
Under consideration for publication in Theory and Practice of Logic Programming 1

Relative Expressiveness of Defeasible Logics

Michael J. Maher
School of Engineering and Information Technology

University of New South Wales at the Australian Defence Forces Academy
ACT 2600, Australia

E-mail: m.maher@adfa.edu.au

submitted 25 March, 2012; revised 10 June, 2012; accepted 18 June, 2012

Abstract

We address the relative expressiveness of defeasible logics in the framework DL. Relative expres-
siveness is formulated as the ability to simulate the reasoning of one logic within another logic. We
show that such simulations must be modular, in the sense that they also work if applied only to part
of a theory, in order to achieve a useful notion of relative expressiveness. We present simulations
showing that logics in DL with and without the capability of team defeat are equally expressive.
We also show that logics that handle ambiguity differently – ambiguity blocking versus ambiguity
propagating – have distinct expressiveness, with neither able to simulate the other under a different
formulation of expressiveness.

KEYWORDS: defeasible logic, non-monotonic reasoning, relative expressiveness

Introduction

Defeasible reasoning concerns reasoning where a chain of reasoning can be defeated (that
is, not considered the basis of an inference) by another chain of reasoning (or, perhaps, sev-
eral chains of reasoning). Defeasible logics are a class of non-monotonic logics designed to
support defeasible reasoning. Their rule-based approach is inspired by logic programming
(?) and there is a close relationship between the logics and logic programming semantics
(?).

Defeasible logics have some similarity to default logic (?). An important difference is
that default logic performs credulous reasoning, whereas defeasible logics are sceptical. In
particular, an application of a default rule can proceed without reference to other default
rules. In contrast, in defeasible logics a rule can be applied only if all opposing rules are
defeated.

The defeasible logics we address are distinguished by their choices on two orthogonal
issues. The first issue is one of team defeat: when there are competing claims (on inferring
q or ¬q, say), should a single claim for q be required to overcome all competing claims
in order to validate the inference, or is it sufficient that every claim for ¬q is overcome
by some claim for q, so that the claims for q, as a team, overcome all competing claims?
The second issue addresses ambiguity, the situation where there is no resolution of the
competing claims, so that neither q nor ¬q can be derived. Should ambiguity block, so that
inferences relying on q or ¬q simply fail to apply, or should the fact that there are claims



2 M.J. Maher

for q (say) that are not overcome by claims for ¬q be allowed to influence later inferences,
so that ambiguity propagates? DL(∂) and DL(δ) are the ambiguity blocking and prop-
agating logics, respectively, employing team defeat, while DL(∂∗) and DL(δ∗) are the
corresponding logics without team defeat. The logics all fall within the DL framework (?)
of defeasible logics.

In this paper we investigate the notion of relative expressiveness with respect to the four
logics named above. Relative expressiveness can establish whether the different logics are
substantively different, or simply provide the same capabilities in different formulations.
A logic that is less expressive than another does not require a dedicated implementation;
it can, in theory, be implemented via a translation to the more expressive logic1. On the
other hand, a logic that is not less expressive than the other logics requires a separate
implementation. We explore alternative notions of relative expressiveness for defeasible
logics and make a considered choice of a formulation.

The main result is that logics with and without team defeat (viz. DL(∂) and DL(∂∗)

and, separately, DL(δ) and DL(δ∗)) are equally expressive under this formulation. This is
surprising because team defeat appears a more sophisticated and powerful way to adjudi-
cate competing claims than requiring one claim to overwhelm all others. It is also surpris-
ing because, in terms of relative inference strength, DL(∂) and DL(∂∗) are incomparable,
and DL(δ∗) is strictly weaker than DL(δ). A second result shows that the treatments of
ambiguity are incomparable, in terms of a different formulation of relative expressiveness.
This is also surprising when compared to relative inference strength.

The paper is structured as follows. The next section provides an overview of defeasible
logics. It is followed by a discussion and formulation of the notion of simulation that is
central to our formulation of relative expressiveness. The next two sections present a sim-
ulation of non-team defeat within a logic with team defeat and, conversely, a simulation
of team defeat within a logic without this capability. In a section on ambiguity, we show
that the two treatments of ambiguity are incomparable, but in terms of a different notion of
expressiveness. Finally, we have a short discussion of the results and related work.

Defeasible Logic

In this section we can only present an outline of the defeasible logics we investigate. Fur-
ther details can be obtained from (?) and the references therein. We address propositional
defeasible logics. This might be restrictive in one sense, but a useful notion of relative ex-
pressiveness should work on propositional logics as well as their first-order counterparts.

A defeasible theory D = (F,R,>) consists of a set of facts F , a finite set of rules R,
and a acyclic relation > on R called the superiority relation. This syntax is uniform for
all the logics considered here. Facts are individual literals expressing indisputable truths.
Rules relate a set of literals (the body), via an arrow, to a literal (the head), and are one of
three types: a strict rule, with arrow→; a defeasible rule, with arrow⇒; or a defeater, with
arrow ;. Strict rules represent inferences that are unequivocally sound if based on defi-
nite knowledge; defeasible rules represent inferences that are generally sound. Inferences

1 In practice, however, since the logics addressed here have linear computational complexity (?; ?), implemen-
tation by translation might not be as efficient as a direct implementation.



Relative Expressiveness of Defeasible Logics 3

suggested by a defeasible rule may fail, due to the presence in the theory of other rules.
Defeaters do not support inferences, but may impede inferences suggested by other rules.
The superiority relation provides a local priority on rules. Strict or defeasible rules whose
bodies are established defeasibly represent claims for the head of the rule to be concluded.
The superiority relation contributes to the adjudication of these claims by an inference rule,
leading (possibly) to a conclusion. For every theory D there is a language Σ containing all
the literals addressed by D. We assume that Σ is closed under negation.

Defeasible logics derive conclusions that are outside the syntax of the theories. Conclu-
sions may have the form +dq, which denotes that under the inference rule d the literal q
can be concluded, or −dq, which denotes that the logic can establish that under the infer-
ence rule d the literal q cannot be concluded. The syntactic element d is called a tag. In
general, neither conclusion may be derivable: q cannot be concluded under d, but the logic
is unable to establish that. Tags +∆ and−∆ represent monotonic provability (and unprov-
ability) where inference is based on facts, strict rules, and modus ponens. We assume these
tags and their inference rules are present in every defeasible logic. What distinguishes a
logic is the inference rule for defeasible reasoning. The four logics discussed in the Intro-
duction correspond to four different pairs of inference rules, labelled ∂, δ, ∂∗, and δ∗; they
produce conclusions of the form (respectively) +∂q, −∂q, +δq, −δq, etc. The inference
rules δ and δ∗ require auxiliary tags and inference rules, denoted by σ and σ∗, respectively.
For each of the four main defeasible tags d, the corresponding logic is denoted by DL(d).

At times we refer to a set of rules as a theory, implicitly choosing the set of facts and the
superiority relation to be empty. In general, every rule has a label with which to name it.
Labels are used in the superiority relation. Where labels are not needed, they are omitted.
The size of a theory is the total number of symbols used in expressing the theory.

The inference rules for DL(∂) and DL(∂∗) are presented below. Given a defeasible
theory D = (F,R,>), for any set of conclusions E, TD(E) denotes the set of conclusions
inferred from E using D and one application of an inference rule. The inference rules are
implicit in the definition of this function. TD is a monotonic function on the complete lattice
of sets of conclusions ordered by containment. The least fixedpoint of TD is the set of all
conclusions that can be drawn from D. We follow standard notation in that TD ↑ 0 = ∅
and TD ↑ (n+ 1) = TD(TD ↑ n).

For every inference rule +d there is a closely related inference rule−d allowing to infer
that some literals q cannot be consequences ofD via +d. The relationship between +d and
−d is described as the Principle of Strong Negation (?).

Some notation in the inference rules requires explanation. Given a literal q, its comple-
ment ∼q is defined as follows: if q is a proposition then ∼q is ¬q; if q has form ¬p then
∼q is p. We say q and ∼q (and the rules with these literal in the head) oppose each other.
Rs (Rsd) denotes the set of strict rules (strict or defeasible rules) in R. R[q] (Rs[q], etc)
denotes the set of rules (respectively, strict rules) of R with head q. Given a rule r, A(r)

denotes the set of literals in the body of r.
+∆) +∆q ∈ TD(E) iff either

.1) q ∈ F ; or

.2) ∃r ∈ Rs[q] such that
.1) ∀a ∈ A(r),+∆a ∈ E

−∆) −∆q ∈ TD(E) iff
.1) q /∈ F , and
.2) ∀r ∈ Rs[q]

.1) ∃a ∈ A(r),−∆a ∈ E



4 M.J. Maher

+∂) +∂q ∈ TD(E) iff either
.1) +∆q ∈ E; or
.2) The following three conditions all hold.

.1) ∃r ∈ Rsd[q] ∀a ∈ A(r),+∂a ∈ E, and

.2) −∆∼q ∈ E, and

.3) ∀s ∈ R[∼q] either
.1) ∃a ∈ A(s),−∂a ∈ E; or
.2) ∃t ∈ Rsd[q] such that

.1) ∀a ∈ A(t),+∂a ∈ E, and

.2) t > s.

−∂) −∂q ∈ TD(E) iff
.1) −∆q ∈ E, and
.2) either

.1) ∀r ∈ Rsd[q] ∃a ∈ A(r),−∂a ∈ E; or

.2) +∆∼q ∈ E; or

.3) ∃s ∈ R[∼q] such that
.1) ∀a ∈ A(s),+∂a ∈ E, and
.2) ∀t ∈ Rsd[q] either

.1) ∃a ∈ A(t),−∂a ∈ E; or

.2) not(t > s).

+∂∗) +∂∗q ∈ TD(E) iff either
.1) +∆q ∈ E; or
.2) ∃r ∈ Rsd[q] such that

.1) ∀a ∈ A(r),+∂∗a ∈ E, and

.2) −∆∼q ∈ E, and

.3) ∀s ∈ R[∼q] either
.1) ∃a ∈ A(s),−∂∗a ∈ E; or
.2) r > s.

−∂∗) −∂∗q ∈ TD(E) iff
.1) −∆q ∈ E, and
.2) ∀r ∈ Rsd[q] either

.1) ∃a ∈ A(r),−∂∗a ∈ E; or

.2) +∆∼q ∈ E; or

.3) ∃s ∈ R[∼q] such that
.1) ∀a ∈ A(s),+∂∗a ∈ E, and
.2) not(r > s).

Inference rules for ∆, ∂, and ∂∗.

In clause .1 of the inference rules for +∂ and +∂∗, all literals derived from the mono-
tonic part of the logic are also considered defeasible consequences. We can see that +∂∗

relies on a single rule to overcome all competing rules. At clause .2 a strict or defeasible
rule r must be found such that all literals in the body have been established (.2.1) and,
every competing rule s (.2.3) either fails to be established (.2.3.1) or is inferior to r. In
comparison, +∂ relies on a team consisting of r (.2.1) and all the rules t (.2.3.2) that are
needed to overcome the competing rules s (.2.3).

Thus +∂ employs team defeat while +∂∗ relies on a single rule overcoming all oppo-
sition. For example, consider the following defeasible theory D on whether animals are
mammals (?).

r1 : monotreme ⇒ mammal

r2 : hasFur ⇒ mammal

r3 : laysEggs ⇒ ¬mammal
r4 : hasBill ⇒ ¬mammal

r1 > r3

r2 > r4

For a platypus, we have the facts: monotreme, hasFur, laysEggs, and hasBill. The
rules r3 and r4 for ¬mammal are over-ruled by, respectively, r1 and r2. Consequently, un-
der inference with team defeat (∂ and δ), we conclude +∂mammal and +δmammal. Un-
der inference without team defeat (∂∗ and δ∗), there is no rule that overrules all the oppos-
ing rules. Consequently we cannot make any positive conclusion; we conclude−∂∗mammal
and −∂∗¬mammal, and similarly for δ∗.



Relative Expressiveness of Defeasible Logics 5

Both ∂ and ∂∗ are ambiguity blocking. Consider the following theory D.

r1 ⇒ p

r2 ⇒ ¬p
r3 ⇒ q

r4 ¬p ⇒ ¬q

p and ¬p are ambiguous: neither r1 nor r2 can overcome the other via the superiority
relation. Thus −∂¬p is inferred. Now, because the body of r4 fails, there is no rule left
to compete with r3, and so +∂q is inferred. We also conclude −∂¬q; thus there is no
ambiguity about q and ¬q. The same arguments apply for ∂∗.

On the other hand, δ and δ∗ are ambiguity propagating. −δ¬p is inferred and conse-
quently −δ¬q is inferred. However, ambiguity propagating logics like δ do not support
a conclusion +δq. There is a possibility that ¬p holds, given that r2 was not overcome
via the superiority relation but simply failed to overcome its competitor. Hence there is a
possibility that ¬q holds. And since r3 cannot explicitly overcome r4 via the superiority
relation, the conclusion +δq is not justified and, in fact, −δq is concluded. This idea of
“possibly holding” is called support; it is expressed by an auxiliary tag σ and defined by a
corresponding inference rule in DL(δ) (and, similarly, the auxiliary tag σ∗ in DL(δ)). In
the theory D above, among the conclusions are +σp, +σ¬p, +σ¬q, and +σq. Since both
q and ¬q possibly hold, they are ambiguous and clearly the ambiguity has propagated.

A more detailed discussion of ambiguity and team defeat in the DL framework is given
in (?).

Inference for δ and σ (and δ∗ and σ∗) is defined mutually recursively:

+δ) If +δq ∈ TD(E) then either
.1) +∆q ∈ E; or
.2) The following three conditions all hold.

.1) ∃r ∈ Rsd[q] ∀a ∈ A(r),+δa ∈ E, and

.2) −∆∼q ∈ E, and

.3) ∀s ∈ R[∼q] either
.1) ∃a ∈ A(s),−σa ∈ E; or
.2) ∃t ∈ Rsd[q] such that

.1) ∀a ∈ A(t),+δa ∈ E, and

.2) t > s.

−δ) If −δq ∈ TD(E) then
.1) −∆q ∈ E, and
.2) either

.1) ∀r ∈ Rsd[q] ∃a ∈ A(r),−δa ∈ E; or

.2) +∆∼q ∈ E; or

.3) ∃s ∈ R[∼q] such that
.1) ∀a ∈ A(s),+σa ∈ E, and
.2) ∀t ∈ Rsd[q] either

.1) ∃a ∈ A(t),−δa ∈ E; or

.2) not(t > s).

+σ) If +σq ∈ TD(E) then either
.1) +∆q ∈ E; or
.2) ∃r ∈ Rsd[q] such that

.1) ∀a ∈ A(r),+σa ∈ E, and

.2) ∀s ∈ R[∼q] either
.1) ∃a ∈ A(s),−δa ∈ E; or
.2) not(s > r).

−σ) If −σq ∈ TD(E) then
.1) −∆q ∈ E, and
.2) ∀r ∈ Rsd[q] either

.1) ∃a ∈ A(r),−σa ∈ E; or

.2) ∃s ∈ R[∼q] such that
.1) ∀a ∈ A(s),+δa ∈ E, and
.2) s > r.



6 M.J. Maher

+δ∗) If +δ∗q ∈ TD(E) then either
.1) +∆q ∈ E; or
.2) ∃r ∈ Rsd[q] such that

.1) ∀a ∈ A(r),+δ∗a ∈ E, and

.2) −∆∼q ∈ E, and

.3) ∀s ∈ R[∼q] either
.1) ∃a ∈ A(s),−σ∗a ∈ E; or
.2) r > s.

−δ∗) If −δ∗q ∈ TD(E) then
.1) −∆q ∈ E, and
.2) ∀r ∈ Rsd[q] either

.1) ∃a ∈ A(r),−δ∗a ∈ E; or

.2) +∆∼q ∈ E; or

.3) ∃s ∈ R[∼q] such that
.1) ∀a ∈ A(s),+σ∗a ∈ E, and
.2) not(r > s).

+σ∗) If +σ∗q ∈ TD(E) then either
.1) +∆q ∈ E; or
.2) ∃r ∈ Rsd[q] such that

.1) ∀a ∈ A(r),+σ∗a ∈ E, and

.2) ∀s ∈ R[∼q] either
.1) ∃a ∈ A(s),−δ∗a ∈ E; or
.2) not(s > r).

−σ∗) If −σ∗q ∈ TD(E) then
.1) −∆q ∈ E, and
.2) ∀r ∈ Rsd[q] either

.1) ∃a ∈ A(r),−σ∗a ∈ E; or

.2) ∃s ∈ R[∼q] such that
.1) ∀a ∈ A(s),+δ∗a ∈ E, and
.2) s > r.

Inference rules for δ, σ, δ∗ and σ∗.

There are surface similarities between defeasible logic and Reither’s Default Logic (?),
but there are also substantial differences. Default Logic employs a credulous semantics
based on a model-theoretic view (the extensions), whereas defeasible logics take a proof-
theoretic view. Hence, from a defeasible theory⇒ p;⇒ ¬p defeasible logics will not draw
any conclusion2, whereas from the corresponding default theory :p

p ,
:¬p
¬p Default Logic will

(separately) conclude each of p and ¬p. If the theory is extended by p ⇒ q;¬p ⇒ q then
we find that defeasible logics will not draw any conclusion about q while q appears in
both extensions of the corresponding default theory. Thus, the formulation of scepticism
through intersection of extensions is different from the proof-theoretic formulation. (?) has
a discussion of the two views, in the context of inheritance networks.

Simulating Defeasible Logics

A natural definition of relative expressiveness of logics is to rely on the sets of conclusions
that they are able to express.

Definition 1
The theory D1 in logic L1 is simulated by D2 in L2 if D1 in L1 and D2 in L2 have the
same strict and defeasible conclusions, modulo the tag that each logic uses. We say L2 is
more (or equal) expressive than L1 if every theory D1 in L1 is simulated by some theory
in L2.

That is, D2 simulates D1 when D1 ` ±d1q iff D2 ` ±d2q, where DL(d1) is the logic
of D1 and DL(d2) is the logic of D2. This appears to be quite a restrictive definition since
D2 cannot use a larger language thanD1. It also requires that the tag d1 inL1 is represented
by the tag d2 in L2 rather than be expressed indirectly. Nevertheless, it turns out to be a
very coarse notion of relative expressiveness that is unsuitable for separating the different
logics in DL.

2 We refer only to positive conclusions, those using a tag +d.



Relative Expressiveness of Defeasible Logics 7

Theorem 2
For every pair of logics L1 and L2 in DL, for every defeasible theory D1 under the logic
L1 there is a defeasible theory D2 under the logic L2 that simulates D1 under L1.

The construction is straightforward. Let S be the set of conclusions from D1 under
L1 = DL(d1). We construct D2 = (F,R,>) as follows, for every literal q:

If +∆q ∈ S then add a fact q to F . If +∆q /∈ S and −∆q /∈ S then add q → q to R. If
−∆q ∈ S then nothing is added to D2.

If +d1q ∈ S and +∆q ∈ S then nothing is added. If +d1q ∈ S and −∆q ∈ S then add
⇒ q to R. It is not possible for a logic infer +d1q ∈ S and both +∆q /∈ S and −∆q /∈ S,
so what to do in that case does not arise. If −d1q ∈ S then nothing is added. If +d1q /∈ S
and −d1q /∈ S then add q ⇒ q to R.

Because of the simplicity of the theory D2 that is constructed, the conclusions of the
theory are the same for all tags d2. Verification of the theorem requires checking that rules
for q and ∼q do not interfere with each other. For brevity, this part of the proof is omitted.

As a sidenote, observe that conclusions concerning support (σ, σ∗) have properties that
cannot be simulated by the main tags. In particular, the theory⇒ q;⇒ ∼q has as conclu-
sions +σq and +σ∼q (and similarly for σ∗) but none of the main tags can conclude both
+dq and +d∼q, by the consistency property of these logics (Proposition 4 of (?)).

In the previous theorem, the structure of the constructed theory D2 is nothing like the
theory D1. This freedom to choose D2 without restriction is the reason why any theory in
any logic can be simulated by a theory in any other logic. It is necessary to require that D2

reflects some of the structure of D1. We do this indirectly, by requiring that the simulating
theory be robust to certain changes.

We introduce the idea of an addition A to a theory D, denoted by D + A. In general,
A is a defeasible theory: it may contain facts, rules and a superiority relation. Let D =

(F,R,>) and A = (F ′, R′, >′). Then D +A = (F ∪ F ′, R ∪R′, > ∪ >′).
We would like to consider a theory D′ under logic L′ able to simulate D under L if

the two theories have the same conclusions, modulo tags, no matter what is added to both
theories. However, this is too strong a requirement. For example, p → q is not simulated
by p → t, t → q under this definition because the addition of the fact t produces different
behaviours. We make two adjustments: we restrict additions to a class of theories, and
we allow D′ to “hide” internal symbols from interference by A. We permit both D′ and
A to use symbols that are not used in D, but we require that the symbols in D′ but not
in D are not available to A. Thus we have the following language separation condition:
Σ(A) ∩ Σ(D′) ⊆ Σ(D).

Definition 3
Let Σ be the language of the defeasible theory D1. Let C be a class of defeasible theories
A such that Σ(A) ∩ Σ(D2) ⊆ Σ(D1).

We say D1 in logic L1 is simulated by D2 in L2 with respect to a class C if, for every
addition A in C, D1 +A and D2 +A have the same conclusions in Σ, modulo tags.

We say a logic L1 can be simulated by a logic L2 with respect to a class C if every
theory in L1 can be simulated by some theory in L2 with respect to C.

The use of a classC gives us flexibility in expressing the degree of simulation by varying
the class, not only among those defined above, but many others. For example, when C



8 M.J. Maher

consists only of the the empty theory (∅, ∅, ∅) the notion of simulation is notionally weaker
than that of Definition 1 (weaker because it allows the simulation to use a larger language).
Larger classes of additions represent notionally stronger forms of simulation.

Consider addition limited to a set of facts, that is A = (F, ∅, ∅). Allowing arbitrary
addition of facts corresponds to treating each theory D1 under logic L1 as defining a non-
monotonic inference relation from facts to consequences. This is similar to Dix’s treatment
of logic programs in (?) where a logic program is viewed as defining a non-monotonic
inference relation from the input atoms to the output atoms. It also reflects a common prac-
tice of keeping the rules static while facts vary. Simulation then requires that any inference
relation expressed by D1 under L1 can be expressed by some D2 under L2.

However, it is not clear that the addition of facts is sufficiently discriminating. For ex-
ample, we can attempt to extend the construction in Theorem 2 by adding conditions to the
bodies of rules in that construction. For a given defeasible theory D, we define T (D) in
several parts, as follows. Define NOT to be the set of all rules

q ⇒ ¬not q
⇒ not q

for q ∈ Σ. For any set A ⊆ Σ, we define Â to be the conjunction of literals in the set
A∪{not a |D+A ` −da}. Â−q denotes this conjunction with the omission of the literal
q. We also use A as a conjunction of literals.
We define T (D,A) to contain:

A→ q if D +A ` +∆q and q /∈ A
A, q → q if D +A 6 ` +∆q and D +A 6 ` −∆q

Â−q ⇒ q if D +A ` +dq and q /∈ A
Â−q, q ⇒ q if D +A 6 ` +dq and D +A 6 ` −dq

T (D,A) describes the behaviour of D + A in a way similar to the transformation in
Theorem 2, but prefixes defeasible rules with Â−q to ensure that they are only applicable
when A is the addition, or is a consequence of the addition. For the strict rules, only a
prefix A is necessary, since any greater addition will also allow the inference of +∆q (this
is a reflection of the monotonicity of strict inference).
We define T (D) to consist of the facts from D and the rules in NOT ∪

⋃
A⊆Σ T (D,A).

The superiority relation for T (D) is empty. In general, the size of T (D) is exponential in
the size of D.

While it is not proved that T (D) simulates D, the possibility of such a construction
prompts us to require that the simulating theory is limited to be of polynomial size, and
that the computation of the simulating theory can be achieved in polynomial time. A poly-
nomial simulation of L1 by L2 is a mapping T from each theory D1 to a theory D2 and
a polynomial function p(x) such that size(D2) ≤ p(size(D1)), tD1D2

≤ p(size(D1))

where tD1D2
is the time to compute D2 from D1, and D2 under L2 simulates D1 under

L1. This leads us to a definition of relative expressiveness.

Definition 4

A logic L1 is more expressive than a logic L2 iff there is a polynomial simulation of L2 by
L1 with respect to the addition of facts.



Relative Expressiveness of Defeasible Logics 9

An alternative definition might use addition of rules, with or without the restriction to
polynomial simulations. The suitability of the current definition, and alternatives, will de-
pend on the results that can be obtained: a notion of expressiveness that is so strict that
no logic is more expressive than another, or so lenient that all the logics have equivalent
expressiveness, has no practical use. The following sections establish results showing that
Definition 4 is not too strict.

Team Defeat Simulates Non-Team Defeat

We now show that every theory over a logic that does not employ team defeat can be
simulated by a theory over the corresponding logic that does employ team defeat. Any
defeasible theory D is transformed into a new theory. The new theory employs new propo-
sitions h(r) for each rule r in D, and employs labels p(r) for each rule r in D and labels
n(r, r′) for each ordered pair of rules with opposing heads.

LetD = (F,R,>) be a defeasible theory with language Σ. We define the transformation
T of D to T (D) = (F ′, R′, >′) as follows:

1. The facts of T (D) are the facts of D. That is, F ′ = F .
2. For each rule r = B ↪→r q in R, R′ contains

p(r) : B ↪→r h(r)

s(r) : h(r) → q

and, further, for each rule r′ = B′ ↪→r′ ∼q for ∼q in R, R′ contains

n(r, r′) : B′ ↪→r′ ¬h(r)

3. For every r > r′ in D, where r and r′ are rules for opposite literals, T (D) contains
p(r) >′ n(r, r′) and n(r′, r) >′ p(r′).

In this transformation, for each literal q, and for each rule r for q, we essentially create
a copy of r opposed to a copy of all rules for ∼q (the rules labelled p(r) and n(r, r′)

respectively). q is derived if a copy of some rule r for q is able to overcome the opposed
rules (that is, q is derived without team defeat).

Example 5
To see the operation of this transformation, consider the following theory D:

r1 : ⇒ p r3 : ⇒ ¬p
r2 : ⇒ p r4 : ⇒ ¬p
r1 > r3 r2 > r4

In DL(∂∗) from D we conclude −∂∗p and −∂∗¬p, whereas in DL(∂) from D we con-
clude +∂∗p and −∂∗¬p. T (D) contains the following rules and superiority relation.

p(r1) : ⇒ h(r1) p(r3) : ⇒ h(r3)

s(r1) : h(r1)→ p s(r3) : h(r3)→ ¬p
n(r1, r3) : ⇒ ¬h(r1) n(r3, r1) : ⇒ ¬h(r3)

n(r1, r4) : ⇒ ¬h(r1) n(r3, r2) : ⇒ ¬h(r3)



10 M.J. Maher

p(r2) : ⇒ h(r2) p(r4) : ⇒ h(r4)

s(r2) : h(r2)→ p s(r4) : h(r4)→ ¬p
n(r2, r3) : ⇒ ¬h(r2) n(r4, r1) : ⇒ ¬h(r4)

n(r2, r4) : ⇒ ¬h(r2) n(r4, r2) : ⇒ ¬h(r4)

p(r1) > n(r1, r3) p(r2) > n(r2, r4)

n(r3, r1) > p(r3) n(r4, r2) > p(r4)

For each rule in D there are four rules in T (D). Now T (D) ` −∂p and T (D) ` −∂¬p,
reflecting non-team defeat behaviour of D within DL(∂).

In general, the size of T (D) is quadratic in the size of D. Thus it remains to establish
that T (D) simulates D with respect to addition of facts.

Theorem 6
The logic DL(∂∗) can be simulated by DL(∂), and DL(δ∗) can be simulated by DL(δ),
with respect to addition of facts.

The proof of this theorem is available in the online appendix, pages 1–5. It first shows,
by induction on n, that, for any tagged literal α in DL(∂∗) (or DL(δ∗)), if α ∈ TD+A ↑ n
then T (D) +A ` α′, where α′ is the tagged literal in DL(∂) (or DL(δ)) corresponding to
α. Then, conversely, it shows that if α′ ∈ TT (D)+A ↑ n then D + A ` α. Together, these
establish that DL(∂∗) is simulated by DL(∂) under the transformation T and, similarly,
that DL(δ∗) is simulated by DL(δ).

Thus DL(∂) is more (or equal) expressive than DL(∂∗) and DL(δ) is more (or equal)
expressive than DL(δ∗).

Notice that this result does not extend to simulation with respect to adding arbitrary
defeasible theories because, in that case, we can use the following defeasible theory as A
when D = ∅ and p ∈ Σ.

r1 : ⇒ p r3 : ⇒ ¬p
r2 : ⇒ p r4 : ⇒ ¬p
r1 > r3 r2 > r4

This theory distinguishes DL(∂) from DL(∂∗), to demonstrate non-simulation in both
directions, and similarly for DL(δ) and DL(δ∗).

Non-Team Defeat Simulates Team Defeat

We define the transformation T of D to T (D) = (F ′, R′, >′) as follows:

1. The facts of T (D) are the facts of D. That is, F ′ = F .
2. For each literal q, and each strict rule r = (B → q) in R, R′ contains

ns(q) : ⇒ ¬ strict(q)

s(r) : B → strict(q)

and ns(q) >′ s(r).



Relative Expressiveness of Defeasible Logics 11

3. For each literal q defined by at least one strict rule in R, R′ contains

strict(q) → q

4. For each ordered pair of opposing rules ri = (Bi ↪→i ∼q) and rj = (Bj ↪→j q) in
R, where rj is not a defeater, R′ contains

R1ij : Bi ↪→i ¬ d(ri, rj)

R2ij : Bj ⇒ d(ri, rj)

R3ij : strict(q) ⇒ d(ri, rj)

d(ri, rj) ⇒ d(ri)

fail(ri) ⇒ d(ri)

NFi : Bi ⇒ ¬ fail(ri)

Fi : ⇒ fail(ri)

and R2ij >
′ R1ij iff rj > ri, R3ij >

′ R1ij for every i and j, and NFi > Fi for
every i.
If there is no strict or defeasible rule rj for q in D then only the last three rules
appear in R′, for each i.

5. For each literal q, and each strict or defeasible rule r = (B ↪→r q) in R, R′ contains

B ⇒ one(q)

6. For each literal q, R′ contains

one(q), d(r1), . . . , d(rk) ⇒ q

where r1, . . . , rk are the rules for ∼q

We say that a body B fails if −dp is derived, for some p ∈ B, and succeeds if +dB

is derived, where d is the defeasible tag in the logic of interest. We say a rule r defeats
another r′ if they have opposing heads, the body of r succeeds and r > r′.

In the resulting theory T (D), d(r1, r2) is derived iff r1 is defeated either because the
body of r2 succeeds and r2 > r1, or because there is a strict opposing rule and its body is
strictly provable. d(r) is derived iff some rule r′ defeats r, or the body of r fails. one(q) is
derived iff there is a strict or defeasible rule for q and the body of that rule succeeds. Thus,
q is derived if there is a strict or defeasible rule for q that succeeds and every rule for ∼q is
defeated. In this way, the transformed theory expresses team defeat.

Some elements of the definition deserve a more detailed explanation. The first three
points together define inference of ±∆ from T (D). In point 2 a defeasible rule is supe-
rior to a strict rule. The effect of this somewhat counter-intuitive construction is to ensure
+∂∗strict(q) is derived iff +∆strict(q) is derived iff +∆B is derived, and +∂∗¬strict(q)
is derived iff−∆B is derived. It restricts the strict rule s(r) to only be used for strict infer-
ences, and not for defeasible inferences. As a result, it ensures that all inferences to q via
point 3 are strict inferences.

Point 4 identifies when a rule ri is defeated (as part of the process of inferring q).
d(ri, rj) expresses that ri is defeated by rj , and d(r) expresses that r is defeated. If ri
is strict and +∆Bi is established then ri is not defeated (by rj or any other rule). The
use of ↪→i in R1ij ensures this. For ri to be defeated by rj we must have +∂∗Bj . If the
stronger +∆q can be established then ri is defeated unless, by the above case, ri cannot



12 M.J. Maher

be defeated. This is expressed by R3ij with a defeasible rule so that, if the first case ap-
plies, +∆¬d(ri, rj) is established and hence +∂∗d(ri, rj) cannot be derived. However,
R3ij >

′ R1ij so that, in other circumstances, if +∆q can be established then ri is de-
feated. In the more normal case, if +∂∗Bj is established then ri is defeated by rj if either
−∂∗Bi is established, or if rj > ri. R2ij achieves this where the superiority relation in
T (D) has R2ij > R1ij , reflecting rj > ri. Finally, the last three (classes of) rules of point
4 identify that ri is defeated if its body Bi fails.

Point 5 defines that one(q) succeeds iff the body of some strict or defeasible rule for
q succeeds. Point 6 then reflects the team defeat approach: q can be inferred if there is a
strict or defeasible rule whose body succeeds (one(q)) and every rule for ∼q is defeated
(d(r1), . . . , d(rk)).

Example 7
To see the operation of this transformation, we again consider the following theory D:

r1 : ⇒ p r3 : ⇒ ¬p
r2 : ⇒ p r4 : ⇒ ¬p
r1 > r3 r2 > r4

In DL(∂) from D we conclude +∂∗p and −∂∗¬p, whereas in DL(∂∗) from D we con-
clude −∂∗p and −∂∗¬p. D does not contain any facts or strict rules, so parts 1, 2, and 3
do not contribute to T (D). T (D) contains the following rules and superiority relation.

R113 :⇒ ¬d(r1, r3) R213 :⇒ d(r1, r3) R313 : strict(p)⇒ d(r1, r3)

R114 :⇒ ¬d(r1, r4) R214 :⇒ d(r1, r4) R314 : strict(p)⇒ d(r1, r4)

R123 :⇒ ¬d(r2, r3) R223 :⇒ d(r2, r3) R323 : strict(p)⇒ d(r2, r3)

R124 :⇒ ¬d(r2, r4) R224 :⇒ d(r2, r4) R324 : strict(p)⇒ d(r2, r4)

R131 :⇒ ¬d(r3, r1) R231 :⇒ d(r3, r1) R331 : strict(p)⇒ d(r3, r1)

R132 :⇒ ¬d(r3, r2) R232 :⇒ d(r3, r2) R332 : strict(p)⇒ d(r3, r2)

R141 :⇒ ¬d(r4, r1) R241 :⇒ d(r4, r1) R341 : strict(p)⇒ d(r4, r1)

R142 :⇒ ¬d(r4, r2) R242 :⇒ d(r4, r2) R342 : strict(p)⇒ d(r4, r2)

d(r1, r3)⇒ d(r1) d(r1, r4)⇒ d(r1) d(r2, r3)⇒ d(r2) d(r2, r4)⇒ d(r2)

d(r3, r1)⇒ d(r3) d(r3, r2)⇒ d(r3) d(r4, r1)⇒ d(r4) d(r4, r2)⇒ d(r4)

fail(r1)⇒ d(r1) fail(r2)⇒ d(r2) fail(r3)⇒ d(r3) fail(r4)⇒ d(r4)

NF1 :⇒ ¬fail(r1) NF2 :⇒ ¬fail(r2) NF3 :⇒ ¬fail(r3) NF4 :⇒ ¬fail(r4)

F1 :⇒ fail(r1) F2 :⇒ fail(r2) F3 :⇒ fail(r3) F4 :⇒ fail(r4)

⇒ one(p) ⇒ one(¬p)
⇒ one(p) ⇒ one(¬p)
one(p), d(r3), d(r4)⇒ p one(¬p), d(r1), d(r2)⇒ ¬p

R231 > R131 R3ij > R1ij for every opposing i and j
R242 > R142 NFi > Fi for every i



Relative Expressiveness of Defeasible Logics 13

From T (D) we can draw the conclusions one(p), +∂∗d(r3, r1) and +∂∗d(r4, r2), among
others. Consequently, we conclude +∂∗d(r3) and +∂∗d(r4), and hence +∂∗p. This re-
flects the team defeat behaviour of D within the non-team defeat logic DL(∂∗).

In general, the size of T (D) is quadratic in the size of D. Thus it remains to establish
that T (D) simulates D with respect to addition of facts.

Theorem 8
The logic DL(∂) can be simulated by DL(∂∗), and DL(δ) can be simulated by DL(δ∗),
with respect to addition of facts.

The proof of this theorem is available in the online appendix, from page 5.
As a result of Theorems 6 and 8, the logics DL(∂) and DL(∂∗) have equal expressive

power. Similarly, DL(δ) and DL(δ∗) have equal expressive power.

Ambiguity

We now consider a different notion of expressiveness, where simulation must be performed
with respect to the addition of rules, not only facts. We show that the ambiguity propagating
logics cannot simulate the ambiguity blocking logics with respect to additions of rules, and
vice versa. To show that a logic L′ cannot simulate L it suffices to identify a theory D and
addition A where there is no D′ such that D + A in L and D′ + A in L′ have the same
consequences.

Theorem 9
Consider simulation with respect to addition of rules. The logics DL(∂) and DL(∂∗)

cannot be simulated by DL(δ), nor by DL(δ∗). Conversely, the logics DL(δ) and DL(δ∗)

cannot be simulated by DL(∂), nor by DL(∂∗).

We first address the case of DL(∂) and DL(δ). As mentioned above, it is sufficient to
identify a single theory and addition that cannot be simulated. Consider the theory D, with
rules

r1 : ⇒ p

r2 : ⇒ ¬p
and consider an addition A of rules

r3 : ⇒ ¬p
r4 : ⇒ q

r5 : ¬p ⇒ ¬q

Then in DL(∂) we have D + A ` +∂q. Suppose there is a theory D′ in DL(δ) that
simulates D with respect to rules. Then we must have D′ + A ` +δq. Furthermore,
−∆p,−∆¬p,−∆q,−∆¬q are consequences of D + A, and so are also consequences
of D′ + A (and D′). By the language separation condition, D′ does not contain any men-
tion of q, so the two rules r4 and r5 are the only rules under consideration for inferences
about q.

Since D′ + A ` +δq, by the inference rule for +δq, for (in this case) the rule r5 for ¬q
either some literal in the body has no support (i.e. −σ¬p) or the rule r4 for q over-rules



14 M.J. Maher

r5, that is, r4 > r5. However, r4 > r5 is not part of A and cannot be part of D′ (by the
language separation condition). Hence, we must have D′ +A ` −σ¬p.

Now, by the inference rule for −σ, for every strict or defeasible rule for ¬p either some
literal in the body has no support or there is a rule that can over-rule it. Consider r3. No
rule can over-rule it (by the language separation condition), but the body of r3 is empty.
This contradiction shows that no theory D′ in DL(δ) simulates D in DL(∂).
D + A has the same consequences, whether ∂ or ∂∗ is used. Further, the argument is

valid for δ∗ as well as δ. Thus, neither ∂ nor ∂∗ can be simulated by either δ or δ∗ with
respect to the addition of rules.

The same theory and addition can be used to show that the ambiguity blocking logics
cannot simulate the ambiguity propagating logics. Given D and A as above, in DL(δ) we
have D +A ` −δq. Suppose there is a theory D′ in DL(∂) that simulates D with respect
to rules. Then D′+A ` −∂q. As before, −∆p,−∆¬p,−∆q,−∆¬q are consequences of
D′ +A (and D′) and, again, only rules r4 (for q) and r5 (for ¬q) directly affect inferences
about q. Furthermore,D′+A ` −∂¬p since−δ¬p is a consequence of D+A and, hence,
by the coherence property of DL (Proposition 2 of (?)), we cannot have D′ +A ` +∂¬p.

Since D′ +A ` −∂q, in the inference rule for −∂q only clause −∂.2.3 can apply. Thus
we must have D′ + A ` +∂¬p, by clause −∂.2.3.1. This gives us a contradiction, and
hence no such D′ exists. That is, DL(δ) cannot be simulated by DL(∂).
D + A has the same consequences, whether δ or δ∗ is used. Further, the argument is

valid for ∂∗ as well as ∂. Thus, neither δ nor δ∗ can be simulated by either ∂ or ∂∗ with
respect to the addition of rules.

From these results, and the comments at the end of the section on simulating non-team
defeat, it is clear that simulation with respect to the addition of an arbitrary defeasible
theory is too strict to provide a viable notion of relative expressiveness.

Simulation with respect to addition of rules is stronger than simulation with respect to
addition of facts, (because addition of facts can be emulated by addition of strict rules with
empty antecedents), but is weaker than simulation with respect to full theories. Thus the
non-simulation results of this section do not necessarily extend to addition of facts. That
remains an open problem.

We could also consider simulation with respect to addition of rules, instead of facts,
as the basis for a notion of relative expressiveness. As we have seen, this notion is able
to distinguish ambiguity propagating and blocking logics. We would want to strengthen
Theorems 6 and 8 to support this notion.

Discussion

The results of this paper are summarized in Figure 1, where an arrow from d1 to d2 ex-
presses that d1 can be polynomially simulated by d2 with respect to the addition of facts.
Question marks between tags denote that the relationship is unknown. This picture of rel-
ative expressiveness is quite different from the one for relative inference strength.

The relative inference strength of the logics in DL is described in Figure 2 (see (?)).
d1 ⊂ d2 expresses that, for any theory D, the set of literals that are +d1 consequences
of D is a subset of or equal to the set of literals that are +d2 consequences of D and,



Relative Expressiveness of Defeasible Logics 15

δ ⇐⇒ δ∗

? ?

∂ ⇐⇒ ∂∗

Fig. 1. Relative expressiveness of logics in DL using simulation wrt addition of facts

∆ ⊂ δ∗ ⊂ δ ⊂ ∂ ⊂ σ ⊂ σ∗

⊂ ⊂

∂∗

Fig. 2. Relative inference strength of logics in DL

furthermore, there is a theory for which this containment is strict. In addition, the −d2

consequences of D are contained in the −d1 consequences of D.
It is interesting that ∂ and ∂∗ can simulate each other, even though there is no relation

between the two logics in terms of relative strength. Furthermore, δ and δ∗ can simulate
each other even though, in terms of relative inference strength, δ∗ is strictly weaker than δ.
On the other hand, δ has weaker inference strength than ∂ but yet ∂ is unable to simulate
δ under addition of rules and, similarly, δ∗ has less inference strength than ∂∗ but ∂∗ is
unable to simulate δ∗ under addition of rules. However δ is able to simulate the weaker in
inference strength δ∗. Thus we see that relative expressiveness in defeasible logics is not
directly related to the relative inference strength of the logics.

This work is part of a long line of work addressing the relative expressibility of for-
malisms, of which we will mention just a few. Interpretation of one theory by another in
classical logic (for example, (?)) essentially maps functions in one language into terms
from another in such a way that the axioms of one theory map to theorems in the other.
This extends easily to the interpretation of theories in different, but similar, logics. This
technique provides a basis for transferring results on consistency and decidability from
one theory to another. The idea was used in (?) to transfer complexity results for CLP lan-
guages. Similarly, the idea of a conservative extension and extension by definitions of a
theory (?) can be used to establish that some programming language features do not ex-
tend the expressive power of a language (?; ?). In general, any sequential programming
language can simulate another (the “Turing tarpit”) but, by requiring that the mapping of
one language into another be homomorphic (which enforces a preservation of structure)
and observing the behaviour in any context, a meaningful notion of relative expressiveness
can be developed (?). These ideas were extended for concurrent languages (?; ?; ?) where,
in addition, it was required that parallel composition and nondeterministic choice in the
simulated language were represented by parallel composition and nondeterministic choice
in the simulating language. A more general treatment is (?). More recently, (?) investigated
relative expressiveness for logic programs using a polynomial bound on the translation and
a weak form of modularity.



16 M.J. Maher

There has also been some related work in defeasible logic. Early work (?) on DL(∂)

demonstrated that some features of the logic – facts, defeaters and the superiority relation
– do not add to the expressiveness to that logic3. Furthermore, the idea of simulation with
respect to additions is similar to the idea of modular transformation in (?). In (?), failure
operators were added to DL(∂) and shown to be a conservative extension. In (?; ?), a
simulation of DL(∂) in logic programs under the Kunen semantics was shown, and in
(?) it was shown that this transformation does not provide a simulation by logic programs
under the stable model semantics.

Conclusion

We have introduced a notion of relative expressiveness for defeasible logics, based on sim-
ulation with respect to addition of facts, and shown that it is not too strict. The simulation
of a logic DL(∂) with team defeat by a logic DL(∂∗) without team defeat is a surprising
demonstration of that fact. However, it remains an open question whether there is a relative
expressiveness relationship between the ambiguity blocking and propagating logics.

We have also investigated alternative notions of relative expressiveness, and seen that
simulation with respect to rules is not too lenient. It remains to determine whether it is
too strict or not. We have already seen, in the section on ambiguity, that simulation with
respect to full defeasible theories is too strict.

Acknowledgements: The author thanks the referees for their careful reviewing.

References

3 These results do not all extend to ambiguity propagating logics (?).


