
1

Online appendix for the paper

Reasoning about Actions with Temporal Answer
Sets

published in Theory and Practice of Logic Programming

LAURA GIORDANO

Dipartimento di Informatica, Università del Piemonte Orientale, Italy

laura@mfn.unipmn.it

ALBERTO MARTELLI

Dipartimento di Informatica, Università di Torino, Italy

mrt@di.unito.it

DANIELE THESEIDER DUPRÉ

Dipartimento di Informatica, Università del Piemonte Orientale, Italy

dtd@mfn.unipmn.it

submitted 15 November 2010; revised 16 April 2011; accepted 31 August 2011

Appendix A

We prove Theorem 1 and Theorem 2. Let (Π, C) be a well-defined domain de-

scription over Σ. We show that there is a one to one correspondence between the

temporal answer sets of Π and the answer sets of the translation tr(Π).

Theorem 1

(1) Given a temporal answer set (σ, S) of Π such that σ can be finitely represented

as a finite path with a k-loop, there is a consistent answer set R of tr(Π) such

that R and S correspond to the same temporal model.

(2) Given a consistent answer set R of tr(Π), there is a temporal answer set (σ, S)

of Π (that can be finitely represented as a finite path with a back loop) such

that R and S correspond to the same temporal model.

Proof

Let us prove item (1). Let (σ, S) be a temporal answer set of Π such that σ can be

finitely represented as a finite path with a back loop, i.e.,

σ = a1a2 . . . ajaj+1 . . . ak+1aj+1 . . . ak+1 . . .

We construct an answer set R of tr(Π) as follows. R contains the following literals:

2

state(0), . . . , state(k)

next(0, 1), next(1, 2), . . . , next(k − 1, k), next(k, j), ¬next(k, s), for all s 6= j

occurs(a1, 0), occurs(a2, 1), ..., occurs(aj+1, j), ..., occurs(ak+1, k)

¬occurs(a, s), for all other ground instances of predicate occurs,

eq last(j)

for all i = 0, . . . , k, for all fluent names f ∈ P:

(¬)holds(f, i) ∈ R if and only if [a1; . . . ; ai](¬)f ∈ S

From the consistency of S, it is easy to see that R is a consistent set of literals. To

show that R is an answer set of tr(Π), we show that: (i) R is closed under tr(Π)R;

(ii) R is minimal (in the sense of set inclusion) among the consistent sets of literals

closed under tr(Π)R.

(i) For all the rules r in tr(Π)R, we have to prove that if the literals in the body

of r belong to R, then the head of r belongs to R. Let us consider the case when

the rule r in tr(Π)R is obtained by translating an action law in Π, of the form:

2([a](¬)f ← t1, . . . , tm, not tm+1, . . . , not tn)

(the other cases are similar). In this case, tr(Π) contains the translation of the

action law above:

(¬)holds(f, S′)← state(S), S′ = S + 1, occurs(a, S), h1 . . . hm, not hm+1 . . . not hn

where hi = (¬)holds(fi, S
′) if ti = [a](¬)fi or hi = (¬)holds(fi, S) if ti = (¬)fi.

Let us consider the ground instantiation of the rule above from which r is ob-

tained. Suppose S is instantiated with some s ∈ {1, . . . , k}. It must be the case that

a = as+1, as occurs(as+1, s) ∈ R and no other action occurs in state s according to

R.

If the rule r:

(¬)holds(f, s+ 1)← state(s), occurs(as+1, s), h
′
1 . . . h

′
m (A1)

belongs to the reduct tr(Π)R (where each h′t is the ground instantiation of ht with

S = s), then h′m+1 6∈ R, . . . , h′n 6∈ R.

We have to show that, if the body of (A1) belongs to R then its head also belongs

to R.

Assume h′1, . . . , h
′
m belong to R. For each i = 1 . . . ,m, either h′i = (¬)holds(fi, s)

(if ti = (¬)fi) or h′i = (¬)holds(fi, s+ 1) (if ti = [a](¬)fi). If h′i = (¬)holds(fi, s),

by construction of R, [a1; . . . ; as](¬)fi ∈ S, i.e., (σ, S), a1, . . . , as |= (¬)fi, and

hence, (σ, S), a1, . . . , as |= ti. If h′i = (¬)holds(fi, s + 1), by construction of R,

[a1; . . . ; as; as+1](¬)fi ∈ S, i.e., (σ, S), a1, . . . , as, as+1 |= (¬)fi, hence, [a1; . . . ; as;

as+1](¬)fi ∈ S, and then (σ, S), a1, . . . , as |= [as+1](¬)fi. Thus, (σ, S), a1, . . . , as |=
ti. So the positive literals in the temporal action law are satisfied.

To show that the negated literals tm+1, . . . , tn in the body of the temporal

clause are not satisfied in (σ, S) at a1, . . . , as, consider the fact that h′m+1 6∈
R, . . . , h′n 6∈ R. Again, for each i = m + 1, . . . , k, either h′i = (¬)holds(fi, s))

or h′i = (¬)holds(fi, s+ 1).

If h′i = (¬)holds(fi, s) 6∈ R, by construction of R, [a1; . . . ; as](¬)fi 6∈ S, i.e.,

3

(σ, S), a1, . . . , as 6|= (¬)fi, and hence, (σ, S), a1, . . . , as 6|= ti. If h′i = (¬)holds(fi, s+

1) 6∈ R, by construction of R, [a1; . . . ; as; as+1](¬)fi 6∈ S, hence, (σ, S), a1, . . . , as 6|=
[as+1](¬)fi. Thus, (σ, S), a1, . . . , as 6|= ti.

We have shown that the body of the temporal rule

2([a](¬)f ← t1, . . . , tm, not tm+1, . . . , not tn)

is true in (σ, S) at a1, . . . , as, i.e.,

(σ, S), a1, . . . , as |= t1, . . . , tm, not tm+1, . . . , not tn

As the temporal rule belongs to Π and is satisfied in (σ, S), we can conclude that

its head is also satisfied in a1, . . . , as, i.e., (σ, S), a1, . . . , as |= [a](¬)f , namely,

[a1; . . . ; as; a](¬)f ∈ S. As we observed above, a = as+1, hence, [a1; . . . ; as; as+1](¬)f ∈
S and, by construction of R, (¬)holds(f, s+ 1) ∈ R.

To prove (ii), we have to show that R is minimal (in the sense of set inclusion)

among the consistent sets of literals closed under tr(Π)R. Suppose R is not minimal,

and there is a consistent set of literals R′ which is closed under tr(Π)R and such

that R′ ⊂ R.

Suppose there is a literal A ∈ R such that A 6∈ R′. For the auxiliary predicates

occurs, next, etc., it is easy to see that this cannot be the case. Let us consider the

case A = (¬)holds(f, i) and suppose that (¬)holds(f, i) ∈ R and (¬)holds(f, i) 6∈
R′.

We show that we can construct from R′ an S′ ⊂ S such that (σ, S′) satisfies the

rules in Π(σ,S). We define S′ as follows:

[a1; . . . ; ah](¬)f ∈ S′ if and only if (¬)holds(f, h) ∈ R′

It can be shown that (σ, S′) satisfies the rules in Π(σ,S). In fact, for each rule r in

Π(σ,S) whose body is satisfied in (σ, S′), there is a rule r′ in tr(Π)R, whose body

is true in R′. As R′ is closed under tr(Π)R, the head of r′ must be true in R′. By

construction of S′, the head of r is satisfied in (σ, S′).

As S′ ⊂ S and (σ, S′) satisfies the rules in Π(σ,S), S is not minimal among the

interpretations S′′ such that (σ, S′′) satisfies the rules in Π(σ,S). This contradicts

the hypothesis that (σ, S) is a temporal answer set of Π.

As the domain description is well-defined, (σ, S) has to be a total temporal answer

set. Hence, for each state i = 1, . . . , k, either holds(p, i) ∈ R or ¬holds(p, i) ∈ R.

It is easy to see that R and (σ, S) correspond to the same temporal model, as MS

and MR are defined over the same sequence σ and, for each finite prefix τ of σ,

they give the same evaluation to atomic propositions in τ .

Let us prove item (2).

Let R be an answer set of tr(Π). We define a temporal answer set (σ, S) of Π as

follows.

Given the definition of the predicates next and occurs in tr(Π), R must contain,

for some k and j, and for some a1, . . . , ak+1, the literals:

next(0, 1), next(1, 2), . . . , next(k − 1, k), next(k, j),

occurs(a1, 0), occurs(a2, 1), ..., occurs(aj+1, j), ..., occurs(ak+1, k),

4

eq last(j).

We define σ as:

σ = a1a2 . . . ajaj+1 . . . ak+1aj+1 . . . ak+1 . . .

We determine the temporal literals that belong to S as follows: for all i = 0, . . . , k

for all fluent names f ∈ P:

[a1; . . . ; ai](¬)f ∈ S if and only if (¬)holds(f, i) ∈ R

From the consistency of R, it is easy to see that S is a consistent set of temporal

literals. To show that S is a temporal answer set of Π, we show that:

(i) (σ, S) satisfies all the rules in Π(σ,S);

(ii) S is minimal (in the sense of set inclusion) among the S′ such that (σ, S′) is a

partial interpretation satisfying the rules in Π(σ,S).

(i) Let us prove that (σ, S) satisfies all the rules in Π(σ,S). Let

[a1, . . . , as](H ← t1, . . . , tm)

be a rule in Π(σ,S), where a1, . . . as ∈ prf(σ). Then there must be a law in Π of the

form:

2(H ← t1, . . . , tm, not tm+1, . . . , not tn)

such that (σ, S), a1 . . . as 6|= ti, for i = m+ 1, . . . , n.

Let us consider the case where such a law is a dynamic causal law, (the other

cases are similar). In this case, H =©(¬)f and the law has the form:

2(©(¬)f ← t1, . . . , tm, not tm+1, . . . , not tn)

where, for all i = 1, . . . , n, ti = (¬)fi or ti =©(¬)fi.

Then, tr(Π) contains its translation:

(¬)holds(f, S′)← state(S), S′ = S + 1, h1 . . . hm, not hm+1 . . . not hn

where hi = (¬)holds(fi, S
′) (if ti =©(¬)fi) or hi = (¬)holds(fi, S) (if ti = (¬)fi).

Let us consider the ground instantiation of the rule above with S = s, for some

s ∈ {1, . . . , k}.

(¬)holds(f, s+ 1)← state(s), h′1 . . . h
′
m, not h

′
m+1 . . . not h

′
n

where h′i = (¬)holds(fi, s + 1) (if ti = ©(¬)fi) or h′i = (¬)holds(fi, s) (if ti =

(¬)fi).

The rule

(¬)holds(f, s+ 1)← state(s), h′1 . . . h
′
m (A2)

must belong to the reduct tr(Π)R. In fact, we can prove that h′m+1 6∈ R, . . . , h′n 6∈
R. Let ti = (¬)fi and h′i = (¬)holds(fi, s). From the hypothesis, we know that

(σ, S), a1 . . . as 66|= ti, i.e., (σ, S), a1 . . . as 66|= (¬)fi, i.e., [a1; . . . ; as](¬)fi 6∈ S. As,

by construction of (σ, S), (¬)holds(fi, s) ∈ R iff [a1; . . . ; as](¬)fi ∈ S, we conclude

(¬)holds(fi, s) 6∈ R. Let ti = ©(¬)fi and h′i = (¬)holds(fi, s + 1). From the

hypothesis, we know that (σ, S), a1 . . . as 6|= ti, i.e., (σ, S), a1 . . . as 6|= ©(¬)fi, i.e.,

5

[a1; . . . ; as; as+1](¬)fi 6∈ S. As, by construction of (σ, S), (¬)holds(fi, s+ 1) ∈ R iff

[a1; . . . ; as+1](¬)fi ∈ S, we conclude (¬)holds(fi, s+ 1) 6∈ R, that is h′i 6∈ R.

To show that the law

[a1, . . . , as](H ← t1, . . . , tm)

in Π(σ,S) is satisfied in (σ, S), let us assume that its body is satisfied in (σ, S), that

is, (σ, S), a1 . . . as |= t1, . . . , tm, i.e., (σ, S), a1 . . . as |= ti, for all i = 1, . . . ,m. By the

same pattern of reasoning as above, we can show that h′i ∈ R, for all i = 1, . . . ,m.

As rule (A2) is in tr(Π)R, its body is true in R, and R is closed under tr(Π)R, then

the head of (A2), (¬)holds(f, s+1), belongs to R. Hence, by construction of (σ, S),

[a1; . . . ; as]© (¬)f ∈ S, that is (σ, S), a1 . . . as |= H, namely, the head of the rule

[a1, . . . , as](H ← t1, . . . , tm)

is satisfied in (σ, S).

(ii) S is minimal (in the sense of set inclusion) among the S′ such that (σ, S′) is

a partial interpretation satisfying the rules in Π(σ,S).

Assume by contradiction that S is not minimal. Then, there is a partial inter-

pretation (σ, S′), with S′ ⊂ S, satisfying the rules in Π(σ,S).

We show that we can construct an R′ ⊂ R such that R′ is closed under tr(Π)R.

We define R′ as R, but for the predicate holds, for which we have:

(¬)holds(f, h) ∈ R′ if and only if [a1; . . . ; ah](¬)f ∈ S′

It can be shown that R′ is closed under tr(Π)R. In fact, for each rule r in tr(Π)R

whose body is true in R′, there is a rule r′ in Π(σ,S), whose body is satisfied in

(σ, S′). As (σ, S′) satisfies all the rules in Π(σ,S), the head of r′ must be satisfied in

(σ, S′). By construction of R′, the head of r belongs to R′.

As R′ ⊂ R and R′ is closed under tr(Π)R, R is not minimal among the consistent

sets of literals closed under tr(Π)R. This contradicts the hypothesis that R is an

answer set of tr(Π).

To prove that R and (σ, S) correspond to the same temporal model we can use

the same argument as for item (1).

Theorem 2

Let Π be the set of laws of a well-defined domain description, R an answer set

of tr(Π) and α a DLTL formula. The temporal model MR = (σ, V) associated with

R satisfies α if and only if there is an answer set R′ of tr′(Π) such that R ⊂ R′

and sat(t alpha, 0) ∈ R′ (where t alpha is the term representing the formula α and

trans and final encode the automata indexing the until formulas in α).
Proof

We first prove the ”only if” direction of the theorem. We know by Theorem 1 that

each answer set R of tr(Π) corresponds to a temporal answer set of Π and, for each

state i = 1, . . . , k, either holds(p, i) ∈ R or ¬holds(p, i) ∈ R. Let us consider the

temporal model MR = (σR, VR) associated with R, as defined in section 7.

We extend R to define an answer set R′ of tr′(Π) as follows:

6

• all the literals in R belong to R′;

• for all subformulas β of α, for all states h ∈ {0, . . . , k}:

sat(t beta, h) ∈ R′ if and only if MR, τh |= β (A3)

where τh = a1 . . . ah and t beta is the term encoding the formula β.

• For each automaton aut = (Q, δ,QF) indexing an until formula in α:

final(aut, q) ∈ R′ if and only if q ∈ Qf (A4)

trans(aut, q1, a, q2) ∈ R′ if and only if q2 ∈ δ(q1, a) (A5)

We can show that R′ is an answer set of tr′(Π), i.e., (i) R′ is closed under tr′(Π)R
′

(ii)R′ is minimal among the consistent sets of literals closed under tr′(Π)R
′
.

(i) holds trivially for all the rules in tr(Π). It has to be proved for all the rules

defining the predicate sat. We can procede by cases:

Let us consider the rule for fluents. Suppose R′ satisfies the body of a ground

instance of the rule:

sat(F, S) : −fluent(F), holds(F, S).

that is, fluent(p) ∈ R′ and holds(p, h) ∈ R′, for some fluent name p and some

h ∈ {1, . . . , k}. Then, holds(p, h) ∈ R, and thus Mr, τh |= p. By construction of R′,

it must be: sat(p, h) ∈ R′.

Let us consider the first rule for until. Suppose R′ satisfies the body of a ground

instance of the rule:

sat(until(Aut,Q,Alpha,Beta), S) : −final(Aut,Q), sat(Beta, S).

that is, for some aut encoding a finite automaton A = (Q, δ,QF), for some q ∈
Q, for some formula t beta and state h, final(aut, q) ∈ R′ (i.e., q ∈ QF) and

sat(t beta, h) ∈ R′. By construction of R′, MR, τh |= β. As q is a final state of the

finite automaton A, it must be that MR, τh |= αUA(q)β. Hence, by construction,

sat(until(aut, q, t alpha, t beta), h) ∈ R′.

The other cases are similar.

(ii) We prove that R′ is minimal among the consistent sets of literals closed under

tr′(Π)R
′
. Let us suppose that R′ is not minimal and that there is an R′′ ⊂ R′ such

that R′′ is closed with respect to tr′(Π)R
′
. There must be a literal l ∈ R′ − R′′. l

cannot be a literal in R, as R is an answer set of tr(Π), and the definition of the

predicates in R does not depend on the predicates sat, trans and final introduced

in tr′(Π). Also, l cannot be a trans and final literal, as these predicates are only

defined by ground atomic formulas, which must be all in R′′. Suppose there is

sat(t alpha, h) ∈ R′ such that sat(t alpha, h) 6∈ R′′.

Using the fact that R′′ is closed with respect to tr′(Π)R
′
, it can be proved that,

for all the subformulas β of α, if MR, τh |= β then sat(t beta, h) ∈ R′′. The proof is

by induction on the structure of β.

As sat(t alpha, h) ∈ R′, by construction of R′ it must be that MR, τh |= α.

Then, by the previous property, sat(t alpha, h) ∈ R′′. This contradicts the fact

that sat(t alpha, h) 6∈ R′′. Hence, R′ is an answer set of tr(Π).

To conclude the proof of the “only if” part, it is easy to see that, from (A3),

7

if MR, ε |= α then sat(t alpha, 0) ∈ R′, where ε represents the empty sequence of

actions.

We have shown that, given an answer set R of tr(Π) satisfying α we can construct

an answer set R′ of tr′(Π) such that sat(t alpha, 0) ∈ R′. To prove the ”if” direction

of the theorem, let us assume that there is an answer set R′′ of tr′(Π) such that R′′

extends R and sat(t alpha, 0) ∈ R′′. We can show that R′′ must coincide with R′

built above. In fact, it can be easily proved that, for all subformulas β of α,

sat(t beta, h) ∈ R′′ iff sat(t beta, h) ∈ R′

The proof can be done by induction on the structure of β (observe that both R′

and R′′ extend R, which provides the evaluation of fluent formulas to be used by

the sat predicate). As R′′ coincides with R′, if sat(t alpha, 0) ∈ R′′ then by (A3),

MR, ε |= α.

8

Appendix B

In this appendix we provide the encoding of BMC and Example 2 in DLV-Complex

(https://www.mat.unical.it/dlv-complex).

state(0..#maxint).

laststate(N):- state(N), #maxint=N+1.

% general rules

occurs(A,S):- not ~occurs(A,S), action(A),state(S),laststate(L),S<=L.

~occurs(B,S):- occurs(A,S), action(A),state(S),action(B),A!=B.

next(S,SN):- state(S), laststate(LS), S<LS, SN=S+1.

-next(LS,S):- laststate(LS), next(LS,SS), state(S), state(SS), S!=SS.

next(LS,S):- laststate(LS), state(S), S<=LS, not -next(LS,S).

:- laststate(LS), next(LS,S), not eq_last(S).

diff_last(S):- state(S), S<#maxint, fluent(F),

holds(F,S), -holds(F,#maxint).

diff_last(S):- state(S), S<#maxint, fluent(F),

holds(F,#maxint), -holds(F,S).

eq_last(S):- state(S), S<#maxint, not diff_last(S).

% The action theory makes use of the predicates:

% action(A), fluent(FL), holds(FL,State)

% evaluation of DLTL formulas

% makes use of predicate formula(F)

% true

sat(true,S):- state(S).

% fluents

sat(F,S):- fluent(F), state(S), holds(F,S).

% not

sat(neg(Alpha),S):- formula(neg(Alpha)), state(S), not sat(Alpha,S).

% or

sat(or(Alpha1,Alpha2),S):- formula(or(Alpha1,Alpha2)), state(S),

sat(Alpha1,S).

sat(or(Alpha1,Alpha2),S):- formula(or(Alpha1,Alpha2)), state(S),

sat(Alpha2,S).

% until

9

% An automaton is specified by the predicates

% trans(Automaton,Q1,Action,Q2) and

% final(Automaton,Q)

sat(until(Aut,Q,Alpha,Beta),S):-

formula(until(Aut,Q,Alpha,Beta)),

final(Aut,Q),

sat(Beta,S),

state(S).

sat(until(Aut,Q,Alpha,Beta),S):-

formula(until(Aut,Q,Alpha,Beta)),

sat(Alpha,S),

trans(Aut,Q,Act,Q1),

action(Act),

occurs(Act,S),

next(S,S1),

sat(until(Aut,Q1,Alpha,Beta),S1).

% derived operators and modalities

% ev(Alpha) means <>Alpha

% diamond(Az,Alpha) means <Az>Alpha

% box(Az,Alpha) means [Az]Alpha

sat(and(Alpha1,Alpha2),S):- formula(and(Alpha1,Alpha2)),

state(S),

sat(Alpha1,S), sat(Alpha2,S).

sat(impl(Alpha1,Alpha2),S):- formula(impl(Alpha1,Alpha2)),

state(S),

not sat(Alpha1,S).

sat(impl(Alpha1,Alpha2),S):- formula(impl(Alpha1,Alpha2)),

state(S),

sat(Alpha2,S).

sat(diamond(A,Alpha),S):- formula(diamond(A,Alpha)),

action(A), state(S),

occurs(A,S),

next(S,SN),

sat(Alpha,SN).

sat(ev(Alpha),S):- formula(ev(Alpha)),

state(S),

sat(Alpha,S).

sat(ev(Alpha),S):- formula(ev(Alpha)),

10

state(S),

next(S,SN),

sat(ev(Alpha),SN).

sat(box(A,Alpha),S):- formula(box(A,Alpha)),

action(A), state(S), action(B), formula(Alpha),

occurs(B,S),

A!=B.

sat(box(A,Alpha),S):- formula(box(A,Alpha)),

state(S),

occurs(A,S),

next(S,SN),

sat(Alpha,SN).

% the following rules define all subformulas of a given formula

formula(F):- formula(neg(F)).

formula(F1):- formula(or(F1,F2)).

formula(F2):- formula(or(F1,F2)).

formula(F1):- formula(until(Aut,Q,F1,F2)).

formula(F2):- formula(until(Aut,Q,F1,F2)).

formula(until(Aut,Q1,Alpha,Beta)):- formula(until(Aut,Q,Alpha,Beta)),

trans(Aut,Q,Act,Q1).

formula(F1):- formula(and(F1,F2)).

formula(F2):- formula(and(F1,F2)).

formula(F1):- formula(impl(F1,F2)).

formula(F2):- formula(impl(F1,F2)).

formula(F):- formula(diamond(A,F)).

formula(F):- formula(ev(F)).

formula(F):- formula(box(A,F)).

% Encoding of Example 2

room(a).

room(b).

action(begin).

action(sense_mail(R)):- room(R).

action(deliver(R)):- room(R).

action(wait).

fluent(mail(R)):- room(R).

% action effects

11

holds(mail(R),SN):-

room(R), occurs(sense_mail(R),S), SN=S+1,

not -holds(mail(R),SN).

-holds(mail(R),SN):-

room(R), occurs(deliver(R),S), SN=S+1.

% persistency

holds(F,SN):-

holds(F,S),

SN=S+1,

not -holds(F,SN).

-holds(F,SN):-

~holds(F,S),

SN=S+1,

not holds(F,SN).

%preconditions

:- occurs(deliver(R),S), -holds(mail(R),S).

:- occurs(wait,S), holds(mail(R),S).

%initial state

holds(mail(R),0):- room(R), not -holds(mail(R),0).

-holds(mail(R),0):- room(R), not holds(mail(R),0).

% temporal constraints

formula(diamond(begin,true)).

:- not sat(diamond(begin,true),0).

formula(neg(ev(neg(box(begin,until(aut,q1,true,true)))))).

trans(aut,q1,sense_mail(a),q2).

trans(aut,q2,sense_mail(b),q3).

trans(aut,q3,deliver(a),q4).

trans(aut,q3,deliver(b),q4).

trans(aut,q3,wait,q4).

trans(aut,q4,begin,q5).

final(aut,q5).

:- not sat(neg(ev(neg(box(begin,until(aut,q1,true,true))))),0).

12

% counterexample (negated property)

formula(ev(neg(impl(mail(b),ev(neg(mail(b))))))).

:- not sat(ev(neg(impl(mail(b),ev(neg(mail(b)))))),0).

13

Appendix C

In this appendix we report tests of our approach for bounded model checking of

DLTL formulas, in the line of the LTL BMC experiments in section 4 of (Heljanko

and Niemelä 2003).

In particular, we consider the dining philosophers problems and the LTL formulas

in section 4 of (Heljanko and Niemelä 2003); the relevant results are in Table 2 of

that paper, columns Int n and Int s, which provide, respectively, the smallest

integer such that a counterexample of length n can be found using the interleaving

semantics, and the time in seconds to find the counterexample. The interleaving

semantics is the relevant one since in this paper we do not consider concurrent

actions.

The general approach of the present paper can be directly mapped to the DLV-

Complex extension of the DLV system, as shown in Appendix B. However, for a

fairer comparison with the results in (Heljanko and Niemelä 2003), we have tested

a representation of the dining philosophers problem, and of the LTL formulas to

be verified, in the DLV system rather than in its DLV-Complex extension. Apart

from not using parametric fluents and actions, this means that, rather than using

clauses (in section 7) such as

sat(or(Alpha,Beta), S) : −sat(Alpha, S).

sat(or(Alpha,Beta), S) : −sat(Beta, S).

we provide, given the formula to be verified, a unique name for the formula and all

its subformulas; and if a formula named gamma is the disjunction alpha ∨ beta of

formulas named alpha and beta, we provide the clauses:

sat(gamma, S) : −sat(alpha, S).

sat(gamma, S) : −sat(beta, S).

and similarly for other operators. Such clauses can be easily generated automatically

from the formula to be verified.

Moreover, we have applied some minor variation of the general approach in sec-

tion 7 of our paper, such as using DLV built-in predicates.

Table C 1 reports the results obtained on a Dell PowerEdge server with 2 Intel

Xeon E5520 processors (2.26Ghz, 8M Cache) and 32 Gb of memory.

Column n is the same as the Int n column in Table 2 of (Heljanko and Niemelä

2003), i.e., the smallest integer such that a counterexample of length n can be

found. Column “boundsmodels” is the analogous of the Int s column in their

paper (except that we include the result for 12 philosophers); it provides the

running times in seconds to find a counterexample, running on our machine the

code from http://www.tcs.hut.fi/kepa/experiments/boundsmodels/. The last col-

umn provides the running times in seconds to find a counterexample running in

DLV the programs enclosed. The scalability of the approaches for such problems is

similar, and this provides some evidence that the approaches have similar practical

relevance for problems that can be represented easily in both of them.

14

Problem n boundsmodels TemporalASP-DLV

DP(6) 8 0.1 0.1
DP(8) 10 1.4 2.4
DP(10) 12 29.1 115.7
DP(12) 14 7837.1 13036.2

Table C 1. Dining philosophers results

References

Heljanko, K. and Niemelä, I. 2003. Bounded LTL model checking with stable models.
Theory and Practice of Logic Programming 3, 4-5, 519–550.

