
1

Online appendix for the paper

Well-Definedness and Efficient Inference for
Probabilistic Logic Programming under the

Distribution Semantics
published in Theory and Practice of Logic Programming

FABRIZIO RIGUZZI

ENDIF – University of Ferrara

Via Saragat 1, I-44122, Ferrara, Italy
E-mail: fabrizio.riguzzi@unife.it

TERRANCE SWIFT

CENTRIA – Universidade Nova de Lisboa

E-mail: tswift@cs.suysb.edu

submitted 22 November 2010; revised 15 April 2011; accepted 14 June 2011

Appendix A Proof of Well-Definedness Theorems (Section 4.1)

To prove Theorem 1 we start with a lemma that states one half of the equivalence,

and also describes an implication of the bounded term-size property for computa-

tion.

Lemma 1
Let P be a normal program with the bounded term-size property. Then

1. Any atom in WFM(P) has a finite stratum, and was computed by a

finite number of applications of TrueP .
2. There are a finite number of true atoms in WFM(P).

Proof
For 2), note that bounding the size of θ as used in Definition 2 bounds the size

of the ground clause B ← L1, ..., Ln, and so bounds the size of TruePI (Tr) for

any I, T r ⊆ HP . Since the true atoms in WFM(P) are defined as a fixed-point of

TruePI for a given I, there must be a finite number of them.

Similarly, since the size of θ is bounded by an integer L, and since TruePI is mono-

tonic for any I TruePI (∅) reaches its fixed point in a finite number of applications,

and in fact only a finite number of applications of TruePI are required to compute

true atoms in WFM(P). In addition, it can be the case that T P
I 6= I only a finite

number of times, so that WFM(P) can contain only a finite number of strata.

Theorem 1

Let P be a normal program. Then WFM(P) has a finite number of true atoms iff

P has the bounded term-size property.

2

Proof

The ⇐ implication was shown by the previous Lemma, so that it remains to prove

that if WFM(P) has a finite number of true atoms, then P has the bounded term-

size property. To show this, since the number of true atoms in WFM(P) is finite,

all derivations of true atoms using TruePI (Tr) of Definition 2 can be constructed

using only a finite set of ground clauses. For this to be possible, the maximum term

size of any literal in any such clause is finitely bounded, so that P has the bounded

term-size property.

Theorem 2

Let T be a sound bounded term-size LPAD, and let A ∈ HT . Then A has a finite

set of finite explanations that is covering.

Proof

Let T be an LPAD and w be a world of T . Each clause Cground in w is associated

with a choice (C, θ, i), for which C and i can both be taken as finite integers. We

term (C, θ, i) the generators of Cground. By Theorem 1 each world w of T has a

finite number of true atoms, and a maximum size Lw of any atom in such a world.

We prove that the maximum LT of all such worlds has a finite upper bound.

We first consider the case in which T does not contain negation. Consider a

world w whose well-founded model has the finite bound Lw on the size of the

largest atoms. We show that Lw can not be arbitrarily large.

Since Lw is finite, all facts in T must be ground and all clauses range-restricted:

otherwise some possible world of T would contain an infinite number of true atoms

and so would not be bounded term-size by Theorem 1. There must be some set G

of generators which acts on a chain of interpretations I0 ⊂ I1 ⊂ In ⊂ WFM(w),

where I0 is some superset of the facts in w, and the maximum size of any atom

in Ii is strictly increasing. Because WFM(w) is finite and T is definite, the set of

generators G must be finite.

We first show that G must contain generators (C ′, θ, i) and (C ′, θ′, j) for at least

one disjunctive clause C ′. If not, then either 1) Lw would be infinite as there would

be some recursion in which term size increases indefinitely; or 2) if there is no such

recursion that indefinitely increases the size of terms and no disjunctive clauses, Lw

could not be arbitrarily large and this would prove the property. In fact, without

disjunction the set of clauses causing the recursion would produce an infinite model.

With disjunction, eventually a different head is chosen and the recursion is stopped.

Consider then, for some set D of disjunctive clauses, the set Dexpand of generators

must be used to derive (perhaps indirectly) atoms whose size is strictly greater than

the maximal size of an atom in In, while another set of generators Dstop must be

used to stop the production of larger atoms, since WFM(w) is finite. However,

if such a situation were the case, there must also be a world winf in which for

ground clauses for D whose grounding substitution is over a certain size, only the

set Dexpand of generators is chosen and Dstop is never chosen. The well-founded

model for winf would then be infinite, against the hypothesis that T is bounded

term-size.

The preceding argument has shown that since there is an overall bound on the

3

size of the largest atom in any world for T , T has a finite number of different

models, each of which is finite. As each model is finite, there is a finite number of

ground clauses that determine each model by deriving the positive atoms in the

model. Each such clause is associated with an atomic choice, and the set of these

clauses corresponds to a finite composite choice. The set of these composite choices

corresponding to models in which the query A is true represent a finite set of finite

explanations that is covering for A.

Although the preceding paragraph assumed that T did not contain negation, the

assumption was made only for simplicity, so that details of strata need not be con-

sidered. The argument for normal programs is essentially the same, constituting

an induction where the above argument is made for each stratum. Because Defini-

tion ?? specifies that an atom can be added to an interpretation only once, there

can only be a finite number of strata in which some true atom is added, so that

there will be only a finite number of strata overall. Since there are only a finite

number of strata, each of which has a finite number of applications of TruePI (Tr),

a finite bound L can be constructed so that T fulfills the definition of bounded

term-size.

Appendix B Proof of the Termination Theorem for Tabling (Section 6)

Theorem 3

Let P be fixed-order dynamically stratified normal program, and Q a bounded

term-size query to P . Then there is an SLG evaluation of Q to P using term-depth

abstraction that finitely terminates.

Proof

SLG has been proven to terminate for other notions of bounded term-size queries,

so here we only sketch the termination proof.

First, we note that (Sagonas et al. 2000) guarantees that if P is a fixed-order

stratified program, then there is an an SLG evaluation E of P that does not re-

quire the use of the SLG Delaying, Simplification or Answer Completion

operations, and by implication no forest of E contains a conditional answer. Such

an evaluation is termed delay-minimal. Note that Definition ?? constrains only

the bindings used in TruePI , and these constraints may not apply ground atoms

that are undefined in the WFM(P). As a result, condition answers, if they are

not simplified or removed by Simplification or Answer Completion may not

have a bounded term-size. This situation is avoided by delay-minimal evaluations.

Next, we assume that all negative selected literals are ground. This assumption

causes no loss of generality as the evaluation will flounder and so terminate finitely

if a non-ground negative literal is selected. Given this context, the proof uses the

forest-of-trees model (Swift 1999) of SLG (Chen and Warren 1996).

• We consider as an induction basis the case when Q is in stratum 0 – that is,

when Q can be derived without clauses that contain negative literals, or is

part of an unfounded set S of atoms and clauses for atoms in S do not contain

negative literals. As argued in Section 6, the use of term-depth abstraction

4

ensures that an SLG evaluation E of a query Q to a program with bounded

term-size has only a finite number of trees. In addition, since SLG works on

the original clauses of a program P and P is finite, (although ground(P) may

not be), there can be only a finite number of clauses resolvable against the

root of any tree via Program Clause Resolution, and so the root of each

SLG tree can contain only a finite number of children. Finally, to show that

each interior node has a finite number of children, we consider that there can

only be a finite number of answers to any subgoal upon which Q depends. This

follows from the fact that E is delay-minimal and so produces no conditional

answers, together with the the bound of Definition 4 that ensures a program

is bounded term-size. As a result, there are only a finite number of nodes that

are produced through Answer Return. These observations together ensure

that each tree in any SLG forest of E is finite. Since each operation (including

the SLG Completion operation, which does not add nodes to a forest) is

applicable only one time to a given node or set of nodes in an evaluation (i.e.

executing an SLG operation removes the conditions for its applicability) the

evaluation E itself must be finite and statement holds for the induction basis.

• For the induction step, we assume the statement holds for queries whose

(fixed-order) dynamic strata is less than N to show that the statement will

hold for a query Q at stratum N as well. As indicated above, we use a delay-

minimal SLG evaluation E that does not require Delaying, Simplification

or Answer Completion operations. For the induction case, the various SLG

operations that do not include negation will only produce a finite number of

trees and a finite number of nodes in each tree as described in the induction

basis. However if there is a node N in a forest with a selected negative literal

¬A, the SLG operation Negation Return is applicable. In this case, a single

child will be produced for N and no further operations will be applicable to

N . Thus any forest in E will have a finite number of finite trees, and since

all operations can be applied once to each node, as before E will be finite, so

that the statement holds by induction.

Appendix C Proof of the Correctness Theorems for PITA (Section 8)

The next theorem addresses the correctness of the PITA evaluation. As discussed in

Section 8, the BDDs of the PITA transformation are represented as ground terms,

while BDD operations, such as and/3, or/3 etc. are infinite relations on such terms.

The PITA transformation also uses the predicate get var n/4 whose definition in

Section 7 is:

get var n(R,S, Probs, V ar)←
(var(R,S, V ar)→ true;

length(Probs, L), add var(L,Probs, V ar), assert(var(R,S, V ar))).

This definition uses a non-logical update of the program, and so without modifica-

tions, it is not suitable for our proofs below. Alternately, we assume that ground(T)

5

is augmented with a (potentially infinite) number of facts of the form var(R, [], V ar)

for each ground rule R (note that no variable instantiation is needed in the second

argument of var/3 if it is indexed on ground rule names). Clearly, the augmenta-

tion of T by such facts has the same meaning as get var n/4, but is simply done

by an a priori program extension rather than during the computation as in the

implementation.

Lemma 1

Let T be an LPAD and Q a bounded term-size query to T . Then the query

PITAH(Q) to PITA(T) has bounded term-size.

Proof

Although TQ (Definition 6) has bounded term-size, we also need to ensure that

PITA(TQ) has bounded term-size, given the addition of the BDD relations and/3,

or/3, etc. along with the var/3 relations mentioned above.

Both var/3 and the BDD relations are functional on their input arguments (i.e.

the first two arguments of var/3, and/3, or/3. etc. (cf. Section 7). Therefore, for

the body of a clause C that was true in an application of True
TQ

I there are exactly

n bodies that are true in an application of True
PITA(TQ)
I , where n is the number

of heads of C. Thus the size of every ground substitutions in every iteration of

True
PITA(TQ)
I is bounded as well.

Note that since PITA(T) and PITAH(Q) are both syntactic transformations,

the theorem applies even if the LPAD isn’t sound.

Theorem 4

Let T be a fixed-order dynamically stratified LPAD and Q a ground bounded

term-size atomic query. Then there is an SLG evaluation E of PITAH(Q) against

PITA(TQ), such that answer subsumption is declared on PITAH(Q) using BDD-

disjunction where E finitely terminates with an answer Ans for PITAH(Q) and

BDD(Ans) represents a covering set of explanations for Q.

Proof

(Sketch) The proof uses the forest-of-trees model (Swift 1999) of SLG (Chen and

Warren 1996).

Because T is fixed-order dynamically stratified, queries to T can be evaluated

using SLG without the delaying, simplification or answer completion op-

erations. Instead, as (Sagonas et al. 2000) shows, only the SLG operations new

subgoal, program clause resolution, answer return and negative re-

turn are needed. Since T is fixed-order dynamically stratified, it is immediate from

inspecting the transformations of Section ?? together with the fact that the BDD

relations are functional that PITA(T) is also fixed-order dynamically stratified as

is PITA(T)Q.

However, Theorem 3 must be extended to evaluations that include answer sub-

sumption, which we capture with a new operation Answer Join to perform answer

subsumption over an upper semi-lattice L. Without loss of generality we assume

that a given predicate of arity m > 0 has had answer subsumption declared on its

mth argument and we term the first m − 1 arguments non-subsuming arguments.

6

We recall that a node N is an answer in an SLG tree T if N has no unresolved

goals and is a leaf in T . Accordingly, creating a child of N with a special marker

fail is a method to effectively delete an answer (cf. (Swift 1999)).

• Answer Join: Let an SLG forest Fn contain an answer node

N = Ans←

where the predicate for Ans has been declared to use answer subsumption

over a lattice L for which the join operation is decidable, and let the arity

of Ans be m > 0. Further, let A be the set of all answers in Fn that are in

the same tree, TN , as N and for which the non-subsuming arguments are the

same as Ans. Let Join be the L-join of all the final arguments of all answers

in A.

— If (Ans←){arg(m,Ans)/Join} is not an answer in TN , add it as a child

of N , and add the child fail to all other answers in A.

— Otherwise, if (Ans←){arg(m,Ans)/Join} is answer in TN , create a child

fail for N .

For the proof, the first item to note is that since TQ is bounded term-size, any clauses

on which Q depends that give rise to true atoms in the well-founded model of any

world of T must be be range-restricted – otherwise since T has function symbols,

TQ would have an infinite model and not be bounded term-size. Given this, it is

then straightforward to show that PITA(T)Q is also range-restricted and that any

answer A of PITAH(Q) will be ground (cf. (Muggleton 2000)). Accordingly, the

operation Answer Join will be applicable to any subgoal with a non-empty set of

answers.

We extend Theorem 3 and Lemma 1 to show that since PITA(T)Q has the

bounded term-size property, a SLG evaluation of a query PITAH(Q) to PITA(T)Q
will terminate. Because the join operation for L is decidable, computation of the

join will not affect termination properties. Let TN be a tree whose root subgoal

is a predicate that uses answer subsumption. Then each time a new answer node

N is added to TN there will be one new Answer Join operation that becomes

applicable for N . Let A be a set of answers in TN as in the definition of Answer

Join. Then applying the Answer Join operation will either 1) create a child of

N that is a new answer and “delete” |A| answers by creating children for them of

the form fail; or 2) “delete” the answer N by creating a child fail of N . Clearly

any answer can be deleted at most once, and each application of the Answer Join

operation will delete at least one answer in TN . Accordingly, if TN contains Num

answers, there can be at most Num applications of Answer Join for answers

in TN . Using these considerations it is straightforward to show that termination

of bounded term-size programs holds for SLG evaluations extended with answer

subsumption 1.

1 As an aside, note that due to the fact that Answer Join deletes all answers in A except
the join, it can be shown by induction that immediately after an Answer Join operation is
applied to Ans in a tree TN , there will be only one “non-deleted” answer in TN with the same

7

Thus, the bounded term-size property of PITA(T)Q together with Theorem 2

imply that there will be a finite set of finite explanations for PITAH(Q), and the

preceding argument shows that SLG extended with Answer Join will terminate

on the query PITAH(Q). It remains to show that an answer Ans for PITAH(Q) in

the final state of E is such that BDD(Ans) represents a covering set of explanations

for Q. That BDD(Ans) contains a covering set of explanations can be shown by

induction on the number of BDD operations. For the induction basis it is easy to

see that the operations zero/1 and one/1 are covering for false and true atoms

respectively.

• Consider an “and” operation in the body of a clause. For the inductive as-

sumption, BBi−1 and Bi both represent finite set of explanations covering

for L1, . . . , Li−1 and Li respectively. Let Fi−1, F ′i , and Fi be the formulas

expressed by BBi−1, Bi, and BBi respectively. These formulas can be rep-

resented in disjunctive normal form, in which every disjunct represents an

explanation. Fi is obtained by multiplying Fi−1 and F ′i so, by algebraic ma-

nipulation, we can obtain a formula in disjunctive normal form in which every

disjunct is the conjunction of two disjuncts, one from Fi−1 and one from F ′i .

Every disjunct is thus an explanation for the body prefix up to and including

Li. Moreover, every disjunct for Fi is obtained by conjoining a disjunct for

Fi−1 with a disjunct for F ′i .

• In the case of a “not” operation in the body of a clause, let Li be the negative

literal ¬D. Then for BNi the BDD produced by D, not(BNi, Bi) simply

negates this BDD to produce a covering set of explanations for ¬D.

• In the case of an “or” operation between two answers, the resulting BDD will

represents the union of the set of explanations represented by the BDDs that

are joined.

Since the property holds both for the induction basis and the induction step, the

set of explanations represented by BDD(Ans) is covering for the query.

References

Chen, W. and Warren, D. S. 1996. Tabled evaluation with delaying for general logic
programs. Journal of the Association for Computing Machinery 43, 1, 20–74.

Muggleton, S. 2000. Learning stochastic logic programs. Electronic Transactions on
Artificial Intelligence 4, B, 141–153.

Sagonas, K., Swift, T., and Warren, D. S. 2000. The limits of fixed-order computa-
tion. Theoretical Computer Science 254, 1-2, 465–499.

Swift, T. 1999. A new formulation of tabled resolution with delay. In Recent Advances
in Artifiial Intelligence. LNAI, vol. 1695. Springer, 163–177.

non-subsuming bindings as Ans. Accordingly, if the cost of computing the join is constant,
the total cost of Num Answer Join operations will be Num. Based on this observation, the
implementation of PITA can be thought of as applying an Answer Join operation immediately
after a new answer is derived in order to avoid returning answers that are not optimal given
the current state of the computation.

