Supplementary Materials: Appendix

Fig. A1: Representative diffraction patterns from each material studied. The space group and material are denoted in the upper left corner of each diffraction pattern.

Fig. A2: Inverse pole figures of the entire dataset. Orientation analysis shows the materials are of very low texture, typically in the range of 2-3 multiples of uniform density (M.U.D.). Note that all of the data is below 5 M.U.D, the standard onset for medium texture. The data is first plotted (a) with the scale bars automatically determined by MTEX to show the data distribution. The second set of plots (b) uses the fixed scale of 0 to 5 M.U.D. to demonstrate that the data does not approach medium texture levels.

Fig. A3: Probability plots of mean angular deviation and band contrast for the entire dataset. The pattern quality distribution of each material is assessed using mean angular deviation (MAD) and band contrast (BC) as descriptors. Each plot is also annotated with the mean (μ) and standard deviation (σ).

Fig. A4: Schematic of the neural network. In convolutional layers, a learnable filter is convolved across the image and the scalar product between the filter and the input at every position is computed to form a feature map. Pooling layers are placed after convolutional layers to down sample the feature maps and produce coarse grain representations and spatial information about the features in the data. A traditional dense neural network is placed as the last layer, where the probability that the input diffraction pattern belongs to each space group is computed.

Fig. A5: Inverse pole figures for each space group training set in the associated model. The range of possible orientations are well represented for each class. Note that the scale bars are all below 5 M.U.D.

Fig. A6: Histograms of mean angular deviation and band contrast in the training set for the associated model. The pattern quality distribution of each material is assessed using mean angular deviation (MAD) and band contrast (BC) as descriptors. Each plot is also annotated with the mean (μ) and standard deviation (σ).

Fig. A7: Inverse pole figures for patterns based on correct or incorrect classification. The distribution of orientations that were correctly classified and misclassified are very similar, suggesting texture is not having a profound effect. Note that the scale bars are all below 5 M.U.D.

Fig. A8: Histograms of mean angular deviation and band contrast separated by correct or incorrect classification. The pattern quality distribution of each material is assessed using mean angular deviation (MAD) and band contrast (BC) as descriptors. Each plot is also annotated with the mean (μ) and standard deviation (σ).

Fig. A9. Feature comparison for correct and incorrect classifications. The activations for the 229 class are studied when the pattern is correctly identified (middle) and misclassified to 255 (right). Similar information is identified; however, the zone axis activations are weaker for the misclassified pattern.

Table A1. Material acquisition and processing. The method of fabrication is listed for each material studied. SPS denotes spark plasma sintering from a commercial powder. The homogenization heat treatments were performed for one week in an inert atmosphere.

Space Group	Material	Formula Weighted Atomic Number	Method of Fabrication								
221			Wrought	Arc Melt	SPS	Heat Treatment					
	FeNi3	27.5		Х		Х					
	Ni3Al	24.25		Х		X					
	NiAl	20.5		Х		X					
	FeAl	19.5		х		X					
223											
	Mo3Si	35		х		х					
	Cr3Si	21.5		х		х					
225											
	TaC	39.5			Х						
	Ni	28	x								
	NbC	23.5			х						
	TiC	14			Х						
	Al	13	x								
227											
-	Ge	32		Х							
	Si	14		х							
229											
	W	74			Х						
	Та	73			X						
	Fe	26		X							
230											
	Al4CoNi2	19.4		Х		Х					
	Al4Ni3	19.4		x		x					

Table A2. Number of diffraction patterns classified to each space group. Space group 221; trained on FeNi₃. Space group 223; trained on Mo₃Si. Space group 225; trained on TaC. Space group 227; trained on Ge. Space group 229; trained on Ta. Space group 230; trained on Al₄CoNi₂.

Space Group	Material	Formula Weighted Atomic Number	Numbei	r of Pattei	rns Classif	fied to Ea	ach Space	Group	Accuracy	Precision	Recall
221			221	223	225	227	229	230			
	FeNi3	27.5	9,987	0	0	0	31	1	99.7%	0.24	1.00
	Ni3Al	24.25	9,085	0	6	0	42	400	95.3%	0.22	0.95
	NiAl	20.5	79	1	71	1	52	4,336	1.7%	0	0.02
	FeAl	19.5	248	0	0	1	1,538	76	13.3%	0.01	0.13
222			221	222	225	227	220	220			
223	0.00	24.5	221	223	225	227	229	230	07.40/	0.61	0.07
	Cr3Si	21.5		12,219	0	0	357		97.1%	0.61	0.97
	Mo3Si	35	27	10,498	11	0	118	6	98.5%	0.57	0.99
225			221	223	225	227	229	230			
	TaC	39.5	527	97	14,143	10	462	44	92.5%	0.97	0.93
	Ni	28	11,170	8	29	1	424	82	0.2%	0.06	0.02
	NbC	23.5	776	698	832	15	16,222	57	4.5%	0.66	0.05
	TiC	14	12,381	398	o	0	2,778	35	0.0%	0	0
	AI	13	0	0	o	0	3	1,085	0.0%	0	о
				1	1	1		1			1
227			221	223	225	227	229	230			
	Ge	32	1	14	0	2,212	12	1	98.8%	0.98	0.99
	Si	14	1,330	6,455	0	1	315	637	0.0%	0.03	0
220			221	222	225	227	220	220			1
229	14/	74	221	225	225	227	229	230	46.20/	0.02	0.46
	w T	74	150	140	281	0	492	0	46.3%	0.02	0.46
	la -	/3		1	1/	1	8,771	4	99.7%	0.28	1
	Fe	26	5,899	64	25	3	1,835	1,690	19.3%	0.08	0.19
230			221	223	225	227	229	230			
	Al4CoNi2	19.4	1	1	2	1	2	1,822	99.6%	0.18	1
	Al4Ni3	19.4	30	4	16	5	31	1,706	95.2%	0.17	0.95
	<u> </u>	1	l		1	1	1	· ·	I		1
Total Patterns	144,465		221	223	225	227	229	230	Average		
# Correct	73,959	Precision	0.38	0.74	0.97	0.98	0.33	0.29	0.73		
Accuracy (%)	51.20	Recall	0.75	0.98	0.24	0.2	0.57	0.97	0.51		

Table A3. Number of diffraction patterns classified to each space group. Space group 221; trained on FeNi₃. Space group 223; trained on Mo₃Si. Space group 225; trained on Al. Space group 227; trained on Ge. Space group 229; trained on Ta. Space group 230; trained on Al₄CoNi₂.

Space Group	Material	Formula Weighted Atomic Number	Number	of Patter	Precision	Recall					
221			221	223	225	227	229	230			
	FeNi3	27.5	10,008	3	2	0	6	0	99.9%	0.33	1.00
	Ni3Al	24.25	8,733	9	613	45	34	99	91.6%	0.3	0.92
	NiAl	20.5	2	0	4,345	2	30	161	0.0%	0	0
	FeAl	19.5	67	34	334	4	1,389	35	3.6%	0	0.04
222			221	222	225	227	220	220			
225	Ma20;	25	221	10 614	225	227	229	250	00.0%	0.20	1
	100351	20 21 E	0	10,614	15	0	22	9	99.6%	0.20	1
	Cr3SI	21.5	0	12,328		0	259	0	97.9%	0.52	0.98
225			221	223	225	227	229	230			
	TaC	39.5	593	7,430	115	31	6,802	312	0.8%	0.01	0.01
	Ni	28	11,377	5	196	0	93	43	1.7%	0.02	0.02
	NbC	23.5	497	4,293	179	76	12,877	678	1.0%	0.02	0.01
	TiC	14	3,356	8,532	3,537	10	157	0	22.7%	0.25	0.23
	Al	13	0	0	1,086	1	0	1	99.8%	0.09	1
227			221	223	225	227	220	230			
	60	32	0	0	225	2 2 2 2 2 6	0	1	00.8%	0.86	1
	Ge c:	1/	402	4 820		2,230	15	20	10.20/	0.00	0.1
	51	74	402	4,829	2,500	890	15	30	10.5%	0.71	0.1
229			221	223	225	227	229	230			
	W	74	505	369	0	0	189	0	17.8%	0.01	0.18
	Та	73	1	6	19	1	8,766	2	99.7%	0.29	1
	Fe	26	3,591	1,130	2,308	38	2,236	213	23.5%	0.09	0.23
220			221	222	225	227	220	220			
230		10.4	221	223	225	227	229	230	00.00/	0.54	1
	AI4CONI2	19.4	0	0	0	1		1,827	99.9%	0.54	
	AI4NI3	19.4	6	0	229	164	14	1,379	//.0%	0.47	0.77
Total Patterns	144,465		221	223	225	227	229	230	Average		
# Correct	64,394	Precision	0.48	0.46	0.33	0.89	0.34	0.67	0.43		
Accuracy (%)	44.57	Recall	0.72	0.99	0.08	0.29	0.58	0.89	0.44		

Table A4. Number of diffraction patterns classified to each space group. Space group 221; trained on FeNi₃. Space group 223; trained on Mo₃Si. Space group 225; trained on TaC. Space group 227; trained on Si. Space group 229; trained on Ta. Space group 230; trained on Al₄CoNi₂.

Space Group	Material	Formula Weighted Atomic Number	Number	of Patter	Precision	Recall					
221			221	223	225	227	229	230			
	FeNi3	27.5	10,000	4	1	10	4	0	99.8%	0.22	1.00
	Ni3Al	24.25	9,357	25	4	41	30	76	98.2%	0.21	0.98
	NiAl	20.5	990	0	66	65	174	3,245	21.8%	0.03	0.22
	FeAl	19.5	909	55	0	15	776	108	48.8%	0.02	0.49
222			221	222	225	227	220	220			
223	Mazci	25	221	10.620	225	12	229	250	00.7%	0.75	1
	0.25	35 21 5		10,029		121	9	2	99.7%	0.75	1 1
	Cr3SI	21.5	0	12,454	/	121	6	0	98.9%	0.78	0.99
225			221	223	225	227	229	230			
	TaC	39.5	192	26	14,752	115	176	22	96.5%	0.93	0.97
	Ni	28	11,477	2	28	103	84	20	0.2%	0.03	0
	NbC	23.5	3,014	470	7,353	255	7,478	30	39.5%	0.88	0.4
	TiC	14	12,916	53	53	2,554	16	0	0.3%	0.05	0
	Al	13	479	0	0	17	9	583	0.0%	0	0
227			221	223	225	227	229	230			
	Ga	32	1	2.076	0	92	72	230	3.7%	0.02	0.04
	Si	14	2	2,070	0	8 726	0	1		0.69	1
	31	<u>T</u> .	2	9	0	0,720			99.970	0.05	
229			221	223	225	227	229	230			
	W	74	119	2	901	7	34	0	3.2%	0	0.03
	Та	73	2	3	10	3	8,775	2	99.8%	0.5	1
	Fe	26	7,259	688	20	655	689	205	7.2%	0.07	0.07
230			221	223	225	227	229	230			
230	ΔΙ4CoNi2	19.4	0	0	225	0	5	1 822	99.6%	03	1
		19.4	65	70	16	12	24	1 505	89.0%	0.27	- 0 89
	AI4INIS	13.7	65	/3	10	1.12	24	1,393	09.0%	0.27	0.05
Total Patterns	144,465		221	223	225	227	229	230	Average		
# Correct	88,249	Precision	0.37	0.87	0.96	0.69	0.52	0.44	0.75		
Accuracy (%)	61.09	Recall	0.82	0.99	0.36	0.8	0.49	0.94	0.61		

Table A5. Number of diffraction patterns classified to each space group. Space group 221; trained on FeNi₃. Space group 223; trained on Mo₃Si. Space group 225; trained on TaC. Space group 227; trained on Ge. Space group 229; trained on Fe. Space group 230; trained on Al₄CoNi₂.

Space Group	Material	Formula Weighted Atomic Number	Number	of Patter	Accuracy	Precision	Recall				
221			221	223	225	227	229	230			
	FeNi3	27.5	10,004	3	0	0	12	0	99.9%	0.38	1.00
	Ni3Al	24.25	9,129	11	1	3	902	87	95.8%	0.35	0.96
	NiAl	20.5	13	9	68	67	1,901	2,482	0.3%	0	o
	FeAl	19.5	3	19	0	26	1,811	4	0.2%	0	o
				1			1	1			1
223			221	223	225	227	229	230			
	Mo3Si	35	2	10,630	12	4	10	2	99.7%	0.46	1
	Cr3Si	21.5	10	12,575	0	3	0	0	99.9%	0.5	1
225			221	223	225	227	229	230			
	TaC	39.5	112	116	14,889	34	118	14	97.4%	0.89	0.97
	Ni	28	11.016	11	46	10	609	22	0.4%	0.02	0
	NbC	23.5	126	1.123	14.173	167	2.965	46	76.2%	0.88	0.76
	TiC	14	4.634	1.922	11	68	8.957	0	0.1%	0.01	0
	Al	13	9	1	0	14	67	997	0.0%	0	0
	7.4			-	•				0.070		
227			221	223	225	227	229	230			
	Ge	32	0	0	0	2,237	1	2	99.9%	0.8	1
	Si	14	504	6,358	1	242	1,282	351	2.8%	0.3	0.03
220			221	222	225	227	220	220			1
229			221	223	225	227	229	230			
	W	/4	26	44	963	0	30	0	2.8%	0	0.03
	Та	73	52	2,934	788	106	4,913	2	55.9%	0.21	0.56
	Fe	26	113	31	32	2	9,329	9	98.0%	0.34	0.98
230			221	223	225	227	229	230			
	Al4CoNi2	19.4	0	0	5	2	0	1,822	99.6%	0.31	1
	Al4Ni3	19.4	9	10	14	52	90	1.617	90.2%	0.29	0.9
	7.11115			10	±7			_,,,,,	50.270		
Total Patterns	144,465		221	223	225	227	229	230	Average		
# Correct	91,663	Precision	0.54	0.65	0.94	0.82	0.44	0.46	0.73		
Accuracy (%)	63.45	Recall	0.74	1	0.47	0.23	0.74	0.95	0.63		

Table A6. Number of diffraction patterns classified to each space group. Space group 221; trained on FeNi₃ and NiAl. Space group 223; trained on Mo₃Si. Space group 225; trained on TaC and Ni. Space group 227; trained on Ge and Si. Space group 229; trained on Ta and Fe. Space group 230; trained on Al₄CoNi₂.

Space Group	Material	Formula Weighted Atomic Number	Numbe	er of Patte	rns Classif	ied to Ea	ch Space	e Group	Accuracy	Precision	Recall
221			221	223	225	227	229	230			
	FeNi3	27.5	8,124	0	1,881	0	13	1	81.1%	0.32	0.81
	Ni3Al	24.25	8,524	0	979	0	28	2	89.4%	0.33	0.89
	NiAl	20.5	4,537	0	2	0	0	1	99.9%	0.21	1
	FeAl	19.5	647	0	143	0	1,073	0	34.7%	0.04	0.35
223			221	223	225	227	229	230			
	Mo3Si	35	100	10,373	21	2	161	3	97.3%	0.95	0.97
	Cr3Si	21.5	249	11,403	280	2	654	о	90.6%	0.96	0.93
				· · ·							1
225			221	223	225	227	229	230			
	TaC	39.5	577	90	13,967	77	562	10	91.4%	0.72	0.91
	Ni	28	362	1	11,334	0	8	9	96.8%	0.68	0.97
	NbC	23.5	1,462	261	13,429	122	3,290	36	72.2%	0.71	0.72
	TiC	14	9,899	8	5,454	0	231	0	35.0%	0.5	0.35
	Al	13	1,047	0	33	0	0	8	3.0%	0.01	0.03
			224	222	225	227	220	220			
227			221	223	225	227	229	230			
	Ge	32	141	34	0	1,936	127	2	86.4%	0.9	0.86
	Si	14	1,485	99	555	6,387	205	7	73.1%	0.97	0.73
229			221	223	225	227	229	230			
	W	74	9	1	1.012	0	41	0	3.9%	0.01	0.04
	Та	73	139	0	40	2	8,613	1	97.9%	0.57	0.98
	Fe	26	884	0	462	o	8.170	o	85.9%	0.56	0.86
								1			1
230			221	223	225	227	229	230			
	Al4CoNi2	19.4	16	0	0	0	1	1,812	99.1%	0.96	0.99
	Al4Ni3	19.4	591	0	0	2	38	1,161	64.8%	0.94	0.65
Total Patterns	144,465		221	223	225	227	229	230	Average		
# Correct	115,945	Precision	0.56	0.98	0.89	0.98	0.72	0.97	0.83		
Accuracy (%)	80.26	Recall	0.84	0.94	0.71	0.76	0.87	0.82	0.80		

Space Group	Material	Formula Weighted Atomic Number	Numbe	er of Patte	Accuracy	Precision	Recall				
221			221	223	225						
	FeNi3	27.5	9.370	2	551	5	88	3	93.5%	0.65	0.94
	Ni3Al	24.25	9.015	1	378	22	77	40	94.6%	0.64	0.95
	NiAl	20.5	4,381	o	41	16	11	91	96.5%	0.46	0.96
	FeAl	19.5	1,725	0	6	0	131	1	92.6%	0.25	0.93
223			221	223	225	227	229	230			
	Mo3Si	35	14	10,572	1	76	33	9	98.8%	0.98	0.99
	Cr3Si	21.5	6	12,544	10	21	7	0	99.7%	0.98	1
225			221	223	225	227	229	230			
	TaC	39.5	115	132	13,601	695	719	21	89.0%	0.93	0.89
	Ni	28	3,160	1	8,107	32	381	33	69.2%	0.89	0.69
	NbC	23.5	272	19	16,404	1,304	553	48	88.2%	0.94	0.88
	TiC	14	166	34	15,230	52	110	0	97.7%	0.94	0.98
	AI	13	64	0	1,015	0	1	8	93.3%	0.5	0.93
			221	222	225		220	220			1
		22	- 221	223	225	227	229	230	00.00/	0.40	0.00
	Ge	32	5	1	0	2,222	6	6	99.2%	0.49	0.99
	Si	14	4	4	2	8,720	6	2	99.8%	0.79	1
229			221	223	225	227	229	230			
	W	74	0	0	3	0	1,060	0	99.7%	0.33	1
	Та	73	105	0	4	24	8,657	5	98.4%	0.8	0.98
	Fe	26	1,148	16	37	21	8,246	48	86.7%	0.79	0.87
220			221	222	225	227	220	220			
230		10.4	221	223	225	- 227	229	230	00.40/	0.95	0.00
	AI4COINIZ	19.4	5					1,818	99.4%	0.85	0.99
	AI4Ni3	19.4	30	0	0	23	9	1,730	96.5%	0.85	0.97
Total Patterns	144,465		221	223	225	227	229	230	Average		
# Correct	134,417	Precision	0.83	0.99	0.98	0.83	0.89	0.92	0.93		
Accuracy (%)	93.04	Recall	0.94	0.99	0.87	1	0.93	0.98	0.92		

Table A7. Number of diffraction patterns classified to each space group. The model was trained using a small subset of patterns from each of the available materials.