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Appendix A: Line network, N =3

To verify our analytical expressions for the final epidemic size we ran 2 x 10° stochastic
simulations and calculated the frequency of each final size occurring. In Figure A.1 we
illustrate what can happen in the stochastic model by plotting the results from three reali-
sations. These results were computed using R = 1 with the initial state SSI. We compute
stochastic simulation results for all small networks discussed in this paper, however we
omit graphical results for the remaining seven networks.

A.1. Explanation of Figure A.1

Realisation 1: Initially we start the epidemic with two susceptible nodes, one infectious
node and zero nodes in the recovered state (S =2, I =1 and R = 0). After one time step
one susceptible node becomes infected and the initial infectious node recovers (S = 1,
I =1, R =1). During the next time step the last susceptible node becomes infectious
and one infectious node recovers (S =0, I = 1 and R = 2). Finally the last infectious
node recovers which gives a final epidemic size of 3 for this realisation (S =0, [ =0 and
R =23).

Realisation 2: Initially we start the epidemic with two susceptible nodes, one infec-
tious node and zero nodes in the recovered state (S = 2, I = 1 and R = 0). After one
time step one susceptible node becomes infected (S =1, I =2, R = 0). During the next
time step one infectious node recovers (S =1, I = 1, R = 1). Finally the last infectious
node recovers which gives a final epidemic size of 2 for this realisation (S =1, I =0 and
R=2).

Realisation 3: Initially we start the epidemic with two susceptible nodes, one in-
fectious node and zero nodes in the recovered state (S = 2, I = 1 and R = 0). After
one time step the infectious node recovers which gives a final epidemic size of 1 for this
realisation (S =2,/ =0and R=1).
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Figure A.1: Illustration of three stochastic realisations. Each graph tracks the number of
nodes in each infection state (S, I and R) over time. The resulting final size for each of
the realisations are 3, 2 and 1 respectively.

Appendix B: Methods for an SR model on small net-
works

B.1. Triangle network

The triangle network is the simplest case of a network of N = 3 nodes; it is a complete
network and all nodes have degree two. There are 27 possible states which the triangle
network can be in for an SIR epidemic process. As we are dealing with a complete
network, we can group states together based on those with the same number of nodes
in each infection state to reduce the size of the system. In the triangle network, if the
epidemic is started with one initial infectious node it does not matter if that is node a, b or ¢
as each node is topologically equivalent. From the transition diagram of the STR model on
the triangle network (Figure B.1) we derive the individual transition probabilities between
network states. We obtain the final size probabilities for the SITR epidemic process on
the triangle network, given that the epidemic was started with one initial infectious node
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Figure B.1: Triangle (complete) network with N = 3 nodes.

shown in Table 1. Note that the probability of the final size equaling one is the same as
the infection not taking off, that is the one infectious node recovers before it could infect
one of its neighbours.

B.1.1. Catalogue of transition probabilities

From the transition diagram of the STR model on the triangle network we derive the in-
dividual transition probabilities between network states. In the following Pxyz denotes
the probability that the network is ever in state XY Z, where X, Y and Z denote the
infection state (S5, I or R) that nodes a, b and ¢ are in respectively. These probabilities are
independent of time and depend only on the infection parameters. From the absorbing
state probabilities we find the final epidemic size probabilities, PP.

Possible initial state: Eggr =1



Table 1: Triangle network final size PMF's

Initial State SS51
1
P(Final Size =1) IR+1
R
P(Final Size =2) (R+12R+1)
_ORR+Y
P(Final Size =3) (R+122R+1)
3 2
Expected FS OR +13,5 TR ¥1
(R+1)"2R+1)

Probability of passing through transient states:

2R
= E

Psir SR st

2
Psir = R 273511

2R
P = R+ 273511
Pun = = PantP

nn = 5 Psin 111

Pire = Pur

Probability of terminating in absorbing states:

1
Pssr = R 1Essz
1
Psrr = Rl Psir
Prer = Prir

To find the equations for the final size probabilities we evaluated the following:

P(Final Size = 1) = Pgssr
]P(Final Size = 2) = PSRR
]P’(Final Size = 3) = PRRR
Simplifying the above we derive the analytic expressions for the final size probabilities

for the triangle network as shown in Table 1. The probability mass function of the final
size distribution for the triangle network is shown in Figure 5 of the main text.



B.1.2. Progression of infection over time

In the following we use Pxyz to denote the probability that the triangle network is in
the state XY Z at time ¢, where X, Y and Z denote the infection state (S, I or R) that
nodes a, b and ¢ are in respectively. Thus, the equation for the time derivative Pxy
shows how the network can enter and leave the state XY Z. The rate the network enters
and leaves each state can be found from the transition diagram. These equations allow
us to simulate the time course of the epidemic and to check our final size calculations.
Equations describing the probability that the network is in a given state at time ¢ for an
STR model on the triangle network are:

Initial states:

Psss = 0 (B.1)
Pss; = —(2R 4 1)Pss; (B.2)
Transient states:
Ps;p = 2RPsg; — 2(R +1)Pgyy (B.3)
Psir = 2Psir — (R +1)Psir (B.4)
PHR = RPsir+ 3Pirr —2Prrr (B.5)
Py = 2RPsi — 3Py (B.6)
Prrr = 2Pir — Prrr (B.7)
Absorbing states:
Pssp = Pssi (B.8)
Psgpr = Psir (B.9)
Prrr = Prrr (B.10)

We have included the equation for the initial state SS.S for completeness, even though
it is disjoint from the transition diagram as no infection is present. For the following
networks of four nodes we use the same methods and notation as detailed for the triangle
and line networks of three nodes.

B.2. Complete Network

We now examine networks of four nodes, again starting with the simplest case which is
the complete network. For an STR model on a network of N = 4 nodes there are 81
possible states that the network can be in. As all nodes in this network are topologically
equivalent, we reduce the size of the system by grouping states together based on the
number of nodes in each infection state. This results in 15 different states shown in the
transition diagram in Figure B.3. We consider one initial condition for the STR epidemic
on a complete network where one node (either a, b, ¢ or d) is the initial infectious node.
The final size probabilities for the complete network of 4 nodes are shown in Table 2.
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Figure B.2: Numerical results for solving the system of differential equations (B.1) -
(B.10) which describes the progression of infection over time for an SIR model on a
triangle network with N = 3 nodes. Left and right columns contain graphical results for
R =1 and R = 2 respectively for the specified initial conditions. The numerical results
are in agreement with the analytical expressions for the same set of initial conditions.

B.2.1. Catalogue of transition probabilities

In the following Py xy 7 denotes the probability that the network is ever in state W XY Z,
where W, X, Y and Z denote the infection state (S, I or R) that nodes a, b, ¢ and d are
in respectively.

Possible initial state: Egggr =1
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Figure B.3: Complete network with N = 4 nodes.

Probability of passing through transient states:

Pssir = %Esssz
Pssin = s Pssin

Psir = %PSSH

Psiir = W?)_FE;PSIH + %Pssm
Psirr = TQJFQPSHR

Prir = %7’5111

Prirr = Pror + %PSHR

Prrr = Piir+ Psirr

R+1
PIRRR - PHRR



Table 2: Complete network final size PMF's

Initial State SSSI
1
P(Final Size =1) 3R+1
3R
P(Final Size =2) CR+1)?BR+1)
6R2(3R +2)
P(Final Size =3) (R+1)°QR+1)°BR+1)
6R*(2R*+8R*+12R +5)
P(Final Size =4) R+1PQ2R+1)°BR+1)
6 5 4 3 2
Expected Fs | SR +196R +312R +217272 +73R2+13R +1
(R+1P2R+1)°BR+1)

Probability of terminating in absorbing states:

1

Psssr = WESSSI
1

Pssrr = R +1PSSIR
1

PSRRR = R+1PSIRR

7;’RRRR = P]RRR

To find the equations for the final size probabilities we evaluated the following:

P(Final Size = 1)
P(Final Size = 2) Pssrr
P(Final Size = 3) = Psgrrr
P(Final Size = 4)

Psssr

- PRRRR

Simplifying the above we obtained the final size equations for the complete network with
four nodes as shown in Table 2.

B.2.2. Progression of infection over time

In the following we use Py xyz to denote the probability that the complete network
is in the state W XY Z at time ¢, where W, X, Y and Z denote the infection state
(S, I or R) that nodes a, b, ¢ and d are in respectively. Thus, the equation for the
time derivative PWXYZ shows how the network can enter and leave the state W XY Z.



Equations describing the probability that the network is in a given state at time ¢ for an

STR model on the complete network of N = 4 are:

Initial states:
Pssss = 0
Psssi = —(3R +1)Psgsy

Transient states:
Pss;i = 3RPsssi — (4R +2)Pssn
Pssir = 2Pssip — (2R + 1) Pssir
Psir = 4RPssir — 3(R + 1) Psprr
Psiir = 3Psir + 2R Pssir — 2(R + 1) Psir
Psirr = 2Psiir — (R +1)Psrrr
Prr = 3RPsir — APy
Prir = 2RPsir + 4P — 3Prr
Prirr = RPsirr + 3Pk — 2Prrnr

Pirrr = 2Prrr — Pirrr
Absorbing states:

Psssp = Psssr
Pssrr = Pssir
Psrrr = Psirr

Prrrr = Prrrr

(B.11)
(B.12)
(B.13)
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Figure B.4: Numerical results for solving the system of differential equations (B.11) -
(B.26) which describes the progression of infection over time for an SIR model on a
complete network with N = 4 nodes. Left and right columns contain graphical results for
R =1 and R = 2 respectively for the specified initial conditions. The numerical results
are in agreement with the analytical expressions for the same set of initial conditions.

B.3. Square Network

The square network is a regular network in which each node has degree 2. As all nodes
are topologically equivalent if we start the epidemic with one initial infectious node it can
be either node a, b, ¢ or d. The first initial state, SSSI, represents starting the epidemic
with one infectious node. The second initial state, STI.S, represents starting the epidemic
with two infectious nodes which are not neighbours; that is nodes a and d or nodes b and
¢ are the initial infectious nodes (see Figure B.5). We decided to look into the case of
starting with two initial infectious nodes (second initial state) within a network as it is
not unlikely that two individuals within a population acquire an infection independently
of each other and from which an epidemic may occur. We illustrate the probability mass
functions of the final size for the square network found with two initial conditions in Table
3.

B.3.1. Catalogue of transition probabilities

Possible initial state indicator variables:

E _J 1, if initial state is SSST.
8981 0, otherwise.
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Figure B.5: Square network with N = 4 nodes.

1, if initial state is SIIS.

Esirs =
0, otherwise.

Probability of passing through transient states:

2R
Pssir mESSSI
2
PSSIR m PSSII
2
Psirs Esrrs

4R + 2



PS[II
Prrsr
Prrs1
Prirr
Prrst
Prisr
Priir
Prrrr

7DI RRI

PI RRR

12

Probability of terminating in absorbing states:

R asns T o +2PSSH
2R R 2
P P P
TR 1 SIRS+R+1 SSIR+2R+2 SIII
1 2
P
R 12 ISR + R 27311%31
2R
P
oR + 3 o
1
2R + 3PSUI
1
P
R Lo ISR
2R R
Prrrr + R T 2731351 + R 2731151%
2 R
=P P
3 I1IR T Rl RRSI
1
=P
5 /IR
Prrrr + Prigr
Psssp = ——F
SSSR = o T TSSSI
1
P = P
SSRR R 1 SSIR
1
Psrrs = R+ 1775135
Psrrr = Prrst + Prisr
Prrer = Pirrr

To find the equations for the final size probabilities we evaluated the following:

P(Final Size = 1
P(Final Size = 2
P(Final Size = 3
P(Final Size = 4

)
)
)
)

Psssr
Pssrr + Psrrs
Psrrr

PRRRR

Simplifying the above we obtained the final size equations for the square network with
four nodes as shown in Table 3.



Table 3: Square Network Final Size PMF's

13

Initial State SSSIT SIS
1
P(Final Size =1) IR+ 1 0
2R 1
P(Final Size =2) QR+ 1)(R+ 1) (2R +1)?
4R? 2R(3R* + 5R +2)
P(Final Size =3) (R+1)32R + 1) (R+1P32R +1)?
1_R?’+9R2+5R+1 - TR?+6R +1
P(Final Size =4) (R+122R+1) (R+1)2(2R + 1)
3 2
Expected FS _3RP4+1TR? + 13R + 3 .2
(R+1P2R+1) (R+1)?

B.3.2. Progression of infection over time

Equations describing the probability that the network is in a given state at time t for an
STR model on the square network are:

Initial states:

Pssss = 0 (B.27)
Psss; = —(2R + 1)Psssr (B.28)
Psizs = —(4R 4 2)Psirs (B.29)
Transient states:

Pssir = 2RPsssi — 2(R + 1)Pssii (B.30)
Pssir = 2Pssir — (R +1)Pssir (B.31)
Psiir = 2RPssir + 4R Psis — (2R + 3) Py (B.32)
Psipr = 2Psiir+ RPssin + 2R Psrrs — (R +2)Psrr - (B.33)
Psirr = Psirr +2Psiir — (R + 1) Psrrr (B.34)
Pspri = Psrri — Psrar (B.35)
Psiir = Psir—2(R+1)Psig (B.36)
Prr = 2RPsir — AP (B.37)
Prir = AP+ 2RPsir + RPsirr — 3Prir (B.38)
Prrr = 2Piir + RPsirr — 2Prirr (B.39)
Prrrr = Prir — 2Prrea (B.40)
Prrrr = 2(Prrrr + Prrri) — Pirrr (B.41)
Psirs = 2Psizs — (2R + 1) Psigs (B.42)
(B.43)
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Figure B.6: Numerical results for solving the system of differential equations (B.27) -
(B.48) which describes the progression of infection over time for an SIR model on a
square network with NV = 4 nodes. Left and right columns contain graphical results for
R =1 and R = 2 respectively for the specified initial conditions. Dashed lines represent
transient states and solid lines are the absorbing states. The numerical results are in
agreement with the analytical expressions for the same set of initial conditions.

Absorbing states:

Psssp = Psssr (B.44)
Psspr = Pssir (B.45)
Psprs = Psirs (B.46)
Psrrr = Psirr + Psrri (B.47)
Prrrr = Pirgr (B.48)
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Figure B.7: Star network with N = 4 nodes.

B.4. Star Network

For a star network of N nodes there are two different types of nodes, the centre node with
degree N — 1 and the N — 1 outer nodes each of which have degree one. Here we have
a centre node with degree 3 and three outer nodes with degree 1. Therefore, the final
size probabilities will again depend on which type of node is initially infected. We denote
1S5S as the initial state in which the centre node is infectious; SSSI, SSII and SIII
denote the initial state in which 1, 2 and 3 of the outer nodes are infectious respectively.
The probability mass functions of the final size for the star network found with four initial

conditions are shown in Table 4.



B.4.1. Catalogue of transition probabilities

Possible initial state indicator variables:

L,
0,

Esssr = {
Ersss = {
Essir = {
Esrir = {

I
0,

L,
0,

L,
0,

if initial state is SSSI.

otherwise.

if initial state is ISSS.

otherwise.

if initial state is SSII.
otherwise.

if initial state is STI1.

otherwise.

Probability of passing through transient states:

3
Psiir = R +3ESHI
2
Psirr = R +27)SIIR
R 3R
— E E
Prssi Rl sssr + SR 1 1585
2
Pssir = R +2ESSH
1
Prsst = R +27DISSI
2R
Prsir = R 2 (Prssr + Essir)
1
Prssp = R +2PISSI
R 3R
= E
Prrrr R13 PISH"‘ IR 13 SIIT
2 2R
Prsirn = R13 731511 + R 17)15511 +
1
Prsir = R+3 PISH
1
Prsrr = Prsir

R+ 2

R+1



1

P = P P
RSIR RrRSIT + R4 ISIR
3 R
Priir = ZPHH + R QPISIR +
1
Prirr = ZPIIH
1
Prirte = Prir + gpnm
Prirn = =X (Prsun+ Psinn) + =P
HRR = 5 ISRR SIRR 5 /IR
1
Prrrr = §PHRR

1
Prirr = §PHRR + Prirr

Probability of terminating in absorbing states:

1

Psssr = R 1ESSSI
Prsss = 3R1 1 Ersss
Pssun = z—Pssin
Prssr = Prssi+ 2R1 1
Psrrr = R i ] Psirr
Prsrr = Prsir + ) :_ 1
Prrrr = Pirrr + Prirr

To find the equations for the final size probabilities we evaluated the following:

P(Final Size =1

P(Final Size = 3

P(Final Size = 4 = PRRRR

7DISRR

( ) = Psssr+ Prsss
P(Final Size = 2) = Pgssrr + Prssr
( )

( )

= Psrrr + Prsrrr

17

Simplifying the above we obtained the final size equations for the star network with four
nodes as shown in Table 4.



Table 4: Star Network final size PMF's
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Initial State SSST 1555 SSIT SIIT
1 1
P(Final Size =1) R+1 3R+1 0 0
R ___ 3R _r
P(Final Size =2) R+1D2R+1) QR+ 1)(BR+1) (R+1) 0
2R? 6R> R 1
P(Final Size =3) (R+1)22R +1) (R+1DE2R+1)(BR+1) (R+1)2 (R+1)3
6R* —5R? —4R — 1 6R3 R*(R +2) !
P(Final Size =4)| (R 1 1)2QR+1)3R+1) | (R+ DR+ 1)BR+1) (R+1) (R+1)
Expected FS 4 SR +3 47i 4*% 4o 1 t
(R+1)? R+1 (R+1)3 (R+1)3

B.4.2. Progression of infection over time

Equations describing the probability that the network is in a given state at time ¢ for an
STR model on the star network are:

Initial states:

Pssss = 0 (B.49)
Psss; = —(R +1)Pssgsr (B.50)
Prsss = —(3R+1)Prsss (B.51)
Pssir = —2(R+1)Pssi; (B.52)
Psiip = —3(R+1)Psir (B.53)
Transient states:

Prssi = 3RPsss + RPsssr—2(R + 1) Prss; (B.54)
Prsir = 2R(Prsst + Pssir) — (R + 3) Prarr (B.55)
Pssir = 2Pssir — (R + 1)Pssir (B.56)
Prsst = Prssi — Prssr (B.57)
Prssp = Prssi— (2R +1)Prssr (B.58)
Psiir = 3Psir — 2(R+ 1) Psprr (B.59)
Prsii = Prsir — 2Prsir (B.60)
Prsir = 2Prsir+ R(Pssir + 2Prssr) — (R+2)Prsir - (B.61)
Prr = R(3Psrr + Prsir) — 4P (B.62)
Psirr = 2Psirr — (R + 1) Psrrr (B.63)
Prsir = (2Prsir + Prsir) — 1Prsrr (B.64)
Prsgr = Prsir — (R +1)Prsgr (B.65)
Prir = R(2Psiir + Prsir) + 3P — 3Prig (B.66)
Prirr = P — 3Prir (B.67)
Pritr = (3Prirr + Prirr) — 2Prirr (B.68)
Prirr = R(Prsrr + Psirr) + 2Prr — 2Prrrr (B.69)
Prrrr = Prrr — Pirrr (B.70)
Prirg = (Prirr + 2Pgrirr) — Prirg (B.71)
(B.72)
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Absorbing states:

Psssr = Psssr (B.73)
Prsss = Prsss (B.74)
Pssrr = Pssir (B.75)
Prssr = (Pgrssr + Prssr) (B.76)
Psrrr = Psirr (B.77)
Prser = (Pisrr + Prsir) (B.78)
Prrer = (Pirrr + Prirr) (B.79)
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17
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Figure B.8: Numerical results for solving the system of differential equations (B.49) -
(B.79) which describes the progression of infection over time for an SITR model on a
star network with N = 4 nodes. Left and right columns contain graphical results for
R =1 and R = 2 respectively for the specified initial conditions. Dashed lines represent
transient states and solid lines are the absorbing states. The numerical results are in
agreement with the analytical expressions for the same set of initial conditions.

B.5. Toast Network

The toast network is simply a square network with one diagonal edge through it. There
are two different types of nodes in the toast network, two nodes of degree 2 (nodes b and
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¢) and two nodes of degree 3 (nodes a and d). The probability mass functions of the final
size for the toast network found with three initial conditions are shown in Table 5. We
denote SSIS as the initial state in which node b or ¢ is infectious; SSSI as the initial
state in which node a or d is infectious and ST1S as the initial state in which nodes b and
¢ are infectious.

B.5.1. Catalogue of transition probabilities

Possible initial state indicator variables:

0, otherwise.

1, if initial state is SISS.
Esiss =

£ _J 1, if initial state is 1.55S.
1895 0, otherwise.

B ~ )1, if initial state is STIS.
SIS 0, otherwise.

Probability of passing through transient states:

b R LR
nss = gplsiss + o Psssi
R
Prssr = SR 1735551
2
Prssr = R 27)1531
2
Psris = R 2ESHS
4R
Prirs = R 2Esns + SR 2731155
2R 4R
Prsir SR 2731133 + MPISSI
1
Pssir SR 2731155
1
Pirss SR 27)1155
1
Psirr SR 3731115
1
Prsri Prsir + Prrss

2R +3 2R +1



Prsir
Piris

Prrrr
Psirr
Prsrr
Psrri
Prsrr
Priir
Prrir
Pirir
Pirrr
Prirr
Pirrr

PRIRR
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2 2R R
mpfsn + R 1733551 + R 1P551R
2 N 2R P N R P
SR 3 s T oy sRIs T g UIRss
3R N 2R P
SR 3 IS T o g s
2
IR+ 27DSHR + Rt 2731315
2 1
R+ ZPISRI + R 2771513
1
2R + 5 Prnis
1
7o QPISIR
2R 1 R
TR+ QPSHR + 5731111 + R+ 273151}2
1 2R 2R
5771111 + R+ 277151%1 + R+ 27711%15
2
R—H(PSIRR + Prsrr) + g(PIRII + Priir)
1 R
=P P
3 FIRIT + R+1 SRRI
1
=P
3 /IR
1
§P1R1R + Prrir
1
—Prrir + Priir

2
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Table 5: Toast network final size PMF's

Initial State H SSIS H SSSIT H SIIS

1 1
P(Final Size =1) Rl 3R+1 0
2R R (5R +3) 1
P(Final Size =2) (R+1)2R+1) (R+1)2R+1)° B3R +1) 2R +1)?
2R? (2R +3) 2R (TR2+13R +5) 2R (3R +2)
P(Final Size =3) (R+1)P2QR+1)? (R+1*2R+1)> (3R +1) R+1P°QR+1)
2R (2R+3) (R+2) 2R3 (6R>+24R?+28R +9) CRPHIRP+TR+1
P(Final Size =4) (R+1)P2QR+1)? (R+1*2R+1)> (3R +1) (R+1)PQR+1)
E 6R*+29R* +4R*+19R +3 6R*+33R3+4TR*+21R +3 2R3+ 12R*+10R +2
xpected FS - 3 5 4— 3 4— 3 5
R+1PCR+1) (R+1°2R+1) BR+1) (R+1PCR+1)

Probability of terminating in absorbing states:

Psrss = 2R1 ] Esrss

Psssr = 3R1 n 1735351

Prssr = 2R1 n 17DRSSI

Psuns = 5—Psuis

Prrss = R:— 1 Pssrr + TR 1 Prrss
Prsrr = Prsir+ Ri 1 Prsrr

1
Psrrr = R—H(PSRRI + Psirr)

Prerr = Pirrr + Prigr

To find the equations for the final size probabilities we evaluated the following;:

P(Final Size = 1

( Psrss + Psssr
P(Final Size = 2

(

(

Prssr + Psrrs + Prrss
P(Final Size = 3
P(Final Size = 4

= Prser + Psrrr

- PRRRR

)
)
)
)

Simplifying the above we obtained the final size equations for the toast network with four
nodes as shown in Table 5.
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B.5.2. Progression of infection over time

Equations describing the probability that the network is in a given state at time ¢ for an
STR model on the toast network are:

Initial states:

Pssss = 0 (B.80)

Pssrs = —(2R +1)Pssis (B.81)

Psss; = —(3R +1)Psgsr (B.82)

Psrrs = —(2+4R)Psiis (B.83)
Transient states:

Pss;p = —(3R +2)Pssis + 2R Pssis + 2R Psssr (
Prssi = RPsssr— (4R +2)Prss; (
Prsst = 2Prssi — (2R + 1) Prssy (
Psprs = 2Psizs — Psris (
Psir = 4RPsiis + RPssir — (3R + 3) Py (
Prsir = 2RPssiy+ 4R Prssr — (2R + 3) Prsiy (
Pssir = Pssir— (R +1)Pssir (
Pspst = Pssir— (2R + 1) Psgsy (
Prrsr = 2Prsir + 2R Prssr + RPssir — (R + 2) Prisi (B.92
Psiir = Psir— 2(R +1)Psirr (
Prrsi = Prsi+ RPspsi — 2(R + 1) Prrsi (
Prrrs = 2Psir + RPsrsr — 2(R + 1) Prars (
P = 3RPsir + 2R Pisi — 4P (
Psirr = 2Psrir + 2Prris — (R + 1) Psrre (
Prspr = Prisi +2Pirsi — (R + 1) Prsrr (
Pspri = Prris — (R +1)Psrar (
Prsir Prrsr — Prsir (
Piir = 2RPsir + RPrist + 2P — 3Prg (
Prrir = 2R(Pirst + Prrrs) + 2P — 3Prgir (
Prirt = 2(Prir + Prrir) + R(Pstrr + Prsrr) — 2Prrrr (B.103
Prrri = Prrir + RPsgrr — 2Prgar (
Prirr Prirr — 2Prirr (
Prrrr 2Prrrr + Prirr — Pirrr (
(

PRIRR = 2f)RIIR + PRIRI - PRIRR
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SRSS
—SSSR
—RSSR
—SRRS
—SSRR

RSRR
—SRRR
—RRRR

Figure B.10: Numerical results for solving the system of differential equations (B.80) -
(B.115) which describes the progression of infection over time for an SIR model on a
toast network with N = 4 nodes. Left and right columns contain graphical results for
R =1 and R = 2 respectively for the specified initial conditions. Dashed lines represent
transient states and solid lines are the absorbing states. The numerical results are in
agreement with the analytical expressions for the same set of initial conditions.

Absorbing states:

Pspss

Psssr =

Prssp =

Psrrs

Pssrr

Prsrr =
Psrrr =
Prrrr =

Pssrs
Psss1
Prssr
Psrrs
Pssrr + Psrst
Prsrr + Prsrr
Psgrrr + Psirr
Prrrr + Prirr
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B.6. Line Network

Similarly to a line network of N = 3 nodes, a line network of N = 4 nodes has two
different types of nodes, the end nodes of degree 1 (nodes a and d) and the centre nodes
of degree 2 (nodes b and ¢). We denote SSIS as the initial state in which node b or ¢ is
infectious; SSST as the initial state in which node a or d is infectious; SIST as the initial
state in which nodes b and d are infectious and I.SST as the initial state in which nodes
a and d are infectious. The probability mass functions of the final epidemic size for the
line network of four nodes found with four initial conditions are shown in Table 6.

B.6.1. Catalogue of transition probabilities
Possible initial state indicator variables:

1, if initial state is SISS.
Esrss =

0, otherwise.

1, if initial state is SSST.
Esssr = .
0, otherwise.

1, if initial state is SIST.
Esrsr =

0, otherwise.

1, if initial state is ISSI.
Erssr =

0, otherwise.

Probability of passing through transient states:

R R
_ F A
Pssir R ssst + SR 1 sIss
R
Psiis = R 1ESISS
2
Psris = R +2PSHS
2
Prssp = R +2EISSI
1
Pssin = = +2775511
1
Pssrr = = +2PSSH
R 2R 2R
Psirr = —=——=Pssir +

—~_p A
R +2 9R 12 SIS T 3R glusIst



Prsir

Prirr
Psrsr
Psisr
Psrir
Psirr
PS RII
Prrsr
PI SRI
Prsir
Psrir
Psirr
Psrr1
Prsrr
Prsrr
Prsr1

7DIIIR
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R E + 2R E
3R oSSt T g ptsst
R 2R
R+3 oMt R g 1o
1
E
3R o SISt
1
E
3R 4o SISt
R R 1
R IPSSJR + R 17351512 + R 3775111
1
R+ 3775111
L i+ = (Penrs + Psnsi)
Ry 3 st g Psms SRSI
R R 1
R ssnt gy sisnt o ghst
1
2R + 3PHSI
1
2R + BPHSI
173 + L P
5 Psai+ 5 Psun
1
R+2 (Psiir + Psirr)
1
5735}211 + R 277511%1
1
R 2771155: + R 27315112
1 1
R—_'_QPISRI + mplsm
1
— (P P
R+ 2( rsri + Prisr)
R 2R 1
R—H(PSHR + Prrsr) + R 2731511% + 5731111
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1
P = P P P
IIRI o + R+1 SIRI T R 19 ISRI
1
Prrrr = 5771131
Prnn = ~(Punt+Piitr) + ——(Psinn + Prsns)
11irR = S \PIIRI IITR R 1\ sIkR ISRR
1
Pririr = 5(77111%1 + Prrir)
1 R
Pritr = §P11R1 + R 1PRSIR
1
Prrrr = §(PHRR + Pirir) + Pirrr
1
Prirr = E(PHRR + Prrir) + Prir
Probability of terminating in absorbing states:
Psssn = =8
SssR = o HsssI
1
= E
Psrss OR 41 s1ss
1
P = P
SRRS R L1 SEIs
1
P = P
RSSR R 1 ISR
1
P = P P
SSRR Rl SSIR T FSSRI
1
P = P P
SRSR Rl SRSI T+ R 1 SISR
P = P +P + P
SRRR SRIR SRRI T 75— PsinR
1
P = P —(P P
RSRR RSRI + R 1( rsrr + Prsir)

Prrrr = Pirrr + Prirr
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Table 6: Line network final size PMFs

30

Initial State H

SSIS H

5SST ISST SISI
1 1
P(Final Size =1) R+1 2R +1 0 0
R _ R(R+2) 1 S S
P(Final Size =2) (R +1)? (R+1)22R+1) (R+1) (R+1)2R+1)
R? R 2R _RQRi3)
P(Final Size =3) (R +1)° R+12ER+1) (R+1)° (R+1)*2R+1)
R? R 3R _RPQRi3)
P(Final Size =4) R+1) (R+1)°2R+1) (R+1)° (R+1)°2R+1)
9 2
Expected FS 4*% (2R+1?Z 72(2R+31) B R+22
(R4 1) (R+1) (R +1) (R+1)

To find the equations for the final size probabilities we evaluated the following:

P(Final Size = 1)
P(Final Size = 2)
P(Final Size = 3)
P(Final Size = 4)

Psssr + Psrss

Psrrs + Prssr + Pssrr + Psrsr

Psrrr + Prsrr
Prrrr

Simplifying the above we obtained the final size equations for the line network with four
nodes as shown in Table 6.

B.6.2. Progression of infection over time

Equations describing the probability that the network is in a given state at time ¢ for an
STR model on the line network of N = 4 are:

Initial states:
Pssss

Psssr

Pssrs

Psis1

Prssr
Transient states:
Pssii

Psirs

Psrrs

Prssr

e}

—(R + 1) Psss1

—(2R + 1) Pssr1s
—(3R + 2)Psys1
—2(R + 1) Prssi

R(Psssr + Pssis) — (R +2)Pssir
RPssrs — 2(R +1)Psirs

2Psr1s — (R + 1) Psris

2Prssr — (R + 1) Prssr




Absorbing

Pssrr
Pssnr
Psrst
Psrsr
Psrir
PIISI
Prris
Psrir
Psri
Psrir
Prrsr
Prsri
Prsir
Psrir
Psirr
Psgrr
Prsir
Prsrr
Prsrr
PIIIR
Prirr
Prrrr
Prrrr
Prrir
Prrir
Prrrr
Prirr
states:
Psssr
Pssrs
Psrrs
Prssr
Pssrr
Psrsr
Psrrr
Prsrr

P RRRR

Pssir — (R +1)Pssir

Pssir — Pssrr

Psrsr — (R + 1) Psgrst

Psrst — (2R + 1) Psisr

RPssir 4 2R(Psris + Psisr) — (R + 3) Psrir
RPsisr +2RPrssr — (2R + 3) Prrsr

RPsiir + 2R Prrsr — 4P

R(Pssir + Psisr) + Psirr — (R + 2) Psrir
Psiir — (R +2)Psirr

Psrir + R(Psrrs + Psrsr) — 2Psrir

Prrsr + R(Psrsr + Prssr) — (R +2)Prrsr
Prrst — (R 4 2) Prsgr

Prrsr — (2R +2) Prsir

Psrir + Psrir — Psrir

Psrir + Psirr — (R + 1) Psirr

Psrir + Psirr — Psrri

Prisr + Prsir — (R + 1) Prsir

Pisir + Prsrr — (R + 1) Prsgrr

Prsrr + Prisg — Prsri

2P + R(Psitr + Prrsr + 2Pisir) — 3Prrir
2P1r11 + R(Psirr + Prsrr) — 3Prirr

Prirr — 2PrrR1

Prrir + Prirr + R(Psirr + Prsrr) — 2Pirrr
Prirr + Prirr — 2Prig

Prirr + RPrsrr — 2Prirr

2Prrr1 + Prirr + Prrir — PIRRR

2Priir + Prirr + Prrir — Prirr

Psssr

Pssis

Psrrs

Prssr

Pssir + Pssrr

Psrsr + Psisr

Psrir + Psirr + Psrrr
Prsir + Prsrr + Prsrr

Prrrr + Prirr
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@ 0.5 ™.
c tsl
Q ’-__q:e:-’;‘-}"—’—-//— SSsSsss===
O i L = -
2 0 1 2 3 4 5 3 4 5
I “Initial State: SSIS Y initial State: SSIS —SSSR
S osh | ol | |—SSRs
= S B —SRRS
0 s e T ———— | OMm{-ﬂﬂﬁm o
S 0 1 2 3 4 5 0 1 2 3 4 5 | RSSR
5 : ‘ : N ‘ —SSRR
g 1\ Initial State: SISI 1 Initial State: SISI SRSR
k) \ ]
2 05 7 05 —SRRR
— . S —— |
o Oﬁ e EEEee===— O' = s —RSRR
2 0 1 2 3 4 5 0 1 2 3 4 5 RRRR
E 1 Initial State: 1SS
g 0.5
s e
5 % 1 2 3 4 5

Figure B.12: Numerical results for solving the system of differential equations (B.116)
- (B.160) which describes the progression of infection over time for an SIR model on
a line network with N = 4 nodes. Left and right columns contain graphical results for
R =1 and R = 2 respectively for the specified initial conditions. Dashed lines represent
transient states and solid lines are the absorbing states. The numerical results are in
agreement with the analytical expressions for the same set of initial conditions.

B.7. Lollipop network

For the lollipop network there are three different types of nodes; node a has degree 3, nodes
b and ¢ have degree 2 and node d has degree 1. Therefore, the final size probabilities vary
depending on which type of node is the initial infectious node. We denote I 5SS as the
initial state in which node a is infectious; SSSI as the initial state in which node d is
infectious; SISS as the initial state in which either node b or node ¢ is infectious and
SSII as the initial state in which nodes b and d are infectious. The probability mass
functions of the final size for the lollipop network found with four initial conditions are
shown in Table 7.

B.7.1. Catalogue of transition probabilities

Possible initial state indicator variables:

E _J 1, if initial state is STSS.
5185 0, otherwise.



1
E =7
1855 { 0,

1
E =
SSSI { 0.
L

Egssir = { 0

if initial state is IS5SS.

otherwise.

if initial state is SSSI.

otherwise.

if initial state is SSII.

otherwise.

Probability of passing through transient states:

2R
E
3R +2

2R R
= E E
Prrss SR g 1 sss + SR 1 sIss
R
— E E
Prssi IR+ 1 1585 + Rl SSST
R
Psirs = R 1ESISS
1
PRSS[ == mPISSI
1
Prssr = R +2731551
1
Priss = R +2PHSS
1
Pirss = R +27)IISS
2R 2R
Priis = SR o 1SS + R 2775113
R
Prisi = SR 2731135 + R 2PISSI +
R
Psiir = R +2ESSH
1
Pssrr = R +2Essn
1
Pssir = R +2ESSH
2
Psirs = R +2PSHS
1 R
Psiir = IR+ 3P5111 + R+ 17355112
2
Psirr = Psrrr

3R +3

33



Psirr
Pri1s

Priir
Prisr
Prrsr
Prrsr
Pirrs
Psrrr
Prrrs
Prrsr
Prisr
Prrsr
Pirrs
Prrrr
Prirr
Prrir
Prrrr
Priir
Pirrr
Pirrr
Prrrr
Prirr

Pirrr

2R2+ g Psiin 2R1+ yPsin

727—?— 173’3155 + R :_ 3731113

Rﬁ g Prms 27?1 3 st ¥ 37271 3PS
2R1+ g st

ﬁPHSI + MPIRSS + R+ 17)SSR1
Ri 3731115 + Rﬁ [ Psirs + 2RR+ [ Prrss
2R1+ 1 Psirr

Prirs + R+ 277111%3

2R1+ 2731133 + R QPIRSI

ﬁpHSR + R—_|_27)RISI

RL—MPIRSI + R:— 273’3151

R:— 27)11}%5

Rﬁ 273111%5 + %PHU + Rﬁ 2PIRSI + 27?_2’_ 1
iPHH + Rﬁ 2771%151

E,PHII + 27§ " 2735113 + 27371 QPHSR
gPRIH + éPHRI

%(PHIR + Prirr) + RLHPRISR
RLH(PIRSR + Psirr) + ;PIHR + éPURI
727—?— 173’531%1 + R7—2|— 1731335 + %PURI

1
é(pRRH + Prrrr)
1
Prirr + 5(7)1131{ + PRRH)

1
§(P[[RR + PIRRI)

34
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Probability of terminating in absorbing states:

1
= E
Prsss SR 1 sss
1
P = E
SSSR R sssI
1
Psrss = R 1ESISS
1
Prssr = TR 1731553 + Prssr
1 1
Prrss = R 1735:155 + R+ 1PIRSS
1
Psrrs = R Psirs
1
P = P P
SSRR Rl SSIR + R+l SSRI
1
Psrrr = R—H(PSRRI + Psirr)
1
Prrsr = R—H(PRISR + Prrsr) + Prrsi
1
Prrrs = R+ 1PIRRS + Prris
Prerr = Prrrr + Prigr + Prrri

To find the equations for the final size probabilities we evaluated the following:

P(Final Size = 1

( Prsss + Psssr + Psrss
P(Final Size = 2

(

(

Prssr + Prrss + Psrrs + Pssrr

P(Final Size = 3) = "Psrrr + Prrsr + Prrrs

)
)
)
P(Final Size = 4)

- 7)RRRR

Simplifying the above we obtained the final size equations for the lollipop network with
four nodes as shown in Table 7.



Table 7: Lollipop network final size PMF's
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Initial State H

H siss H

SSST 1588 SSIT
. . L 1 1
P(Final Size =1) R+l SR SR 0
R R(BR+2) R (R +3) 1
P(Final Size =2) R+1)(2R+1) (R+1)*QR+1) (R+1)2R+1) BR+1) R+1)(2R+1)
2R? R? (4R*+10R +5) ) R (2R +3)
P(Final Size =3)| (R 117 2R +1 TRA PR+ SRR R+17@R+1)
( ) ( ) ( )( ) R+ QR+1) BRE1) (R+172R+1)
2R* (R+2) R3 (AR*+10R +5) IR (3R 4 5) R2 (2R +3) (R+2)
P(Final Size =4) RLPER+D TRAVPERELE R : RIIFERLID
( ) ( ) ( )*( ) R+1PQR+1) BR1) ( ) ( )
3 2 . 3 2 B 2
Expected FS _8R +2173€ +14R+3 | 5R +16732 +13R+3 AR +29R+3 4R +37R+2
(R+1)"2R+1) (R+1)"2R+1) (R+1)"2R+1) (R+1)’2R+1)

B.7.2. Progression of infection over time

Equations describing the probability that the network is in a given state at time t for an
STR model on the lollipop network are:

Initial states:
Pssss
Prsss
Psiss
Psssi
Pssiy

Transient states:

Prrss
Prssr
Psrrs
Prsst
Prssr
Priss
PIIIS
Psirr
Pssri
Pssrr
Psrrs
Prpss
PIISI

s}

—(BR +1)Prsss

(ZR + 1)Psss

—(R +1)Psssr

—(3R +2)Pssir

2R Prsss + RPsiss — (3R + 2) Prrss
R(Prsss + Psssr) —2(R + 1) Prssr
RPsiss — 2(R +1)Psirs

Prssr — Prssi

Prssi — Prssr

Prrss — (R + 1) Priss

2R(Prrss + Psirs) — (R + 3) Prrs

RPssir —3(R + 1)Psrir
Pssir — (R +1)Pssrr
Pssir — (2R + 1) Pssir
2Psirs — (R + 1)Psirs
Priss — (2R + 1) Prrss
2R (Prssr + Pssrr) +

RPrrss — (2R + 3)Prrsy



Psrrr
Psrrr
PSIRI
Prirs
Prrrr
Prist
Prrsr
Prrsr
Prrrs
Psprr
Prrrr
Prrrr
Prris
Prrsr
Prrsr
Prrsi
PrrRs
Prrrr
Prrir
Prrer
Prirr
Prrrr
Prrer
Prirr
Prrrr
Absorbing states:
Prsss
Psssr
Psrss
Prssr
PrRss
Psgrrs
Pssrr

RPssir + Psrir — 2(R + 1) Psirr

2Psrir + Psrrr — (R + 1) Psirr

2Psrir —2(R + 1) Psirr

Prirs + RPriss — 2Priss

R(Prirs + 2Prrst +3Psirr) — 4Prrg

Prisr — (R +2) Prist

R(Prrss + Pssrr) + Prrst — (R +2) Prrsy
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Figure B.14: Numerical results for solving the system of differential equations (B.161)
- (B.214) which describes the progression of infection over time for an SIR model on
a line network with N = 4 nodes. Left and right columns contain graphical results for
R =1 and R = 2 respectively for the specified initial conditions. Dashed lines represent
transient states and solid lines are the absorbing states. The numerical results are in
agreement with the analytical expressions for the same set of initial conditions.
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