
Online appendix for the paper

The Third Open Answer Set Programming
Competition

published in Theory and Practice of Logic Programming

FRANCESCO CALIMERI, GIOVAMBATTISTA IANNI, FRANCESCO RICCA

Dipartimento di Matematica
Università della Calabria, Italy (e-mail: {calimeri,ianni,ricca}@mat.unical.it)

submitted 24 August 2011; revised 12 January 2012; accepted 4 June 2012

Appendix A ASP-Core Syntax and Semantics overview

In the following, an overview of both the main constructs and the semantics of the

ASP-Core language is reported. The full ASP-Core language specification can be

found in (Calimeri et al. 2011).

A.1 ASP-Core Syntax

For the sake of readability, the language specification is hereafter given according to

the traditional mathematical notation. A lexical matching table from the following

notation to the actual raw input format prescribed for participants is provided in

(Calimeri et al. 2011).

Terms, constants, variables. Terms are either constants or variables. Constants can

be either symbolic constants (strings starting with lower case letter), strings (quoted

sequences of characters), or integers. Variables are denoted as strings starting with

an upper case letter. As a syntactic shortcut, the special variable “ ” is a placeholder

for a fresh variable name in the context at hand.

Atoms and Literals. An atom is of the form p(X1, . . . , Xn), where p is a predicate

name, X1, . . . , Xn are terms, and n (n ≥ 0) is the fixed arity associated to p1. A

classical literal is either of the form a (positive classical literal) or −a (negative

classical literal), for a being an atom. A naf-literal is either a positive naf-literal a

or a negative naf-literal not a, for a being a classical literal.

1 The atom referring to a predicate p of arity 0, can be stated either in the form p() or p.

2 F. Calimeri, G. Ianni and F. Ricca

Rules. An ASP-Core program P is a a finite set of rules. A rule r is of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk,not n1, ...,not nm.

where n, k,m ≥ 0, and at least one of n,k is greater than 0; a1, . . . , an, b1, . . . , bk,

and n1, . . . , nm are classical literals. a1 ∨ · · · ∨ an constitutes the head of r, whereas

b1, . . . , bk,not n1, ...,not nm is the body of r. As usual, whenever k = m = 0, we

omit the “←” sign. r is a fact if n = 1, k = m = 0, while r is a constraint if n = 0.

Rules written in ASP-Core are assumed to be safe. A rule r is safe if all its

variables occur in at least one positive naf-literal in the body of r. A program P

is safe if all its rules are safe. A program (a rule, a literal, an atom) is said to be

ground (or propositional) if it contains no variables.

Ground Queries. A program P can be coupled with a ground query in the form q?,

where q is a ground naf-literal.

A.2 ASP-Core Semantics

The semantics of ASP-Core, based on (Gelfond and Lifschitz 1991), exploits the

traditional notion of the Herbrand interpretation.

Herbrand universe. Given a program P , the Herbrand universe of P , denoted by

UP , is the set of all constants occurring in P . The Herbrand base of P , denoted by

BP , is the set of all ground naf-literals obtainable from the atoms of P by replacing

variables with elements from UP .

Ground programs and Interpretations. A ground instance of a rule r is obtained

replacing each variable of r by an element from UP . Given a program P , we define

the instantiation (grounding) grnd(P) of P as the set of all ground instances of its

rules. Given a ground program P , an interpretation I for P is a subset of BP . A

consistent interpretation is such that {a,−a} ̸⊆ I for any ground atom a. In the

following, we only deal with consistent interpretations.

Satisfaction. A positive naf-literal l = a (resp., a naf-literal l = not a), for predi-

cate atom a, is true with respect to an interpretation I if a ∈ I (resp., a /∈ I); it is

false otherwise. Given a ground rule r, we say that r is satisfied with respect to an

interpretation I if some atom appearing in the head of r is true with respect to I

or some naf-literal appearing in the body of r is false with respect to I.

Models. Given a ground program P , we say that a consistent interpretation I is a

model of P iff all rules in grnd(P) are satisfied w.r.t. I. A model M is minimal if

there is no model N for P such that N ⊂M .

Gelfond-Lifschitz reduct and Answer Sets. The Gelfond-Lifschitz reduct (Gelfond

and Lifschitz 1991) of a program P with respect to an interpretation I is the

positive ground program P I obtained from grnd(P) by: (i) deleting all rules with

Online appendix 3

a negative naf-literal false w.r.t. I; (ii) deleting all negative naf-literals from the

remaining rules. I ⊆ BP is an answer set for P iff I is a minimal model for P I .

The set of all answer sets for P is denoted by AS(P).

Semantics of ground queries. Let P be a program and q? be a query, q? is true iff for

all A ∈ AS(P) it holds that q ∈ A. Basically, the semantics of queries corresponds

to cautious reasoning, since a query is true if the corresponding atom is true in all

answer sets of P .

Appendix B Detailed Competition Settings

The competition settings for the two tracks are depicted in Figure B 1. The

problems collected into the official problem suite (see Appendix D), were grouped

into two different suites, one per each track. The problems belonging to the System

Track suite were nearly a proper subset of the ones featured in the M&S Track. In

both tracks, for each problem P , a number of instances IP1 , . . . , IPN
were selected.2

For any problem P included into the System Track a corresponding fixed declarative

specification, written in ASP-Core, EP was also given.

A team T participating in the System Track had to provide a unique executable

system ST . A team participating in the M&S Track, instead, had to produce a

possibly-different execution bundle SystemBoxT,P for any problem P in the M&S

Track suite. For each problem P , the participants were fed iteratively with all

instances IPi of P (in the case of the System Track each instance was fed together

with the corresponding problem encoding EP).

The submitted executables were challenged to produce either a witness solution,

denoted by WP
i , or to report that no solution exists within a predefined amount

of allowed time. The expected output format that is determined by the type of

the problem (search, query, optimization) is reported in (Calimeri et al. 2011).

Participants were made aware, fairly in advance, of fixed encodings (in the case

of the System Track), while they were provided only a small set of corresponding

training instances. Official instances were kept secret until the actual start of the

competition. Scores were awarded according to the competition scoring system (see

Section 4 of the original paper and this online Appendix C).

2 For problems appearing in both tracks, the instances selected for the M&S Track and those
selected for the System Track were not necessarily the same.

S
TIP

i

W
i or

“INCONSISTENT”

P
E

P

(a) System Track

System Box T,P

IPi
Wi or

“INCONSISTENT”

P

(b) M&S Track

Fig. B 1. Competition Setting

4 F. Calimeri, G. Ianni and F. Ricca

Definition of “syntactic special purpose technique”. The committee clas-

sified as forbidden in the System Track: the switch of internal solver options de-

pending either on command-line filenames, predicate and variable names, and “sig-

nature” techniques aimed at recognizing a particular benchmark problem, such as

counting the number of rules, constraints, predicates and atoms in a given encod-

ing. In order to discourage the adoption of forbidden techniques, the organizing

committee reserved the right to introduce syntactic means for scrambling program

encodings, such as file, predicate and variable random renaming. Furthermore, the

committee reserved the right to replace official program encodings arbitrarily with

equivalent syntactically-changed versions.

It is worth noting that, on the other hand, the semantic recognition of the pro-

gram structure was allowed, and even encouraged. Allowed semantic recognition

techniques explicitly included: (i) recognition of the class the problem encoding

belongs to (e.g., stratified, positive, etc.), with possible consequent switch-on of on-

purpose evaluation techniques; (ii) recognition of general rule and program struc-

tures (e.g., common un-stratified even and odd-cycles, common join patterns within

a rule body, etc.), provided that these techniques were general and not specific of

a given problem selected for the competition.

Detailed Software and Hardware Settings. The Competition took place on a battery

of four servers, featuring a 4-core Intel Xeon CPU X3430 running at 2.4 Ghz, with

4 GiB of physical RAM and PAE enabled.

The operating system of choice was Linux Debian Lenny (32bit), equipped with

the C/C++ compiler GCC 4.3 and common scripting/development tools. Competi-

tors were allowed to install their own compilers/libraries in local home directories,

and to prepare system binaries for the specific Competition hardware settings. All

the systems were benchmarked with just one out of four processors enabled, with

the exception of the parallel solver clasp-mt that could exploit all the available

core/processors. Each process spawned by a participant system had access to the

usual Linux process memory space (slightly less than 3GiB user space + 1GiB

kernel space). The total memory allocated by all the child processes created was

however constrained to a total of 3 GiB (1 GiB = 230 bytes). The memory foot-

print of participant systems was controlled by using the Benchmark Tool Run.3

This tool is not able to detect short memory spikes (within 100 milliseconds) or,

in some corner cases, memory overflow is detected with short delay: however, we

pragmatically assumed the tool as the official reference.

Detection of Incorrect Answers. Each benchmark domain P was equipped with a

checker program CP taking as input values a witness A and an instance I, and

answering “true” in case A is a valid witness for I w.r.t problem P . The collection

of checkers underwent thorough assessment and then was pragmatically assumed

to be correct.

3 http://fmv.jku.at/run/.

Online appendix 5

Suppose that a system S is faulty for instance I of problem P ; then, there were

two possible scenarios in which incorrect answers needed detection and subsequent

disqualification for a given system:

• S produced an answer A, and A was not a correct solution (either because I

was actually unsatisfiable or A was wrong at all). This scenario was detected

by checking the output of CP (A, I);
• S answered that the instance was not satisfiable, but actually I had some

witness. In this case, we checked whether a second system S ′ produced a

solution A′ for which CP (A
′, I) was true.

Concerning optimization problems, checkers produced also the cost C of the given

witness. This latter value was considered when computing scores and for assessing

answers of systems. Note that cases of general failure (e.g. out of memory, other

abrupt system failures) were not subject of disqualification on a given benchmark.

As a last remark, note that in the setting of the System Track, where problem

encodings were fixed, a single stability checker for answer sets could replace our

collection of checkers. We preferred to exploit already available checker modules,

which were also used for assessing the correctness of fixed official encodings set for

the System Track. This enabled us to detect some early errors in fixed encodings:

however, our lesson learned suggests that a general stability checker should be

placed side-by-side to specific benchmark checkers.

Other settings. The committee kept its neutral position and did not disclose any

material submitted by participants until the end of the competition: however, par-

ticipants were allowed to share their own work willingly at any moment. The above

choice was taken in order to prefer scientific collaboration between teams over a

strict competitive setting. All participants were asked to agree that any kind of

submitted material (system binaries, scripts, problems encodings, etc.) was to be

made public after the competition, so to guarantee transparency and reproducibil-

ity. None of the members of the organizing committee submitted a system to the

Competition, in order to play the role of neutral referee properly and guarantee an

unbiased benchmark selection and rule definition process.

Appendix C Detailed scoring regulations

C.1 Principles

The main factors that were taken into account in the scoring framework are illus-

trated next.

1. Benchmarks with many instances should not dominate the overall score of a

category. Thus, the overall score for a given problem P was normalized with

respect to the number N of selected instances for P .
2. Nonsound solvers and encodings were strongly discouraged. Thus, if system

S produced an incorrect answer for an instance of a problem P then S is

disqualified from P and the overall score achieved by S for problem P is

invalidated (i.e., is set to zero).

6 F. Calimeri, G. Ianni and F. Ricca

3. A system managing to solve a given problem instance sets a clear gap over all

systems not able to do so. Thus, a flat reward for each instance I of a problem

P was given to a system S that correctly solved I within the allotted time.

4. Concerning time performance, human beings are generally more receptive to

the logarithm of the changes of a value, rather than to the changes themselves;

this is especially the case when considering evaluation times. Indeed, different

systems with time performances being in the same order of magnitude are

perceived as comparatively similar, in terms of both raw time performance

and quality; furthermore, a system is generally perceived as clearly fast, when

its solving times are orders of magnitude below the maximum allowed time.

Keeping this in mind, and analogously to what has been done in SAT com-

petitions,4 a logarithmically weighted bonus was awarded to faster systems

depending on the time needed for solving each instance.

5. In the case of optimization problems, scoring should depend also on the quality

of the provided solution. Thus, bonus points were rewarded to systems able to

find better solutions. Also, we wanted to take into account the fact that small

improvements in the quality of a solution are usually obtained at the price

of much stronger computational efforts: thus the bonus for a better quality

solution has been given on an exponential weighting basis.

C.2 Scoring Rules

The final score obtained by a system S in a track T consisted of the sum over the

scores obtained by S in all benchmarks selected for T . In particular, a system could

get a maximum of 100 points for each given benchmark problem P considered for

T . The overall score of a system on a problem P counting N instances, hereafter

denoted by S(P), was computed according to the following formulas that depend

on whether P is a search, query or optimization problem.

4 See, for instance, the log based scoring formulas at http://www.satcompetition.org/2009/
spec2009.html.

Fig. C 1. Scoring Functions Exemplified (one instance, 100 pts max, tout = 600).

Online appendix 7

Wrong Answers. In the case where S produced an output detected as incorrect5

for at least one instance of P , then S was disqualified from P and S(P) was set to

zero (i.e., S(P) = 0 in case of incorrect output); otherwise, the following formulas

were applied for computing S(P).

Search and Query Problems. In case of both search and query problems the score

S(P) was computed by the sum

S(P) = Ssolve(P) + Stime(P)

where Ssolve and Stime(P) take into account the number of instances solved by S
in P and the corresponding running times, respectively; in particular

Ssolve(P) = α
NS

N
; Stime(P) =

100− α

N

N∑
i=1

(
1−

(
log(ti + 1)

log(tout + 1)

))
for NS being the number of instances solved by P within the time limit, tout is the

maximum allowed time, ti the time spent by S while solving instance i, and α a

percentage factor balancing the impact of Ssolve(P) and Stime(P) on the overall

score. Both Ssolve(P) and Stime(P) were rounded to the nearest integer.

Note that Stime(P) was specified in order to take into account the “perceived”

performance of a system (as discussed in C.1). Figure C 1(a) gives an intuitive

idea about how Stime distributes a maximum score of 100 points considering a

single instance and tout = 600. Note that half of the maximum score (50 points) is

given to performance below 24 seconds about, and significant differences in scoring

correspond to differences of orders of magnitude in time performance.

Optimization Problems. As in the previous edition, the score of a system S in the

case of optimization problems depends on whether S was able to find a solution or

not, and in the former case, the score depends on the quality of the given solutions.

In addition, as in the case of decision problems, time performance is taken into

account. We assumed the cost function associated with optimization problems must

be minimized (the lower, the better), and it had 0 as its lowest bound.

The overall score of a system for an optimization problem P is given by the sum

S(P) = Sopt(P) + Stime(P)

where Stime(P) is defined as for search problems, and Sopt(P) takes into account

the quality of the solution found. In particular, for each problem P , system S is

rewarded of a number of points defined as

Sopt(P) = α ·
N∑
i=1

Si
opt

where, as before, α is a percentage factor balancing the impact of Sopt(P) and

Stime(P) on the overall score, and Si
opt is computed by properly summing, for each

instance i of P , one or more of these rewards:

5 Incorrect answers were determined as specified in Appendix B

8 F. Calimeri, G. Ianni and F. Ricca

1. 1
N points, if the system correctly recognizes an unsatisfiable instance;

2. 1
4N points, if the system produces a correct witness;

3. 1
4N points, if the system correctly recognizes an optimum solution and outputs

it;

4. 1
2N ·e

M−Q points, where Q denotes the quality of the solution produced by the

system and M denotes the quality of the best answer produced by any system

for the current instance, for M conventionally set to 100, and Q normalized

accordingly.

Taking into account that an incorrect answer causes the whole benchmark to pay

no points, three scenarios may come out: timeout, unsatisfiable instance, or solution

produced. Note thus that points of groups (1), (2) and (3-4-5) cannot be rewarded

for the same instance.

The intuitive impact of the above “quality” score Sopt(P) can be seen in Figure

C 1(b), in which the quality of a given solution, expressed in percentage distance

from the optimal solution, is associated with the corresponding value of Sopt (sup-

pose a maximum of 100 points, α = 100, and one single instance per benchmark).

Note that a system producing a solution with a quality gap of 1% with respect

to the best solution gets only 35 points (over 100) and the quality score quota

rapidly decreases (it is basically 0 for quality gap > 4%), so that small differences

in the quality of a solution determine a strong difference in scoring according to

considerations made in C.1.

In the present competition, for each problem domain we set tout = 600 seconds

and α = 50; N has been set to 10 for the System Track, while it varied from problem

to problem for the M&S Track, reaching up to 15 instances per single benchmark

problem.

Appendix D Benchmark Suite

Benchmark problems were collected, selected and refined during the Call for Prob-

lems stage. The whole procedure led to the selection of 35 problems, which consti-

tuted the M&S Track problem suite. Taking into account what already discussed

in Section 2 of the original paper, twenty problems out of the ones constituting the

M&S Track were selected for composing the System Track suite: these had a natural

and declarative ASP-Core encoding. Benchmark problems were classified according

to their type into three categories: Search problems, requiring to find a solution (a

witness) for the problem instance at hand, or to notify the non-existence of a solu-

tion; Query problems, consisting in checking whether a ground fact is contained in

all the witnesses of the problem instance at hand (same as performing cautious rea-

soning on a given logic program); and, Optimization problems, i.e. a search problem

in which a cost function associated to witnesses had to be minimized. The System

Track did not contain optimization problems.

Problems were further classified according to their computational complexity in

Online appendix 9

three categories:6 Polynomial, NP and Beyond NP problems, these latter with the

two subcategories composed of ΣP
2 problems and optimization problems. In the

following, we break down the benchmark suite according complexity categories and

discuss some interesting aspects. The complete list of problems included in the

competition benchmark suite, together with detailed problem descriptions, and full

benchmark data, is available on the Competition web site (Calimeri et al. 2010).

Polynomial Problems. We classified in this category problems which are known

to be solvable in polynomial time in the size of the input data (data complexity). In

the Competition suite such problems were usually characterized by the huge size of

instance data and, thus, they were a natural test-bench for the impact of memory

consumption on performance. It is worth disclaiming that the competition aim was

not to compare ASP systems against technologies (database etc.) better tailored

to solving this category of problems; nonetheless, several practical real-world ap-

plications, which competitors should be able to cope with, fall into this category.

Note also that polynomial problems are usually entirely solved by participants’

grounder modules, with little or no effort required by subsequent solving stages: in-

deed, grounders are the technology that mainly underwent assessment while dealing

with polynomial problems. There were seven polynomial problems included in the

benchmark suite, six of which were selected for the System Track suite.

Four of the above six were specified in a fragment of ASP-Core (i.e., stratified

logic programs) with polynomial data complexity; a notable exception was made

by the problems StableMarriage and PartnerUnitsPolynomial –which are

also known to be solvable in polynomial time (Gusfield and Irving 1989; Falkner

et al. 2010)– for which we chose their natural declarative encoding, making usage of

disjunction. Note that, in the case of these last two problems, the “combined” ability

of grounder and propositional solver modules was tested. The aim was to measure

whether, and to what extent, a participant system could be able to converge on a

polynomial evaluation strategy when fed with such a natural encoding.

As further remark, note that the polynomial problem Reachability was ex-

pressed in terms of a query problem, in which it was asked whether two given

nodes were reachable in a given graph: this is a typical setting in which one can

test systems on their search space tailoring techniques (such as magic sets) (Ban-

cilhon et al. 1986). The polynomial problem participating to the M&S Track only

was CompanyControls, given its natural modeling in term of a logic program

with aggregates (Faber et al. 2004), these latter not included in the ASP-Core spec-

ifications.

NP Problems. We classified in this category NP-complete problems or, more pre-

cisely, their corresponding FNP versions. These problems constituted the “core”

category, in which to test the attitude of a system in efficiently dealing with prob-

lems expressed with the “Guess and Check” methodology (Leone et al. 2006).

6 The reader can refer to (Papadimitriou 1994) for the definition of basic computational classes
herein mentioned.

10 F. Calimeri, G. Ianni and F. Ricca

Among the selected NP problems there were ten puzzle problems, six of which

inspired by or taken from planning domains; two classical graph problems; six, both

temporal and spatial, resource allocation problems; and, three problems related to

applicative and academic settings, namely: Weight-AssignmentTree (Garcia-

Molina et al. 2000) which was concerned with the problem of finding the best join

ordering in a conjunctive query; ReverseFolding which was aimed at mimicking

the protein folding problem in a simplified setting (Dovier 2011); and, MultiCon-

textSystemQuerying, the unique problem considered in the System Track only,

which was a query problem originating from reasoning tasks in Multi-Context Sys-

tems (Dao-Tran et al. 2010). Notably, this latter problem had an ASP-Core encoding

producing several logic submodules, each of which with independent answer sets.

The ability to handle both cross-products of answer sets and early constraint firing

efficiently were herein assessed.

Beyond NP/ΣP
2 . The category consisted of problems whose decision version was

ΣP
2 -complete. Since a significant fraction of current ASP systems cannot properly

handle this class of problems, only two benchmarks were selected, namely Strate-

gicCompanies and MinimalDiagnosis. The former is a traditional ΣP
2 problem

coming from (Cadoli et al. 1997), while the latter originates from an application in

molecular biology (Gebser et al. 2011). As far as the System Track is concerned,

ΣP
2 problems have an ASP encoding making unrestricted usage of disjunction in

rule heads.

Beyond NP/Optimization. These are all the problems with an explicit formu-

lation given in terms of a cost function with respect to each witness has to be

minimized. The above categorization does not imply a given problem stays outside

(F)ΣP
2 , although this has been generally the case for this edition of the competition.

The selected problems were of heterogenous provenance, including classic graph

problems and sequential optimization planning problems. No benchmark from this

category was present in the System Track benchmark suite.

Online appendix 11

Appendix E System Versions

As described in Section 3 of the original paper, the participants submitted original

systems and solution bundles possibly relying on different (sub)systems.

In some cases, systems were provided as custom versions compiled on purpose for

the Competition; in some other cases, the executables came from the official release

sources, but have been built on the competition machines, and hence might differ

from the ones officially distributed. We explicitly report here the exact versions,

whenever applicable, if explicitly stated by the participants; it is worth remembering

that, for the sake of reproducibility, all systems and solution bundles, together with

encodings, instances, scripts, and everything else needed for the actual re-execution

of the competition, is available on the competition web site (Calimeri et al. 2010),

where more details on systems and teams can be found, as well.

System Related Systems/Subsystems
• clasp (v 2.0.0-RC2) • Gringo (v.3.0.3)
• claspD (v 1.1.1) • Gringo (v.3.0.3)
• claspfolio (v 1.0.0) • Gringo (v.3.0.3)
• idp (custom) • Gringo (v.3.0.3), MiniSatID (v. 2.5.0)
• cmodels (v 3.81) • Gringo (v.3.0.3), MiniSat v 2.0-beta
• sup (v 0.4) • Gringo (v.3.0.3)
• lp2gminisat, • Gringo (v. 3.0.3), Smodels (v. 2.34), lpcat (v. 1.18),

lp2lminisat, lp2normal (v. 1.11), igen (v. 1.7), lp2lp2 (v. 1.17),
lp2minisat lp2sat (v 1.15), Minisat (v. 1.14), interpret (v. 1.7)

• lp2diffz3 • Gringo (v. 3.0.3), Smodels (v. 2.34), lpcat (v. 1.18),
l2diff (v. 1.27), z3 (v. 2.11), interpret (v. 1.7)

• Smodels (v. 2.34) • Gringo (v.3.0.3)

Team System/Subsistems exploited
• Aclasp • clasp (custom), Gringo (v.3.0.4)
• BPSolver • B-Prolog (v. 7.1),
• EZCSP • ezcsp (v. 1.6.20b26), iClingo (v. 3.0.3), clasp,

ASPM, B-Prolog, MKAtoms (v. 2.10), Gringo (v. 3.0.3)
• Fast Downward • Fast Downward (custom)
• idp • Gidl v. 1.6.12, MiniSatID (v. 2.5.0)
• Potassco • clasp (v 2.0.0-RC2), claspD (v 1.1.1), Gringo (v.3.0.3),

Clingcon (v. 0.1.2)

Appendix F Detailed result tables for Section 5 of the original paper

We report here detailed figures of the competition.

All the graphs plot a number representing a number of instances (horizontal axis)

against the time (expressed in seconds) needed by each solution bundle to solve them

(vertical axis): the slower a line grows, the more efficient the corresponding solution

bundle performed. Note that not all the participants solved the same number of

instances within the maximum allotted time.

In figure F 3 and F 4 participants are ordered by Final score (i.e.,
∑

P S(P));

for each participant, three rows report for each problem P : (i) the Score, (ii) the

Instance quota (i.e.,
∑

P Ssolve(P) or
∑

P Sopt(P) for optimization problems), (iii)

the Time quota (i.e.,
∑

P Stime(P)).

12 F. Calimeri, G. Ianni and F. Ricca

For each category, the best performance among official participants is reported

in bold face. In all tables, an asterisk (‘∗’) indicates that the system/team has been

disqualified for the corresponding benchmark problem.

 0

 100

 200

 300

 400

 500

 600

 0 30 60 90

E
xe

cu
tio

n
T

im
e

(s
)

Solved Instances

lp2sat2lminisat
claspfolio

lp2sat2gminisat
cmodels

clasp
smodels

lp2sat2minisat
idp

claspd
sup

lp2diffz3

Fig. F 1. System Track : Overall Results [Exec. time (y-axis), Solved Instances (x-axis)]

 0

 100

 200

 300

 400

 500

 600

 0 30 60 90 120 150 180 210 240 270 300 330 360 390

E
xe

cu
tio

n
T

im
e

(s
)

Solved Instances

idp
bpsolver

aclasp
fastdownward

clasp
ezcsp

Fig. F 2. M&S Track : Overall Results [Exec. time (y-axis), Solved Instances (x-axis)]

Online appendix 13

Fig. F 3. System Track - Overall Results

14 F. Calimeri, G. Ianni and F. Ricca

F
ig
.
F
4
.
M
&
S
T
ra
ck

-
O
v
er
a
ll
R
es
u
lt
s

Online appendix 15

 0

 100

 200

 300

 400

 500

 600

 0 30

E
xe

cu
tio

n
T

im
e

(s
)

Solved Instances

lp2sat2lminisat
claspfolio

lp2sat2gminisat
cmodels

clasp
smodels

lp2sat2minisat
idp

claspd
sup

lp2diffz3

(a) System Track P

 0

 100

 200

 300

 400

 500

 600

 0 30 60

E
xe

cu
tio

n
T

im
e

(s
)

Solved Instances

idp
bpsolver

aclasp
fastdownward

clasp
ezcsp

(b) Team Track P

Fig. F 5. Results in Detail: Execution time (y-axis), Solved Instances (x-axis).

16 F. Calimeri, G. Ianni and F. Ricca

 0

 100

 200

 300

 400

 500

 600

 0 30 60

E
xe

cu
tio

n
T

im
e

(s
)

Solved Instances

lp2sat2lminisat
claspfolio

lp2sat2gminisat
cmodels

clasp
smodels

lp2sat2minisat
idp

claspd
sup

lp2diffz3

(a) System Track NP

 0

 100

 200

 300

 400

 500

 600

 0 30 60 90 120 150 180 210 240

E
xe

cu
tio

n
T

im
e

(s
)

Solved Instances

idp
bpsolver

aclasp
fastdownward

clasp
ezcsp

(b) Team Track NP

Fig. F 6. Results in Detail: Execution time (y-axis), Solved Instances (x-axis).

Online appendix 17

 0

 100

 200

 300

 400

 500

 600

 0

E
xe

cu
tio

n
T

im
e

(s
)

Solved Instances

claspd
cmodels

(a) System Track Beyond NP

 0

 100

 200

 300

 400

 500

 600

 0

E
xe

cu
tio

n
T

im
e

(s
)

Solved Instances

bpsolver
clasp

(b) Team Track Beyond NP

Fig. F 7. Results in Detail: Execution time (y-axis), Solved Instances (x-axis).

18 F. Calimeri, G. Ianni and F. Ricca

 0

 100

 200

 300

 400

 500

 600

 0 30 60 90

E
xe

cu
tio

n
T

im
e

(s
)

Solved Instances

claspmt
claspd

lp2difflz3
lp2diffgz3

aclasp
lp2difflgz3

(a) System Track Non-participants

 0

 100

 200

 300

 400

 500

 600

 0 30 60

E
xe

cu
tio

n
T

im
e

(s
)

Solved Instances

idp
bpsolver

aclasp
fastdownward

clasp
ezcsp

(b) Team Track Optimization

Fig. F 8. Results in Detail: Execution time (y-axis), Solved Instances (x-axis).

Online appendix 19

References

Bancilhon, F., Maier, D., Sagiv, Y., and Ullman, J. D. 1986. Magic Sets and Other
Strange Ways to Implement Logic Programs. In Proceedings of the Fifth ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems (PODS 1986). Cambridge,
Massachusetts, 1–15.

Cadoli, M., Eiter, T., and Gottlob, G. 1997. Default Logic as a Query Language.
IEEE Transactions on Knowledge and Data Engineering 9, 3 (May/June), 448–463.

Calimeri, F., Ianni, G., and Ricca, F. 2011. Third ASP Competition, File and language
formats. http://www.mat.unical.it/aspcomp2011/files/LanguageSpecifications.

pdf.

Calimeri, F., Ianni, G., Ricca, F., and The Università della Calabria Organiz-
ing Committee. 2010. The Third Answer Set Programming Competition homepage.
http://www.mat.unical.it/aspcomp2011/.

Dao-Tran, M., Eiter, T., Fink, M., and Krennwallner, T. 2010. Distributed Non-
monotonic Multi-Context Systems. In 12th International Conference on the Principles
of Knowledge Representation and Reasoning (KR 2010), Toronto, Canada, May 9-13,
2010, F. Lin and U. Sattler, Eds. AAAI Press, 60–70.

Dovier, A. 2011. Recent constraint/logic programming based advances in the solution
of the protein folding problem. Intelligenza Artificiale 5, 1, 113–117.

Faber, W., Leone, N., and Pfeifer, G. 2004. Recursive aggregates in disjunctive logic
programs: Semantics and complexity. In Proceedings of the 9th European Conference
on Artificial Intelligence (JELIA 2004), J. J. Alferes and J. Leite, Eds. Lecture Notes
in AI (LNAI), vol. 3229. Springer Verlag, 200–212.

Falkner, A., Haselböck, A., and Schenner, G. 2010. Modeling Technical Product
Configuration Problems. In Proceedings of ECAI 2010 Workshop on Configuration.
Lisbon, Portugal, 40–46.

Garcia-Molina, H., Ullman, J. D., and Widom, J. 2000. Database System Implemen-
tation. Prentice Hall.

Gebser, M., Schaub, T., Thiele, S., and Veber, P. 2011. Detecting inconsistencies in
large biological networks with answer set programming. Theory and Practice of Logic
Programming 11, 323–360.

Gelfond, M. and Lifschitz, V. 1991. Classical Negation in Logic Programs and Dis-
junctive Databases. New Generation Computing 9, 365–385.

Gusfield, D. and Irving, R. W. 1989. The stable marriage problem: structure and
algorithms. MIT Press, Cambridge, MA, USA.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and Scar-
cello, F. 2006. The DLV System for Knowledge Representation and Reasoning. ACM
Transactions on Computational Logic 7, 3 (July), 499–562.

Papadimitriou, C. H. 1994. Computational Complexity. Addison-Wesley.

