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Chapter 1

Introduction

1.1 Background

Calculations which arise in local singularity theory lend themselves naturally to
symbolic algebra methods. In this article we describe a package which deals with
problems in classification and unfolding theory for the standard equivalence rela-
tions encountered in singularity theory. The package, called Transversal, consists
of a collection of procedures which run under the the symbolic algebra system
Maple [8].

We refer to the survey article of Wall [27] and the book of Martinet [18] for a
comprehensive discussion of the singularity theory used in this article. The more
recent advances in determinacy and classification theory are discussed in the arti-
cles by Bruce, Kirk, du Plessis and Wall [5, 7]. The techniques developed in these
provide a very efficient, wide-ranging classification scheme involving algebraic cal-
culations which may be reduced to finite dimensional symbolic problems. However,
the calculations can become very intensive and repetitive which is where the need
for a specialist computer package arises.

The applications we have in mind require the calculation of certain ‘tangent
spaces’ in a jet-space. This calculation involves manipulation of truncated poly-
nomial vectors and is therefore really just a problem in linear algebra which can
be handled by a computer. For example, in classification problems the calculation
can be reduced to the enumeration of the orbits of the jet-group. In this situation
we are considering Lie groups acting on smooth manifolds and have powerful tech-
niques such as Mather’s Lemma [27, Lemma 1.1] and Complete Transversals [5] at
our disposal. (In fact, we are dealing with algebraic groups over R or C acting al-
gebraically on an affine space and stronger results can be established. Although of
theoretical importance, we will not need such results in our present applications.)
It turns out that all of the information that we require can be obtained from
a calculation of the tangent spaces to the orbits of the jet-group in the jet-space.
Calculations in unfolding theory can be reduced to similar symbolic manipulations.
We do not have a Lie group action in this case (we only have the notion of ‘ex-
tended equivalence’ at the germ level) but unfolding theory allows us to work with
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2 Chapter 1. Introduction

the associated ‘extended tangent spaces’. Once we have concluded that a given
germ is finitely-determined (using the above methods) we may perform unfolding
calculations in a suitable jet-space. At the jet level, the calculation of these ‘ex-
tended tangent spaces’ involves identical symbolic manipulations to those required
in classification calculations.

The ‘tangent spaces’ are given by the action of a space of vector fields L on
a given germ or jet. For example, if L is the Lie algebra of a jet-group then the
tangent space to the orbit through the jet f is given by the natural action of the
Lie algebra and is denoted by L · f . We will use ‘tangent space’ as a general
term to refer to such spaces L · f (even though they are not necessarily tangent to
some submanifold). The terminology is used both at the jet and germ level. (This
notation was established in the more recent work [5, 7] as a preferred alternative
to the ad-hoc notation TG · f used previously.) The main feature of our package is
its ability to calculate and manipulate the spaces L · f . Our aim was to produce
a package capable of performing the calculations over a wide range of equivalence
relations. In particular, it must apply to the cases where G, a subgroup of K
defining the equivalence relation, is one of the standard Mather groups R, L, A, C
or K [27]; or more generally one of Damon’s geometric subgroups [10] for which a
set of generators of the Lie algebra LG can be written down explicitly.

Let us consider one of the important research areas in singularity theory, namely
the case of A-equivalence. Not only is this a natural generalisation of R-equivalence
but it has significant applications in geometry and related areas such as computer
vision. For example, in such applications one often wants to consider the simulta-
neous contact between a submanifold and a whole family of model submanifolds,
typically families of lines, planes, circles, spheres, and so forth. In these situations
we must work with A-equivalence rather than contact (K) equivalence, the differ-
ence essentially being that contact between nearby fibres of the map is preserved
under A-equivalence, whereas K-equivalence only relates to the contact class asso-
ciated to one fibre. For a recent survey of geometrical applications of singularity
theory we refer to the article of Bruce [4] and the extensive bibliography therein.
A real obstruction in obtaining A-classifications is the size of the computations
involved in all but the simplest of examples. One only has to refer to the exist-
ing papers dealing with A-classification to see this, for example, those of Mond,
du Plessis and Rieger [20, 21, 24]. For such applications any useful package must
be able to calculate L · f in a given jet-space for given jet f where L = LA (for
applications of Mather’s Lemma, calculation of A-invariants, moduli detection);
L = LA1 with the possible inclusion of a nilpotent part (for determinacy and
complete transversal calculations in classification problems); and L = LAe (for un-
folding calculations). The package achieves all of these requirements and we cite its
success in A-classifications as its single most important application. For example,
the aforementioned results of Mond and Rieger were all reproduced in a matter of
hours using Transversal. Recent applications of Transversal [6, 13, 14, 15, 16, 28]
represent some of the most extensive classifications carried out to date. The pack-
age has been extended to deal with weighted homogeneous filtrations, multigerms
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and cases where the equivalence G derives from a set of liftable or lowerable vector
fields (the latter providing new results in the theory of caustics and envelopes).

1.2 A Guide to Using the Package

The remainder of this manual is organised as follows. Chapter 2 reviews the tech-
niques from singularity theory which the package relies upon. An overview of the
package is provided in Chapter 3. The basic scheme of the algorithm is described
followed by a discussion of some of the more important technical issues. Chapters 2
and 3 form the basis of an article describing the package [17]. Chapter 4 is a ref-
erence guide for the package and describes such features as function calls and how
to initialise specific calculations. In the true spirit of reference manual it is written
in a somewhat terse manner! This is in contrast to Chapter 5 which acts as a
tutorial, taking the reader through worked examples of some standard calculations
from singularity theory. We bring the reader’s attention to the important remarks
regarding the use of the package in Section 5.1.

We suspect that most users will want to use the package with the least amount
of effort. With regard to this we recommend the following as the smoothest route
for getting started. Glance through Chapter 2 to make sure you are familiar with
the background singularity theory. These techniques form the basis of the package
and we assume that the reader has a full grasp on them, following up the references
if need be. Chapter 3 forms an excellent introduction to the package. Section 3.1
should be read in detail as the remainder of the manual assumes the reader is fa-
miliar with the details there. Section 3.2 is somewhat more technical in nature,
though it is probably worth glancing through it on first reading, referring back as
necessary. Following this the reader should be able to work through the tutorial
section in Chapter 5. The examples there should provide enough details for the
reader to progress onto their own calculations and projects. A more precise speci-
fication of the package is found in the reference manual, Chapter 4, which should
be consulted as necessary (and should hopefully be a little more readable at this
stage!). This user manual should, of course, be studied in greater detail to achieve
a better understanding of the package, as required.

The notation used throughout the manual is standard, based on (some of) that
developed in [18, 27]. In addition, we adopt the more systematic notation used
in [5, 7] and clarify the following. The theory applies over both the real and complex
numbers and F will denote either R or C. (In addition, the classifications in these
cases hardly differ. Minor simplifications occur in the C case due to the collapsing
of orbits, most commonly resulting in the removal of a ± sign in the normal form.)
The local ring of differentiable/analytic function-germs Fn, 0 → F is denoted by En

and its maximal ideal by Mn. The corresponding module of map-germs Fn, 0 → Fp

is denoted E(n, p), those with zero target are therefore given by MnE(n, p). We
define the standard kth-jet-space Jk(n, p) to be MnE(n, p)/Mk+1

n E(n, p). This
is identified with the space of p-tuples of polynomials in n indeterminates over
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F, truncated to degree k; a germ f being identified with its Taylor expansion to
degree k. Unless otherwise stated, G will denote a subgroup of the contact group K,
usually one of the standard Mather groups R, L, A, C or K, but in principle one of
Damon’s geometric subgroups. We let Gk be the normal subgroup of G consisting
of those germs whose k-jet is equal to that of the identity. The standard kth-jet-
group JkG is defined to be the quotient group G/Gk. This is a Lie group and acts
on the affine space Jk(n, p). We will abbreviate the term ‘complete transversal’ as
‘CT’.

1.3 Some History

I started writing the Transversal package as part of the work towards my Ph.D.
thesis in 1991 while working in the area of classification of singularities. This work
entailed numerous calculations ranging from tedious and repetitive to computation-
ally demanding. It was clear, both from this work and the work of many others
who have struggled through such classifications, that a general computer package
which could carry out such calculations and in some sense automate the process
would be a useful tool. Indeed, in some problems the use of a computer in some
capacity is unavoidable (usually to answer questions regarding the ranks of very
large matrices).

During my Ph.D. the main package dealing with standard classifications and
classifications with respect to weighted filtrations was written, tested and applied to
several substantial problems. Later, several colleagues became interested so I tidied
things up a bit so that the package could be easily distributed and used (1994).
Again, the package was tested and put to use in several problems (see above for
references). More recently the package has been extended to deal with multigerm
classifications (1996) and classifications with respect to lowerable diffeomorphisms
(1997). That was pretty much it. But after further interest in the work I was
persuaded that it should be distributed within the singularities community. I have
since updated the package and its documentation and made it more suitable for
general use and distribution (1998). This represents the current state of the project.
Further improvements and extensions are, of course, possible. However, the package
has reached a fairly stable version and, although I would describe it as an on-going
project, I doubt whether any major changes will be made in the near future.

1.4 Some Related Computer Packages

We will end this introduction by giving a brief review of several existing com-
puter packages which are aimed at singularity theory; we make no attempt at
completeness. The packages related most closely to ours are the CATFACT package
developed by Cowell and Wright [9]; the OCRM program written by Olsen, Carter
and Rockwood (published in the book by Poston and Stewart [22], and corrected
and enhanced by Millington [19]); and the TGf program written by Ratcliffe and
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referred to in [23]. The first two deal with the case of function-germs under R-
equivalence (an area which is often called ‘elementary catastrophe theory’). The
program developed by Ratcliffe is notable in that it performs similar calculations
to Transversal and was written, independently, at about the same time that
Transversal was written. The original version was restricted to A-equivalence of
map-germs from surfaces to 3-space and was used successfully in [23]. Both TGf and
OCRM suffered from being written in a non-symbolic language (respectively, Pascal
and a version of ALGOL). The final version of TGf (1994) was rewritten in Maple
and the restriction to map-germs from surfaces to 3-space was lifted. All three
programs are no longer being developed. The major improvements Transversal

makes on these packages include an extensive broadening of the types of problems
considered (for example, a greater variety of equivalence relations; extensions to
multigerms and lowerable fields) together with the implementation of the latest
classification techniques [5, 7]. Its success in several important and outstanding
projects (cited above) is an indication of these claims.

We should add that the CATFACT package performs a lot more than determinacy
and unfolding calculations. It contains a ‘recognition’ algorithm which identifies
if a given function-germ belongs to one of those on Arnold’s list of low modality
singularities [1], and a ‘reduction’ algorithm which solves the ‘mapping-problem’ for
unfoldings [9]. The ‘recognition’ algorithm calculates the Boardman symbol of the
singularity (using Gröbner basis methods) and uses the fact that this identifies the
low modality singularities. One needs to know Arnold’s classification in advance to
exploit such observations, which why it is necessary to obtain similar classifications
of map-germs under the other important equivalence relations (in particular, the
A and K cases). On a similar theme we note the ‘recognition’ program of Tari [26].
This implements a version of Arnold’s ‘determinator’ algorithm [1] using Maple.

Other packages aimed at singularity theory include Singular and Macaulay

[25, 3], though the latter deals more with applications in algebraic geometry. Both
represent extensive ongoing projects. They have their own kernel which is purpose
written to exploit techniques from computational commutative algebra, and their
own user-interface and programming language. They have numerous applications
in singularity theory, algebraic geometry and commutative algebra, but are not
suited to the specialist area of classification problems discussed in this article,
especially in the case of A-classification.





Chapter 2

Applications to Singularity
Theory

We discuss how our package may be used to solve problems in singularity theory and
review the mathematical techniques which are required. Chapter 3 will describe
how one actually implements these techniques in the package.

2.1 Classification Theory: Complete Transver-

sals and Determinacy

In classification theory we seek to list orbits of finitely determined germs f ∈
MnE(n, p) under the action of the group G, choosing suitable normal forms as
representatives. Classification is done inductively at the jet-level, classifying in
turn all (k + 1)-jets with a given k-jet until determined jets result (or pre-selected
upper bounds on moduli or codimension are reached). The method of ‘complete
transversals’ provides an efficient means of carrying out this procedure. We recall
some of the main results from [5, 7].

The group G is said to be jet-closed if for each r ≥ 1, JrG is a closed subgroup
of JrK. If G is jet-closed it follows that Js(LG) ⊂ L(JsG) for all s. In many cases
we have equality. If a jet-closed group G satisfies Js(LG) = L(JsG) for all s then we
call it fibrant. We find that R, L, A, C and K are all jet-closed and fibrant. Further
examples are given via the following concept. Let H be a subgroup of G, then H
is said to be strongly closed in G if Hs = Gs for some s (equivalently Gs ⊂ H), and
JsH is closed in JsG. Now, a strongly closed subgroup H of a jet-closed group G
is itself jet-closed. If, in addition, G is fibrant then so is H.

The map

L(J1K) ∼= gl(n,F) ⊕ gl(p,F) → gl(n + p,F)

(M, N) 7→
(

M 0

0 N

)
,

7



8 Chapter 2. Singularity Theory

where gl(n,F) denotes the Lie algebra of the general linear group GL(n,F), is a
faithful representation of the Lie algebra L(J1K) on Fn+p. Suppose that L(J1G)
acts nilpotently on Fn+p under this representation. This happens if the source and
target parts of L(J1G) are spanned by strictly upper (or lower) triangular matrices,
for example. Generally the requirement is equivalent to J1G being unipotent. In
this situation the following sum is finite (see [7]) and we may define the nilpotent
filtration of MnE(n, p),

Mr,s(G) =
∑
i≥s

(LG)i · (Mr
nE(n, p)) + Mr+1

n E(n, p),

for integers r ≥ 1 and s ≥ 0. Observe that this is finer that the standard filtration
by degree. For r = 0 we define M0,0(G) to be MnE(n, p) for consistency. The as-
sociated (r, s)-jet-space Jr,s(n, p) is then defined to be MnE(n, p)/Mr,s(G). This is
a refinement of the standard jet-space Jr(n, p) = MnE(n, p)/Mr+1

n E(n, p). Thus,
Jr,0(n, p) is Jr−1(n, p), and as s increases Jr,s(n, p) contains more of the homoge-
neous terms of degree r, until for some finite s = kr where we find that Jr,kr(n, p)
is the whole of Jr(n, p) (kr exists due to nilpotency). Provided we work with these
refined jet-spaces we have the following complete transversal result.

Theorem 2.1 Let G be a fibrant subgroup of K such that L(J1G) acts nilpotently
on Fn+p. Let f be a smooth germ Fn, 0 → Fp, 0 and let T be a subspace of Mr,s(G)
with

Mr,s(G) ⊂ T + LG · f + Mr,s+1(G).

Then any germ g : Fn, 0 → Fp, 0 with g − f ∈ Mr,s(G) is G-equivalent to a germ of
the form f + t + φ with t ∈ T and φ ∈ Mr,s+1(G).

This is really just a question in the standard jet-space Jr(n, p) provided we order
the homogeneous terms of degree r as dictated by Mr,s(G). The latter can be
achieved using a system of weights, see Section 3.2. The spaces T and f + T
are both referred to as a complete transversal (CT). One of the main features of
the package is to calculate a basis for T , taking L = Jr(LG). In practice, this
is a process which has to be carried out numerous times and, as the classification
proceeds, soon becomes computationally infeasible without the help of a computer.

Example 2.2 An example should clarify the above. Consider the classification
of map-germs F2, 0 → F2, 0 under A-equivalence. Let (x, y) denote coordinates
in the source and (u, v) those in the target. Recall that A1 denotes the subgroup
of A consisting of those germs whose 1-jet is the identity and define G to be the
unipotent subgroup of A having nilpotent Lie algebra

L = LA1 ⊕ F{x∂/∂y} ⊕ F{v∂/∂u}.
This acts on a germ f = (f1, f2) by

L · f = M2
2〈∂f/∂x, ∂f/∂y〉 + f ∗(M2

2){e1, e2} + F{x∂f/∂y, f2e1},
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(r, s) Homogeneous Part Weight

(1, 0) {0}
(1, 1) {(0, y)} 1

(1, 2) {(y, 0), (0, x)} 2

(1, 3) or (2, 0) {(x, 0)} 3

(2, 1) {(0, y2)} 2

(2, 2) {(y2, 0), (0, xy)} 3

(2, 3) {(xy, 0), (0, x2)} 4

(2, 4) or (3, 0) {(x2, 0)} 5

Table 2.1: Generators for the homogeneous part of Jr,s(G).

where e1 and e2 are the canonical basis vectors in F2. Each (r, s)-jet-space is just a
refinement of the standard r-jet-space and a convenient way to describe these spaces
is to list the ‘homogeneous’ generators for each of the spaces Jr,s(2, 2); see Table 2.1.
The ‘weight’ column demonstrates the use of weights to partition the monomial
vectors into their (r, s)-levels as described in Section 3.2; here α = (2, 1) and
β = (−1, 0). A similar example is discussed in the tutorial, Chapter 5, Section 5.2.1.

Example 2.3 The above results incorporate the notion of strong equivalence. For
example, two germs are defined to be strongly A-equivalent if they are A1-equiv-
alent; that is, the diffeomorphism defining the equivalence has linear part the
identity. Here we can take G to be the unipotent group A1. Thus, Mr,s(G) =
Mr+1

n E(n, p) for all s > 0 and the CT theorem applies to the standard jet-spaces
Jr(n, p). Given a germ f : Fn, 0 → Fp, 0, suppose T is a vector subspace of the
space of homogeneous jets of degree k + 1 such that

Mk+1
n E(n, p) ⊂ T + LA1 · f + Mk+2

n E(n, p).

Then every germ F with F − f ∈ Mk+1
n E(n, p) is A1-equivalent to a germ of the

form f + t + φ with t ∈ T and φ ∈ Mk+2
n E(n, p). That is, if jkF = jkf then

jk+1F is Jk+1A1-equivalent to a jet of the form jk+1f + t, for some t ∈ T . This
provides an A-classification procedure with respect to familiar polynomial degree.
However, in many classifications we need to use larger unipotent subgroups than
A1 to obtain an efficient A-classification procedure, at least during the early stages
of the classification. We therefore have to classify in finer steps, using the refined
jet-spaces Jr,s(n, p), as in Example 2.2.

We now turn to the determinacy question. Algebraic criteria which characterise
determinacy were found in [7]. These results also provide excellent determinacy
estimates for use in practical situations. A version of the results suited to our needs
is the following. We shall restrict to the case where G is one of the standard Mather
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groups to avoid the extra technicalities, though the determinacy results do apply
to a larger class of groups.

Theorem 2.4 Let G be one of R, L, A, C or K and let H be a strongly closed
subgroup of G such that L(J1H) acts nilpotently on Fn+p. Then a smooth germ
f : Fn, 0 → Fp, 0 is k-H-determined if and only if

Mk+1
n E(n, p) ⊂ LH · f.

Although the results are stated in terms of germs, they may be reduced to questions
involving jets. We will show that establishing the degree of determinacy of a germ
is a special case of calculating CTs. When the tangent space L · f is a module
over En (for example, when G = R, C or K) this follows from a simple application
of Nakayama’s Lemma; see [18, p.131] and [27, p.489]. We find that the germ is
k-G-determined if, when considered as a k-jet, the CT of degree k+1 is empty. For
the remaining cases of interest, where L · f is a module over Ep via f ∗, we apply a
result of du Plessis [7, Lemma 2.6]. Probably the most important and informative
application is where G = A, so we take this as an example. Applying du Plessis’
result to the above determinacy theorem gives the following.

Theorem 2.5 Using the notation of Theorem 2.4, f is k-H-determined if and only
if

Mk+1
n E(n, p) ⊂ LH · f + Mk+1

n f ∗(Mp)E(n, p) + M2k+2
n E(n, p).

Thus, f is k-A-determined if the successive transversals from degree k+1 to degree
2k + 1 are empty. (Of course, the terms in Mk+1

n f ∗(Mp)E(n, p) can be used to
reduce the upper limit from 2k + 1. This is extremely important in applications,
but the revised upper limit one obtains depends on the particular germ f .)

The spaces L · f used in determinacy calculations are precisely those used in
CT calculations. We therefore obtain a very efficient classification process: if the
determinacy criterion fails due to a non-empty transversal we simply continue the
classification, the transversal providing us with a list of (possible) new branches in
the classification tree.

Example 2.6 We reconsider Examples 2.2 and 2.3. For the former we take H in
Theorems 2.4 and 2.5 to be the unipotent group G defined in Example 2.2. For
strong determinacy considered in Example 2.3 we take H to be A1. As a further
example consider R-determinacy of function-germs. The condition for strong de-
terminacy is given by taking H to be R1 and can be rewritten in the familiar form
found in texts on elementary catastrophe theory, such as Poston and Stewart [22,
p.134 and p.159], as follows. The germ f is k-R1-determined if and only if

Mk+1
n ⊂ LR1 · f = M2

n〈∂f/∂x1, . . . , ∂f/∂xn〉.
This provides a practical criterion for R-determinacy.
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2.2 Working with Jet-groups: Mather’s Lemma

and Moduli Detection

The method of CTs gives a complete set of representatives for the Jk+1G-orbits
over a given k-jet f . This set is given as an affine space in Jk+1(n, p) through
f and we wish to reduce it further, preferably to a finite set of representatives.
This can often be achieved using ‘scaling’ coordinate changes in the source and
target, a simple problem involving linear algebra. However, in cases where moduli
are present, scaling is not possible and we need a criterion to detect such moduli.
Alternatively, the family given by the affine space may be G-trivial, collapsing to
give one normal form, f . The space L used in CT calculations is generally smaller
than the tangent space to the whole group LG, so it is not surprising that a CT
may contain redundant terms. (In general we cannot take L to be the whole of
LG, but there are theoretical reasons why the CT technique can provide the most
efficient method of inductive classification.)

In cases where further simplification is necessary we have to work with the
whole group G, and a result specifically intended to deal with such questions is
Mather’s Lemma [27, Lemma 1.1]. We state it in our special case of interest,
where a jet-group JkG acts on Jk(n, p).

Lemma 2.7 Let X be a connected submanifold of Jk(n, p). Then X is contained
in a single orbit of JkG if and only if

(i) for each jet x ∈ X, the tangent space TxX ⊂ Tx(J
kG · x), and

(ii) dim Tx(J
kG · x) is constant for all x ∈ X.

The tangent space to the orbit through x is given by the action of the Lie alge-
bra thus, Tx(J

kG · x) = L(JkG) · x. The two conditions of Mather’s Lemma are
extremely difficult to check using hand calculations but are easily dealt with by
our package, taking L = L(JkG). Verifying the inclusion condition (i) requires
little computational overhead once a basis for the tangent space has been calcu-
lated. Note that the jet passed to the package contains arbitrary parameters and
represents a whole affine space in Jk(n, p). Our algorithm will provide a set of
exceptional values where the dimension of the tangent space may drop or the in-
clusion condition (i) fails. These exceptional values are stored for examination by
the user after the algorithm has terminated; see Section 3.2.

A related issue is the detection of moduli. The CT process may produce an
entire family of jets which are all distinct up to G-equivalence. To prove that
moduli are indeed present we use the following straightforward criteria.

Lemma 2.8 Let W be a smooth constructible subset of the jet-space Jk(n, p) and
for w ∈ W define

d(w) = dim
((

Tw(JkG · w) + TwW
)
/Tw(JkG · w)

)
.
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Then, given an integer r ≥ 1, if the set {w ∈ W : d(w) ≤ r − 1 } is a constructible
subset of W of smaller dimension, then every germ f with jkf ∈ W is of G-modality
r or greater.

Again, this is an extremely difficult condition to check using hand calculations. It
may be verified easily by our package, taking L = L(JkG).

2.3 Unfolding Theory

Let F : Fn ×Fs, 0 → Fp ×Fs, 0 defined by (x, u) 7→ (f(x, u), u) be an unfolding of
f0 ∈ MnE(n, p). We recall the following fundamental result from unfolding theory.
(The case where G is one of the standard Mather groups is discussed in [18, 27];
for the generalisation to geometric subgroups of K see [10].)

Theorem 2.9 F is G-versal if and only if

LGe · f0 + F{Ḟ1, . . . , Ḟs} = E(n, p),

where the initial speeds Ḟi ∈ E(n, p) of F are defined by

Ḟi(x) = ∂f/∂ui(x, 0), for i = 1, . . . , s.

Corollary 2.10 If g1, . . . , gs ∈ E(n, p) form an F-spanning set for the normal
space to LGe · f0 in E(n, p) then F (x, u) = (f(x) +

∑s
i=1 uigi(x), u) is a versal

unfolding of f0, where u = (u1, . . . , us).

Thus, to calculate a versal unfolding of f0 we need to determine the gi. As stated
this is a problem at the germ level. However, if f0 is k-G-determined then by the
characterisation of determinacy given in [7] (see Theorem 1.9 for G a standard
Mather group, and Theorems 4.5 and 4.6 for more general subgroups of K) we
have Mk+1

n E(n, p) ⊂ LG · f0. But the latter is a subset of LGe · f0 and it therefore
suffices to calculate the normal space to LGe · f0 in Jk(n, p). This is a simple
application of the package, taking L = Jk(LGe). (Note that in practical situations
one usually establishes k-determinacy of f0 by applying a determinacy result such
as Theorem 2.4. In this case the above inclusion Mk+1

n E(n, p) ⊂ LG · f0 follows
directly from the determinacy criterion anyway.)



Chapter 3

Package Overview

This chapter provides an introduction to the package. Section 3.1 describes the
basic setup of the package and the main scheme of the algorithm used. It is
important that the reader understands this section as it is referred to in other parts
of the manual. Section 3.2 describes some of the more important computational
issues behind the algorithm. It is somewhat more technical in nature, though it is
probably worth glancing through it on first reading. The information in this section
will provide valuable background for the reader who is interested in some of the
more subtle features of the algorithm but does not want a complete breakdown of
how it works. Further details on the actual program code and a presentation of
parts of the algorithm in the form of pseudo code were given in [16]. In addition
we remark that the Maple source code is fully documented.

3.1 The Underlying Algorithm

The main principle behind the algorithm is to treat the spaces L · f as vector
subspaces of the jet-space. Once a basis has been found we can answer all of the
questions raised by the theory. It is a simple matter to calculate a spanning set
for a given tangent space; reducing this to a basis is the major computational
problem. Elements of the jet-space correspond to truncated polynomial vectors
over the field of real or complex numbers. By extracting monomial coefficients we
can treat jets as familiar coordinate vectors and reduce the spanning set to a basis
using Gaussian elimination. A major concern with this approach is the size of the
matrices involved. However, these matrices are highly sparse and, as numerous
examples demonstrate, can be reduced relatively quickly. In addition, there are
several features of the problem which we may exploit to reduce the computational
overhead at the elimination stage. It is wasteful to extract coefficient vectors (which
are generally of a high dimension) and create a matrix. Instead we apply the
elimination directly to the polynomial vectors, manipulating them as symbolic
expressions. This technique will be called indexed Gaussian elimination. The
symmetry present in the ‘target’ tangent spaces (for example, types L and C) is

13
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exploited at the elimination stage also. We will discuss these and other technical
issues in Section 3.2.

Our concerns regarding large coefficient matrices, were also noted in [19] and
Gröbner basis methods were used in the underlying algorithm in CATFACT. Although
successful, this approach cannot generalise to A-calculations because the algebraic
structure of the A-tangent space is that of a mixed module. That one has to treat
the A-tangent space as a vector space and work with the associated large matrices
appears to be an unavoidable problem. The utility of our approach is ultimately
measured by its success in dealing with important problems.

The stages of the algorithm are summarised below. The initial stage involves
defining, via several global variables, the tangent space L we are to work with. We
refer to Section 4.2 for a description of the actual variables.

Initialisation Step

Firstly, L is specified as one of five broad ‘types’ which we will denote R, L, C, A
and K. The required ‘type’ is set by a global variable which may take the string
constant values R, L, C, A and K. For ‘type’ R, L is defined to act on a given jet
f by

L · f = Mt1
n

〈
ξ1 · f, . . . , ξs · f

〉
,

where the exponent t1 is given by a user-defined integer variable and the ξi are
user-defined vector fields. The ξi are defined via a procedure which takes f as a
parameter and returns the vectors ξi · f ; the procedure is pointed to by another
global variable and is called at run-time. Several procedures are provided: the
standard R case, where ξi = ∂/∂xi, is covered as are cases where L is the space
of vector fields tangent to a discriminant variety. Thus, ‘type’ R, with ξi = ∂/∂xi

and t1 = 0, 1 and 2 defines the tangent spaces LRe, LR and LR1, respectively. For
‘type’ L, L is defined to act by

L · f = f∗(Mt2
p ){e1, . . . , ep},

where the ei are the canonical basis vectors in Fp and t2 is a user-defined integer
variable. For ‘type’ C the action is defined by

L · f = Mt2
n f ∗(Mp)E(n, p).

As one would expect, for ‘types’ A and K, L · f is defined as the sum of the spaces
defined by ‘types’ R,L and R, C, respectively.

This approach allows one to define a wide range of tangent spaces L and cov-
ers virtually everything which arises in practice. For complete transversal and
determinacy techniques we often work with a unipotent subgroup of K and the
corresponding nilpotent tangent space L is given by the sum of a ‘standard’ tan-
gent space and a linear space spanned by a set of ‘extra’ vectors. For example, in
the A case the space L is given by the sum of LA1 and a space spanned by ‘extra’



Chapter 3. Package Overview 15

vectors belonging to LA \ LA1; see [5, 7]. Further global variables specify these
‘extra’ vectors and the package can be used in such situations.

Having initialised the calculation we now call the appropriate functions in the
package. The first three stages of the algorithm form the major part of the calcu-
lation and are performed by one function which takes a jet f and jet-space degree
k as parameters.

Step 1

For the given jet f , jet-space degree k and tangent space L, calculate L · f in
Jk(n, p). Specifically, calculate a spanning set for L · f as a vector subspace of
Jk(n, p). The algorithm constructs this set using the definition of L · f given
above for each ‘type’ and essentially follows the same procedure as that used if one
were doing the calculation by hand. For example, in a standard R classification,
using the complete transversal method with L = LR1 say, we calculate L · f =
M2

n〈∂f/∂x1, . . . , ∂f/∂xn〉 by first obtaining the vectors which generate L · f as
an En-module, {∂f/∂xi}. These are multiplied by all monomials of degree 2 and
higher in the source variables until we obtain jets whose initial degree is greater
than the jet-space degree k. The space Jk(n, p) is identified with the space of
p-tuples of polynomials in n indeterminates over F, truncated to degree k. The
spanning set in therefore given as a set of such polynomial vectors.

Step 2

The spanning set calculated in Step 1 is reduced to echelon form using Gaussian
elimination. By ordering the monomial vectors xi1

1 . . . xin
n ej ∈ Jk(n, p), each jet in

Jk(n, p) corresponds to a coordinate vector over F via extraction of coefficients. The
spanning set obtained in Step 1 then corresponds to the matrix whose rows consists
of these coefficient vectors. Reducing this matrix using Gaussian elimination gives
a canonical basis for the tangent space. We actually use the technique of indexed
Gaussian elimination, mentioned above and discussed in Section 3.2.

Step 3

A basis C for the complementary (normal) space to the tangent space is calculated.
That is, the independent set obtained in Step 2 is extended to one of full rank in
Jk(n, p) by the addition of monomial vectors. In the Ae and A cases (for example)
this gives the terms required in a versal unfolding and the corresponding codimen-
sion (for determined jets). In the A1 complete transversal case (for example) the
monomial jets in Jk(n, p) are ordered so that those of degree k correspond to the
latter columns of the matrix. The monomial vectors in C of degree k will then form
a basis for a complete transversal. This process can be generalised to deal with
complete transversal calculations using a unipotent subgroup G and corresponding
nilpotent filtration; see Section 3.2.
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Step 4

Calculating a basis for the tangent space is the main computational overhead in the
algorithm. During this procedure all by-products of the reduction process which
may be of further use (such as the bases for the tangent and normal spaces, invari-
ants such as the dimension and codimension of these spaces) are stored as global
variables for access by other routines. Step 4 deals with output and manipulation
of these results. A number of procedures are associated with Step 4 and perform
such functions as displaying the bases, displaying a basis for a complete transversal,
and testing whether a given set of vectors is independent from the tangent space
(such questions arise in checking the hypotheses of Mather’s Lemma and in moduli
detection). The computational overhead of such procedures is negligible compared
to that involved in Steps 1 – 3.

3.2 Technical and Computational Considerations

We will now describe some of the more important computational issues behind the
algorithm.

3.2.1 Symbolic Pivots: Fraction-free Gaussian Elimination

Writing the package in a symbolic language such as Maple allows great flexibility.
One notable advantage is that parameters (such as moduli) may be present in the
jets we work with, thus allowing us to perform calculations for whole families. The
matrix created in Step 2 will contain polynomial entries and we must take this
into account during the Gaussian elimination routine. We choose numeric pivotal
elements (in this context meaning ‘constant polynomials’) where possible, but when
we are forced to choose a non-constant polynomial pivotal element no division is
performed on the chosen row to reduce the pivot to unity. Division is still performed
(working in the field of rational functions) when using the pivot to reduce the rest
of the column to zero. This is in contrast to standard ‘fraction-free’ Gaussian
elimination [12, p.82] where the pivot and the term it is to eliminate are multiplied
up and no division occurs at all. Our method provides a valid elimination algorithm
for jets involving parameters without the inconvenience of standard fraction-free
elimination where the matrix entries rapidly blow-up into large expressions. The
elimination only breaks down for certain values of the parameters for which a pivot
vanishes, but the conditions determining this are retained. The list of all non-
numeric pivots is stored for global access after the algorithm terminates, and may
be examined by a procedure associated with Step 4.

The non-numeric pivots will, in general, be rational functions in the param-
eters, the vanishing of their numerators defining a finite set of proper algebraic
varieties within the parameter space. The elimination applies to members of the
family corresponding to values of the parameters not lying on these varieties, and
the algorithm therefore determines the generic behaviour by default. To investigate



Chapter 3. Package Overview 17

the exceptional behaviour we must inspect each of the non-numeric pivots in turn,
obtaining conditions on the parameters for which the elimination breaks down. In
many cases (at least those with one or two parameters) the solutions can be deter-
mined explicitly using one of the Maple factor or solver procedures, the solutions
being substituted back into the family and the calculation repeated. This process
detects such phenomena as exceptional values in modular families, or cases where
applications of Mather’s Lemma break down thus obstructing triviality within the
family but providing a finite list of normal forms.

3.2.2 Exploiting Sparsity: Indexed Gaussian Elimination

Working with a matrix of coefficient vectors in Step 2 is wasteful on memory and
CPU time. By the very nature of the algorithm the data is created as a set of
polynomial vectors (truncated to the prescribed degree k). This is a very efficient
data structure to work with. Storage of the sparse data (the non-zero coefficients)
is optimised, as is its manipulation. The idea is to work with the set of polynomial
vectors and manipulate these directly using symbolic techniques, a coefficient ma-
trix is never created. We use a set of indexing tables which, for a given row and
column (i, j) of the would-be coefficient matrix, index the appropriate coefficient of
the ith polynomial vector in our spanning set. The column j therefore indexes two
pieces of information: the component of the vector and a monomial term in the
resulting polynomial. During elimination, coefficients are looked-up from this set of
polynomial vectors using the indexing tables and, for all intensive purposes, could
be thought of as matrix entries. However, the row reduction operations performed
in Gaussian elimination are now achieved by direct polynomial addition — a very
efficient process in Maple which uses the internal kernel functions.

We had to completely rewrite the Gaussian elimination routine found in Maple
in order to incorporate both the above method, and the type of fraction-free elim-
ination described in the previous section. The resulting elimination algorithm
proved, on average, to be two to three times faster, using three to four times less
memory than methods which extract an explicit matrix of coefficients and apply
the standard Maple library routines.

3.2.3 Exploiting Symmetry in the Target

The L and C ‘type’ tangent spaces exhibit a large degree of symmetry. Their
respective action on a given germ f is given by,

f ∗(Mt2
p ){e1, . . . , ep} and Mt2

n f ∗(Mp)E(n, p).

In the L case we create a spanning set for the ideal f ∗(Mt2
p ) as a vector subspace of

Jk(n, 1) and reduce this to echelon form using (indexed) Gaussian elimination. In
the C case we do the same for the ideal Mt2

n f ∗(Mp). We then produce a spanning
set for the full L or C tangent space by stacking together p copies of the resulting
‘matrix’. The important point is that we can do this in such a manner as to



18 Chapter 3. Package Overview

create a spanning set for the full tangent space which is already in echelon form
and therefore requires no further elimination. This is clear if the matrices were
stacked together to form a diagonal block matrix, but this corresponds to a specific
ordering of the monomial vectors in Jk(n, p). The monomial orderings required
in certain problems, such as complete transversal calculations, do not give rise to
such a simple diagonal block matrix, but the principle still applies and we indeed
find that the matrix formed by stacking is automatically in echelon form. The
reduction in computational overhead is clear.

Finally, in a problem dealing with A-equivalence or K-equivalence, this basis for
the target tangent space is adjoined with a spanning set for the source tangent space
and the resulting ‘matrix’ reduced to echelon form. Represent these as matrices of
coefficient vectors, M1 and M2, respectively. The full tangent space matrix, formed
by adjoining these,

(
M1

M2

)

is reduced to echelon form. However, M1 is already in echelon form and a full blown
Gaussian elimination is replaced by the following algorithm. Keep the current row
and column pointer in the matrix M1. If the corresponding entry is a pivot then
reduce as usual; only the column in M2 needs to be reduced to zero as the column
in M1 will already be zero. Otherwise, (if the entry in M1 is zero) try and find a
pivot in M2. If this is possible, again only the column in M2 needs to be reduced.
However, if we need to use M2 to obtain a pivot then we do not swap the rows of
M1 and M2 as in standard Gaussian elimination, but rather insert the row of M2

into M1 thus preserving the fact that M1 is echelon. This is the basic idea at least.
In the code it is more efficient to create a separate matrix which stores the final
result: when a pivot is found the corresponding row is added to this ‘result matrix’
thus eliminating the need to insert a row of M2 into M1 (moving all the remaining
rows of M1 down). In addition, the process is carried out using the indexing tables
referred to above, not coefficient matrices.

We remark that the presence of target tangent spaces and a target dimension
greater than 1 make the computational overhead at the elimination stage consid-
erably greater in A and K ‘type’ calculations, compared to R ‘type’ calculations.
This exploitation of symmetry means that many significant calculations remain
feasible.

3.2.4 Normal Spaces, Complete Transversals and Nilpotent
Filtrations

It is an easy matter to extend the basis for L ·f to one of full rank in Jk(n, p), thus
providing a basis C for the normal space. If the basis for L ·f is given in coordinate
form by the rows of the echelon matrix (aij) with pivotal elements a1j1 , a2j2 , . . . ,
arjr (so these are non-zero elements and 1 ≤ j1 < j2 < · · · < jr ≤ q = dim Jk(n, p),
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where r = dim L · f), then the canonical vectors

{e1, . . . , êj1 , . . . , êj2 , . . . , êjr , . . . , eq}
(where êj denotes the exclusion of ej from this set of vectors) form the basis C.
Of course, we calculate C as the set of monomial vectors which correspond to
these coordinate vectors ei. The algorithm to derive C from (aij) also takes the
opportunity to pick off all of the non-numeric pivots (discussed above) and store
them for global access.

Calculating complete transversals requires a little more subtlety. Provided the
columns corresponding to the monomial jets of degree k appear as a block at the end
of the column, the above procedure will provide a basis for a degree k complete
transversal associated with the standard filtration by degree (see Example 2.3).
This basis simply consists of those elements in C of degree k. For this to work for
the general complete transversal theorem 2.1 we must order the degree k monomial
jets according to the nilpotent filtration, starting with those of degree (k, 1), then
those of degree (k, 2), and so on. In most situations which arise in practice, this
can be achieved via a system of weights. In what follows α = (α1, . . . , αn) and
β = (β1, . . . , βp) will denote the source and target weights respectively. We recall
the following; see [5, Section 2.3] for a full discussion on weighted filtrations. The
monomial vector xk1

1 . . . xkn
n ei is assigned a weight k1α1 + · · · + knαn − βi. The

En-submodule of MnE(n, p) generated by such monomial vectors of weight ≥ k is
denoted F k

α,βE(n, p).
We consider the case of A-classification, though the method extends to other

subgroups of K. Let (x1, . . . , xn) denote coordinates on (Fn, 0) and (y1, . . . , yp)
those on (Fp, 0). Let G be a subgroup of A such that L(J1G) acts nilpotently on
Fn+p. For ‘large enough G’ (we make this precise below) we can assign source and
target weights such that the partition of the monomial vectors of (standard) degree
k via their weight corresponds to their partition into the (k, s)-jet-levels using the
nilpotent filtration. The following was proved in [5].

Proposition 3.1 Suppose LG contains the following vectors and assign source and
target weights according to the case in question.

Vectors Weight

xi∂/∂xi+1 ∈ LR or α = (n, . . . , 2, 1)

xi+1∂/∂xi ∈ LR α = (1, 2, . . . , n)

yj∂/∂yj+1 ∈ LL or β = (0,−1, . . . ,−p + 1)

yj+1∂/∂yj ∈ LL β = (−p + 1, . . . ,−1, 0)

for i = 1, . . . , n − 1 and j = 1, . . . , p − 1. Then
∑
i≥s

(LG)i · (Mk
nE(n, p)) + Mk+1

n E(n, p) =

(
F k+s

α,β E(n, p) ∩Mk
nE(n, p)

)
+ Mk+1

n E(n, p).
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So for fixed k, the Mk,s(G) filtration can be replaced by the weighted filtration
modulo Mk+1

n E(n, p), that is the filtration on the right-hand side of the above
expression. In particular, the homogeneous monomial vectors of degree (k, s) (to
be precise, those that span the space given by the image of Mk,s−1(G) in the jet-
space Jk,s(n, p)) are just the homogeneous monomial vectors of (standard) degree
k with weight k + s − 1.

The vectors referred to in Proposition 3.1 are the ‘extra’ vectors present in
LA \ LA1. For classification purposes one would prefer to use some unipotent
group G such that the nilpotent Lie algebra LG ⊂ LA contains as many of these
‘extra’ vectors as possible. There are four natural cases to consider:

LG = LA1 ⊕ F{xi∂/∂xj} ⊕ F{yk∂/∂yl}

for all i < j (or alternatively all i > j) and similarly for k and l. Such cases are used
in practical applications (such as the examples in Chapter 5) and Proposition 3.1
applies.
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Reference Guide

We assume the reader is familiar with the background singularity theory as reviewed
in Chapter 2. The basic setup of the package was described in Section 3.1 and we
will make references to some of the features introduced there.

4.1 Getting Started

The Transversal package runs under Maple V, it has been tested successfully
using the Release 3 and Release 4 systems. To date, it has not been tested under
the latest Release 5, but compatibility problems are not expected. The package
should run on most platforms, though the majority of development has been carried
out using the Unix version of Maple (in particular, on Sun and SGI workstations).

For installation instructions see the README file which comes with the distri-
bution. A simple Unix shell script which installs Transversal as a Maple library
is provided. This script essentially builds the ‘.m’ files and table which define the
library. Having installed the package and defined the library paths appropriately
(see the README file) the package may be loaded into any Maple session in the
usual way via the command

with(transversal);

I have not written installation scripts for other platforms such as PCs or Macin-
toshs but this should be a simple task for anyone with the appropriate background
(just translate the simple Unix scripts!). Alternatively, since the Maple source code
for the library routines is provided as ASCII files the library may be loaded on any
platform by performing a straightforward ‘brute force’ read of all the files in the
package — an appropriate Maple file is provided to do this. Thus, the package
should run under all platforms which support Maple, though the neat approach of
installing it as a self loading library is only catered for under Unix at present.
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4.2 Global Variables: The Initialisation Stage

An essential part of any problem tackled by Transversal is to specify the tangent
space L. This requires several different items of data which, within a typical class
of problems, remain fixed. We therefore specify L using a set of global variables
which are accessed internally by the package’s routines. The remaining items,
which typically vary from calculation to calculation (for example, the germ under
consideration or the jet-space degree) are passed to the routines via the usual
parameter interfaces.

Thus, the first stage of any problem requires the user to assign these global
variables accordingly. We begin by describing this process, in conjunction with the
discussion in Section 3.1, and then give a more precise synopsis for each variable.

4.2.1 Brief Description

The global variable equiv may take the string constant values R, L, A, C or K to
specify the ‘type’ of equivalence, as described in Section 3.1. The actual space L
which jetcalc uses in any calculation depends on the other global variables.

The global variables source power and target power specify the powers to
which the maximal ideals are to be raised in the defining equation for L. We
refer to Section 3.1 where t1 and t2 represent the values held by source power and
target power, respectively.

The space L can be decomposed into the direct sum of two components consist-
ing of the source and target vector fields. In most applications (at least those to
date) it is the source component which departs from the standard space associated
with R-equivalence; the module of vector fields tangent to a variety in the source
space is a typical example. We therefore allow the source component of L to be
user-specified as an En-module of vector fields. (This may be extended to the target
component in future releases but, at present, there is little call for such require-
ments, especially as the programming issues are non-trivial.) The user specifies a
set of vector fields ξi which generate the source component of L as an En-module.
These fields take the form

ξi = g1
∂

∂x1

+ · · · + gn
∂

∂xn

where gj ∈ En,

and are defined for the package via a procedure which takes a jet f as a parameter
and returns ξi ·f . The global variable liealg holds the name of the procedure to be
called. The exact Maple syntax for these vector fields is discussed below, together
with the other functions of the liealg procedures. Several liealg procedures
come shipped with the package. The standard one which specifies the ‘pseudo
right group’, Re, is called stdjacobian and defines the generating set ξi = ∂/∂xi

where i = 1, . . . , n. Others include cusp, swallowtail and d4discrim for the
module of vector fields tangent to the respective discriminant varieties. Should
any user need to write their own liealg procedure we recommend they use those
provided as a template.
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For complete transversal and determinacy techniques we often employ a unipo-
tent subgroup of K and its nilpotent Lie algebra L may be specified as the sum of
a ‘standard’ tangent space and a linear space spanned by a set of ‘extra’ nilpotent
vectors. For example, in the A case the space L is given by the sum of LA1 and a
space spanned by extra vectors belonging to LA\LA1. The global variables R nilp

and L nilp are used to list these extra vectors, specifying those from the source
and target, respectively. In addition, the ‘pseudo’ Boolean variable nilp indicates
whether to include the extra vectors specified by R nilp and L nilp in the calcu-
lation, whether to ignore them, or whether to include them and additionally order
the polynomial jets as dictated by the underlying nilpotent filtration Mk,s(G). The
latter case may be achieved for the nilpotent spaces L which are typically used in
applications via a system of weights assigned to the source and target variables;
see Section 3.2. That we can construct complete transversals from the basis for
the complementary space relies on how we order the monomial jets, the main point
being that jetcalc always orders the jets so that a complete transversal is given
by taking the vectors of degree k from the basis for the complementary space.
By ordering the homogeneous jets of degree k using the order induced by Mk,s(G)
this method extends to the nilpotent complete transversal methods. Even though
jetcalc produces a complete transversal of degree k, we can obtain the appropri-
ate Mk,s(G) transversal by truncating the jets at that level — explicitly we just
take the degree k terms in the complete transversal which belong to the required
Mk,s(G) jet-space; all the other degree k terms being ignored. The jet resulting
from the complete transversal calculation must then be fed back into jetcalc us-
ing the same value of k, but now truncating the resulting transversal at a higher
Mk,s(G) level than before. The examples in Chapter 5 should make the process
clear.

Remark. The above scheme is limited and does not allow one to specify the tan-
gent space L for an arbitrary subgroup of K. However, a reasonable compromise
is reached in that virtually every case which comes up in applications may be de-
fined using a straightforward method which is easy for the user to implement. One
area where the above scheme could be improved is that of specifying a user-defined
generating set of vector fields for the target component of L. At present only the
source component is user-specified but one would need to specify the target compo-
nent in certain applications, for example those which use Damon’s KV -equivalence;
see [11]. However, the use of the package in such areas is not a pressing requirement
and is only likely to be addressed at some point in the future.

4.2.2 The Individual Global Variables

We now describe the individual global variables, it is the user’s responsibility to
assign these appropriately.
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liealg

This holds the name of a Maple procedure called from within the main routine
jetcalc. The main purpose of this procedure is to define a set of vector fields
which generate the source component of L as an En-module. It also specifies the
names to be used for the source coordinates, this enables such coordinates to be
distinguished from any unfolding parameters or moduli which may be present in
the jet f . It may be convenient to assign, within the liealg procedure, any
other global variables particular to the problem at hand. For example, the liealg

procedures associated with classifications on discriminant varieties also assign the
variables which specify the nilpotent setup. We remark on the following.

• The source coordinate names assigned within a liealg procedure must al-
ways be used in the defining equation for any jet f passed to jetcalc. For
instance, stdjacobian uses x1, . . . , xn as source coordinates and their actual
Maple names are defined to be the string constant values x1, . . . , xn, that
is juxtaposition of x with a number (technically speaking we are using the
Maple concept of concatenation of names). When called, jetcalc prints out
the coordinate names it is using to clarify this.

• The source coordinate names are required by several routines and are stored
in the global variable coords for convenience.

• In the case liealg = stdjacobian, the source dimension n must also be
specified. This is done by the global variable source dim, a positive integer.

The rest of this section describes the technical details behind the liealg procedures
and need only be read should the user want to write their own procedures.

A liealg procedure is defined with three formal parameters thus

liealg example := proc(f ,p,tgtspace)

where f , a list, stores the given jet passed to jetcalc and p, a positive integer,
the target dimension deduced from the number of components of f . These are
pre-determined in jetcalc before it calls the liealg procedure. The parameter
tgtspace is of Maple type ‘table’ and is assigned within the procedure.

The source coordinates must be specified by assigning a Maple name to each
entry in the global list coords. This is another function which must be carried
out by the liealg procedure. It is a good idea at this stage to check the required
names are unassigned as Maple expressions and return an error otherwise; see the
routines which come with the package.

Next a generating set for the source Lie algebra must be specified using the table
tgtspace. Each entry of tgtspace is itself of type ‘table’ with p components and
corresponds a generator ξi, specifying how ξi acts on the jet f . The precise syntax
is as follows. Suppose the i-th vector in the generating set is of the form

ξi = g1
∂

∂x1

+ · · · + gn
∂

∂xn

where gj ∈ En,
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then the i-th entry of tgtspace specifies the p components of ξi · f and is defined
in Maple by

tgtspace[i][1] := g1∗diff(f [1],coords[1]) + · · ·+ gn∗diff(f [1],coords[n]);
...

tgtspace[i][p] := g1∗diff(f [p],coords[1]) + · · ·+ gn∗diff(f [p],coords[n]);

where f is given in Maple by a list of p entries, f := [f1, . . . , fp].
A warning is needed on the special case when the target dimension p is one.

Since each entry tgtspace[i] must itself be of type ‘table’, we must use expressions
of the form

tgtspace[i][1] := . . . ; and not
tgtspace[i] := . . . ;

Also, the use of Maple type ‘list’ on the right hand side does not work and the
following should be avoided

tgtspace[i] := [ . . . ];

Finally, the global variables which define the nilpotent terms may be assigned,
if required. We refer to the sections below for descriptions of the various nilpotent
variables and the required syntax.

equiv

This takes a value from one of the string constant values R, L, A, C or K and
specifies which of the five ‘types’ the space L falls into. (Note that capitals must be
used, and that if any of these letters are assigned Maple expressions then they must
be evaluated to actual Maple names using single right-quotes, that is, using equiv

:= ’R’ instead of equiv := R, in the R case, say.) The three types which specify
a source component to L, namely R, A and K, will use the liealg procedure to
define this component. However, the target component is always based on standard
ones arising from L or C equivalence and can only be altered through the use of
the variable target power.

source power/target power

These are non-negative integers which specify the power by which the appropriate
maximal ideal, Mn or Mp, is to be raised. For example, consider the A case.
Setting equiv := A; liealg := stdjacobian; gives the tangent space L · f as

Msource power
n 〈∂f/∂x1, . . . , ∂f/∂xn〉 + f ∗(Mtarget power

p ){e1, . . . , ep}.

The standard examples are therefore given by the following settings.
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equivalence source power target power

Ae 0 0

A 1 1

A1 2 2

A2 3 3

Now consider the K case. Setting equiv := K; liealg := stdjacobian; gives the
tangent space L · f as

Msource power
n 〈∂f/∂x1, . . . , ∂f/∂xn〉 + Mtarget power

n f ∗(Mp)E(n, p).

We can therefore obtain the following.

equivalence source power target power

Ke 0 0

K 1 0

K1 2 1

K2 3 2

Note that the phrases ‘source’ and ‘target’ refer to the component of L in which
these exponents feature (that is, source: R, target: L or C) and not which ideal
(Mn or Mp) they apply to. Specifically, the source component of L is always
multiplied by a power of the ideal Mn, whereas the target component of L is
multiplied by a power of the ideal Mp in the L and A cases, and by a power of
Mn in the C and K cases.

compltrans

This is a Boolean variable. The main function jetcalc calculates a basis for the
complementary space and stores it globally for access by the function pcomp which
is used to display (‘print’) the basis; see Section 4.4. A complete transversal can be
obtained from this basis simply by extracting the terms of degree k; see Section 3.2.
Setting compltrans := true causes pcomp to extract the complete transversal from
the basis and then print it out. To output the full complementary basis, required
in unfolding theory, we set compltrans := false before calling pcomp. The value
of compltrans has no effect on the actual calculation carried out within jetcalc.

nilp

This is a ‘pseudo’ Boolean variable. When set to true this tells jetcalc to in-
clude the nilpotent vectors specified by R nilp and L nilp in the calculation; this
would be the case, say, for determinacy calculations which use a nilpotent space L.
However, when set to false this tells jetcalc to ignore the variables R nilp and
L nilp; this would be the case for standard unfolding calculations, say. For com-
plete transversal calculations which use a nilpotent space L the homogeneous jets of
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degree k must be ordered as dictated by the nilpotent filtration Mk,s(G). To achieve
this we set nilp equal to true order and assign the variables nilp source wt and
nilp target wt with the appropriate weights, these being used to define the order-
ing. (For the other settings of nilp a default lexicographical ordering which ensures
the homogeneous jets of degree k appear last in the order is employed. This or-
dering suffices for A1 complete transversal calculations, for example.) It is up to
the user to make sure these weights are the correct weights to use with the nilpo-
tent vectors given by R nilp and L nilp. However, the function setup Aclassn

which provides a setup for A-classifications is helpful in this regard. It assigns all
the global variables, in particular all the nilpotent variables are assigned appropri-
ately; see Section 4.4.

In most situations, complete transversal and determinacy calculations are car-
ried out back-to-back so the setting true is unlikely to be used.

As a safety device, jetcalc performs type checks on the global variables it uses
and returns errors if necessary. However, note that it only checks those required
for a particular setting of nilp. This is a convenience measure for the user — only
the required variables need to be assigned correctly.

R nilp/L nilp

These are two variables of Maple type ‘list’; each entry in the lists being a list
with two entries. These variables specify the extra nilpotent vectors which are to
be included in L. Nilpotent vectors in the source component of L will take the
form gξi, where g ∈ En and ξi is a generator for the source component of L. For
example, in the A case we will require (some of the) vectors of the form xi∂/∂xj

to be included, but in general ξi will be some linear combination of the standard
vectors ∂/∂xj. Nilpotent vectors in the target component of L will always be of
the form yi∂/∂yj, where (y1, . . . , yp) are coordinates on Fp. (In coordinate form
this vector operates on a germ f via (yi∂/∂yj) · f = f ∗(yi)ej.)

The precise syntax is as follows. For g ∈ En and ξi the i -th vector specified by the
table tgtspace (see liealg above), the entry [g, i] in the list R nilp indicates that
the vector gξi is to be included in the source component of L. For example, with
liealg = stdjacobian, to include xi∂/∂xj we include the entry [xi, j] in R nilp.
Similarly, the entry [i, j] in the list L nilp indicates that the vector yi∂/∂yj is to
be included in the target component of L. Note jetcalc extends the tangent space
by including the F-span of all of the nilpotent vectors.

As an example consider the A classification of map-germs F2, 0 → F3, 0. We
will use the unipotent subgroup of A with Lie algebra

L = LA1 ⊕ F{x1∂/∂x2} ⊕ F{y2∂/∂y1, y3∂/∂y1, y3∂/∂y2}

for the calculations. Only the scalar multiples of the nilpotent vectors

(x1∂/∂x2) · f, (y2∂/∂y1) · f, (y3∂/∂y1) · f, (y3∂/∂y2) · f,
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are not already present in LA1 · f . We must therefore specify A1 and then add the
nilpotent vectors. This may be done as follows (recall that we must also specify
the source dimension when we are using liealg = stdjacobian).

equiv := A;
liealg := stdjacobian;
source dim := 2;
source power := 2;
target power := 2;
nilp := true;
R nilp := [ [x1, 2] ];
L nilp := [ [2, 1], [3, 1], [3, 2] ];

nilp source wt/nilp target wt

These are two variables of Maple type ‘list’; each entry in the lists being an integer.
When using complete transversal methods based on a nilpotent filtration these
integers provide the weights required to order the homogeneous jets of degree k.
The values of the weights depend on the nilpotent vectors specified by R nilp and
L nilp; see Section 3.2 and above. It is up to the user to make sure these weights
are compatible with R nilp and L nilp. However, the function setup Aclassn

discussed in Section 4.4 is helpful in this regard.
For the example F2, 0 → F3, 0 above, the choice of R nilp and L nilp requires

the following weights.

nilp := true order;
nilp source wt := [2, 1];
nilp target wt := [−2,−1, 0];

jetcalc verbosity

In addition to the global variables which define the space L we take this opportunity
to mention that the global variable jetcalc verbosity must also be set by the
user before calling the function jetcalc. During a calculation jetcalc reports
information relating to how the calculation is progressing and this variable controls
the amount of information output; see Section 4.4.

4.3 Extensions to the Package

Extensions of the standard Transversal package have been developed as follows.

Transversal W a version of the package which implements weighted filtrations and
the corresponding weighted jet-spaces.

Transversal M a version dealing with multigerms.
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Transversal L a version dealing with equivalence relations defined using lowerable
diffeomorphisms in the source.

Remark. The packages Transversal and Transversal W represent comprehen-
sive projects developed over a number of years. The packages Transversal M and
Transversal L are relatively new and apply to more specialist applications. Al-
though these newer packages are essentially complete (and have been used by the
author in several applications) they are not as comprehensive as the standard pack-
age and are not, at present, included in the standard distribution. I hope, time
permitting, to make them available in the next release of the package.

These packages are used in much the same way as Transversal, indeed they
share many of the functions present in the standard package. Several functions
(notably jetcalc) have been extended accordingly, but retain the same name as in
Transversal and are called and used in an analogous way. The packages are loaded
in the usual way using the with command, the selection of the appropriate package
functions (whether the standard or extended versions) are chosen automatically.

For the most part the details for the standard Transversal package apply to
these extended packages. There are slight differences in the setup of the packages
(for example, with the global variables) and these are discussed in this section.
Unless otherwise stated, the actual routines present in each package are used and
function in exactly the same way as the routines in the standard Transversal

package (indeed, in many cases the same routines are shared). When differences
do occur they are described in Section 4.4 under the heading Package Extensions.

4.3.1 Weighted Filtrations

Transversal uses the standard filtration of Mn.E(n, p) by degree, that is by the
submodules {Mk+1

n .E(n, p)} for k ≥ 0, and performs calculations in the standard
jet-space Jk(n, p). Methods which use nilpotent filtrations Mk,s(G) may also be
implemented, but many problems naturally lend themselves to the use of weighted
filtrations. The package Transversal W implements filtrations given by weights
and allows us to work with weighted jet-spaces. (For a description of classifica-
tion techniques using weighted filtrations, in particular the complete transversal
method, we refer to [5, Section 2.3].)

Let α = (α1, . . . , αn) be a sequence of positive integers, β = (β1, . . . , βp) be a se-
quence of non-negative integers, and {F r

α,β.E(n, p)} be the corresponding filtration
of Mn.E(n, p) by weight, which we will denote {F r}; see [5]. The global variables
which define L are used in exactly the same way as described in Section 4.2 ex-
cept the global variables nilp source wt and nilp target wt are not used and
nilp is a real Boolean variable, taking only the values true or false. In addition
the source and target weights, α and β, are specified using the global variables
source wt and target wt, both of Maple data type ‘list’.

Given a germ f and weighted degree k, the function jetcalc calculates L·f and
its normal space in the weighted jet-space using Gaussian elimination. This is the
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same algorithm as described in Section 3.1, except now the filtration {F r} is used
and all polynomials are truncated by weight and not by standard degree. (A note
on the algorithm: the version of jetcalc currently distributed in Transversal W

implements indexed Gaussian elimination but does not use the techniques which
exploit symmetry in the target; see Section 3.2. This may be addressed in the future
but has not caused any problems so far, possibly because the weighted jet-spaces
are usually generated by considerably fewer monomial jets than the standard jet-
space, that is, the weighted filtration {F r} is generally a lot finer than the standard
filtration by degree.)

4.4 Package Functions

Here we describe all the user functions available in the package. The synopsis for
each function is intended for reference, so there is inevitably some duplication of
the notes for different functions.

Remark. In what follows the jet-space Jk(n, p) is identified with the space of
p-tuples of polynomials in n indeterminates over F, truncated to degree k. The
term ‘jet’ will refer to a member of Jk(n, p) and will be represented by a Maple
list of polynomials, that is formally as the Maple expression [f1, . . . , fp] where fi

are polynomial expressions in the n source coordinates (as specified by the global
variable coords).
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Function: classify — apply the method of complete transversals to ver-
ify determinacy criterion or find the first non-empty com-
plete transversal for a given jet

Calling Sequence:

classify(f, k1, k2)

Parameters:

f — a jet

k1, k2 — positive integers, k1 ≤ k2

Synopsis:

• The parameter f represents a jet, as described at the start of this section.

• The function applies the inductive complete transversal classification method. It
calculates successive transversals for the jet f from degree k1 up to degree k2,
checking that they are empty. If this fails then the first non-empty transversal is
output (and the function terminates) thus providing the first non-trivial family
of jets lying over f (viewed as a (k1 − 1)-jet).

• The tangent space to the orbit through f in the jet-space is L · f where L is
a space of vector fields specified via the appropriate global variables. This is
discussed fully in Section 4.2. Note that it is the user’s responsibility to specify
a space L which is suitable for complete transversal calculations.

• The function essentially makes repeated calls to the routine jetcalc and checks
the resulting transversals. All the usual functions which access the results stored
by jetcalc may be used. The results only apply to the jet-space being used when
classify terminated, the degree of this is stored as the variable jetspace deg.

• The function is particularly useful for checking determinacy criteria. In the
case of R-equivalence, for example, it is enough to verify the (k + 1)-transversal
is empty to prove k-R-determinacy (taking L = LR1 or, more generally, L
some nilpotent subspace of LR) and the use of jetcalc suffices. However, in
applications where LG is not a module over En it is necessary to check several
levels of transversals. As an example we consider the important case of A-
determinacy and refer to the notes in Chapter 2, in particular to Theorem 2.5.
Recall, in the notation introduced there, if

Mk+1
n E(n, p) ⊂ LH · f + Mk+1

n f ∗(Mp)E(n, p) + M2k+2
n E(n, p)

then f is k-A-determined. Thus, in general, it is enough to take k1 = k + 1
and k2 = 2k + 1: it all transversals are empty then the determinacy criterion
holds, otherwise the first non-trivial family of jets lying over f is obtained. Of
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course, in practice it is usually possible (and very desirable) to work with a
much smaller upper bound k2. The term Mk+1

n f ∗(Mp)E(n, p) allows this: if
Mk+1

n f ∗(Mp) ⊃ Ml+1
n for some l, then we may take k2 = l. For example, if

f : F2, 0 → Fp, 0 has as two of its coordinate functions x and y2 +xg(x, y) where
x, y denote coordinates in the source and g is some function-germ in x, y, then
Mk+1

2 f ∗(Mp) ⊃ Mk+3
2 and only the complete transversals of degree k + 1 and

k + 2 need to be calculated.

• It may happen that classify terminates with a non-empty transversal even
though the jet is determined. For example, the terms in this transversal may
belong to Mk+1

n f ∗(Mp)E(n, p). (Experience indicates this particular scenario is
quite rare, even so it is relatively easy to spot.) If determinacy indeed holds,
but one accepts a non-empty transversal and continues with the classification,
then further investigations (using techniques such as Mather’s Lemma which
incorporate the whole of the group A) should reveal triviality for the family
and (eventually) lead to determinacy. However, such considerations are rarely
needed, even when they are continuing the classification will reveal the answers
fairly quickly. In short, the complete transversal and determinacy techniques
which Transversal implements are both efficient and effective, but not entirely
foolproof — in a few cases one may need to work a little harder to obtain the
sharpest bound for the determinacy degree.

• The function classify merely provides a convenient way of checking several
successive transversals, it is usually the preferred method for checking determi-
nacy criteria. Generally one does not know, a priori, that a jet is determined so
it is more efficient to check the criteria using the method of complete transver-
sals (which provide the next stage in the classification should determinacy fail)
rather than directly. However, as noted in the previous point, failure of the de-
terminacy condition does not necessarily imply the jet is not finitely determined.
In some cases the function determined which checks the determinacy criterion
directly may be successful and more appropriate. In addition, if the jet contains
moduli then it is necessary to examine the ‘check list’ for degenerate behaviour
at each jet-level (see jetcalc) and here it is more appropriate to make each call
to jetcalc individually rather than use classify to perform a succession of
calls.

See also: determined, jetcalc (and related functions).



Chapter 4. Reference Guide 33

Function: determined — test determinacy condition for a given jet

Calling Sequence:

determined(f, r, k)

Parameters:

f — a jet

r, k — positive integers, r < k

Synopsis:

• Determinacy conditions are typically of the form: if

Mr+1
n E(n, p) ⊂ L · f + Mk+1

n E(n, p)

then f is r-G-determined. Here L is an (appropriate) subspace of LG and r, k
are integers suitable for the determinacy problem in question. The function
determined tests such conditions.

• The parameter f represents a jet, as described at the start of this section.

• The integers r and k in the above determinacy condition coincide with the pa-
rameters r and k in the function call.

• The tangent space to the orbit through f in the jet-space is L · f where L is
a space of vector fields specified via the appropriate global variables. This is
discussed fully in Section 4.2. Note that it is the user’s responsibility to specify
a space L which is suitable for complete transversal calculations.

• The above determinacy condition may be reduced to a finite-dimensional prob-
lem within the jet-space Jk(n, p). The function determined makes use of this
fact, firstly calling jetcalc to calculate L · f in Jk(n, p), and then checking
the determinacy condition (via the function intangent). Thus, r indicates the
determinacy degree to check and k the jet-space to work in. If the condition
holds then a message is output to confirm this, otherwise the terms which fail
the condition are output (these will be monomial vectors in Mr+1

n E(n, p)). All
the usual functions which access the results of jetcalc may be used. In addi-
tion, any terms which fail the determinacy condition may be recalled with the
function pdetterms (the data is stored as the global variable det store).

• The choice of a suitable jet-space Jk(n, p) depends on the determinacy condition
in question. In the case of R-equivalence, for example, it is enough to take
k = r + 1 to prove k-R-determinacy (taking L = LR1 or, more generally, L
some nilpotent subspace of LR). However, in applications where LG is not a
module over En it is necessary to work in a jet-space of higher degree. As an
example we consider the important case of A-determinacy and refer to the notes
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in Chapter 2, in particular to Theorem 2.5. Recall, in the notation introduced
there, if

Mr+1
n E(n, p) ⊂ LH · f + Mr+1

n f ∗(Mp)E(n, p) + M2r+2
n E(n, p)

then f is r-A-determined. Thus, in general, it is enough to take k = 2r + 1 and
show that all the monomial jets in Jk(n, p) of degree r +1 and greater belong to
LH · f . Of course, in practice it is usually possible (and very desirable) to work
with a much smaller degree than k = 2r + 1. The term Mr+1

n f ∗(Mp)E(n, p)
allows this: if Mr+1

n f ∗(Mp) ⊃ Ml+1
n for some l, then we may take k = l.

For example, if f : F2, 0 → Fp, 0 has as two of its coordinate functions x and
y2 +xg(x, y) where x, y denote coordinates in the source and g is some function-
germ in x, y, then Mr+1

2 f ∗(Mp) ⊃ Mr+3
2 and we may work in Jr+2(n, p).

• It may happen that the determinacy criterion checked by determined fails even
though the jet is determined. A simple example occurs when the terms reported
by determined (as failing to lie in L · f) belong to Mr+1

n f ∗(Mp)E(n, p); here
we may still conclude that f is r-determined. Generally such considerations
are rare, but should they arise it is usually easy to spot whether the terms
belong to Mr+1

n f ∗(Mp)E(n, p) or not. In general, the complete transversal and
determinacy techniques which Transversal implements are both efficient and
effective, but not entirely foolproof — in some cases one may need to work a
little harder to obtain the sharpest bound for the determinacy degree. If one
continues with the classification for a determined jet then further investigations
(using techniques such as Mather’s Lemma which incorporate the whole of the
group A) should (eventually) lead to the required determinacy result. However,
such considerations are rarely needed and even when they are continuing the
classification will reveal the answers fairly quickly.

• Generally one does not know, a priori, that a jet is determined so it is more
efficient to check determinacy criteria via the method of complete transversals
(which provide the next stage in the classification should determinacy fail) us-
ing the function classify rather than directly with the function determined.
However, as noted in the previous point, failure of the determinacy condition
does not necessarily imply the jet is not finitely determined, and in some cases
the use of determined may be successful and more appropriate.

See also: pdetterms, classify, jetcalc (and related functions).



Chapter 4. Reference Guide 35

Function: intangent — test if a set of vectors is in the tangent space
calculated by jetcalc

Calling Sequence:

intangent(v1, v2, . . . )

Parameters:

v1, v2, . . . — jets

Synopsis:

• Each parameter vi specifies a jet in Jk(n, p). The function tests to see if the set
of jets {v1, v2, . . . } together with the basis for the tangent space to the orbit of a
jet (already calculated by jetcalc) form a dependent set of vectors. It returns
true when a dependent set results and false when an independent set results.
The function can be used for testing the hypotheses to Mather’s Lemma and for
moduli detection; see Chapter 2.

• For a single parameter v the function therefore returns true if v is in the tangent
space, and false if not. This is useful for remembering which way around
intangent works — that is true for ‘in tangent space’ (or ‘dependent’). Also,
in the case of a single v a simple method is sometimes worth exploiting. If v is
in the basis for the complementary space, as given by pcomp, then v cannot be
in the tangent space. (However, if v is not in the basis this does not necessarily
mean that v is in the tangent space, in this case intangent must be used.)

• The function jetcalc must always have been called before using this function
in order to actually calculate the tangent space. That is the stage at which
the jet and required jet-space Jk(n, p) are determined. Only the most recently
calculated tangent space is used.

• The function calculates a set of vectors (jets) by which the tangent space basis
must be extended to give a basis for the direct sum of the tangent space and the
space spanned by the vi. To be precise, a matrix is calculated whose rows give
these ‘extension’ vectors in coordinate form; this matrix is stored as the global
variable ext tangent. (Thus, if the rank of ext tangent is less than the number
of parameters vi then true is returned; if these numbers are equal then false

is returned.) This matrix is obtained by first forming the matrix whose rows
are the coordinate vectors representing the vi. Each row is then individually
reduced using the basis vectors for the tangent space (calculated by jetcalc

and in echelon form). Gaussian elimination is then performed on the resulting
matrix to reduced it to echelon form. It is a simple matter to observe that these
(row) vectors extend the basis of the tangent space to one of the direct sum.
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• The matrix ext tangent may contain non-numeric elements (say, if the original
jet passed to jetcalc contained unfolding parameters or moduli) and the rank
may drop for certain values. This is a similar situation to that which arises for
the main reduction algorithm; see Section 3.2. In such cases, intangent prints a
warning and outputs the matrix ext tangent to allow the user to determine the
degenerate situations by examining the pivotal elements. Since ext tangent is
a global variable it may be inspected at any later stage with the standard Maple
commands for printing matrices. Note that printing ext tangent will only give
the vectors in coordinate form (and this depends on how jetcalc decided to
order the monomial jets in Jk(n, p)). However, this is all the information that is
needed and suffices for the above considerations.
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Function: jetcalc — calculate the tangent space and complementary
(normal) space to the orbit of a jet in a given jet-space

Calling Sequence:

jetcalc(f, k)

Parameters:

f — a jet

k — a positive integer

Synopsis:

• The parameter f represents a jet, as described at the start of this section. The
integer k specifies the jet-space degree (thus f belongs to Jk(n, p), truncating if
necessary).

• The tangent space to the orbit through f in Jk(n, p) is L · f where L is a space
of vector fields specified via the appropriate global variables. This is discussed
fully in Section 4.2.

• The tangent space L·f is calculated, together with the normal space (also referred
to as complementary space) to L · f in Jk(n, p). Specifically, a spanning set for
L · f is calculated and then reduced to echelon form using Gaussian elimination
to produce a basis. (Here we regard the vectors in the spanning set as coordinate
vectors forming the rows of a matrix which is then reduced.) This basis is then
extended to a basis for Jk(n, p), thus providing a basis for the normal space.
These bases are stored for inspection by the various ‘print’ routines described
elsewhere in this section. (The actual data is stored in a specific format as the
global variables tgtspace and compbasis respectively.) The note found at the
end of this synopsis details all the ‘print’ functions which are available.

• During the reduction process it may not always be possible to choose pivotal
elements which are numeric, instead polynomial expressions (or more precisely
rational functions) involving unfolding parameters or moduli present in the jet
f may be forced upon us. For specific values of the parameters the pivotal
elements may vanish and the tangent space degenerates. The calculation fails
for such values and jetcalc must be called again, substituting such values for
the unfolding parameters. A ‘check list’ of all non-numeric pivotal elements is
created by jetcalc and may be accessed by the routine plist after jetcalc

has returned. (The check list data is stored as the global variable checklist.)
A warning is printed by jetcalc when the check list is non-empty to remind the
user to examine the degenerate behaviour.
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• Technical note relating to the previous point: the Gaussian elimination routines
in jetcalc use the Maple function normal when reducing each row. This is a ba-
sic form of simplification (chosen for efficiency purposes) which recognises those
expressions equal to zero which lie in the domain of “rational functions”. For ex-
pressions containing subexpressions such as square roots, powers, and functions,
normal may not recognise when an expression is equal to zero. Thus, jetcalc
should not be called with the parameters (see the previous point) substituted
for exceptional values such as square roots and other (non-integer) powers. This
restriction could be overcome by re-writing the elimination routines to use the
Maple function simplify. However, when the entries in the checklist become
complicated (this is especially the case when more than one modulus is present)
investigation of the exceptional values is generally quite limited.

• The dimension of the complementary space is stored as the global variable codim,
while the dimension of the tangent space is stored as basis dim. Note that the
complementary space is calculated as the normal space to L · f in Jk(n, p). The
calculation automatically includes the constant jets which may therefore need to
be discarded in certain applications. The jet-space degree used in the last call
to jetcalc is stored as jetspace deg, mainly as a convenience and for access
by a couple of the other routines.

• The source and target dimensions are both calculated by jetcalc from the
number of components of coords and of f respectively. They do not need to be
user-defined. However, in the case liealg = stdjacobian the source dimension
must be specified by the user via the global variable source dim, this enables
the liealg routine to construct the list coords accordingly; see Section 4.2.

• The routine displays information relating to the calculation it is performing.
The amount of information relayed may be controlled by the global variable
jetcalc verbosity which takes integer values. The setting 0 forces jetcalc to
operate in silence; note that with this setting the warning for a non-empty ‘check
list’ is suppressed also. The setting 1 causes jetcalc to output a small amount
of information relating to the jet it is working with, the jet-space degree, the
source coordinates defined by coords, and so forth. Although this information
is readily available to the user it is worth while repeating it and the user double
checking that jetcalc is performing precisely the intended calculation as careless
errors can arise from calling jetcalc with incorrect arguments. (Of course an
incorrect global setup can be just as disastrous but these settings rarely get
modified within a typical calculation so it is left to the user to check them at
the outset.) The setting 1 is recommended for standard usage; note that the
warning for a non-empty ‘check list’ is displayed in this case. The settings 2
and 3 cause additional information relating to the progress of the calculation to
be output. With the setting 2 each separate stage of the algorithm (R space,
L space, Gaussian elimination, etc.) is reported. In particular, the elimination
stage is by far the most computationally demanding and reporting the size of the
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matrices involved gives an idea of how long the calculation may take. (However,
do not be too concerned about the sizes of some of these matrices, they are
exceptionally sparse and the elimination techniques can often reduce seemingly
large matrices efficiently. The matrix dimensions are given merely as a relative
guide to calculation time.) For the more demanding calculations the setting 3
may be appropriate, here the row being dealt with by the Gaussian elimination
process is reported, giving some idea about progress at the main computational
stage.

Package Extensions: Transversal W

• The function jetcalc in Transversal W calculates the tangent space L · f and
complementary space to L · f in a given weighted jet-space.

• The parameter f represents a jet (with respect to weighted degree) and the
parameter k specifies the weighted degree of the jet-space.

• The space L is specified by the appropriate global variables as described in
Section 4.2. The source and target weights which define the weighted filtration
{F r

α,β} of Mn.E(n, p) are given by the global lists source wt and target wt.

• Otherwise, the same details for the standard version of jetcalc apply. (Note
that the standard and weighted versions of jetcalc store all the data required
by the other routines in common global variables so that the same routines can
be used by both.)

Package Extensions: Transversal M, Transversal L

• Under development!

See also: intangent, pcomp, plist, pmons, ptangent.
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Function: pcomp — print basis for complementary (normal) space cal-
culated by jetcalc

Calling Sequence:

pcomp()

Synopsis:

• Outputs a basis for the complementary space to the tangent space to the orbit
of a jet.

• The function jetcalc must always have been called before using this function
in order to actually calculate the tangent and complementary spaces. That is
the stage at which the jet and required jet-space Jk(n, p) are determined. Only
the most recently calculated basis is stored.

• Note that the complementary space is calculated as the normal space in Jk(n, p)
and, if necessary, therefore contains the constant jets. These may need to be
discarded in certain applications.

• The dimension of the complementary space is stored as the global variable codim
(but again note the previous comment regarding constant jets).

• If the global variable compltrans is set to false the whole basis is output. If
compltrans is set to true only the degree k terms, where k was the degree
passed to jetcalc and stored as jetspace deg, are output. If no terms are
output then a message indicating the normal space is empty is printed instead.
In the weighted version the same applies, only this time to the terms of weighted
degree k.

• For complete transversal calculations which use a nilpotent space L one calculates
the transversal (working in Jk(n, p), say) using jetcalc and displays it using
pcomp, as described above. For simplicity pcomp outputs all the degree k terms;
the user needs to identify those belonging to the required (k, s)-sublevel in order
to determine the (k, s)-transversal. The function pmons may be helpful in this
regard.
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Function: pdetterms — print terms which failed the determinacy cri-
terion as calculated by the function determined

Calling Sequence:

pdetterms()

Synopsis:

• Outputs the terms which failed the determinacy criterion checked using the func-
tion determined. For a full description see determined.

• The function determined must always have been called before using this func-
tion.



42 Chapter 4. Reference Guide

Function: plist — print check list calculated by jetcalc

Calling Sequence:

plist(flag1, flag2, flag3)

Parameters:

flag1, flag2, flag3 — (optional) flags which may take the values ’A’, ’N’ or ’P’.

Synopsis:

• Outputs the ‘check list’ calculated by jetcalc. The check list contains all the
non-numeric pivotal elements which were formed when jetcalc performed Gaus-
sian elimination; see jetcalc.

• The function jetcalc must always have been called before using this function
in order to actually calculate the check list associated with the particular calcu-
lation. Only the most recently calculated check list is stored.

• The data is stored globally as the table checklist. Each element of checklist
represents a monomial jet in Jk(n, p), multiplied by some coefficient which is a
rational function in the unfolding parameters or moduli present in the original jet
passed to jetcalc (specifically, these external parameters differ from the source
coordinates). In this context, by monomial jet we mean a list with one entry
a monomial in the source variables (as specified by coords) and the remaining
entries zero. The precise storage format is as follows. Each element of checklist
is itself a table with two entries. The first, and most important, is the coefficient
which, by the definition of the check list, will be a non-constant rational function.
The second entry gives the corresponding monomial jet.

• Each entry in checklist is output by plist as follows. Firstly the index number
of the entry (as an element of the table) is output, preceeded by a ‘#’ symbol.
The coefficient and monomial components of the entry are then output alongside
the index, the precise format depending on the flags present in the calling se-
quence. The index is output so that the corresponding entry in checklist may
be obtained by the user from within the Maple session once the function has
returned. Thus, to obtain the coefficient component of the entry in checklist

output as #i we refer to checklist[i][1]. The entry checklist[i][2] refers to the
corresponding monomial component. (Note that the coefficients checklist[i][1]
are just the non-numeric pivotal elements in the echelon matrix produced by
jetcalc.)

• Flags may be passed as parameters to plist to modify the default output be-
haviour. These flags are optional and any number from none to three may be
present in the function call. The flags take the string constant values A, N or
P. It may be necessary to use single right-quotes (thus: ’A’, ’N’ or ’P’) to force
these to evaluate to a name if the required name has already been assigned. Each
flag is described individually below.
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• The most important and useful component of a checklist entry is the coefficient.
By default plist only outputs this component. In most applications the cor-
responding monomial component is of no interest to the user, but should it be
required then the ‘all’ flag A forces plist to output all components.

• In most applications where the user inspects the check list they are looking
to determine the exceptional values, that is where a pivotal element vanishes
rendering reduction invalid (such situations indicate that the tangent space may
degenerate). The default behaviour is for plist to apply the Maple ‘factor’
routine to each of the coefficients in checklist. For completeness the ‘no factor’
flag N is included, this causes plist to output the coefficients ‘as is’ without
trying to factor them. Should the user want to inspect the coefficients and try
to simplify them manually from within the Maple session they can always be
accessed directly as checklist[i][1], as described above.

• If the ‘pause’ flag P is passed to plist then the entries in checklist are printed
out in turn with plist pausing, waiting for the user to type C;[RETURN] (that
is, C followed by a semi-colon followed by the [RETURN] key — for Continue)
before proceeding with the next entry. Alternatively typing E;[RETURN] (for
Exit) terminates the function. (Again single right-quotes may be required thus:
’C’ or ’E’.)

• Historical notes. The ‘pause’ flag P is an older feature which is probably no
longer required. It dates back to when Transversal was being developed using
the standard Maple session which provides a text interface. A Maple session
which uses a window manager interface will not require this flag. On older
versions the default behaviour was not to factor the coefficient and to output
both components of a checklist entry. This has been changed to reflect typical
usage.
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Function: pmons — print monomial jets

Calling Sequence:

pmons(k)

pmons(k1, k2)

Parameters:

k, k1, k2 — non-negative integers

Synopsis:

• In the first call the function outputs the monomial jets of degree k. If two
parameters, k1 and k2, are present, as in the second call, then all monomial jets
of degree k1 to degree k2 are output. By monomial jet we mean a list with
one entry a monomial in the source variables (as specified by coords) and the
remaining entries zero.

• The jets are output in order of increasing degree, using the same order as that
implemented by jetcalc when creating the matrix of coefficient vectors. Thus,
if the global variable nilp is set to true order then the order induced by the
underlying nilpotent filtration and determined by the global lists nilp source wt

and nilp target wt is used. The monomial jets of each degree k (where k is
given or k1 ≤ k ≤ k2, as appropriate) are partitioned into their appropriate
(k, s)-level and output along with an indication of this level. (Note that the
order for monomials belonging to the same level is the same as that used by
jetcalc but is otherwise not important.) If the global variable nilp is set to
false (or true) then the default lexicographical order implemented by jetcalc

is used.

• This function is particularly useful for complete transversal calculations which
use a nilpotent space L. One calculates the transversal (working in Jk(n, p),
say) using jetcalc and displays it using pcomp. For simplicity pcomp outputs
all the degree k terms, the user needs to identify those belonging to the re-
quired (k, s)-sublevel in order to determine the (k, s)-transversal. The function
pmons removes the tedium of calculating the nilpotent filtration explicitly. Note
that the possible ‘nilpotent orders’ are restricted to the standard ones obtained
by weights, as mentioned in Section 3.2. However, this should be more than
adequate in applications.

• This function requires no preliminary function calls or assigned global variables
except those mentioned above and the use of coords to specify the coordinates.
The global list coords may be assigned by the user, but note that any liealg

procedure will (re-)set coords when it is called. (These procedures are usu-
ally called by jetcalc but this requires all the global variables to be assigned
beforehand.)
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Package Extensions: Transversal W

• The version of pmons in the package Transversal W takes the same calling se-
quence but instead outputs weighted monomial jets. In the first call the function
outputs the monomial jets of weighted degree k. If two parameters, k1 and k2,
are present, as in the second call, then all monomial jets of weight k1 to weight
k2 are output.

• The jets are output in order of increasing weight, using the same order as that im-
plemented by jetcalc (the version in Transversal W of course!) when creating
the matrix of coefficient vectors.

• The weighted degree of a monomial is defined in the usual way. The weights for
the source and target variables must be specified via the global lists source wt

and target wt. In the case of weighted homogeneous functions (that is, where
the target has dimension one) the standard weighted degree involving only source
weights may be specified by source wt with target wt equal to the list [0].

• This function is particularly useful for complete transversal calculations which
use a weighted filtration. Although the weighted version of jetcalc will perform
the calculations using this filtration it is often helpful to be able to list all the
monomial jets of a given weight. The function removes the tedium of calculating
the weighted filtration explicitly.

• Otherwise, the same details for the standard version of pmons apply.
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Function: ptangent — print basis for tangent space calculated by jet-
calc

Calling Sequence:

ptangent(v)

Parameters:

v — a (monomial) jet, optional

Synopsis:

• Outputs a basis for the tangent space to the orbit of a jet. The basis is canonical
in the sense that the coordinate form of each vector is just a row from the echelon
matrix produced by jetcalc using Gaussian elimination.

• The function jetcalc must always have been called before using this function
in order to actually calculate the tangent space. That is the stage at which
the jet and required jet-space Jk(n, p) are determined. Only the most recently
calculated basis is stored.

• The dimension of this vector space is stored as the global variable basis dim.

• The basis is output as follows. By monomial jet we mean a list with one entry
a monomial in the source variables (as specified by coords) and the remaining
entries zero. For each vector of the basis, a collection of monomial jets is output,
each with a coefficient (numeric or possibly a rational function involving any
unfolding parameters or moduli present in the jet passed to jetcalc). The
actual basis vector is given by the corresponding linear sum formed by these
coefficients and vectors.

• If the optional parameter v is present then only vectors in the basis which contain
v as a term (as described in the previous point) are output. This is useful for
a closer inspection of the tangent space. Note that v must be a monomial jet,
otherwise nothing will be output.

Package Extensions

• This function is not presently available in the package Transversal M. However,
we remark that the standard version of ptangent works for the other extensions
to the package, is automatically loaded into each package, and may be used as
normal.
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Function: pvars — print global variables

Calling Sequence:

pvars()

Synopsis:

• Outputs the current values of all the user-defined global variables which define
the space L. These are discussed fully in Section 4.2. Specifically, the values of
the following variables are output.

liealg, equiv, compltrans, source dim, source power, target power,
nilp, R nilp, L nilp, nilp source wt, nilp target wt.

Package Extensions: Transversal W

• The version of pvars in the package Transversal W outputs the global vari-
ables source wt and target wt in addition to those mentioned above. Also,
the nilpotent weights nilp source wt and nilp target wt are not used by
Transversal W (because it implements weighted filtrations) and these are not
output.
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Function: setup Aclassn — set up global variables for A classification

Calling Sequence:

setup Aclassn(n)

setup Aclassn(n, p, l)

Parameters:

n, p — positive integers

l — a flag consisting of a list with two entries

Synopsis:

• This function provides a simple mechanism for assigning the global variables
which define L. The actual settings specify a space L suitable for A classification
problems (determinacy and complete transversals) and can of course be inspected
with the pvars function.

• The parameter n specifies the source dimension to be used.

• In the first variant of the call, where the optional parameters p and l are omitted,
the global variables are assigned to give L = LA1. The nilpotent variables
R nilp, L nilp, nilp source wt and nilp target wt are not assigned.

• In the second variant of the call, where the optional parameters p and l are
present, L is defined to be some nilpotent Lie algebra in LA. Both parameters
p and l are required. The parameter p specifies the target dimension and the
parameter l is a flag which specifies which type of nilpotent Lie algebra is used.
There are four natural types where L ⊂ LA contains as many of the ‘extra’
vectors as possible; see Section 3.2. The list l may take the values [x1, 0], [0, x1],
[xn, 0] or [0, xn] and specifies which of these types as follows. (Note that l
takes on values (symbols) which are Maple lists. Recall also that the source
coordinates are defined to be x1, . . . , xn because setup Aclassn assigns liealg
:= stdjacobian. These must be evaluated to Maple names using single right-
quotes if they have already been assigned, for example ’x1’.)

L = LA1 ⊕ F{xi∂/∂xj} ⊕ F{yk∂/∂yl}

where the indices i, j, k and l satisfy one of the following conditions.

l Indices

[x1, 0] i > j k < l

[0, x1] i > j k > l

[xn, 0] i < j k < l

[0, xn] i < j k > l
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The symbols which l may assume are purely notational; they were chosen because
they indicate the first element in the resulting nilpotent ordering. Thus, the
orderings start as

[x1k, 0, . . . , 0], . . . ; [0, . . . , 0, x1k], . . . ; [xnk, 0, . . . , 0], . . . ; or [0, . . . , 0, xnk], . . . ;

respectively. The global variables R nilp and L nilp are assigned accordingly
and the weights nilp source wt and nilp target wt are assigned as required
in Proposition 3.1. For example, l := [x1, 0] requires the Lie algebra

L = LA1 ⊕ F {xi∂/∂xj : i > j } ⊕ F { yk∂/∂yl : k < l }

and the nilpotent variables are defined as follows.

nilp := true order;
R nilp := [ [x2, 1], . . . , [xn, 1],

[x3, 2], . . . , [xn, 2],
. . . ,
[xn, n − 1] ];

L nilp := [ [1, 2],
[1, 3], [2, 3],
[1, 4], [2, 4], [3, 4],
. . . ,
[1, p], . . . , [p − 1, p] ];

nilp source wt := [1, 2, . . . , n];
nilp target wt := [0,−1, . . . ,−p + 1];

• In addition, the routine sets the variable jetcalc verbosity to the recom-
mended setting of 1; see jetcalc.



50 Chapter 4. Reference Guide

Function: setup Agroup — set up global variables specifying the A
group

Calling Sequence:

setup Agroup(n)

Parameters:

n — a positive integer

Synopsis:

• This function provides a simple mechanism for assigning the global variables
which define the space L. The actual settings define L = LA, they can of course
be inspected with the pvars function.

• The parameter n specifies the source dimension to be used.

• In addition, the routine sets the variable jetcalc verbosity to the recom-
mended setting of 1; see jetcalc.
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Function: setup Aunf — set up global variables for A unfolding

Calling Sequence:

setup Aunf(n)

Parameters:

n — a positive integer

Synopsis:

• This function provides a simple mechanism for assigning the global variables
which define the space L. The actual settings define L = LAe and are suitable
for A unfolding problems. They can of course be inspected with the pvars

function.

• The parameter n specifies the source dimension to be used.

• In addition, the routine sets the variable jetcalc verbosity to the recom-
mended setting of 1; see jetcalc.





Chapter 5

A Tutorial

The following tutorial describes how some standard calculations in singularity the-
ory may be carried out using the Transversal package. We will mainly concentrate
on the case of A-equivalence, this being of practical significance yet giving rise to
calculations which are typically computationally demanding (that is, the sort of
problems which motivated the development of Transversal). It should be an easy
matter to apply Transversal to problems involving other equivalence relations
once the material below has been understood.

In all of the following examples it is assumed that the user has already ini-
tiated a Maple session and loaded the required package, say Transversal or
Transversal W, by either issuing the appropriate command

> with(transversal); or
> with(transversal W);

(here > denotes the Maple prompt) or reading the source code files directly. (The
file README which comes with the package gives installation instructions.)

5.1 Important Remarks

A certain amount of care most be exercised when using the package. There are
several ways where miss-use of the package can easily produce incorrect results.
Care must be taken when defining the global setup variables and when redefining
them to specify different calculations. If in doubt it is advisable to inspect the global
variable settings before a given calculation is performed. Similarly it is easy to
miss-type equations defining jets or supply the wrong arguments in function calls,
so it is worth double-checking. This is highlighted on several occasions throughout
this tutorial. Although the package performs a certain amount of type-checking,
in the end the onus is on the user to ask it to perform the correct calculations!

As an example consider the following scenario. Transversal will run under
any Maple session, for example a standard Maple “text” session, but it is more
convenient from an “ease of use” point of view to use a session which provides
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a graphical interface, for example “xmaple”. Under Maple V Release 4, xmaple
allows the user to open several “servers” (separate Maple windows) within the
session and an easy mistake to make is to modify the global setup variables within
a new server window without realising these global variables apply to the whole
session, that is to every Maple window within the session. For example, it would
be a mistake to define two windows within the same session with one used for
“unfolding” calculations and the other used for “classification” calculations: one
would need to remember to redefine the global variables every time one changed
windows. A far less error-prone solution would be to use entirely different Maple
sessions for each type of calculation.

As to the correctness of the actual code: the packages have been checked very
extensively, via numerous testing of internal routines to verify that they do what
they should, and also by reproducing numerous calculations from classifications
within the literature. However, one can never be one hundred percent certain
that the code is correct so please report any questionable results you may obtain.
In addition, the organisation of the code (for example, the separation of routines
into directories, as opposed to the actual algorithms) has undergone some major
changes in the latest version to make it more suitable for public release. It is quite
possible that minor errors have crept in (such as directory locations of code not
being updated). I spent a lot of time checking this release and think I have covered
such problems, but if not these errors should manifest themselves quickly and they
should be obvious. Please report any problems.

Performance times. Regarding the performance of the package we will be de-
liberately vague, after all a typical user is interested in whether their problem will
complete in an acceptable time rather than comparing times for different problems
on different machines. As an indication of expected times for the calculations de-
scribed in this tutorial we remark that most should complete within a few seconds,
or possibly minutes in the more demanding cases, on ‘reasonably modern’ comput-
ers. For example, such times apply on a Sparc Ultra workstation (168MHz) and a
Pentium PC (133MHz) (which some would regard as ‘dated’, even at time of writ-
ing!). Of course, the complexity of the problem depends on the source and target
dimensions (n and p) and the jet-space degree (k) in an ‘exponential’ way and as
these increase one should expect calculation times nearing hours, or possibly even
failure due to the size of the problem.

Typically, the calculations we have considered have not caused serious prob-
lems. If there is a concern about performance time for a certain calculation and/or
whether it will actually complete we suggest setting jetcalc verbosity to the
value 2 or 3 to obtain more diagnostics from jetcalc. This will cause jetcalc

to output the dimensions of the matrices it is reducing, also which row it is cur-
rently working on. These dimensions give an indication of the size of the problem,
mainly through comparison with similar calculations which have already succeeded
(for example with the same n and p but a lower value for k). That is, the matrix
dimensions are given merely as a relative guide to calculation time. Do not be too
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concerned about the sizes of some of these matrices, they are exceptionally sparse
and the elimination techniques can often reduce seemingly large matrices efficiently,
as can be seen by observing the dimensions in some of the problems described in
this tutorial.

The largest obstruction to calculations appears to come from the presence of
moduli. Examples suggest that calculations for families with 3 or more moduli
become infeasible in jet-spaces of degree in the region of 10 to 20 (depending on n
and p and still being deliberately vague here!). This is an inherent problem caused
by the creation of symbolic expressions during the elimination process which rapidly
become large, often too large for Maple to handle.

Some of the above points are discussed further in the article [17] which describes
the Transversal package.

5.2 A-Classification of Map-Germs

A comprehensive classification of map-germs R2, 0 → R4, 0 under A-equivalence
was carried out by Bruce, Kirk and West and described in [6, 16]. We will con-
sider several branches of this classification and perform the calculations using
Transversal.

5.2.1 Complete Transversals and Determinacy

In this example we consider the J3A-orbits over the 2-jet (x, y2, 0, 0). Let (x, y)
denote coordinates in the source and (u1, u2, u3, u4) those in the target. Let G be
the unipotent subgroup of A having nilpotent Lie algebra

L = LA1 ⊕ R{x∂/∂y} ⊕ R{ui∂/∂uj for i > j}.

This group will be used in all of the complete transversal (CT) and determinacy
calculations. Consider the jet-spaces Jr,s(2, 4) induced by the nilpotent filtration.
The monomial vectors of (standard) degree r are partitioned into their (r, s)-levels
as described in Section 3.2 using the weights α = (2, 1) and β = (−3,−2,−1, 0).
The following command sets up the global variables defining the nilpotent Lie
algebra L and Maple responds by printing out the values.

> setup Aclassn(2,4,[0,x2]);

liealg = stdjacobian

equiv = A

compltrans = true

source dim = 2

source power = 2

target power = 2

nilp = true order

R nilp:
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[[x1, 2]]

L nilp:

[[2, 1], [3, 1], [4, 1], [3, 2], [4, 2], [4, 3]]

nilp source wt:

[2,1]

nilp target wt:

[-3,-2,-1,0]

jetcalc verbosity = 1

The function setup Aclassn is described in detail in Section 4.4. Basically it de-
fines the space LA1 and, if the optional arguments specifying the target dimension
and the ‘Lie algebra flag’ (4 and [0,x2] above) are present, assigns the global
‘nilpotent’ variables nilp, R nilp, L nilp, nilp source wt and nilp target wt

accordingly.
We now specify the germ f = (x, y2, 0, 0) and calculate the orbit in the 3-jet-

space J3(2, 4). Recall that since liealg = stdjacobian and source dim = 2, the
source coordinates x, y are denoted by x1, x2 for the purposes of Transversal.

> f := [x1,x2^2,0,0];

2

f := [x1, x2 , 0, 0]

> jetcalc(f,3);

defined map:

2

[x1, x2 , 0, 0]

working in 3-jet space with A-equivalence

defined coordinates:

[x1, x2]

using ordering induced by the nilpotent weights

Ready.

Remark. In the remainder of this section we will always provide the commands
one should enter but, for brevity, we will not always show the corresponding Maple
response (for example, the response to an assignment such as f above may be
omitted). Likewise, the output from jetcalc shown above will be omitted from
now on also. This may be achieved in your actual session by setting the global
variable jetcalc verbosity to the value 0 (which causes jetcalc to operate in
silence). However . . .
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Important. In practice one is strongly advised to set jetcalc verbosity to the
value 1 (or a higher value for more diagnostics; see Chapter 4) and check that
jetcalc is working with the intended settings (map-germ, jet-space degree, equiv-
alence, and so forth). For example, in a session which uses a graphics interface it
is possible to simply “scroll back” and redefine the jet f and then re-call jetcalc,
thus saving on typing, but it is also easy to introduce typos using this technique.
Similarly, if several different jets have been defined it is an easy mistake to pass
the wrong one to jetcalc. Thus: it is advisable to always check the messages
displayed by jetcalc otherwise such errors may go undetected. Also note that the
warning displayed by jetcalc when the “checklist” is non-empty is suppressed if
jetcalc verbosity is set to 0.

The above command calculates a basis for L · f and its complementary space
in J3(2, 4) and stores all of the results — these may be viewed using the various
‘print’ routines. For example, to display a complete transversal we type

> pcomp();

3

[0, 0, 0, x2 ]

3

[0, 0, x2 , 0]

2

[0, 0, 0, x1 x2]

2

[0, 0, x1 x2, 0]

Under normal circumstances pcomp displays a basis for the complementary space
but in the present scenario, where the variable compltrans is set to the value
true, pcomp will just display the basis elements of degree 3 (these basis elements
are necessarily homogeneous). Since jetcalc orders monomial jets as dictated
by the nilpotent filtration induced by L, a complete transversal can simply be
“selected” from the basis for the complementary space by just considering those
elements of degree 3. More precisely, considering f = (x, y2, 0, 0) as a (3, 0)-jet, a
(3, 1)-transversal is (spanned by) {(0, 0, 0, y3)}, while considering f as a (3, 1)-jet,
a (3, 2)-transversal is {(0, 0, y3, 0)}. Similarly, a (3, 3)-transversal is {(0, 0, 0, x2y)},
and a (3, 4)-transversal is {(0, 0, x2y, 0)}. Note that the partition of monomial
vectors into their various (3, s)-levels can be displayed using the command

> pmons(3);

Note: this would not have worked before calling jetcalc unless the user had
specified the source coordinates by assigning the global variable coords to be the
list [x1,x2] (this assignment was done above by the liealg routine stdjacobian

which is called from within jetcalc).
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Although all of the degree 3 terms in the complete transversal are output, we
should consider each separately at its own (3, s)-level. It turned out to be more
convenient, both from a user’s point of view and a programming point of view, to
output the whole set of homogeneous terms and let the user select the appropriate
(r, s)-level, with the help of the function pcomp if necessary.

Thus, at the (3, 1)-level we obtain the orbits (x, y2, 0, ay3) for a ∈ R and,
after scaling, these reduce to (x, y2, 0, y3) and (x, y2, 0, 0). If we continue with the
first, classifying the higher (3, s)-orbits, we obtain the normal forms (x, y2, x2y, y3)
and (x, y2, 0, y3). These are equivalent to normal forms obtained by classifying
the higher (3, s)-orbits over the other (3, 1)-jet: (x, y2, 0, 0). We shall therefore
concentrate on this case and leave it as an exercise to the reader to repeat the
process for (x, y2, 0, y3). Note that one occasionally finds that such redundancies
occur, even when using nilpotent filtrations (which are, of course, much finer than
the standard filtration by degree)

Consider the (3, 1)-jet (x, y2, 0, 0). From the earlier calculation, the (3, 2)-
transversal gives, after scaling, the orbits (x, y2, y3, 0) and (x, y2, 0, 0). Consider
the first; we calculate the higher (3, s)-transversals by calling jetcalc again and
specifying the same degree, 3.

> f := [x1,x2^2,x2^3,0];

> jetcalc(f,3);

Once jetcalc has finished we display the complete transversal using the function
pcomp. Exactly the same vectors as before are output, but now we only consider
the homogeneous (3, 3) terms. Thus, since (0, 0, 0, x2y) is the only one this gives,
after scaling, the (3, 3)-orbits (x, y2, y3, x2y) and (x, y2, y3, 0). Continuing with the
first . . .

> f := [x1,x2^2,x2^3,x1^2*x2];

> jetcalc(f,3);

> pcomp();

3

[0, 0, 0, x2 ]

3

[0, 0, x2 , 0]

2

[0, 0, 0, x1 x2]

Remember that we are now only considering the monomial jets at the (3, 4)-level
(and higher). This indicates that all the higher (3, s)-transversals for the (3, 3)-jet
(x, y2, y3, x2y) are empty and this therefore provides a representative for a J3A-
orbit. Returning to the other (3, 3)-jet (x, y2, y3, 0), from the previous jetcalc

calculation using this jet we see that the only higher non-empty (3, s)-transversal is
the (3, 4)-transversal, {(0, 0, x2y, 0)}. We obtain the (3, 4)-orbits (x, y2, y3 ±x2y, 0)
and (x, y2, y3, 0). We already know the higher (3, s)-transversals are empty in the
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latter case, while in the former this is easily checked by a further call jetcalc(f,3)
with f = (x, y2, y3 ± x2y, 0). We therefore obtain two more J3A-orbits and the
complete list over the (3, 2)-jet (x, y2, y3, 0) is therefore

(x, y2, y3, x2y), (x, y2, y3 ± x2y, 0), (x, y2, y3, 0).

We now return to the (3, 2)-jet (x, y2, 0, 0). From the original calculation for
(x, y2, 0, 0) we see that a (3, 3)-transversal is {(0, 0, 0, x2y)}. For f = (x, y2, 0, x2y)
the higher (3, s)-transversals are empty. However, this J3A-orbit is redundant, for
consider the other (3, 3)-jet, (x, y2, 0, 0). Again, from the original calculation, the
only higher transversal is the (3, 4)-transversal, {(0, 0, x2y, 0)}. For both of the re-
sulting (3, 4)-orbits the higher transversals are empty. Hence, the complete list of
J3A-orbits over (x, y2, 0, 0) is as follows. The numbers alongside each orbit indicate
its corresponding J3A-codimension. It is often useful to calculate these invariants
during the classification process to determine, among other things, whether the or-
bits are all distinct. The codimension can be easily calculated using Transversal,
this is discussed in Section 5.2.3 below.

(x, y2, y3, x2y) 5

(x, y2, y3 ± x2y, 0) 6

(x, y2, y3, 0) 7

(x, y2, x2y, 0) 7

(x, y2, 0, 0) 9

Remark. The above calculation is typical of the lower degree levels of a classi-
fication where nilpotent methods come into there own. Although the process is
quite tedious it is worth pointing out that it provides a very quick and algorithmic
means of classifying the jets lying over a given jet. In addition, at the higher levels
of a classification the CTs are typically either empty or contain just one term and
classification of jets over the given jet is immediate; see the discussion below on
determinacy for an example of this. To further stress the usefulness of nilpotent
CT methods consider repeating the above calculation using A1 methods instead.
That is set L = LA1, which may be achieved using the command

> setup Aclassn(2);

and then call jetcalc as above with f = (x, y2, 0, 0) (only one call is needed now)
and then pcomp. A 3-A1-transversal is

(x, y2, a1y
3 + a2x

2y, a3y
3 + a4x

2y) for ai ∈ R.

Of course, classifying this family is preferable to a direct classification of the affine
space of all 3-jets over (x, y2, 0, 0), but it would still involve a lot of (ad-hoc) work
to reduce to the five cases above. An even more marked example is given by the
exercise at end of this section.
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Note: if you defined the global setup variables to specify L = LA1 as described
in the above remark then do not forget to specify the original nilpotent space by
re-issuing the command

> setup Aclassn(2,4,[0,x2]);

We will demonstrate determinacy calculations by considering the first and sec-
ond cases above. Note that if a germ f has 2-jet (x, y2, 0, 0) we can appeal to the
fact that Mk+1

2 .f ∗(M4).E2 ⊃ Mk+3
2 and by Theorem 2.5 can work in the jet-space

Jk+2(2, 4) to prove k-determinacy.
We firstly show that (x, y2, y3, x2y) is 3-determined. Even if we do not sus-

pect this we still have to calculate the higher transversals in order to extend the
classification so may as well check determinacy in the process using the classify

procedure. This procedure calculates (via jetcalc) a succession of transversals,
stopping if a non-empty transversal is produced or a given jet-level is reached. The
appropriate command specifies the jet f and the CT degree limits. The Maple
output shown below is produced when jetcalc verbosity is set to 0. However,
recall that the recommended setting is 1 and in this case messages from jetcalc

will appear before each message reporting an empty transversal.

> f := [x1,x2^2,x2^3,x1^2*x2];

> classify(f,4,5);

the 4 transversal is empty

--------------------

the 5 transversal is empty

--------------------

2 3 2

germ, [x1, x2 , x2 , x1 x2]

degree limits, 4, 5

all transversals were empty

It follows that

M4
2E(2, 4) ⊂ L · f + M6

2E(2, 4)

so by Theorem 2.5 we can conclude that f is 3-A-determined. Of course, this
conclusion can also be achieved by making separate calls to jetcalc and verifying
that each CT is empty using pcomp. The routine classify simply provides a
convenient means of doing this, especially when several levels of CTs need checking.
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Note: in cases where f contains external parameters (such as moduli) one should
make separate calls to jetcalc in order to determine the degenerate behaviour
at each jet-level. This is done by examining the “checklist”, substituting in the
degenerate values of the moduli, and then recalling jetcalc with the corresponding
jet to see if the CT remains empty (ie. does not in fact degenerate) or gives rise to
a new branch in the classification tree. An example of this is given in Section 5.2.2;
see also Sections 3.2 (the part on symbolic pivots) and 4.4 (the entries for jetcalc
and plist).

As an alternative we could check the above determinacy condition directly
by using the procedure determined. However, the inductive approach offered by
classify, whereby the next non-empty transversal provides the next level of the
classification tree when the given germ is not finitely determined, is generally more
practical and is recommended for most applications. The routine determined takes
the jet f as an argument, together with the determinacy degree to be tested and
the degree of the jet-space in which one may perform the calculation. The follow-
ing messages outlining the state of the calculation are output along with the usual
jetcalc messages.

> determined(f,3,5);

*** calculating tangent space ***

--------------------

*** checking determinacy condition ***

number of vectors to check, 44

--------------------

2 3 2

germ, [x1, x2 , x2 , x1 x2]

determinacy degree, 3

jetspace degree, 5

determinacy criterion holds

We now consider the 3-jet (x, y2, y3±x2y, 0). Using jetcalc we calculate the 4-
transversal in the usual manner. The cases (x, y2, y3+x2y, 0) and (x, y2, y3−x2y, 0)
must, of course, be considered separately; they produce identical results so we only
discuss the first.
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> f := [x1,x2^2,x2^3+x1^2*x2,0];

> jetcalc(f,4);

> pcomp();

3

[0, 0, 0, x1 x2]

It was noted above that pcomp outputs the whole set of (in this case) degree 4
homogeneous terms in the basis, leaving the user to identify the appropriate terms
from the (4, s)-level. This example demonstrates why this is desirable. Here we see
that all (4, s)-transversals are empty except the (4, 4)-transversal, {(0, 0, 0, x3y)}
and we can immediately conclude that (x, y2, y3 + x2y, x3y) and (x, y2, y3 + x2y, 0)
are the J4A-orbits lying over the 3-jet (x, y2, y3 + x2y, 0). We could have used
classify to obtain this (classify(f,4,5)), though it is clear that all the 4-
transversals could not have been empty. classify is generally used when we
suspect the germ may be determined and need to check several levels of CTs to
verify this. It is appropriate to use classify to investigate (x, y2, y3 + x2y, x3y).
Below we show this germ is 4-determined and then proceed with the second case
(x, y2, y3+x2y, 0). Note that we have used two separate variables g and f to denote
these germs (this would be clear if the message output by jetcalc was shown).

> g := [x1,x2^2,x2^3+x1^2*x2,x1^3*x2];

> classify(g,5,6);

the 5 transversal is empty

--------------------

the 6 transversal is empty

--------------------

2 3 2 3

germ, [x1, x2 , x2 + x1 x2, x1 x2]

degree limits, 5, 6

all transversals were empty

> jetcalc(f,5);

> pcomp();

4

[0, 0, 0, x1 x2]
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Further calculation shows that (x, y2, y3 +x2y, x4y) is 5-determined and proceeding
further gives the first few germs in the series (x, y2, y3 + x2y, xky). To prove that
this series exists we have to resort to hand calculations but such calculations are
straightforward once the actual result is known (as is so often the case!). In practice
obtaining the first few terms of a series (and conjecturing on the general form) is
often the difficult part.

Exercise. A comprehensive classification of map-germs R3, 0 → R4, 0 under A-
equivalence was carried out by Houston and Kirk and described in [15]. A similar
example to the calculations carried out above is given by considering the classifica-
tion of 3-jets over the 2-jet (x, y, yz, xz) (this is one of the five corank-1 2-jets in the
classification). Here (x, y, z) denote coordinates in the source and (u1, u2, u3, u4)
will denote those in the target. Let G be the unipotent subgroup of A having
nilpotent Lie algebra

LA1 ⊕ R{x∂/∂y, x∂/∂z, y∂/∂z} ⊕ R{ui∂/∂uj for i > j}.

This can be setup in Transversal by issuing the command

> setup Aclassn(3,4,[0,x3]);

We leave it as an exercise to show that the complete list of 3-jets is

(x, y, yz, xz + z3), (x, y, yz, xz),

having J3A-codimension 4 and 6, respectively. As an instructive example we note
that if the same calculation was repeated using, instead, the space L = LA1 that
a 3-CT over (x, y, yz, xz) is

(x, y, yz + a1z
3 + a2xz2, xz + a3z

3 + a4xz2 + a5yz2) for ai ∈ R.

Of course, one may reduce this to the two cases above, but this would involve a
lot of (ad-hoc) work. To classify the 3-jets over (x, y, yz, xz) without the use of
techniques such as CTs would be a very unenviable task!

Continuing the classification over the first of the above 3-jets gives the series
(x, y, yz+zk, xz+z3), k-determined for k ≥ 4, k not a multiple of 3. (Note that this
is not the complete classification of all jets over this 3-jet. Further branching occurs
at the 6-level and 7-level. This is an important example in theoretical singularity
theory in that the 3-jet gives rise to a series but is not stem.) As an exercise we
suggest repeating the determinacy calculation for the first member of this series.
(Hint: using Theorem 2.5 and noting that f ∗(M3).E(3, 4) ⊃ M3

3.E(3, 4), we may
establish 4-determinacy for k = 4 by showing that the CTs from degree 5 to degree
7 are empty.)
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5.2.2 Working with the A-group: Mather’s Lemma and
Moduli

We will continue with the classification introduced in the previous section but will
consider a higher branch in the classification tree. The examples were chosen to
demonstrate the use of Transversal in the following areas.

• prove that a parameter in a family of jets is a modulus.

• identify the degenerate values of moduli (we observe where the classification
process breaks down by inspecting the “checklist” calculated by jetcalc).

• apply Mather’s lemma to a family of jets, thus reducing the family to a
finite number of orbits (inspection of the “checklist” identifies any degenerate
members which form an obstruction to triviality along the whole family).

To start with consider the family of 7-jets f = (x, y2, xy3 + x4y, y5 + ax6y).

Exercise. Using the methods of the previous section show that this is the family
of 7-jets having 6-jet (x, y2, xy3 + x4y, y5).

We attempt to ‘scale’ a to a unit using simple ‘scaling’ coordinate changes in the
source and target. This is an elementary problem in linear algebra, but the resulting
system of linear equations is overdetermined and we suspect a is a modulus. To
actually prove a is a modulus we appeal to Lemma 2.8 which, in this case, amounts
to showing that (0, 0, 0, x6y) is contained in L(J7A) · f only for isolated points a
(if at all).

Firstly we define the global setup variables to specify the space L = LA.
This may be done manually, however, for the case of A-equivalence the routine
setup Agroup is provided for convenience. This routine is described in Section 4.4,
but it should be clear why the following settings define the Lie algebra of the A
group. Note that the nilpotent variables remain undefined.

> setup Agroup(2);

liealg = stdjacobian

equiv = A

compltrans = false

source dim = 2

source power = 1

target power = 1

nilp = false

R nilp:

R nilp

L nilp:

L nilp

nilp source wt:
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nilp source wt

nilp target wt:

nilp target wt

jetcalc verbosity = 1

Warning: (to further stress an earlier remark) if the above is done during a clas-
sification session it is easy to return to the CT calculations while forgetting to reset
the global variables to define the corresponding nilpotent space L. It is advisable
to carry out the new calculations, where L = LA, by initiating a second, different
Maple session.

Next we define f and use jetcalc to calculate the tangent space L(J7A) · f .
The condition which shows a is a modulus is then checked using the function
intangent.

> f := [x1,x2^2,x1*x2^3+x1^4*x2,x2^5+a*x1^6*x2];

> jetcalc(f,7);

> intangent([0,0,0,x1^6*x2]);

false

The function intangent returns false when the set of vectors passed to it as
arguments forms an independent set to the tangent space calculated to jetcalc,
and true otherwise. In the case where only one argument is passed (as here) it
therefore checks whether the given vector is “in the tangent space” or not. The
response false indicates this is not the case and therefore that a is a modulus.
This holds for all generic values of a except the exceptional cases indicated by the
“checklist” returned by jetcalc (more on this next). The checklist is in fact empty
in this case.

We now continue with the classification and return to CT calculations, in par-
ticular CT and determinacy calculations for families. Remember to define L to be
the nilpotent space specified in Section 5.2.1 (using the routine setup Aclassn) or
move to a separate Maple session reserved for this purpose, as recommended above.
We could use classify to show that f is 7-determined, but this would only apply
to generic a. For families it is more convenient to check determinacy by calculat-
ing each transversal separately using jetcalc, identifying any exceptional values
and, if required, determining how the classification branches for these exceptional
values.

> f := [x1,x2^2,x1*x2^3+x1^4*x2,x2^5+a*x1^6*x2];

> jetcalc(f,8);

Observe that when jetcalc has finished the calculation it responds with the warn-
ing:

WARNING: global variable ’checklist’ is non-empty !!!
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The Gaussian elimination routines in jetcalc try to choose the best pivotal el-
ements. They give preference to numeric (non-symbolic) pivots but this is not
always possible and the global variable checklist is used to store the non-numeric
pivots. To display these we use the command plist.

> plist();

#1, 1 + a

#2, 1 + a

#3, 1 + a

#4, 1 + a

The first column indicates the index number of the pivotal element as an entry
in the table checklist and the second column the actual pivotal element (this is
the important bit). By default plist factorises the pivots before it displays them
as an aid to determining the exceptional values (that is, where the pivot vanishes)
though in this case it is already clear! If need be we can access each pivotal element
directly, for example the pivot numbered #i can be obtained using the expression
checklist[i][1]. Next we display the complete transversal.

> pcomp();

*** THE NORMAL SPACE IS EMPTY ***

Thus, the 8-transversal is empty, but only provided 1 + a 6= 0. To investigate the
exceptional value we must re-run jetcalc using the corresponding jet . . .

> h := subs(a=-1,f);

> jetcalc(h,8);

> pcomp();

7

[0, 0, 0, x1 x2]

The case a = −1 therefore produces a separate branch to the classification tree. We
will return to this shortly but will firstly continue with the determinacy calculation
in the generic case.

> jetcalc(f,9);

WARNING: global variable ’checklist’ is non-empty !!!

Again, we must use plist() to display the non-numeric pivots. We find the con-
ditions on a are the same as before. Using pcomp() shows that the 9-transversal is
empty and it follows that, provided a 6= −1,

M8
2E(2, 4) ⊂ L · f + M10

2 E(2, 4)

so by Theorem 2.5 we can conclude that f is 7-determined.
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Note: sometimes plist returns conditions on parameters such as a which turn
out to be redundant, that is, re-running jetcalc with the ‘exceptional’ values sub-
stituted in causes no change to the complete transversal. These conditions only
appeared in the first place because jetcalc had no other choice for the correspond-
ing pivotal elements.

Important Remark. The Gaussian elimination routines within jetcalc use the
Maple function normal when reducing each row. This is a basic form of simplifi-
cation (chosen for efficiency purposes) which recognises those expressions equal to
zero which lie in the domain of “rational functions”. For expressions containing
subexpressions such as square roots, powers, and functions, normal may not recog-
nise when an expression is equal to zero. Thus, jetcalc should not be called using
exceptional values such as square roots and other (non-integer) powers. This re-
striction could be overcome by re-writing the elimination routines to use the Maple
function simplify. However, when the entries in the checklist become complicated
(this is especially the case when more than one modulus is present) investigation
of the exceptional values is generally quite limited.

We now consider the exceptional case in the above example, namely the 7-jet
h = (x, y2, xy3 + x4y, y5 − x6y). From above, an 8-transversal is {(0, 0, 0, x7y)}
giving the family of 8-jets

f = (x, y2, xy3 + x4y, y5 − x6y + ax7y).

A simple, though somewhat tedious, exercise in linear algebra shows that this can
be reduced to the normal forms (x, y2, xy3 + x4y, y5 − x6y ± x7y) and (x, y2, xy3 +
x4y, y5 − x6y) via ‘scaling’ coordinate changes in the source and target. Alterna-
tively, this can also be deduced from Mather’s Lemma (Lemma 2.7) and we take
this opportunity to demonstrate the method using Transversal. There are situ-
ations where the use of Mather’s Lemma is more important, for instance, where
‘scaling’ will not work and applying the Mather Lemma shows triviality for the
whole family.

Remember to begin by setting the global variables to specify L = LA as de-
scribed above, or using a separate Maple session which was reserved for such calcu-
lations. Now calculate the tangent space L(J8A) · f , determine whether the vector
(0, 0, 0, x7y) belongs to this space, and display the dimension or codimension of the
space.

> f := [h[1],h[2],h[3],h[4]+a*x1^7*x2];

> jetcalc(f,8);

WARNING: global variable ’checklist’ is non-empty !!!

> plist();

#1, 2/3 a



68 Chapter 5. Tutorial

> intangent([0,0,0,x1^7*x2]);

WARNING: original matrix contains non-numeric elements, check

checklist !!!

true

> basis dim;

162

This tells us that L(J8A) ·f is of constant dimension 162 and contains (0, 0, 0, x7y)
provided a 6= 0. The warning output from intangent also reminds us that non-
numeric pivotal elements exist. On some occasions non-numeric terms are intro-
duced by the elimination routine in intangent. When this happens intangent

outputs a vector containing the offending term. (This vector is a coordinate vector
of coefficients but the specific interpretation does not matter. The important point
is that the non-numeric terms should be treated in the same manner as those given
by plist — the values for which they vanish should be investigated.) Substituting
a = 0 into f and repeating the above procedure shows L(J8A) · f is of dimension
161 and does not contain (0, 0, 0, x7y). Thus, by Mather’s Lemma, the family can
be reduced to the orbits

(x, y2, xy3 + x4y, y5 − x6y ± x7y), (x, y2, xy3 + x4y, y5 − x6y).

Note that in the complex case the two orbits

(x, y2, xy3 + x4y, y5 − x6y + x7y), (x, y2, xy3 + x4y, y5 − x6y − x7y)

reduce to one, but in the real case this simplification may or may not occur (further
analysis is required). Also note that the above can be concluded by examining the
global variable codim, which gives the codimension, instead of basis dim (codim
takes the value 18 for a 6= 0, but jumps to 19 for a = 0).

Exercise. Continue the classification to obtain the first few terms of the series
(x, y2, xy3 + x4y, y5 − x6y ± xky), which is (k + 1)-determined for k ≥ 7.

Remark (Families of Higher Modality). Transversal can be used to detect
families of higher modality. For example, consider the family

g = (x, y2, x3y ± xy5 + by7, x2y3 + ay7)

Make sure the global variables define L = LA and calculate L(J7A) · g.

> g := [x1,x2^2,x1^3*x2+x1*x2^5+b*x2^7,x1^2*x2^3+a*x2^7];

> jetcalc(g,7);

> intangent([0,0,x2^7,0],[0,0,0,x2^7]);

false

The response false indicates {(0, 0, y7, 0), (0, 0, 0, y7)} forms an independent set
to L(J7A) · g in J7(2, 4) (for all a and b) so by Lemma 2.8 g defines a bimodular
family of 7-jets.



Chapter 5. Tutorial 69

5.2.3 Unfoldings and Codimension

In this final section we will demonstrate how to use Transversal to calculate
versal unfoldings for finitely-determined map-germs, thus completing the armoury
of techniques typically required when performing A-classifications. After the rather
technical ‘goings-on’ of the previous section the examples given below should be
relatively straight forward.

We will begin with a simple example demonstrating how one calculates the
J3A-codimension of the 3-jets considered in Section 5.2.1. When the jet is 3-
determined these numbers equal the A-codimension of the corresponding germ.
However, regardless of this, it is still useful to calculate them as they provide
useful invariants at the jet-level. Firstly we define the global setup variables to
specify the space L = LA. This may be done using the routine setup Agroup as
described in Section 5.2.2 above. Next we define the 3-jet f = (x, y2, y3, x2y) and
call jetcalc in the usual way. The codimension is stored as the variable codim,
while a basis for the complementary space to L(J3A)·f in J3(2, 4) may be displayed
using the function pcomp. Note that the whole set of basis elements is output since
compltrans is set to false.

> f := [x1,x2^2,x2^3,x1^2*x2];

> jetcalc(f,3);

> codim;

9

> pcomp();

[1, 0, 0, 0]

[0, 1, 0, 0]

[0, 0, 1, 0]

[0, 0, 0, 1]

[0, x2, 0, 0]

[0, 0, x2, 0]

[0, 0, 0, x2]

[0, 0, x1 x2, 0]

[0, 0, 0, x1 x2]

Important Remark. Observe that jetcalc calculates a basis for the comple-
mentary space in J3(2, 4), but the J3A-codimension is defined by working in the
space of jets which vanish at 0. We therefore discard the constant jets from the
above result and conclude that the J3A-codimension of f is 5. One must always
be aware of this caveat when working with, say, A-codimension calculations. The
use of the function pcomp, along with simply displaying codim, is recommended.

Exercise. Calculate the J3A-codimension of the remaining 3-jets lying over the
2-jet (x, y2, 0, 0). The results were given in Section 5.2.1.
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Generally, if a germ f : Rn, 0 → Rp, 0 is k-A-determined then, by the determi-
nacy theorems of [7], there exists some unipotent subgroup G of A such that

Mk+1
n E(n, p) ⊂ LG · f

and, in particular,

Mk+1
n E(n, p) ⊂ LA · f

so that the A-codimension of f is equal to its JkA-codimension. Similarly, we
can calculate an A-versal unfolding by working in the k-jet-space. Thus, since
f = (x, y2, y3, x2y) is 3-determined we can conclude that it is of A-codimension 5,
having A-versal unfolding

(x, y, u1, u2, u3, u4, u5) 7→ (x, y2 + u1y, y3 + u2y + u3xy, x2y + u4y + u5xy,

u1, u2, u3, u4, u5).

Exercise. Consider the family of 8-jets (x, y2, xy3 + x4y, y5 − x6y + ax7y). Show
that each member of this family is of J8A-codimension 18 for a 6= 0, but of J8A-
codimension 19 when a = 0. This is an exercise in using the checklist and is
almost a repeat of the calculation performed in Section 5.2.2 which used Mather’s
Lemma to reduce this family to a finite number of orbits. Since the family is
8-determined for a 6= 0 this shows the A-codimension is 18 in this case.

To finish we will discuss the calculation of Ae-codimension and unfoldings.
This should now be a straightforward exercise, it only really entails redefining the
global variables to specify the space L = LAe, and may be done via the routine
setup Aunf, described in Section 4.4, as follows.

> setup Aunf(2);

Alternatively, with the global variables already set to define L = LA, we could
achieve the settings for L = LAe by putting the powers of the maximal ideals equal
to 0. Whenever one assigns the global setup variables “by-hand” it is extremely
advisable to double check these settings by printing them out as typos (in say the
variable name) can easily go undetected.

> source power := 0;

> target power := 0;

> pvars();

(We have omitted the Maple response.)
We shall consider the germ f = (x, y2, y3, x2y) discussed above. A basis for

the space J3(LAe) · f and its complementary space in J3(2, 4) are calculated using
jetcalc in the usual way.
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> f := [x1,x2^2,x2^3,x1^2*x2];

> jetcalc(f,3);

> codim;

3

> pcomp();

[0, 0, x2, 0]

[0, 0, 0, x2]

[0, 0, x1 x2, 0]

Since f is 3-determined, the same reasoning as above for the A case shows that we
can conclude that f has Ae-codimension 3 and an Ae-versal unfolding is

(x, y, u1, u2, u3) 7→ (x, y2, y3 + u1y + u2xy, x2y + u3y, u1, u2, u3).

We note (reassuringly!) that our results are in agreement with “Wilson’s” formula
relating A and Ae-codimension.

Proposition. Let f : Rn, S → Rp, 0 be an A-finite multigerm of multiplicity r. If
f is not stable then the following relation holds:

Ae-codim = A-codim + r(p − n) − p.

This formula was proved in unpublished notes by Les Wilson and, in the case of
singled branched germs (r = 1), in the survey article of Wall [27, p.510].

5.3 R-Classification of Functions on the Cusp

In this section we describe how to perform calculations using weighted filtrations.
The tutorial also mentions how liealg routines work. For brevity we will assume
the reader has understood the material given in Section 5.2 and, while describing
how one performs the relevant calculations using Transversal W, we will not pro-
vide such detailed discussions and explanations. For example, we assume the reader
knows what each routine does, how to interpret the output, what the checklist

is, etc.; please refer back to Section 5.2 if necessary.

5.3.1 Background: Defining the Space L = LR(D)

As our example we consider the classification of function-germs C2, 0 → C, 0 using
coordinate changes in the source which preserve the cusp discriminant variety D.
This equivalence is induced by a subgroup of the standard R group which is com-
monly denoted by R(D). Arnold gave the beginning of this classification in [2], it
was extended by Bruce and Kirk as described in [5, 16]. Note that we restrict to
the complex case, this is mainly a technical convenience, the classification can be
performed over the reals using the same methods.



72 Chapter 5. Tutorial

For the appropriate classification theorems and technical machinery we refer
the reader to [5, Section 4], this also provides useful background and appropriate
references to existing work. Some notation: (u1, u2) will denote coordinates on C2,
the variety defined by 4u3

1 + 27u2
2 = 0 will be denoted by D, and Θ(D) will denote

the O2-module of vector fields tangent to D. Θ(D) is a free module generated by
the Saito vector fields

θ1 = 9u2∂/∂u1 − 2u2
1∂/∂u2, θ2 = 2u1∂/∂u1 + 3u2∂/∂u2.

It is natural to assign weights (2, 3) to the source coordinates (u1, u2). (The weight 0
is always assigned to the target coordinate when dealing with function germs.) One
easily verifies that the Saito vector fields θ1 and θ2 are then weighted homogeneous
(with respect to these weights) having weight 1 and 0 as vector fields, respectively
(see [5]). The vector field θ2 of weight 0 is called the Euler vector field. Note that
one can show that the Lie algebra LR(D) (as defined in [7, p.540]) is equal to
Θ(D). Finally, we define LCT to be the subspace of Θ(D) consisting of all vector
fields of positive weight, thus

LCT = 〈θ1〉 + F 1O2.〈θ2〉,

where F rO2 denotes the ideal in O2 generated by the monomials of weight r and
higher. The space LCT is used for complete transversal and determinacy calcula-
tions with respect to the given weighted filtration of O2.

Figure 5.1 provides a listing of the code for the liealg routine named cusp.
The global setup variable liealg is assigned the value cusp by the user, thus when
the call

liealg(f,target dim,tgtspace);

is made from within jetcalc it actually calls the routine cusp. The purpose of this
routine is to define the generators θ1 and θ2 by specifying how they operate on the
jet f. The result is stored in the table tgtspace (passed to cusp as an argument)
as the entries tgtspace[1] and tgtspace[2]. Note that each entry of tgtspace
must itself be of type ‘table’, even in the case when the target dimension is 1, so
we must use expressions of the form

tgtspace[i][1] := . . . ;

Another job of the liealg routine is to specify the source coordinates by assigning
a Maple name to each entry in the global list coords, here the names u1,u2 are
used. In this particular case it is convenient to also assign the global lists source wt

and target wt since the weighted filtration used in this classification is integral
to all calculations we will perform. Similarly, it is also convenient to specify the
nilpotent variables R nilp and L nilp (these will be discussed next). For further
details on liealg routines refer to Section 4.2.2 and examine the program code
of the examples which come with the package. (The argument target dim is
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# procedure to define Lie algebra tangent to the cusp discriminant

cusp := proc(f,target_dim,tgtspace)
global L_nilp, R_nilp, coords, source_wt, target_wt;

# DEFINE COORDINATES (global variable, data type ’list’)
if assigned(‘u1‘) or assigned(‘u2‘) then

ERROR(‘not all source coordinates are unassigned Maple names‘);
fi;
coords := [u1,u2];

# DEFINE LIE ALGEBRA GENERATING SET (data type ’table’)
tgtspace := table();
tgtspace[1][1] := 9*u2*diff(f[1],u1) - 2*u1^2*diff(f[1],u2);
tgtspace[2][1] := 2*u1*diff(f[1],u1) + 3*u2*diff(f[1],u2);

# DEFINE WEIGHTS (global variables, data type ’list’)
source_wt := [2,3];
target_wt := [0];

# DEFINE NILPOTENT VECTORS (global variables, data type ’list’)
R_nilp := [ [1,1] ];
L_nilp := [];

# RETURN NULL
NULL;

end:

Figure 5.1: A Listing of the cusp Routine.

calculated in jetcalc and passed into the liealg routine for convenience, for
example the liealg routine stdjacobian requires use of it. This argument must
always be present but is rarely used.)

It is now up to the user to assign the global setup variables to define the space
L = LR(D) or L = LCT as required. Observe that

LR(D) = 〈θ1, θ2〉, LCT = F 1O2.〈θ1, θ2〉 ⊕ C{θ1}.

Thus, LCT is specified by multiplying the ideal 〈θ1, θ2〉 by F 1O2 and then including
constant multiples of the ‘nilpotent’ vector θ1. The space L = LR(D) is therefore
defined by setting

> liealg := cusp;

> equiv := R;
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> compltrans := false;

> source power := 0;

> target power := 0;

> nilp := false;

> jetcalc verbosity := 1;

> pvars();

and the space L = LCT is defined by

> liealg := cusp;

> equiv := R;

> compltrans := true;

> source power := 1;

> target power := 0;

> nilp := true;

> jetcalc verbosity := 1;

> pvars();

Recall that the remaining variables required by jetcalc (namely R nilp, L nilp,
source wt and target wt) are set within the routine cusp for convenience.

Some Remarks. R nilp is assigned the value [ [1,1] ] which means include
one extra ‘nilpotent’ term, namely [1,1] which denotes 1 × θ1 = θ1. Whether
the actual nilpotent terms specified by R nilp and L nilp are actually included is
decided by the user by setting the global variable nilp as required. (In the case
L = LR(D) above this setting does not effect L since, with source power set equal
to 0, L will already contain this vector. However, it is good practice to set nilp

to false. In the case L = LCT the setting for nilp is of course crucial.) Note
that L nilp must be assigned the value of the empty list since jetcalc performs a
certain amount of type-checking on the global variables. Similarly, the value given
to target power is irrelevant in this example as we are using R-equivalence, but it
must be assigned a non-negative integer. The value of compltrans does not affect
how the space L is defined; the values given above were chosen only to suit the
typical calculations which will be performed using jetcalc with each of the two
spaces. Similarly, the value of jetcalc verbosity does not effect L but must be
set; the value 1 is standard. Finally, it is advisable to check the settings, just in
case any typos went unnoticed. This may be achieved using the function pvars,
thought note that the variables R nilp, L nilp, source wt and target wt will not
have been assigned until at least one call to jetcalc has been made.

5.3.2 Some Calculations

We will begin by stating the necessary results from classification theory. For brevity
the results are specialised to the case of the cusp discriminant; see [5, 16] for a
general formulation.
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Weight 2 3 4 5 6 7 8 9

Monomials u1 u2 u2
1 u1u2 u3

1, u2
2 u2

1u2 u4
1, u1u

2
2 u3

1u2, u3
2

Table 5.1: Monomials up to Weight 9 for the A2 Filtration.

Theorem 5.1 (Complete Transversal) Let f : C2, 0 → C, 0, k ≥ 1 and T be a
subspace of F k+1O2 such that

F k+1O2 ⊂ T + LCT · f + F k+2O2,

then any germ f1 with f1−f ∈ F k+1O2 is F 1R(D)-equivalent to f + t+φ for some
t ∈ T and φ ∈ F k+2O2.

Note that in [5] the notation h, h1 is used where f , f1 is used above (f had already
been used to define D in that article). We chose the above notation for consistency
with our examples.

As a corollary we obtain the following determinacy result. Here we quote a
finite dimensional version: wmax denotes the maximum weight — in the present
case this is 3 — so to check determinacy we can therefore work in the weighted
(k +3)-jet-space. For example, it would be enough to show all CTs of weight k +1
to weight k + 3 are empty.

Corollary 5.2 A germ f : C2, 0 → C, 0 is k-R(D)-determined if

F k+1O2 ⊂ LCT · f + F k+1+wmaxO2.

Note that one extremely useful class of coordinate change denied us by the
complete transversal method is scaling. Generally such coordinate changes will not
preserve the discriminant D. There is, however, one scale change that does.

Proposition 5.3 For t ∈ C, t 6= 0, the map-germ C2, 0 → C2, 0 defined by

(u1, u2) 7→ (t2u1, t
3u2)

is an element of the group R(D).

Finally, for reference, Table 5.1 lists the monomials of lower weight. These
can be displayed using the command pmons(1,9); (once the appropriate global
variables have been set up).

Now to an example using Transversal W. We will make implicit use of the above
results without further qualification. The package is used in pretty much the same
way as the standard Transversal package. Indeed, although certain functions in
the packages, like jetcalc, differ, they store their results in exactly the same way
so that many of the ‘output’ routines can be shared across the packages and used
in precisely the same manner; see Section 4.4 for more details.

Remember to initialise the package in a new Maple session via the command
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> restart;

> with(transversal W);

Consider the 5-jet 0: a 6-CT is {u3
1, u

2
2}. Applying the scaling coordinate changes

described in Proposition 5.3 we can reduce the resulting family to the three cases:
u3

1 + au2
2, u2

2, 0. We will consider the first in what follows. The parameter a is a
modulus; one should really check this now (with L = LR(D)) but we will proceed
with the classification (in fact more moduli occur as we will show later). Thus, set
the global variables to define L = LCT as described in Section 5.3.1 and calculate
a 7-CT.

> f := [u1^3+a*u2^2];

> jetcalc(f,7);

> pcomp();

*** THE NORMAL SPACE IS EMPTY ***

> plist();

#1, 27 - 4 a

Note that in this, and subsequent, calculations jetcalc outputs the usual warning:

WARNING: global variable ’checklist’ is non-empty !!!

Thus, if 4a 6= 27 then the 7-CT is empty. Continuing with this case . . .

> jetcalc(f,8);

> pcomp();

4

[u1 ]

> plist();

#1, 27 - 4 a

#2, 6 a

Thus, an 8-CT is {u4
1} provided 4a 6= 27 and a 6= 0. However, there is usually

more than one choice for a CT (just as there is more than one choice for a basis)
and the above choice is determined by the ordering of the monomials of weight
8 employed by jetcalc. Another choice of 8-CT is {u1u

2
2}. The latter was used

in published material on this work so we do the same here. (This choice is more
natural if one performs the calculations by hand because it is then clear that the
condition a 6= 0 is not necessary; this will be demonstrated using the computer
as well. However, the condition still appears at the higher jet-levels when one
performs determinacy calculations. Either choice is acceptable and, of course, gives
the same list of orbits. Such discrepancies are bound to occur when comparing
automated/computer calculations with hand calculations.) Continuing . . . we can



Chapter 5. Tutorial 77

indeed show that {u1u
2
2} is a valid alternative choice for an 8-CT using the function

ptangent to inspect the basis for J8LCT · f calculated by jetcalc. If this basis
is large we would restrict the output from ptangent by supplying the argument
[u1^4] so that only basis elements containing the monomial term u4

1 are output.
However, in this case the basis has dimension 2 so we output the whole thing.

> basis_dim;

2

> ptangent();

*** basis for tangent space ***

vectors output as monomial terms and corresponding coefficients

vector1

2

27 - 4 a, [u2 u1 ]

vector2

2

6 a, [u1 u2 ]

4

6, [u1 ]

This indicates that a basis consists of the jets (27 − 4a)u2
1u2 and 6au1u

2
2 + 6u4

1.
Thus it follows that {u1u

2
2} is a perfectly good choice for an 8-CT instead of {u4

1}
(and it is clear where the condition a 6= 0 originally came from).

After this small digression we can therefore surmise that the J8R(D)-orbits
lying over the (weighted) 7-jet u3

1 + au2
2 form the family u3

1 + au2
2 + bu1u

2
2. This is a

bimodular family though, for brevity, we will continue with the classification using
CTs and return to the modality question shortly.

> f := [u1^3+a*u2^2+b*u1*u2^2];

> jetcalc(f,9);

> jetcalc(f,10);

> jetcalc(f,11);

After each call to jetcalc we must, of course, call pcomp and plist: we find that
the 9, 10 and 11-CTs are empty provided 4a 6= 27 and a 6= 0. Thus

F 9O2 ⊂ LCT · f + F 12O2

and u3
1 + au2

2 + bu1u
2
2 is (weighted) 8-R(D)-determined under these conditions.

We now return to the modality questions and define L = LR(D). With the
present settings (defining L = LCT ) this may be achieved by setting source power

:= 0 (and nilp := false, though this is not strictly necessary). In addition, for
the type of calculations we have in mind, we set compltrans := false. Now we
calculate LR(D) · f in the 8-jet-space.
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> f;

3 2 2

[u1 + a u2 + b u1 u2 ]

> jetcalc(f,8);

> plist();

#1, 6 a

#2, 27 - 4 a

#3, 6 a

> intangent([u2^2],[u1*u1^2]);

false

> pcomp();

[1]

[u1]

[u2]

2

[u1 ]

[u1 u2]

3

[u1 ]

4

[u1 ]

Recall that the R(D)-codimension of a germ f is defined to be dimC O2/LR(D) ·f.
Thus we may conclude that u3

1 + au2
2 + bu1u

2
2 is a bimodular family, 8-determined,

of codimension 7, provided 4a 6= 27 and a 6= 0. (Note that the call to intangent

above also outputs a warning about the degenerate conditions. However, such
conditions do not affect the modality, the bottom line is that these conditions just
signify when the calculation breaks downs, resulting in a possible degeneration in
the tangent space.)

Exercise. Returning to the 8-jet u3
1 +au2

2 + bu1u
2
2, show that if a = 0 then a 9-CT

is u3
1 + bu1u

2
2 + cu3

2. Continue the classification to obtain the trimodular family of
12-jets u3

1 + bu1u
2
2 + cu3

2 + du4
2, 12-determined, codimension 9, provided b 6= 0 and

4b3 + 27c2 6= 0.

Exercise. Returning to the 6-jet u3
1 + au2

2, show that if a = 27/4 then a 7-CT is
u3

1 + 27
4
u2

2 + bu2
1u2. Continue the classification to obtain the bimodular family of

9-jets u3
1 + 27

4
u2

2 + bu2
1u2 + cu3

1u2, 9-determined, codimension 8, provided b 6= 0.

The above give the initial members of quite complex series lying above the
respective jets. The following classification was obtained in [16]; see also [5].

Theorem 5.4 Every function-germ h : C2, 0 → C, 0 on the cusp discriminant
variety D of R(D)-modality ≤ 2 is R(D)-equivalent to one of the following finitely
determined germs. The first germs of modality ≥ 3 to occur during the classification
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are given in the second section of the table; they occur as the initial singularities
in the stated series. Note that u1 is the only stable singularity.

Singularity Determinacy Degree Codim

u1 2 1

u2 3 2

u2
1 + aun

2 3n, n ≥ 2, a 6= 0 n + 2

u1u2 + au3
1 6 5

u3
1 + au2

2 + bu1u
2
2 8, 4a 6= 27, a 6= 0 7

u3
1 + 27

4
u2

2 + aun
1u2 + bun+1

1 u2 2n + 5, n ≥ 2, a 6= 0 2n + 4

u3
1 + 27

4
u2

2 + aun
1 + bun+1

1 2n + 2, n ≥ 4, a 6= 0 2n + 1

u2
2 + aun

1 + bun+1
1 2n + 2, n ≥ 4, a 6= 0 n + 4

u3
1 + au1u

n
2 + bun+1

2 + cun+2
2 3n + 6, n ≥ 2, a, b 6= 0 (†) 2n + 5

u3
1 + aun

2 + bu1u
n
2 3n + 2, n ≥ 3, a 6= 0 2n + 3

u2
1u2 + au4

1 + bun
2 + cun+1

2 3n + 3, n ≥ 3, b 6= 0 n + 7

(†) For the case n = 2 the condition b 6= 0 needs to be replaced by 4a3 + 27b2 6= 0.

In closing we note that it is possible to perform this classification by hand and
the above was chosen as an instructive example; see [16]. However, even in the early
stages of the classification, when the space JkLCT · f is generally of a low dimen-
sion, this can be tedious as one needs to keep track of which monomials generate
the various weighted jet-spaces. The determinacy calculations can be particularly
tedious, and the presence of moduli, even at the lower levels, complicates matters.
At higher jet-levels the use of Transversal W is particularly welcome!

5.4 In Preparation: Multigerms and Lowerable

Fields

As mentioned in Section 4.3, other extensions to the standard Transversal package
exist which deal with multigerms and equivalence relations defined using lowerable
diffeomorphisms. These packages are not publicly available at present. However, if
you are interested then contact me and I will try and provide some version together
with a few examples.
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