Online appendix for the paper

Relational theories with null values
 and non-Herbrand stable models

published in Theory and Practice of Logic Programming

Vladimir Lifschitz, Karl Pichotta, and Fangkai Yang
Department of Computer Science
University of Texas at Austin
\{vl,pichotta,fkyang\}@cs.utexas.edu

Lemma 2
A $D C A$-interpretation I satisfies a second-order sentence F of the signature σ iff the Herbrand interpretation $D(I) \overline{\bar{E} q}$ satisfies $F_{\bar{E} q}^{\overline{ }}$.

Proof
The proof is by induction on the size of F; size is understood as follows. About second-order sentences F and G we say that F is smaller than G if

- F has fewer second-order quantifiers than G, or
- F has the same number of second-order quantifiers as G, and the total number of first-order quantifiers and propositional connectives in F is less than in G.

The induction hypothesis is that the assertion of the lemma holds for all sentences that are smaller than F. If F is atomic then

$$
\begin{aligned}
& I \models F \quad \text { iff } \quad F \in D(I) \\
& \text { iff } \quad F_{\bar{E}}^{\overline{{ }_{E}}} \in D(I) \overline{\bar{E}}_{q} \\
& \text { iff } \quad D(I)_{\bar{E} q} \neq F_{\bar{E} q}^{\overline{E_{q}}} \text {. }
\end{aligned}
$$

$$
\begin{array}{ll}
I \models F & \text { iff } \quad I \models G \text { and } I \models H \\
& \text { iff } \quad D(I) \overline{\bar{E} q} \models G_{\overline{\bar{E}} q} \text { and } D(I)_{\overline{\bar{E}} q} \models H_{\overline{\bar{E}} q} \\
& \text { iff } \quad D(I)_{\bar{E} q}^{\overline{\bar{E}^{\prime}}} \models F_{\bar{E} q}^{\overline{\bar{E}} .}
\end{array}
$$

For other propositional connectives the reasoning is similar. If F is $\forall x G(x)$ then $F_{E q}^{\overline{\bar{E}}}$ is $\forall x\left(G(x)_{\bar{E} q}\right)$. Using the induction hypothesis and the fact that I satisfies $D C A$, we calculate:

$$
\begin{array}{lll}
I \models F & \text { iff } & \text { for all object constants } a, I \models G(a) \\
& \text { iff } & \text { for all object constants } a, D(I) \overline{\bar{E} q} \models G(a) \overline{\bar{E}}_{\bar{E}} \\
& \text { iff } & D(I)_{\bar{E} q} \models F_{\bar{E} q} .
\end{array}
$$

For the first-order existential quantifier the reasoning is similar.
It remains to consider the case when F is $\exists v G(v)$, where v is a predicate variable. To simplify notation, we will assume that the arity of v is 1 . For any set V of object
constants, by $\exp _{V}$ we denote the lambda-expression ${ }^{1} \lambda x \bigvee_{a \in V}(x=a)$. Since I is a $D C A$-interpretation, $I=F$ iff

$$
\text { for some } V, \quad I \models G\left(\exp _{V}\right) \text {. }
$$

By the induction hypothesis, this is equivalent to the condition

$$
\begin{equation*}
\text { for some } V, \quad D(I)_{\bar{E} q} \models H\left(\left(\exp _{V}\right)_{\bar{E} q}\right) \tag{1}
\end{equation*}
$$

where $H(v)$ stands for $G(v)_{\bar{E} q}$. On the other hand, $F_{\bar{E} q}$ is $\exists v(S u b(v) \wedge H(v))$. The Herbrand interpretation $D(I) \overline{\bar{E} q}$ satisfies this formula iff

$$
\begin{equation*}
\text { for some } V, \quad D(I)_{\bar{E} q} \models \operatorname{Sub}\left(\exp _{V}\right) \text { and } D(I)_{\overline{E_{q}}}=H\left(\exp _{V}\right) \text {. } \tag{2}
\end{equation*}
$$

We need to show that (2) is equivalent to (1).
Consider first the part

$$
\begin{equation*}
D(I)_{\bar{E} q}^{\overline{\bar{E}_{q}} \models S u b\left(\exp _{V}\right)} \tag{3}
\end{equation*}
$$

of condition (2), that is,

$$
D(I)_{\bar{E} q}^{\overline{\bar{E}}_{q}} \models \forall x y\left(\exp _{V}(x) \wedge E q(x, y) \rightarrow \exp _{V}(y)\right)
$$

It is equivalent to

$$
D(I)_{\bar{E}_{q}} \models \forall y\left(\exists x\left(\exp _{V}(x) \wedge E q(x, y)\right) \rightarrow \exp _{V}(y)\right)
$$

Interpretation $D(I) \overline{\bar{E}}_{q}$ satisfies the inverse of this implication, because it satisfies $\forall x E q(x, x)$. Consequently condition (3) can be equivalently rewritten as

$$
D(I) \overline{\bar{E}}_{\underline{q}} \models \forall y\left(\exists x\left(\exp _{V}(x) \wedge E q(x, y)\right) \leftrightarrow \exp _{V}(y)\right)
$$

The left-hand side of this equivalence can be rewritten as $\bigvee_{a \in V} E q(a, y)$. It follows that condition (3) is equivalent to

$$
D(I)_{\bar{E} q} \models \forall y\left(\bigvee_{a \in V} E q(a, y) \leftrightarrow \exp _{V}(y)\right)
$$

Furthermore, $E q(a, y)$ can be replaced here by $E q(y, a)$, because $D(I) \overline{\bar{E}}$ satisfies $\forall x y(E q(x, y) \leftrightarrow E q(y, x))$. Hence (3) is equivalent to

$$
D(I)_{\bar{E} q} \models\left(\exp _{V}\right)_{\overline{E_{q}}}=\exp _{V}
$$

It follows that (2) is equivalent to the condition

$$
\begin{equation*}
\text { for some } V, D(I)_{\bar{E} q}^{\overline{\bar{E}}_{q}} \models\left(\exp _{V}\right)_{\overline{E_{q}}}=\exp _{V} \text { and } D(I)_{\overline{\bar{E}}_{q}} \models H\left(\left(\exp _{V}\right)_{\bar{E} q}\right) \text {. } \tag{4}
\end{equation*}
$$

It is clear that (4) implies (1).
It remains to check that (1) implies (4). Assume that

$$
\begin{equation*}
D(I)_{\bar{E} q} \models H\left(\left(\exp _{V}\right)_{\bar{E} q}\right) \tag{5}
\end{equation*}
$$

and let V^{\prime} be the set of object constants a such that, for some $b \in V, I \models a=b$. We will show that V^{\prime} can be taken as V in (4). The argument uses two properties of the set V^{\prime} that are immediate from its definition:

[^0](a) $V \subseteq V^{\prime}$;
(b) if $I \models a=b$ and $a \in V^{\prime}$ then $b \in V^{\prime}$.

Consider the first half of (4) with V^{\prime} as V :

$$
D(I)_{\bar{E} q}^{\overline{\bar{E}^{\prime}}} \models\left(\exp _{V^{\prime}}\right)_{\bar{E} q}=\exp _{V^{\prime}} .
$$

This condition can be restated as follows: for every object constant a,

$$
D(I)_{\bar{E} q} \models \bigvee_{b \in V^{\prime}} E q(a, b) \quad \text { iff } \quad D(I)_{\bar{E} q} \models \bigvee_{b \in V^{\prime}}(a=b)
$$

or, equivalently,

$$
I \models \bigvee_{b \in V^{\prime}}(a=b) \quad \text { iff } \quad a \in V^{\prime}
$$

The implication left-to-right follows from property (b) of V^{\prime}; the implication right-to-left is obvious (take b to be a).

Consider now the second half of (4) with V^{\prime} as V :

$$
D(I)_{\bar{E} q}^{\overline{\bar{A}}^{\prime}}=H\left(\left(\exp _{V^{\prime}}\right) \overline{\bar{E}}_{\underline{E}}\right) .
$$

To derive it from (5), we only need to check that

This claim is equivalent to

$$
\begin{equation*}
I \models \exp _{V^{\prime}}=\exp _{V} \tag{6}
\end{equation*}
$$

and can be restated as follows: for every object constant a,

$$
I \models \bigvee_{b \in V^{\prime}}(a=b) \quad \text { iff } \quad I \models \bigvee_{b \in V}(a=b)
$$

The implication left-to-right is immediate from the definition of V^{\prime}; the implication righ-to-left is immediate from property (a).

[^0]: ${ }^{1}$ On the use of lambda-expressions in logical formulas, see (?, Section 3.1).

