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Supplemental Information: Developing and Evaluating Deep Neural Network-based Denoising for Nanoparticle TEM Images with Ultra-low Signal-to-Noise
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Figure S1. Categorical classification of “black”, “intermediate”, and “white” atomic-column contrast. The categorization was predominately centered around the focusing condition of the Pt atomic columns, with some influence as well by the focusing condition of the Ce atomic columns. In (a) an atomic-scale structural model of CeO2-supported Pt is presented. Parts (b) through (d) show simulated images under different defocusing conditions, emphasizing variations in the Ce and Pt column contrast. In (b), the image shows almost entirely black contrast for both Ce and Pt atomic columns. Images similar to this would be classified as “black” contrast. In (c), the Pt columns reverse contrast and now appear white, while the Ce columns become challenging to discriminate. Images similar to this would be classified as “intermediate” contrast. Finally, in (d) all of the atomic columns including the O appear with white contrast. Images similar to this one would be classified as “white” contrast. 
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Figure S2. Comparing the proposed network’s performance on a randomly selected simulated image from the validation dataset against other baseline denoising methods, including other neural networks. See main text for an explanation of the methods. In brief, part (a) displays a noisy simulated image, along with a zoom-in on the region indicated by the red box in the figure inset. The clean simulated image is shown as a ground truth reference in (j). The proposed network produces denoised images of high quality, recovering precisely the structure of the nanoparticle, even at the surface, as shown in (i).
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Figure S3. With a receptive field of 41 × 41 pixels, it is challenging to see structure around the atomic columns in the clean image, which is shown in (a) with randomly selected 41 × 41 pixel regions shown at right. After severely degraded Poisson shot noise has been added to the image, as shown below in (b), differentiating the regions which contain structure from those which are taken from the vacuum becomes considerably difficult.
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Figure S4. Increasing the network’s receptive field (e.g., here regions 1.22 nm × 1.22 nm are shown) allows the network to sense nearby atoms, while remaining sensitive to the presence of a surface or defected site. Various regions of interest are highlighted by the red boxes in the image on the right. The local structure surrounding the pixel to be denoised (small red box in windowed regions shown on top right) can clearly be seen and remains discernible after the addition of severe shot noise (bottom right).
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[bookmark: _GoBack]Figure S5. Impact of training data geometry on network denoising performance. At left, the effect of image scaling (measured in terms of real-space pixel size) is investigated; at right, the influence of image orientation (measured in degrees relative to the original simulation). In both cases the network was trained on data augmented with resized and rescaled images within the regions that are shaded purple. When the network is evaluated on images outside of these regions, the performance, measured in terms of PSNR, worsens significantly. Mean values are plotted for each size/orientation, with the standard deviation of the values given as the data error bars.
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Figure S6. Investigating the network’s generalizability to unseen (a) supported nanoparticle structures (see Figure S10), (b) atomic-level Pt surface defects (see Figure S11), and (c) atomic column contrast (i.e., white or black-column focusing) conditions (see Figure S1). A description of the different subsets of data that were formed for each category, as well as an explanation of the terminology, is given in the methodological section of the main text. The tables report the mean PSNR denoising performance when it is trained (rows) and evaluated (columns) on various combinations of the data subsets. For example, when the network is trained only on images with the PtNp1 structure (Table (a), row 1), the network achieves a PSNR denoising performance of 38.33 dB when it is evaluated on images of the PtNp2 structure, and a PSNR denoising performance of 37.72 dB when evaluated on images of the PtNp4 structure.
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Figure S7. Representative set of nine Pt/CeO2 atomic structural models used in the generation of the surface evaluation dataset. Many different types of atomic-level surface defects have been introduced into the Pt models, including, e.g., the removal of an atom from a column, the removal of two atoms, the removal of all but one atom, the addition of an adatom at a new site, etc., to emulate dynamic atomic-level reconfigurations that could potentially be observed experimentally. Altered sites are indicated with black arrows. 
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Figure S8. Examination of Poisson noise distribution around locations where spurious atomic columns appear in denoised simulated images. Part (a) shows the original ground truth simulation in this case, (b1) shows the Poisson noise realization and (c1) shows the network denoised output. Notice the appearance of a spurious atomic column which is marked by the white arrow in (c1). Subfigures (b2) and (c2), respectively, show an enhanced view around the spurious atomic column from the windowed region marked by the dashed red box in the noisy and denoised images. In (b2) and (c2) a dashed white circle is used to mark the location of the spurious atomic column. Examining the distribution of intensity in the Poisson shot noise realization reveals the presence of a noise spike near the center of the spurious atomic column location (i.e., (b2)). This analysis suggests that the random clustering of intensity in a manner that appears to resemble a surface atomic column can lead the network to produce denoised estimates with spurious surface atomic columns.
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Figure S9. Letter value or so-called boxen plots of the log-likelihood ratio distributions for spurious (top) and real (bottom) atomic columns calculated in two different ways. The distribution labeled as having a model of “Average” contains log-likelihood ratios calculated using a Poisson probability mass function (pmf) governed by a rate parameter that was obtained by averaging the intensity within the column, as explained in the main text. The area over which the intensity was averaged is defined by a circle that is centered on the atomic column and approximately 1.5 Å in diameter. The distribution labeled as having a model of “None” contains ratios calculated using a Poisson pmf where the rate parameter of each pixel varies and is taken to be the intensity value of the denoised pixel. Observe that the distributions differ by little.  
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Figure S10. Evaluating the performance of the trained network on experimental 25 ms exposure in situ TEM images, in comparison to current state-of-the-art methodologies. A raw 25 ms frame is shown in (a) along with a zoom-in image from the region marked by the red box. Denoised estimates of the same raw frame from the baseline methods are presented in (b) through (g), while (h) displays the denoised estimate from the proposed network. Part (i) presents a time-average over 40 raw frames, or 1.0 sec total, to serve as a relatively high SNR reference image. Finally, part (j) shows the likelihood map of the proposed network’s output to quantify the agreement with the noisy observation. 



Appendix A: Description of Structural Variation Included in Atomic Models 
Four base supported Pt nanoparticle structures were incorporated in the model dataset to cover variations in the overall supported particle size and shape. The nanoparticle structures have been labeled “PtNp1” through “PtNp4”, as shown below in Figure S11.
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[bookmark: _Hlk60572738]Figure S11. Variations in the size/shape of the supported Pt nanoparticle. At top, in (a) to (d), atomic models of Pt nanoparticles PtNp1 through PtNp4, each with different size and shape, are supported on a CeO2 slab. PtNp1 and PtNp2 correspond to supported Pt nanoparticles 2 nm in size where the difference is the appearance of an atomic column located at the interface between the Pt and the CeO2 support; PtNp3 corresponds to a Pt nanoparticle 1 nm in size; and PtNp4 corresponds to a Pt nanoparticle 3 nm in size. In middle, from (a1) to (d1), simulated images of the modeled structures are given for a CeO2 support thickness of 3 nm, 9 nm of defocus, and no tilt; at the bottom, in (a2) to (d2) simulations for the same models are given now for a 5 nm support thickness, 6 nm of defocus, and 4° of tilt about the x axis.

Furthermore, the surface character of the Pt nanoparticles was varied by introducing atomic-level defects into the structure at different surface sites. A few examples are depicted below in Figure S12. Overall, the defects can be categorized into five classes, here labeled as “D0”, “D1”, “D2”, “Dh”, and “Ds” in accordance with the models presented below in Figure S12. In regard to
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Figure S12. Variations in the atomic-level defects present on the Pt surface. In (a) an atomic model of CeO2-supported Pt nanoparticle PtNp1, without any introduced defects (D0) is shown. The surface of this nanoparticle has been modified in a number of ways, including (b) by removing a full atomic column (i.e., defect D1), (c) by removing half of the column occupancy (defect Dh), and (d) by removing all but a single Pt atom (defect Ds). Black arrows point to the sites where the defects have been introduced. Note that models (b), (c), and (d) have been slightly tilted to assist in visualizing the surface defect modifications. At bottom in (a1) to (d1), simulated images of the atomic models are shown for conditions with 3 nm support thickness, 9 nm of defocus, and no tilt.

the terminology, D0 corresponds to the initial structure without any introduced defects, D1 and D2 correspond to a structure in which 1 or 2 atomic columns have been removed, respectively, Dh corresponds to a structure in which a column has been reduced to half its original occupancy, and finally Ds corresponds to a structure in which a column has been reduced to a single atom. Note that the surface sites altered in the structure correspond to high-energy sites (e.g., corners and edges) which are more likely to dynamically rearrange or show variation than, say, a low-energy terrace site located in the middle of the surface.
Finally, the support thickness was varied from 3 nm to 6 nm along 1 nm increments. Images showing the type of contrast variations that may occur when the support thickness is changed, and how these compare to that which arises from changes in defocus, are given in Figure S13 below.
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Figure S13. Image contrast variations due to CeO2 support thickness (top) and electron optical defocus (bottom). The model shown in (a) was used for each of the multislice simulations to isolate effects from thickness and defocus. Images (b1) through (b4) demonstrate the effect of CeO2 support thickness on the contrast in the image, with the thickness increased from 3 nm to 6 nm in 1 nm increments and the defocus held constant at 13 nm. Images (c1) through (c4) illustrate the effect of defocus on image contrast, with the defocus increased from 1 nm to 7 nm, then 13 nm, then 18 nm, respectively, and the support thickness held constant at 5 nm. 

Aside from this, the overall orientation of the structural model with respect to the incident electron beam was tilted from 0° to 4° about the x and y axes independently in increments of 1°. Thus, variations from 0° in x and 0° in y, to 4° in x and 0° in y, or 0° in x and 4° in y were considered. Accounting for the diversity in structures, in addition to the variations in crystal orientation and CeO2 support thickness, a total of 855 atomic structural models were constructed. These structures were each used to calculate multislice simulations with defocus values ranging from 0 to 20 nm, which results in the calculation of 17,955 total images.
Figure S14 presents a schematic summary of the structural and imaging parameters varied during the modeling and image simulation process.
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Figure S14. Summary of systematically varied structural and imaging parameters considered during the modeling and image simulation process. At left is a subset of Pt/CeO2 atomic structural models presenting variations on the (a) structure and shape of the nanoparticle and the support, (b) the thickness of the CeO2 support, and (c) the tilt of the specimen with respect to the incident beam. The models were used to produce simulations under 21 defocus values each, as shown in (d).

Appendix B: Analysis of Experimental Noise Distribution
Given the physical origin of the noise in the experimental image acquisition process, we expect the noise to be dominated by shot noise, which can be modeled with a Poisson distribution. Here, the images were acquired on a direct electron detector operating in electron counting mode. In such conditions, the electron dose rate per pixel is sufficiently low enough that individual electron arrivals can be detected and registered. It is well known that the statistical fluctuations of such counting processes for discrete events are governed by shot noise. Additionally, we expect that other sources of noise, including fixed pattern noise, dark noise, and thermal noise are minimal after applying a gain correction and a dark reference to the raw image, and by cooling the detector to -20 °C, respectively. Readout noise is considered to be negligible, since the pixels on the CMOS-based detector are read out individually. Thus, we expect that the noise in the counted TEM micrographs can be modeled as Poisson. Furthermore, we have performed an analysis to verify that the noise in the experimental movie follows Poisson statistics, as shown below in Figure S15. 
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Figure S15. In (a) a 1.000 second time-averaged image comprised of 40 frames is displayed. Part (b) displays histograms from the red and orange regions in the image representing vacuum and the Pt atomic columns, respectively. Simulated histograms taken from Poisson distributions with the indicated mean are plotted for comparison, showing good agreement in both cases. Finally, in (c) a plot of the mean and standard deviation of the pixel intensities over the 40 frames in the movie shows the data approximately follows a line with a slope of 1, as expected for Poisson distributions. The spread in the data is due to the limited number of samples (i.e., 40).  
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