (e′′1) ⊆ BV (e) ⊆ B by

hypothesis. Then, as (dom(θ′1)∪vran(θ′1))∩B = ∅ by the proof for one step,

then (dom(θ′1)∪vran(θ′1))∩B1 = ∅, and so (dom(θ1)∪vran(θ1))∩B1 = ∅,
because θ1 = θ′1|W1 and so its domain and variable range is smaller than

the domain of θ′1.

b) BV (e′′1) ⊃ BV (e): Then e l
σ1e
′′
1 must have been a (LetIn) step and so

σ = ε and θ′1 = θ. As the new bounded variable Z is fresh wrt. θ then

it is also fresh for θ′1 = θ, and so B1 = B ∪ {Z} has no intersection with

dom(θ′1) ∪ vran(θ′1) nor with dom(θ1) ∪ vran(θ1), which is smaller.

• σ1θ1 = θ[W]: It is enough to see that σ1θ1 = σ1θ
′
1[W], because we have

σ1θ
′
1 = θ[W] by the proof for one step, and this is true because given X ∈ W:

35

a) If X ∈ dom(σ1) then FV (Xσ1) ⊆ vran(σ1) ⊆ W1, so as θ1 = θ′1|W1
then

Xσ1θ1 ≡ Xσ1θ
′
1|W1 ≡ Xσ1θ

′
1.

b) If X ∈ W \ dom(σ1) then X ∈ W1 by definition, and so Xσ1θ1 ≡ Xθ1 (as

X 6∈ dom(σ1)), Xθ1 ≡ Xθ′1|W1 ≡ Xθ′1 (as X ∈ W1), and Xθ′1 ≡ Xσθ′1 (as

X 6∈ dom(σ1)).

So we have e′′1θ1 ≡ e1 and e1 →l∗ e′, but then we can apply the induction

hypothesis to e′′1θ1 →l∗ e′ using W1 and B1, which fulfill the hypothesis of the

lemma, as we have seen. Then we get e′′1
l∗
σ2

e′′2 and θ′2 ∈ CSubst under the

conditions stipulated. But then we have:

e l
σ1
e′′1

l∗
σ2
e′′2 taking e′′ ≡ e′′2 , σ = σ1σ2 and θ′ = θ′2

for which we can prove the conditions in Lemma 11:

i) e′′θ′ ≡ e′: As e′′θ′ ≡ e′′2θ′2 ≡ e′ by IH.

ii) σθ′ = θ[W]: That is, σ1σ2θ
′
2 = θ[W]. As we have σ1θ1 = θ[W], as we saw

before, all that is left is proving σ1σ2θ
′
2 = σ1θ1[W], which happens because

given X ∈ W:

a) If X ∈ dom(σ1) then FV (Xσ1) ⊆ vran(σ1) ⊆ W1, so as σ2θ
′
2 = θ1[W1]

by IH, then (Xσ1)σ2θ
′
2 ≡ (Xσ1)θ1.

b) If X ∈ W \ dom(σ1) then X ∈ W1 by definition, and so, as σ2θ
′
2 = θ1[W1]

by IH, then Xσ1σ2θ
′
2 ≡ Xσ2θ

′
2 (as X 6∈ dom(σ1)), Xσ2θ

′
2 ≡ Xθ1 (as

X ∈ W1), Xθ1 ≡ Xσ1θ1 (as X 6∈ dom(σ1)).

iii) (dom(θ′) ∪ vran(θ′)) ∩ B = ∅: That is (dom(θ′2) ∪ vran(θ′2)) ∩ B = ∅, which

happens as (dom(θ′2) ∪ vran(θ′2)) ∩ B1 = ∅ by IH and B ⊆ B1.

A.10 Proofs for Section 7

The let-binding elimination transformation ̂ satisfies the following interesting

properties, which illustrate that its definition is sound.

Lemma 33

For all e, e′ ∈ LExp, C ∈ Cntxt, X ∈ V we have:

i) |ê| ≡ |e|.
ii) If e ∈ Exp then ê ≡ e.

iii) FV (ê) ⊆ FV (e)

iv) ê[X/e′] = ê[X/ê′].

Proof

i–iii) Easily by induction on the structure of e.

iv) A trivial induction on the structure of e, using Lemma 1 for the case when e

has the shape e ≡ let X = e1 in e2.

36

Lemma 12 (Copy lemma)

For all e, e1, e2 ∈ Exp, X ∈ V:

i) e1 → e2 implies e[X/e1]→∗ e[X/e2].

ii) e1 →∗ e2 implies e[X/e1]→∗ e[X/e2].

Proof

To prove i) we proceed by induction on the structure of e. Concerning the base

cases:

• If e ≡ X then e[X/e1] ≡ e1 → e2 ≡ e[X/e2], by hypothesis.

• If e ≡ Y ∈ V \ {X} then e[X/e1] ≡ Y →0 Y ≡ e[X/e2].

• Otherwise e ≡ h for some h ∈ Σ, so e[X/e1] ≡ h→0 h ≡ e[X/e2]

Regarding the inductive step, then e ≡ h(e′1, . . . , e
′
n) and so

e[X/e1] ≡ h(e′1[X/e1], . . . , e′n[X/e1])

→∗ h(e′1[X/e2], . . . , e′n[X/e2]) by IH, n times

≡ e[X/e2]

The proof for ii) follows the same structure.

Lemma 13 (One-Step Soundness of let-rewriting wrt. term rewriting)

For all e, e′ ∈ LExp we have that e→l e′ implies ê→∗ ê′.

Proof

We proceed by a case distinction over the rule of let-rewriting used in the step

e→l e′.

(Fapp) Then we have:

e ≡ f(p)θ→l rθ ≡ e′ for some (f(p)→ r) ∈ P, θ ∈ CSubst

But then f(p)θ, rθ ∈ Exp, therefore f̂(p)θ ≡ f(p)θ and r̂θ ≡ rθ, by Lemma 33

ii), and so we can link ê ≡ f̂(p)θ ≡ f(p)θ → rθ ≡ r̂θ ≡ ê′, by a term rewriting

step.

(LetIn) Then we have:

e ≡ h(e1, . . . , ek, . . . , en)→l let X = ek in h(e1, . . . , X, . . . , en) ≡ e′

where X is a fresh variable (among other conditions). But then

ê′ ≡ ̂h(e1, . . . , X, . . . , en)[X/êk] ≡ h(ê1, . . . , X, . . . , ên)[X/êk]

≡ h(ê1, . . . , êk, . . . , ên) as X is fresh

≡ ̂h(e1, . . . , ek, . . . , en) ≡ ê

Therefore ê→0 ê ≡ ê′.
(Bind) Then we have:

e ≡ let X = t in e1→l e1[X/t] ≡ e′ with t ∈ CTerm

But then ê ≡ ê1[X/t̂] ≡ ̂e1[X/t] ≡ ê′, by Lemma 33 iv), hence ê→0 ê ≡ ê′.

37

(Elim) Then we have:

e ≡ let X = e1 in e2→l e2 ≡ e′ with X 6∈ FV (e2)

But then

ê ≡ ê2[X/ê1]

≡ ̂e2[X/e1] by Lemma 33 iv)

≡ ê2 ≡ ê′ as X 6∈ FV (e2)

Therefore ê→0 ê ≡ ê′.
(Flat) Then we have:

e ≡ let X = (let Y = e1 in e2) in e3→l let Y = e1 in (let X = e2 in e3) ≡ e′

where Y /∈ FV (e3). But then

ê ≡ ê3[X/ ̂let Y = e1 in e2] ≡ ê3[X/(ê2[Y/ê1])]

≡ ê3[X/ê2][Y/ê1] Y /∈ FV (ê3) by Lemma 33 iii)

≡ (̂let X = e2 in e3)[Y/ê1] ≡ ê′

Therefore ê→0 ê ≡ ê′.
(Contx) Then we have:

e ≡ C[e1]→l C[e2] ≡ e′

with e1→l e2 by some of the previous rules, therefore ê1 →∗ ê2 by the proof of

the previous cases. We will prove that ê1 →∗ ê2 implies Ĉ[e1] →∗ Ĉ[e2], thus

getting ê→∗ ê′ as a trivial consequence.

We proceed by induction on the structure of C. Regarding the base case then

C ≡ [] and so Ĉ[e1] ≡ ê1 →∗ ê2 ≡ Ĉ[e2] by hypothesis. For the inductive step:

• If C ≡ let X = C′ in a then by IH we get Ĉ′[e1]→∗ Ĉ′[e2], and so

Ĉ[e1] ≡ â[X/Ĉ′[e1]]

→∗ â[X/Ĉ′[e2]] by IH and Lemma 12

≡ Ĉ[e2]

Notice that it is precisely because of this case that we cannot say that e→l e′

implies ê→∗ ê′ in zero or one steps, because the copies of Ĉ′[e1] made by the

substitution [X/Ĉ′[e1]] may force the zero or one steps derivation from Ĉ′[e1]

to be repeated several times in derivation â[X/Ĉ′[e1]]→∗ â[X/Ĉ′[e2]]. This is

typical situation when mimicking term graph rewriting derivations by term

rewriting.

• If C ≡ let X = a in C′ then Ĉ[e1] ≡ Ĉ′[e1][X/â]→∗ Ĉ′[e2][X/â] ≡ Ĉ[e2], by IH

combined with closedness under substitutions of term rewriting.

• Otherwise C ≡ h(a1, . . . , C′, . . . , an) and then Ĉ[e1] ≡ h(â1, . . . , Ĉ′[e1], . . . , ân)

→∗ h(â1, . . . , Ĉ′[e2], . . . , ân) ≡ Ĉ[e2] by IH.

Proposition 10

For all σ ∈ Subst⊥, θ ∈ [[σ]], we have that θ E σ.

38

Proof

Given some X ∈ V, we have two possibilities. If X ∈ dom(θ) then taking any

t ∈ CTerm⊥ such that P `CRWL θ(X) _ t, by Lemma 5 we have t v θ(X),

because θ ∈ [[σ]] ⊆ CSubst⊥. But θ ∈ [[σ]] implies P `CRWL σ(X) _ θ(X), therefore

P `CRWL σ(X) _ t by the polarity from Proposition 3, which holds for CRWL

too. Hence [[θ(X)]] ⊆ [[σ(X)]].

On the other hand, if X 6∈ dom(θ) then for any t ∈ CTerm⊥ such that P `CRWL

θ(X) ≡ X _ t we have that t ≡⊥ or t ≡ X. If t ≡⊥ then P `CRWL σ(X) _ t

by rule (B). Otherwise θ ∈ [[σ]] implies P `CRWL σ(X) _ θ(X) ≡ X ≡ t. Hence

[[θ(X)]] ⊆ [[σ(X)]].

Proposition 11

For all σ ∈ DSusbt⊥, [[σ]] is a directed set.

Proof

For any preorder ≤, any directed set D wrt. it and any elements e1, e2 ∈ D by

e1 tD e2 we denote the element e3 ∈ D such that e1 ≤ e3 and e2 ≤ e3 that must

exist because D is directed.

Now, given any σ ∈ DSubst⊥ we have that ∀X ∈ V, [[σ(X)]] is a directed set,

because if X ∈ dom(σ) then we can apply the definition of DSubst⊥ and otherwise

[[X]] = {X,⊥}, which is directed. Now given θ1, θ2 ∈ [[σ]] we can define θ3 ∈ CSubst⊥
as θ3(X) = θ1(X) tσ(X) θ2(X), which fulfills:

1. θi v θ3 for i ∈ {1, 2}, because for any X ∈ V we have that [[σ(X)]] is directed

(as we saw above) and θi(X) ∈ [[σ(X)]] (because θ1, θ2 ∈ [[σ]]), therefore

θi(X) v θ1(X) tσ(X) θ2(X) = θ3(X) by definition.

2. θ3 ∈ [[σ]], because ∀X ∈ V, θ3(X) = θ1(X)tσ(X)θ2(X) ∈ [[σ(X)]] by definition.

We will use the following lemma about non-triviality of substitution denotations

as an auxiliary result for proving Lemma 15.

Lemma 34

For all σ ∈ Subst⊥ we have that [[σ]] 6= ∅ and given X = dom(σ) then [X/ ⊥] ∈ [[σ]].

Proof

It is enough to prove that if X = dom(σ) then [X/ ⊥] ∈ [[σ]]. First of all [X/ ⊥] ∈
CSubst⊥ by definition. Now consider some Y ∈ V.

i) If Y ∈ X then σ(Y) _⊥≡ Y [X/ ⊥], by rule (B).

ii) Otherwise Y 6∈ X = dom(σ), hence σ(Y) ≡ Y _ Y ≡ Y [X/ ⊥], by rule (RR).

Lemma 15

For all σ ∈ DSusbt⊥, e ∈ Exp⊥, t ∈ CTerm⊥,

if eσ _ t then ∃θ ∈ [[σ]] such that eθ _ t

39

Proof

We proceed by a case distinction over e:

• If e ≡ X ∈ dom(σ) : Then eσ ≡ σ(X) _ t, so we can define:

θ(Y) =


t if Y ≡ X
⊥ if Y ∈ dom(σ) \ {X}
Y otherwise

Then θ ∈ [[σ]] because obviously θ ∈ CSusbt⊥, and given Z ∈ V.

a) If Z ≡ X then σ(Z) ≡ σ(X) _ t ≡ θ(Z) by hypothesis.

b) If Z ∈ (dom(σ) \ {X}) then σ(Z) _⊥≡ θ(Z) by rule (B).

c) Otherwise Z 6∈ dom(σ) and then σ(Z) ≡ Z _ Z ≡ θ(Z) by rule (RR).

But then eθ ≡ θ(X) ≡ t _ t by Lemma 5—which also holds for CRWL,

because CRWL and CRWLlet coincide for c-terms— , as t ∈ CTerm⊥.

• If e ≡ X 6∈ dom(σ) : Then given Y = dom(σ) we have [Y/ ⊥] ∈ [[σ]] by Lemma

34, so we can take θ = {[Y/ ⊥]} for which [[eσ]] = [[Xσ]] = [[X]] = [[X[Y/ ⊥]]] =

[[Xθ]].

• If e 6∈ V then we proceed by induction over the structure of eσ _ t:

Base cases

(B) Then t ≡⊥, so given Y = dom(σ) we can take θ = {[Y/ ⊥]} for which

eθ _⊥ by rule (B).

(RR) Then e ∈ V and we are in the previous case.

(DC) Similar to the case for e ≡ X 6∈ dom(σ).

Inductive steps

(DC) Then e ≡ c(e1, . . . , en), as e 6∈ V, and we have:

e1σ _ t1 . . . enσ _ tn
eσ ≡ c(e1σ, . . . , enσ) _ c(t1, . . . , tn) ≡ t DC

Then by IH or the proof of the other cases we have that ∀i ∈ {1, . . . , n}.
∃θi ∈ [[σ]] such that eiθi _ ti. But as σ ∈ DSusbt⊥ then [[σ]] is directed

by Lemma 11, therefore there must exist some θ ∈ [[σ]] such that ∀i ∈
{1, . . . , n}.θi v θ, and so by Proposition 5 —which also holds for CRWL,

by Theorem 4— we have ∀i ∈ {1, . . . , n}.eiθ _ ti, so we can build the

following proof:

e1θ _ t1 . . . enθ _ tn
eθ ≡ c(e1θ, . . . , enθ) _ c(t1, . . . , tn) ≡ t DC

(OR) Very similar to the proof of the previous case. We also have e ≡
f(e1, . . . , en) (as e 6∈ V) and given a proof for eσ ≡ f(e1, . . . , en)σ _ t,

so we can apply the IH or the proof of the other cases to every eiσ _ piµ

to get some θi ∈ [[σ]] such that eiθi _ piµ. Then we can use Lemma 11

and Proposition 5 to use the obtained θ to compute the same values for

the arguments of f , thus using the same substitution µ ∈ CSubst⊥ for

parameter passing in (OR).

40

Theorem 19

Let P be a CRWL-deterministic program, and e, e′ ∈ Exp, t ∈ CTerm. Then:

a) e→∗ e′ implies e→l∗ e′′ for some e′′ ∈ LExp with |e′′| w |e′|.
b) e→∗ t iff e→l∗ t iff P `CRWL e _ t.

Proof

a) Assume e→∗ e′. By Lemma 16, [[e′]] ⊆ [[e]] and by Lemma 5 we have |e′| ∈ [[e′]],

then |e′| ∈ [[e]]. Therefore, by Theorem 12 there exists e′′ ∈ LExp such that

e→l∗ e′′ with |e′′| w |e′|.
b) The parts e →l∗ t iff P `CRWL e _ t, and e →l∗ t implies e →∗ t have been

already proved for arbitrary programs in Theorems 12 and 17 respectively.

What remains to be proved is that e→∗ t implies e→l∗ t (or the equivalent

P `CRWL e _ t). Assume e →∗ t. Then [[t]] ⊆ [[e]] by Lemma 16. Now, by

Lemma 5 t ∈ [[t]], and therefore t ∈ [[e]], which exactly means that P `CRWL

e _ t.

