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Appendix A: Line network, N = 3

To verify our analytical expressions for the final epidemic size we ran 2 × 105 stochastic
simulations and calculated the frequency of each final size occurring. In Figure A.1 we
illustrate what can happen in the stochastic model by plotting the results from three reali-
sations. These results were computed usingR = 1 with the initial state SSI. We compute
stochastic simulation results for all small networks discussed in this paper, however we
omit graphical results for the remaining seven networks.

A.1. Explanation of Figure A.1

Realisation 1: Initially we start the epidemic with two susceptible nodes, one infectious
node and zero nodes in the recovered state (S = 2, I = 1 and R = 0). After one time step
one susceptible node becomes infected and the initial infectious node recovers (S = 1,
I = 1, R = 1). During the next time step the last susceptible node becomes infectious
and one infectious node recovers ( S = 0, I = 1 and R = 2). Finally the last infectious
node recovers which gives a final epidemic size of 3 for this realisation (S = 0, I = 0 and
R = 3).

Realisation 2: Initially we start the epidemic with two susceptible nodes, one infec-
tious node and zero nodes in the recovered state (S = 2, I = 1 and R = 0). After one
time step one susceptible node becomes infected (S = 1, I = 2, R = 0). During the next
time step one infectious node recovers (S = 1, I = 1, R = 1). Finally the last infectious
node recovers which gives a final epidemic size of 2 for this realisation (S = 1, I = 0 and
R = 2).

Realisation 3: Initially we start the epidemic with two susceptible nodes, one in-
fectious node and zero nodes in the recovered state (S = 2, I = 1 and R = 0). After
one time step the infectious node recovers which gives a final epidemic size of 1 for this
realisation (S = 2, I = 0 and R = 1).
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Figure A.1: Illustration of three stochastic realisations. Each graph tracks the number of
nodes in each infection state (S, I and R) over time. The resulting final size for each of
the realisations are 3, 2 and 1 respectively.

Appendix B: Methods for an SIR model on small net-

works

B.1. Triangle network

The triangle network is the simplest case of a network of N = 3 nodes; it is a complete
network and all nodes have degree two. There are 27 possible states which the triangle
network can be in for an SIR epidemic process. As we are dealing with a complete
network, we can group states together based on those with the same number of nodes
in each infection state to reduce the size of the system. In the triangle network, if the
epidemic is started with one initial infectious node it does not matter if that is node a, b or c
as each node is topologically equivalent. From the transition diagram of the SIR model on
the triangle network (Figure B.1) we derive the individual transition probabilities between
network states. We obtain the final size probabilities for the SIR epidemic process on
the triangle network, given that the epidemic was started with one initial infectious node
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Figure B.1: Triangle (complete) network with N = 3 nodes.

shown in Table 1. Note that the probability of the final size equaling one is the same as
the infection not taking off, that is the one infectious node recovers before it could infect
one of its neighbours.

B.1.1. Catalogue of transition probabilities

From the transition diagram of the SIR model on the triangle network we derive the in-
dividual transition probabilities between network states. In the following PXY Z denotes
the probability that the network is ever in state XY Z, where X, Y and Z denote the
infection state (S, I or R) that nodes a, b and c are in respectively. These probabilities are
independent of time and depend only on the infection parameters. From the absorbing
state probabilities we find the final epidemic size probabilities, P.

Possible initial state: ESSI = 1
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Table 1: Triangle network final size PMFs

Initial State SSI

P(Final Size =1)
1

2R + 1

P(Final Size =2)
2R

(R + 1)2 (2R + 1)

P(Final Size =3)
2R2 (R + 2)

(R + 1)2 (2R + 1)

Expected FS
6R3 + 13R2 + 6R + 1

(R + 1)2 (2R + 1)

Probability of passing through transient states:

PSII =
2R

2R + 1
ESSI

PSIR =
2

2R + 2
PSII

PIII =
2R

2R + 2
PSII

PIIR =
R
R + 1

PSIR + PIII

PIRR = PIIR

Probability of terminating in absorbing states:

PSSR =
1

2R + 1
ESSI

PSRR =
1

R + 1
PSIR

PRRR = PIIR

To find the equations for the final size probabilities we evaluated the following:

P(Final Size = 1) = PSSR

P(Final Size = 2) = PSRR

P(Final Size = 3) = PRRR

Simplifying the above we derive the analytic expressions for the final size probabilities
for the triangle network as shown in Table 1. The probability mass function of the final
size distribution for the triangle network is shown in Figure 5 of the main text.
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B.1.2. Progression of infection over time

In the following we use PXY Z to denote the probability that the triangle network is in
the state XY Z at time t, where X, Y and Z denote the infection state (S, I or R) that
nodes a, b and c are in respectively. Thus, the equation for the time derivative ṖXY Z

shows how the network can enter and leave the state XY Z. The rate the network enters
and leaves each state can be found from the transition diagram. These equations allow
us to simulate the time course of the epidemic and to check our final size calculations.
Equations describing the probability that the network is in a given state at time t for an
SIR model on the triangle network are:

Initial states:

ṖSSS = 0 (B.1)

ṖSSI = −(2R + 1)PSSI (B.2)

Transient states:

ṖSII = 2RPSSI − 2(R + 1)PSII (B.3)

ṖSIR = 2PSII − (R + 1)PSIR (B.4)

ṖIIR = RPSIR + 3PIII − 2PIIR (B.5)

ṖIII = 2RPSII − 3PIII (B.6)

ṖIRR = 2PIIR − PIRR (B.7)

Absorbing states:

ṖSSR = PSSI (B.8)

ṖSRR = PSIR (B.9)

ṖRRR = PIRR (B.10)

We have included the equation for the initial state SSS for completeness, even though
it is disjoint from the transition diagram as no infection is present. For the following
networks of four nodes we use the same methods and notation as detailed for the triangle
and line networks of three nodes.

B.2. Complete Network

We now examine networks of four nodes, again starting with the simplest case which is
the complete network. For an SIR model on a network of N = 4 nodes there are 81
possible states that the network can be in. As all nodes in this network are topologically
equivalent, we reduce the size of the system by grouping states together based on the
number of nodes in each infection state. This results in 15 different states shown in the
transition diagram in Figure B.3. We consider one initial condition for the SIR epidemic
on a complete network where one node (either a, b, c or d) is the initial infectious node.
The final size probabilities for the complete network of 4 nodes are shown in Table 2.
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Figure B.2: Numerical results for solving the system of differential equations (B.1) -
(B.10) which describes the progression of infection over time for an SIR model on a
triangle network with N = 3 nodes. Left and right columns contain graphical results for
R = 1 and R = 2 respectively for the specified initial conditions. The numerical results
are in agreement with the analytical expressions for the same set of initial conditions.

B.2.1. Catalogue of transition probabilities

In the following PWXY Z denotes the probability that the network is ever in state WXY Z,
where W , X, Y and Z denote the infection state (S, I or R) that nodes a, b, c and d are
in respectively.
Possible initial state: ESSSI = 1
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Figure B.3: Complete network with N = 4 nodes.

Probability of passing through transient states:

PSSII =
3R

3R + 1
ESSSI

PSSIR =
2

4R + 2
PSSII

PSIII =
4R

4R + 2
PSSII

PSIIR =
3

3R + 3
PSIII +

2R
2R + 1

PSSIR

PSIRR =
2

2R + 2
PSIIR

PIIII =
3R

3R + 3
PSIII

PIIIR = PIIII +
2R

2R + 2
PSIIR

PIIRR = PIIIR +
R
R + 1

PSIRR

PIRRR = PIIRR
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Table 2: Complete network final size PMFs

Initial State SSSI

P(Final Size =1)
1

3R + 1

P(Final Size =2)
3R

(2R + 1)2 (3R + 1)

P(Final Size =3)
6R2 (3R + 2)

(R + 1)3 (2R + 1)2 (3R + 1)

P(Final Size =4)
6R3 (2R3 + 8R2 + 12R + 5)

(R + 1)3 (2R + 1)2 (3R + 1)

Expected FS
48R6 + 196R5 + 310R4 + 217R3 + 73R2 + 13R + 1

(R + 1)3 (2R + 1)2 (3R + 1)

Probability of terminating in absorbing states:

PSSSR =
1

3R + 1
ESSSI

PSSRR =
1

2R + 1
PSSIR

PSRRR =
1

R + 1
PSIRR

PRRRR = PIRRR

To find the equations for the final size probabilities we evaluated the following:

P(Final Size = 1) = PSSSR

P(Final Size = 2) = PSSRR

P(Final Size = 3) = PSRRR

P(Final Size = 4) = PRRRR

Simplifying the above we obtained the final size equations for the complete network with
four nodes as shown in Table 2.

B.2.2. Progression of infection over time

In the following we use PWXY Z to denote the probability that the complete network
is in the state WXY Z at time t, where W , X, Y and Z denote the infection state
(S, I or R) that nodes a, b, c and d are in respectively. Thus, the equation for the
time derivative ṖWXY Z shows how the network can enter and leave the state WXY Z.
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Equations describing the probability that the network is in a given state at time t for an
SIR model on the complete network of N = 4 are:

Initial states:

ṖSSSS = 0 (B.11)

ṖSSSI = −(3R + 1)PSSSI (B.12)

(B.13)

Transient states:

ṖSSII = 3RPSSSI − (4R + 2)PSSII (B.14)

ṖSSIR = 2PSSII − (2R + 1)PSSIR (B.15)

ṖSIII = 4RPSSII − 3(R + 1)PSIII (B.16)

ṖSIIR = 3PSIII + 2RPSSIR − 2(R + 1)PSIIR (B.17)

ṖSIRR = 2PSIIR − (R + 1)PSIRR (B.18)

ṖIIII = 3RPSIII − 4PIIII (B.19)

ṖIIIR = 2RPSIIR + 4PIIII − 3PIIIR (B.20)

ṖIIRR = RPSIRR + 3PIIIR − 2PIIRR (B.21)

ṖIRRR = 2PIIRR − PIRRR (B.22)

Absorbing states:

ṖSSSR = PSSSI (B.23)

ṖSSRR = PSSIR (B.24)

ṖSRRR = PSIRR (B.25)

ṖRRRR = PIRRR (B.26)
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Figure B.4: Numerical results for solving the system of differential equations (B.11) -
(B.26) which describes the progression of infection over time for an SIR model on a
complete network with N = 4 nodes. Left and right columns contain graphical results for
R = 1 and R = 2 respectively for the specified initial conditions. The numerical results
are in agreement with the analytical expressions for the same set of initial conditions.

B.3. Square Network

The square network is a regular network in which each node has degree 2. As all nodes
are topologically equivalent if we start the epidemic with one initial infectious node it can
be either node a, b, c or d. The first initial state, SSSI, represents starting the epidemic
with one infectious node. The second initial state, SIIS, represents starting the epidemic
with two infectious nodes which are not neighbours; that is nodes a and d or nodes b and
c are the initial infectious nodes (see Figure B.5). We decided to look into the case of
starting with two initial infectious nodes (second initial state) within a network as it is
not unlikely that two individuals within a population acquire an infection independently
of each other and from which an epidemic may occur. We illustrate the probability mass
functions of the final size for the square network found with two initial conditions in Table
3.

B.3.1. Catalogue of transition probabilities

Possible initial state indicator variables:

ESSSI =

{
1, if initial state is SSSI.

0, otherwise.
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Figure B.5: Square network with N = 4 nodes.

ESIIS =

{
1, if initial state is SIIS.

0, otherwise.

Probability of passing through transient states:

PSSII =
2R

2R + 1
ESSSI

PSSIR =
2

2R + 2
PSSII

PSIRS =
2

4R + 2
ESIIS
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PSIII =
4R

4R + 2
ESIIS +

2R
2R + 2

PSSII

PIISR =
2R

2R + 1
PSIRS +

R
R + 1

PSSIR +
2

2R + 2
PSIII

PRRSI =
1

R + 2
PIISR +

2

2R + 2
PIRSI

PIIII =
2R

2R + 3
PSIII

PIRSI =
1

2R + 3
PSIII

PRISR =
1

R + 2
PIISR

PIIIR = PIIII +
2R

2R + 2
PIRSI +

R
R + 2

PIISR

PIIRR =
2

3
PIIIR +

R
R + 1

PRRSI

PIRRI =
1

3
PIIIR

PIRRR = PIRRI + PIIRR

Probability of terminating in absorbing states:

PSSSR =
1

2R + 1
ESSSI

PSSRR =
1

R + 1
PSSIR

PSRRS =
1

2R + 1
PSIRS

PSRRR = PRRSI + PRISR

PRRRR = PIRRR

To find the equations for the final size probabilities we evaluated the following:

P(Final Size = 1) = PSSSR

P(Final Size = 2) = PSSRR + PSRRS

P(Final Size = 3) = PSRRR

P(Final Size = 4) = PRRRR

Simplifying the above we obtained the final size equations for the square network with
four nodes as shown in Table 3.
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Table 3: Square Network Final Size PMFs

Initial State SSSI SIIS

P(Final Size =1)
1

2R + 1 0

P(Final Size =2)
2R

(2R + 1)(R + 1)2
1

(2R + 1)2

P(Final Size =3)
4R2

(R + 1)3(2R + 1)

2R(3R2 + 5R + 2)

(R + 1)3(2R + 1)2

P(Final Size =4) 1− R
3 + 9R2 + 5R + 1

(R + 1)3(2R + 1)
1− 7R2 + 6R + 1

(R + 1)2(2R + 1)2

Expected FS 4− 3R3 + 17R2 + 13R + 3

(R + 1)3(2R + 1)
4− 2

(R + 1)2

B.3.2. Progression of infection over time

Equations describing the probability that the network is in a given state at time t for an
SIR model on the square network are:

Initial states:

ṖSSSS = 0 (B.27)

ṖSSSI = −(2R + 1)PSSSI (B.28)

ṖSIIS = −(4R + 2)PSIIS (B.29)

Transient states:

ṖSSII = 2RPSSSI − 2(R + 1)PSSII (B.30)

ṖSSIR = 2PSSII − (R + 1)PSSIR (B.31)

ṖSIII = 2RPSSII + 4RPSIIS − (2R + 3)PSIII (B.32)

ṖSIRI = 2PSIII +RPSSIR + 2RPSIRS − (R + 2)PSIRI (B.33)

ṖSIRR = PSIRI + 2PSIIR − (R + 1)PSIRR (B.34)

ṖSRRI = PSIRI − PSRRI (B.35)

ṖSIIR = PSIII − 2(R + 1)PSIIR (B.36)

ṖIIII = 2RPSIII − 4PIIII (B.37)

ṖIIIR = 4PIIII + 2RPSIIR +RPSIRI − 3PIIIR (B.38)

ṖIIRR = 2PIIIR +RPSIRR − 2PIIRR (B.39)

ṖIRRI = PIIIR − 2PIRRI (B.40)

ṖIRRR = 2(PIIRR + PIRRI)− PIRRR (B.41)

ṖSIRS = 2PSIIS − (2R + 1)PSIRS (B.42)

(B.43)
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Figure B.6: Numerical results for solving the system of differential equations (B.27) -
(B.48) which describes the progression of infection over time for an SIR model on a
square network with N = 4 nodes. Left and right columns contain graphical results for
R = 1 and R = 2 respectively for the specified initial conditions. Dashed lines represent
transient states and solid lines are the absorbing states. The numerical results are in
agreement with the analytical expressions for the same set of initial conditions.

Absorbing states:

ṖSSSR = PSSSI (B.44)

ṖSSRR = PSSIR (B.45)

ṖSRRS = PSIRS (B.46)

ṖSRRR = PSIRR + PSRRI (B.47)

ṖRRRR = PIRRR (B.48)
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Figure B.7: Star network with N = 4 nodes.

B.4. Star Network

For a star network of N nodes there are two different types of nodes, the centre node with
degree N − 1 and the N − 1 outer nodes each of which have degree one. Here we have
a centre node with degree 3 and three outer nodes with degree 1. Therefore, the final
size probabilities will again depend on which type of node is initially infected. We denote
ISSS as the initial state in which the centre node is infectious; SSSI, SSII and SIII
denote the initial state in which 1, 2 and 3 of the outer nodes are infectious respectively.
The probability mass functions of the final size for the star network found with four initial
conditions are shown in Table 4.
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B.4.1. Catalogue of transition probabilities

Possible initial state indicator variables:

ESSSI =

{
1, if initial state is SSSI.

0, otherwise.

EISSS =

{
1, if initial state is ISSS.

0, otherwise.

ESSII =

{
1, if initial state is SSII.

0, otherwise.

ESIII =

{
1, if initial state is SIII.

0, otherwise.

Probability of passing through transient states:

PSIIR =
3

3R + 3
ESIII

PSIRR =
2

2R + 2
PSIIR

PISSI =
R
R + 1

ESSSI +
3R

3R + 1
EISSS

PSSIR =
2

2R + 2
ESSII

PRSSI =
1

2R + 2
PISSI

PISII =
2R

2R + 2
(PISSI + ESSII)

PISSR =
1

2R + 2
PISSI

PIIII =
R
R + 3

PISII +
3R

3R + 3
ESIII

PISIR =
2

R + 3
PISII +

2R
2R + 1

PISSR +
R
R + 1

PSSIR

PRSII =
1

R + 3
PISII

PISRR =
1

R + 2
PISIR
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PRSIR = PRSII +
1

R + 2
PISIR

PIIIR =
3

4
PIIII +

R
R + 2

PISIR +
2R

2R + 2
PSIIR

PRIII =
1

4
PIIII

PRIIR = PRIII +
1

3
PIIIR

PIIRR =
R
R + 1

(PISRR + PSIRR) +
2

3
PIIIR

PIRRR =
1

2
PIIRR

PRIRR =
1

2
PIIRR + PRIIR

Probability of terminating in absorbing states:

PSSSR =
1

R + 1
ESSSI

PRSSS =
1

3R + 1
EISSS

PSSRR =
1

R + 1
PSSIR

PRSSR = PRSSI +
1

2R + 1
PISSR

PSRRR =
1

R + 1
PSIRR

PRSRR = PRSIR +
1

R + 1
PISRR

PRRRR = PIRRR + PRIRR

To find the equations for the final size probabilities we evaluated the following:

P(Final Size = 1) = PSSSR + PRSSS

P(Final Size = 2) = PSSRR + PRSSR

P(Final Size = 3) = PSRRR + PRSRRR

P(Final Size = 4) = PRRRR

Simplifying the above we obtained the final size equations for the star network with four
nodes as shown in Table 4.



18

Table 4: Star Network final size PMFs

Initial State SSSI ISSS SSII SIII

P(Final Size =1)
1

R + 1

1

3R + 1 0 0

P(Final Size =2)
R

(R + 1)(2R + 1)

3R
(2R + 1)(3R + 1)

1

(R + 1)2 0

P(Final Size =3)
2R2

(R + 1)2(2R + 1)

6R2

(R + 1)(2R + 1)(3R + 1)

R
(R + 1)2

1

(R + 1)3

P(Final Size =4)
6R4 − 5R2 − 4R − 1

(R + 1)2(2R + 1)(3R + 1)

6R3

(R + 1)(2R + 1)(3R + 1)

R2(R + 2)

(R + 1)3
1− 1

(R + 1)3

Expected FS 4− 5R + 3

(R + 1)2
4− 3

R + 1
4− R

2 + 4R + 2

(R + 1)3
4− 1

(R + 1)3

B.4.2. Progression of infection over time

Equations describing the probability that the network is in a given state at time t for an
SIR model on the star network are:

Initial states:

ṖSSSS = 0 (B.49)

ṖSSSI = −(R + 1)PSSSI (B.50)

ṖISSS = −(3R + 1)PISSS (B.51)

ṖSSII = −2(R + 1)PSSII (B.52)

ṖSIII = −3(R + 1)PSIII (B.53)

Transient states:

ṖISSI = 3RPISSS +RPSSSI − 2(R + 1)PISSI (B.54)

ṖISII = 2R(PISSI + PSSII)− (R + 3)PISII (B.55)

ṖSSIR = 2PSSII − (R + 1)PSSIR (B.56)

ṖRSSI = PISSI − PRSSI (B.57)

ṖISSR = PISSI − (2R + 1)PISSR (B.58)

ṖSIIR = 3PSIII − 2(R + 1)PSIIR (B.59)

ṖRSII = PISII − 2PRSII (B.60)

ṖISIR = 2PISII +R(PSSIR + 2PISSR)− (R + 2)PISIR (B.61)

ṖIIII = R(3PSIII + PISII)− 4PIIII (B.62)

ṖSIRR = 2PSIIR − (R + 1)PSIRR (B.63)

ṖRSIR = (2PRSII + PISIR)− 1PRSIR (B.64)

ṖISRR = PISIR − (R + 1)PISRR (B.65)

ṖIIIR = R(2PSIIR + PISIR) + 3PIIII − 3PIIIR (B.66)

ṖRIII = PIIII − 3PRIII (B.67)

ṖRIIR = (3PRIII + PIIIR)− 2PRIIR (B.68)

ṖIIRR = R(PISRR + PSIRR) + 2PIIIR − 2PIIRR (B.69)

ṖIRRR = PIIRR − PIRRR (B.70)

ṖRIRR = (PIIRR + 2PRIIR)− PRIRR (B.71)

(B.72)
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Absorbing states:

ṖSSSR = PSSSI (B.73)

ṖRSSS = PISSS (B.74)

ṖSSRR = PSSIR (B.75)

ṖRSSR = (PRSSI + PISSR) (B.76)

ṖSRRR = PSIRR (B.77)

ṖRSRR = (PISRR + PRSIR) (B.78)

ṖRRRR = (PIRRR + PRIRR) (B.79)
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Figure B.8: Numerical results for solving the system of differential equations (B.49) -
(B.79) which describes the progression of infection over time for an SIR model on a
star network with N = 4 nodes. Left and right columns contain graphical results for
R = 1 and R = 2 respectively for the specified initial conditions. Dashed lines represent
transient states and solid lines are the absorbing states. The numerical results are in
agreement with the analytical expressions for the same set of initial conditions.

B.5. Toast Network

The toast network is simply a square network with one diagonal edge through it. There
are two different types of nodes in the toast network, two nodes of degree 2 (nodes b and



20

c) and two nodes of degree 3 (nodes a and d). The probability mass functions of the final
size for the toast network found with three initial conditions are shown in Table 5. We
denote SSIS as the initial state in which node b or c is infectious; SSSI as the initial
state in which node a or d is infectious and SIIS as the initial state in which nodes b and
c are infectious.

B.5.1. Catalogue of transition probabilities

Possible initial state indicator variables:

ESISS =

{
1, if initial state is SISS.

0, otherwise.

EISSS =

{
1, if initial state is ISSS.

0, otherwise.

ESIIS =

{
1, if initial state is SIIS.

0, otherwise.

Probability of passing through transient states:

PIISS =
2R

2R + 1
ESISS +

2R
3R + 1

PSSSI

PISSI =
R

3R + 1
PSSSI

PRSSI =
2

4R + 2
PISSI

PSRIS =
2

4R + 2
ESIIS

PIIIS =
4R

4R + 2
ESIIS +

R
3R + 2

PIISS

PISII =
2R

3R + 2
PIISS +

4R
4R + 2

PISSI

PSSIR =
1

3R + 2
PIISS

PIRSS =
1

3R + 2
PIISS

PSIIR =
1

3R + 3
PIIIS

PISRI =
1

2R + 3
PISII +

R
2R + 1

PIRSS
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PISIR =
2

2R + 3
PISII +

2R
2R + 1

PRSSI +
R
R + 1

PSSIR

PIRIS =
2

3R + 3
PIIIS +

2R
2R + 1

PSRIS +
R

2R + 1
PIRSS

PIIII =
3R

3R + 3
PIIIS +

2R
2R + 3

PISII

PSIRR =
2

2R + 2
PSIIR +

1

2R + 2
PIRIS

PISRR =
2

2R + 2
PISRI +

1

R + 2
PISIR

PSRRI =
1

2R + 2
PIRIS

PRSIR =
1

R + 2
PISIR

PIIIR =
2R

2R + 2
PSIIR +

1

2
PIIII +

R
R + 2

PISIR

PIRII =
1

2
PIIII +

2R
2R + 2

PISRI +
2R

2R + 2
PIRIS

PIRIR =
R
R + 1

(PSIRR + PISRR) +
2

3
(PIRII + PIIIR)

PIRRI =
1

3
PIRII +

R
R + 1

PSRRI

PRIIR =
1

3
PIIIR

PIRRR =
1

2
PIRIR + PIRRI

PRIRR =
1

2
PIRIR + PRIIR
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Table 5: Toast network final size PMFs

Initial State SSIS SSSI SIIS

P(Final Size =1)
1

2R + 1

1

3R + 1 0

P(Final Size =2)
2R

(R + 1) (2R + 1)2
R (5R + 3)

(R + 1) (2R + 1)2 (3R + 1)

1

(2R + 1)2

P(Final Size =3)
2R2 (2R + 3)

(R + 1)3(2R + 1)2
2R2 (7R2 + 13R + 5)

(R + 1)3(2R + 1)2 (3R + 1)

2R (3R + 2)

(R + 1)3(2R + 1)2

P(Final Size =4)
2R3 (2R + 3) (R + 2)

(R + 1)3(2R + 1)2
2R3 (6R3 + 24R2 + 28R + 9)

(R + 1)3(2R + 1)2 (3R + 1)
1− R

3 + 9R2 + 7R + 1

(R + 1)3(2R + 1)2

Expected FS 4− 6R4 + 29R3 + 4R2 + 19R + 3

(R + 1)3(2R + 1)2
4− 6R4 + 33R3 + 47R2 + 21R + 3

(R + 1)3 (2R + 1) (3R + 1)
4− 2R3 + 12R2 + 10R + 2

(R + 1)3(2R + 1)2

Probability of terminating in absorbing states:

PSRSS =
1

2R + 1
ESISS

PSSSR =
1

3R + 1
PSSSI

PRSSR =
1

2R + 1
PRSSI

PSRRS =
1

2R + 1
PSRIS

PRRSS =
1

R + 1
PSSIR +

1

2R + 1
PIRSS

PRSRR = PRSIR +
1

R + 1
PISRR

PSRRR =
1

R + 1
(PSRRI + PSIRR)

PRRRR = PIRRR + PRIRR

To find the equations for the final size probabilities we evaluated the following:

P(Final Size = 1) = PSRSS + PSSSR

P(Final Size = 2) = PRSSR + PSRRS + PRRSS

P(Final Size = 3) = PRSRR + PSRRR

P(Final Size = 4) = PRRRR

Simplifying the above we obtained the final size equations for the toast network with four
nodes as shown in Table 5.
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B.5.2. Progression of infection over time

Equations describing the probability that the network is in a given state at time t for an
SIR model on the toast network are:

Initial states:

ṖSSSS = 0 (B.80)

ṖSSIS = −(2R + 1)PSSIS (B.81)

ṖSSSI = −(3R + 1)PSSSI (B.82)

ṖSIIS = −(2 + 4R)PSIIS (B.83)

Transient states:

ṖSSII = −(3R + 2)PSSII + 2RPSSIS + 2RPSSSI (B.84)

ṖISSI = RPSSSI − (4R + 2)PISSI (B.85)

ṖRSSI = 2PISSI − (2R + 1)PRSSI (B.86)

ṖSRIS = 2PSIIS − PSRIS (B.87)

ṖSIII = 4RPSIIS +RPSSII − (3R + 3)PSIII (B.88)

ṖISII = 2RPSSII + 4RPISSI − (2R + 3)PISII (B.89)

ṖSSIR = PSSII − (R + 1)PSSIR (B.90)

ṖSRSI = PSSII − (2R + 1)PSRSI (B.91)

ṖRISI = 2PISII + 2RPRSSI +RPSSIR − (R + 2)PRISI (B.92)

ṖSIIR = PSIII − 2(R + 1)PSIIR (B.93)

ṖIRSI = PISII +RPSRSI − 2(R + 1)PIRSI (B.94)

ṖIRIS = 2PSIII +RPSRSI − 2(R + 1)PIRIS (B.95)

ṖIIII = 3RPSIII + 2RPISII − 4PIIII (B.96)

ṖSIRR = 2PSIIR + 2PIRIS − (R + 1)PSIRR (B.97)

ṖISRR = PRISI + 2PIRSI − (R + 1)PISRR (B.98)

ṖSRRI = PIRIS − (R + 1)PSRRI (B.99)

ṖRSIR = PRISI − PRSIR (B.100)

ṖIIIR = 2RPSIIR +RPRISI + 2PIIII − 3PIIIR (B.101)

ṖIRII = 2R(PIRSI + PIRIS) + 2PIIII − 3PIRII (B.102)

ṖRIRI = 2(PIIIR + PIRII) +R(PSIRR + PISRR)− 2PRIRI (B.103)

ṖIRRI = PIRII +RPSRRI − 2PIRRI (B.104)

ṖRIIR = PIIIR − 2PRIIR (B.105)

ṖIRRR = 2PIRRI + PRIRI − PIRRR (B.106)

ṖRIRR = 2PRIIR + PRIRI − PRIRR (B.107)
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Figure B.10: Numerical results for solving the system of differential equations (B.80) -
(B.115) which describes the progression of infection over time for an SIR model on a
toast network with N = 4 nodes. Left and right columns contain graphical results for
R = 1 and R = 2 respectively for the specified initial conditions. Dashed lines represent
transient states and solid lines are the absorbing states. The numerical results are in
agreement with the analytical expressions for the same set of initial conditions.

Absorbing states:

ṖSRSS = PSSIS (B.108)

ṖSSSR = PSSSI (B.109)

ṖRSSR = PRSSI (B.110)

ṖSRRS = PSRIS (B.111)

ṖSSRR = PSSIR + PSRSI (B.112)

ṖRSRR = PRSIR + PISRR (B.113)

ṖSRRR = PSRRI + PSIRR (B.114)

ṖRRRR = PIRRR + PRIRR (B.115)



26

B.6. Line Network

Similarly to a line network of N = 3 nodes, a line network of N = 4 nodes has two
different types of nodes, the end nodes of degree 1 (nodes a and d) and the centre nodes
of degree 2 (nodes b and c). We denote SSIS as the initial state in which node b or c is
infectious; SSSI as the initial state in which node a or d is infectious; SISI as the initial
state in which nodes b and d are infectious and ISSI as the initial state in which nodes
a and d are infectious. The probability mass functions of the final epidemic size for the
line network of four nodes found with four initial conditions are shown in Table 6.

B.6.1. Catalogue of transition probabilities

Possible initial state indicator variables:

ESISS =

{
1, if initial state is SISS.

0, otherwise.

ESSSI =

{
1, if initial state is SSSI.

0, otherwise.

ESISI =

{
1, if initial state is SISI.

0, otherwise.

EISSI =

{
1, if initial state is ISSI.

0, otherwise.

Probability of passing through transient states:

PSSII =
R
R + 1

ESSSI +
R

2R + 1
ESISS

PSIIS =
R

2R + 1
ESISS

PSRIS =
2

2R + 2
PSIIS

PISSR =
2

2R + 2
EISSI

PSSIR =
1

R + 2
PSSII

PSSRI =
1

R + 2
PSSII

PSIII =
R
R + 2

PSSII +
2R

2R + 2
PSIIS +

2R
3R + 2

ESISI
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PISII =
R

3R + 2
ESISI +

2R
2R + 2

EISSI

PIIII =
R
R + 3

PSIII +
2R

2R + 3
PISII

PSRSI =
1

3R + 2
ESISI

PSISR =
1

3R + 2
ESISI

PSIIR =
R
R + 1

PSSIR +
R

2R + 1
PSISR +

1

R + 3
PSIII

PSIRI =
1

R + 3
PSIII

PSRII =
1

R + 3
PSIII +

R
R + 1

(PSRIS + PSRSI)

PIISR =
R
R + 1

PISSR +
R

2R + 1
PSISR +

1

2R + 3
PIISI

PISRI =
1

2R + 3
PIISI

PISIR =
1

2R + 3
PIISI

PSRIR =
1

2
PSRII +

1

R + 2
PSIIR

PSIRR =
1

R + 2
(PSIIR + PSIRI)

PSRRI =
1

2
PSRII +

1

R + 2
PSIRI

PRSIR =
1

R + 2
PIISR +

1

2R + 2
PISIR

PISRR =
1

R + 2
PISRI +

1

2R + 2
PISIR

PRSRI =
1

R + 2
(PISRI + PIISR)

PIIIR =
R
R + 2

(PSIIR + PIISR) +
2R

2R + 2
PISIR +

1

2
PIIII
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PIIRI =
1

2
PIIII +

R
R + 1

PSIRI +
R
R + 2

PISRI

PIRRI =
1

3
PIIRI

PIIRR =
1

3
(PIIRI + PIIIR) +

R
R + 1

(PSIRR + PISRR)

PIRIR =
1

3
(PIIRI + PIIIR)

PRIIR =
1

3
PIIRI +

R
R + 1

PRSIR

PIRRR =
1

2
(PIIRR + PIRIR) + PIRRI

PRIRR =
1

2
(PIIRR + PIRIR) + PRIIR

Probability of terminating in absorbing states:

PSSSR =
1

R + 1
ESSSI

PSRSS =
1

2R + 1
ESISS

PSRRS =
1

R + 1
PSRIS

PRSSR =
1

R + 1
PISSR

PSSRR =
1

R + 1
PSSIR + PSSRI

PSRSR =
1

R + 1
PSRSI +

1

2R + 1
PSISR

PSRRR = PSRIR + PSRRI +
1

R + 1
PSIRR

PRSRR = PRSRI +
1

R + 1
(PISRR + PRSIR)

PRRRR = PIRRR + PRIRR
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Table 6: Line network final size PMFs

Initial State SSSI SSIS ISSI SISI

P(Final Size =1)
1

R + 1

1

2R + 1 0 0

P(Final Size =2)
R

(R + 1)2
R (R + 2)

(R + 1)2 (2R + 1)

1

(R + 1)2
1

(R + 1) (2R + 1)

P(Final Size =3)
R2

(R + 1)3
3R2

(R + 1)2 (2R + 1)

2R
(R + 1)3

R (2R + 3)

(R + 1)2 (2R + 1)

P(Final Size =4)
R3

(R + 1)3
2R3

(R + 1)2 (2R + 1)
1− 3R + 1

(R + 1)3
R2 (2R + 3)

(R + 1)2 (2R + 1)

Expected FS 4− 6R2 + 8R + 3

(R + 1)3
(2R + 1)2

(R + 1)2
4− 2 (2R + 1)

(R + 1)3
4− R + 2

(R + 1)2

To find the equations for the final size probabilities we evaluated the following:

P(Final Size = 1) = PSSSR + PSRSS

P(Final Size = 2) = PSRRS + PRSSR + PSSRR + PSRSR

P(Final Size = 3) = PSRRR + PRSRR

P(Final Size = 4) = PRRRR

Simplifying the above we obtained the final size equations for the line network with four
nodes as shown in Table 6.

B.6.2. Progression of infection over time

Equations describing the probability that the network is in a given state at time t for an
SIR model on the line network of N = 4 are:

Initial states:

ṖSSSS = 0 (B.116)

ṖSSSI = −(R + 1)PSSSI (B.117)

ṖSSIS = −(2R + 1)PSSIS (B.118)

ṖSISI = −(3R + 2)PSISI (B.119)

ṖISSI = −2(R + 1)PISSI (B.120)

Transient states:

ṖSSII = R(PSSSI + PSSIS)− (R + 2)PSSII (B.121)

ṖSIIS = RPSSIS − 2(R + 1)PSIIS (B.122)

ṖSRIS = 2PSIIS − (R + 1)PSRIS (B.123)

ṖISSR = 2PISSI − (R + 1)PISSR (B.124)
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ṖSSIR = PSSII − (R + 1)PSSIR (B.125)

ṖSSRI = PSSII − PSSRI (B.126)

ṖSRSI = PSISI − (R + 1)PSRSI (B.127)

ṖSISR = PSISI − (2R + 1)PSISR (B.128)

ṖSIII = RPSSII + 2R(PSIIS + PSISI)− (R + 3)PSIII (B.129)

ṖIISI = RPSISI + 2RPISSI − (2R + 3)PIISI (B.130)

ṖIIII = RPSIII + 2RPIISI − 4PIIII (B.131)

ṖSIIR = R(PSSIR + PSISR) + PSIII − (R + 2)PSIIR (B.132)

ṖSIRI = PSIII − (R + 2)PSIRI (B.133)

ṖSRII = PSIII +R(PSRIS + PSRSI)− 2PSRII (B.134)

ṖIISR = PIISI +R(PSISR + PISSR)− (R + 2)PIISR (B.135)

ṖISRI = PIISI − (R + 2)PISRI (B.136)

ṖISIR = PIISI − (2R + 2)PISIR (B.137)

ṖSRIR = PSIIR + PSRII − PSRIR (B.138)

ṖSIRR = PSIIR + PSIRI − (R + 1)PSIRR (B.139)

ṖSRRI = PSRII + PSIRI − PSRRI (B.140)

ṖRSIR = PIISR + PISIR − (R + 1)PRSIR (B.141)

ṖISRR = PISIR + PISRI − (R + 1)PISRR (B.142)

ṖRSRI = PISRI + PIISR − PRSRI (B.143)

ṖIIIR = 2PIIII +R(PSIIR + PIISR + 2PISIR)− 3PIIIR (B.144)

ṖIIRI = 2PIIII +R(PSIRI + PISRI)− 3PIIRI (B.145)

ṖIRRI = PIIRI − 2PIRRI (B.146)

ṖIIRR = PIIIR + PIIRI +R(PSIRR + PISRR)− 2PIIRR (B.147)

ṖIRIR = PIIIR + PIIRI − 2PIRIR (B.148)

ṖRIIR = PIIIR +RPRSIR − 2PRIIR (B.149)

ṖIRRR = 2PIRRI + PIIRR + PIRIR − PIRRR (B.150)

ṖRIRR = 2PRIIR + PIIRR + PIRIR − PRIRR (B.151)

Absorbing states:

ṖSSSR = PSSSI (B.152)

ṖSSRS = PSSIS (B.153)

ṖSRRS = PSRIS (B.154)

ṖRSSR = PISSR (B.155)

ṖSSRR = PSSIR + PSSRI (B.156)

ṖSRSR = PSRSI + PSISR (B.157)

ṖSRRR = PSRIR + PSIRR + PSRRI (B.158)

ṖRSRR = PRSIR + PISRR + PRSRI (B.159)

ṖRRRR = PIRRR + PRIRR (B.160)
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Figure B.12: Numerical results for solving the system of differential equations (B.116)
- (B.160) which describes the progression of infection over time for an SIR model on
a line network with N = 4 nodes. Left and right columns contain graphical results for
R = 1 and R = 2 respectively for the specified initial conditions. Dashed lines represent
transient states and solid lines are the absorbing states. The numerical results are in
agreement with the analytical expressions for the same set of initial conditions.

B.7. Lollipop network

For the lollipop network there are three different types of nodes; node a has degree 3, nodes
b and c have degree 2 and node d has degree 1. Therefore, the final size probabilities vary
depending on which type of node is the initial infectious node. We denote ISSS as the
initial state in which node a is infectious; SSSI as the initial state in which node d is
infectious; SISS as the initial state in which either node b or node c is infectious and
SSII as the initial state in which nodes b and d are infectious. The probability mass
functions of the final size for the lollipop network found with four initial conditions are
shown in Table 7.

B.7.1. Catalogue of transition probabilities

Possible initial state indicator variables:

ESISS =

{
1, if initial state is SISS.

0, otherwise.
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EISSS =

{
1, if initial state is ISSS.

0, otherwise.

ESSSI =

{
1, if initial state is SSSI.

0, otherwise.

ESSII =

{
1, if initial state is SSII.

0, otherwise.

Probability of passing through transient states:

PIISS =
2R

3R + 1
EISSS +

R
2R + 1

ESISS

PISSI =
R

3R + 1
EISSS +

R
R + 1

ESSSI

PSIIS =
R

2R + 1
ESISS

PRSSI =
1

2R + 2
PISSI

PISSR =
1

2R + 2
PISSI

PRISS =
1

3R + 2
PIISS

PIRSS =
1

3R + 2
PIISS

PIIIS =
2R

3R + 2
PIISS +

2R
2R + 2

PSIIS

PIISI =
R

3R + 2
PIISS +

2R
2R + 2

PISSI +
2R

3R + 2
ESSII

PSIII =
R

3R + 2
ESSII

PSSRI =
1

3R + 2
ESSII

PSSIR =
1

3R + 2
ESSII

PSIRS =
2

2R + 2
PSIIS

PSIIR =
1

3R + 3
PSIII +

R
2R + 1

PSSIR

PSIRI =
2

3R + 3
PSIII
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PSIRR =
2

2R + 2
PSIIR +

1

2R + 2
PSIRI

PRIIS =
R
R + 1

PRISS +
1

R + 3
PIIIS

PIIII =
R
R + 3

PIIIS +
2R

2R + 3
PIISI +

3R
3R + 3

PSIII

PRISI =
1

2R + 3
PIISI

PIRSI =
1

2R + 3
PIISI +

R
2R + 1

PIRSS +
R
R + 1

PSSRI

PIISR =
1

2R + 3
PIISI +

R
2R + 1

PSSIR +
2R

2R + 1
PISSR

PIIRS =
2

R + 3
PIIIS +

R
R + 1

PSIRS +
R

2R + 1
PIRSS

PSRRI =
1

2R + 1
PSIRI

PRRIS = PRIIS +
1

R + 2
PIIRS

PIRSR =
1

2R + 2
PIISR +

1

R + 2
PIRSI

PRISR =
1

2R + 2
PIISR +

1

R + 2
PRISI

PRRSI =
1

R + 2
PIRSI +

1

R + 2
PRISI

PIRRS =
1

R + 2
PIIRS

PIIRI =
R
R + 2

PIIRS +
1

2
PIIII +

R
R + 2

PIRSI +
2R

2R + 1
PSIRI

PRIII =
1

4
PIIII +

R
R + 2

PRISI

PIIIR =
1

4
PIIII +

2R
2R + 2

PSIIR +
2R

2R + 2
PIISR

PRRII =
2

3
PRIII +

1

3
PIIRI

PRIIR =
1

3
(PIIIR + PRIII) +

R
R + 1

PRISR

PIIRR =
R
R + 1

(PIRSR + PSIRR) +
2

3
PIIIR +

1

3
PIIRI

PIRRI =
R
R + 1

PSRRI +
R
R + 1

PIRRS +
1

3
PIIRI

PRRRI =
1

2
(PRRII + PIRRI)

PRIRR = PRIIR +
1

2
(PIIRR + PRRII)

PIRRR =
1

2
(PIIRR + PIRRI)
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Probability of terminating in absorbing states:

PRSSS =
1

3R + 1
EISSS

PSSSR =
1

R + 1
ESSSI

PSRSS =
1

2R + 1
ESISS

PRSSR =
1

2R + 1
PISSR + PRSSI

PRRSS =
1

R + 1
PRISS +

1

2R + 1
PIRSS

PSRRS =
1

R + 1
PSIRS

PSSRR =
1

2R + 1
PSSIR +

1

R + 1
PSSRI

PSRRR =
1

R + 1
(PSRRI + PSIRR)

PRRSR =
1

R + 1
(PRISR + PIRSR) + PRRSI

PRRRS =
1

R + 1
PIRRS + PRRIS

PRRRR = PIRRR + PRIRR + PRRRI

To find the equations for the final size probabilities we evaluated the following:

P(Final Size = 1) = PRSSS + PSSSR + PSRSS

P(Final Size = 2) = PRSSR + PRRSS + PSRRS + PSSRR

P(Final Size = 3) = PSRRR + PRRSR + PRRRS

P(Final Size = 4) = PRRRR

Simplifying the above we obtained the final size equations for the lollipop network with
four nodes as shown in Table 7.
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Table 7: Lollipop network final size PMFs

Initial State SSSI SISS ISSS SSII

P(Final Size =1)
1

R + 1

1

2R + 1

1

3R + 1 0

P(Final Size =2)
R

(R + 1) (2R + 1)

R (3R + 2)

(R + 1)2(2R + 1)2
R (R + 3)

(R + 1) (2R + 1) (3R + 1)

1

(R + 1) (2R + 1)

P(Final Size =3)
2R2

(R + 1)3 (2R + 1)

R2 (4R2 + 10R + 5)

(R + 1)3(2R + 1)2
4R2 (R + 2)

(R + 1)2 (2R + 1) (3R + 1)

R (2R + 3)

(R + 1)3 (2R + 1)

P(Final Size =4)
2R3 (R + 2)

(R + 1)3 (2R + 1)

R3 (4R2 + 10R + 5)

(R + 1)3(2R + 1)2
2R3 (3R + 5)

(R + 1)2 (2R + 1) (3R + 1)

R2 (2R + 3) (R + 2)

(R + 1)3 (2R + 1)

Expected FS 4− 8R3 + 21R2 + 14R + 3

(R + 1)3 (2R + 1)
4− 5R3 + 16R2 + 13R + 3

(R + 1)3 (2R + 1)
4− 4R2 + 9R + 3

(R + 1)2 (2R + 1)
4− 4R2 + 7R + 2

(R + 1)3 (2R + 1)

B.7.2. Progression of infection over time

Equations describing the probability that the network is in a given state at time t for an
SIR model on the lollipop network are:

Initial states:

ṖSSSS = 0 (B.161)

ṖISSS = −(3R + 1)PISSS (B.162)

ṖSISS = −(2R + 1)PSISS (B.163)

ṖSSSI = −(R + 1)PSSSI (B.164)

ṖSSII = −(3R + 2)PSSII (B.165)

Transient states:

ṖIISS = 2RPISSS +RPSISS − (3R + 2)PIISS (B.166)

ṖISSI = R(PISSS + PSSSI)− 2(R + 1)PISSI (B.167)

ṖSIIS = RPSISS − 2(R + 1)PSIIS (B.168)

ṖRSSI = PISSI − PRSSI (B.169)

ṖISSR = PISSI − PISSR (B.170)

ṖRISS = PIISS − (R + 1)PRISS (B.171)

ṖIIIS = 2R(PIISS + PSIIS)− (R + 3)PIIIS (B.172)

ṖSIII = RPSSII − 3(R + 1)PSIII (B.173)

ṖSSRI = PSSII − (R + 1)PSSRI (B.174)

ṖSSIR = PSSII − (2R + 1)PSSIR (B.175)

ṖSIRS = 2PSIIS − (R + 1)PSIRS (B.176)

ṖIRSS = PIISS − (2R + 1)PIRSS (B.177)

ṖIISI = 2R(PISSI + PSSII) +RPIISS − (2R + 3)PIISI (B.178)
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ṖSIIR = RPSSIR + PSIII − 2(R + 1)PSIIR (B.179)

ṖSIRR = 2PSIIR + PSIRI − (R + 1)PSIRR (B.180)

ṖSIRI = 2PSIII − 2(R + 1)PSIRI (B.181)

ṖRIIS = PIIIS +RPRISS − 2PRISS (B.182)

ṖIIII = R(PIIIS + 2PIISI + 3PSIII)− 4PIIII (B.183)

ṖRISI = PIISI − (R + 2)PRISI (B.184)

ṖIRSI = R(PIRSS + PSSRI) + PIISI − (R + 2)PIRSI (B.185)

ṖIISR = RPSSIR + PIISI − 2(R + 1)PIISR (B.186)

ṖIIRS = 2PIIIS +R(PSIRS + PIRSS)− (R + 2)PIIRS (B.187)

ṖSRRI = PSIRI − (R + 1)PSRRI (B.188)

ṖRIII = PIIII +RPRISI − 3PRIII (B.189)

ṖIIIR = PIIII + 2R(PSIIR + PIISR)− 3PIIIR (B.190)

ṖRRIS = 2PRIIS + PIIRS − PRRIS (B.191)

ṖIRSR = PIRSI + PIISR − (R + 1)PIRSR (B.192)

ṖRISR = PIISR + PRSIR − (R + 1)PRISR (B.193)

ṖRRSI = PIRSI + PRISI − PRRSI (B.194)

ṖIRRS = PIIRS − (R + 1)PIRRS (B.195)

ṖIIRI = 2RPSIRI +R(PIIRS + PIRSI) + 2PIIII − 3PIIRI (B.196)

ṖRRII = 2PRIII + PIRII − 2PRRII (B.197)

ṖRRRI = PRRII + PIRRI − PRRRI (B.198)

ṖRIIR = PRIII + PIIIR +RPRISR − 2PRIIR (B.199)

ṖIIRR = 2PIIIR +R(PIRSR + PSIRR)− 2PIIRR + PIIRI (B.200)

ṖIRRI = R(PSRRI + PIRRS) + PIIRI − 2PIRRI (B.201)

ṖRIRR = 2PRIIR + PRRII + PIIRR − PRIRR (B.202)

ṖIRRR = PIRRI + PIIRR − PIRRR (B.203)

Absorbing states:

ṖRSSS = PISSS (B.204)

ṖSSSR = PSSSI (B.205)

ṖSRSS = PSISS (B.206)

ṖRSSR = PISSR + PRSSI (B.207)

ṖRRSS = PRISS + PIRSS (B.208)

ṖSRRS = PSIRS (B.209)

ṖSSRR = PSSRI + PSSIR (B.210)
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ṖSRRR = PSIRR + PSRRI (B.211)

ṖRRSR = PRISR + PRRSI + PIRSR (B.212)

ṖRRRS = PRRIS + PIRRS (B.213)

ṖRRRR = PIRRR + PRRRI + PRIRR (B.214)
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Figure B.14: Numerical results for solving the system of differential equations (B.161)
- (B.214) which describes the progression of infection over time for an SIR model on
a line network with N = 4 nodes. Left and right columns contain graphical results for
R = 1 and R = 2 respectively for the specified initial conditions. Dashed lines represent
transient states and solid lines are the absorbing states. The numerical results are in
agreement with the analytical expressions for the same set of initial conditions.
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