Tuesday, February 19, 2019

	Supplementary materials
DSeg: A dynamic image segmentation program to extract backbone patterns for filamentous bacteria and hyphae structures
Hanqing Zhang1, Niklas Söderholm2, Linda Sandblad2, Krister Wiklund1, Magnus Andersson1,*
1Department of physics, Umeå University, 901 87, Umeå, Sweden
2Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
*To whom correspondence should be addressed

Table of Contents
1.	Requirements	2
2.	Quick start	2
Basic Procedures	3
Software parameter settings	3
Invert intensity	4
Resize	4
Filters	4
Background removal	4
Thresholding	4
Segmentation parameters	4
Background objects	4
Data analysis	5
Lateral drift correction	5
3.	Segmentation method	5
Intensity thresholding and object selection	5
Segmentation algorithm	5
Edge stop and level-set functions	5
Split and merge operations on objects	7
Combining level-set with thresholding	8
Background objects update	8
4.	Data analysis	9
Skeletonized objects	9
Extracting backbone patterns	9
Calculation of persistence length, growth velocity and growth direction	10
Limitations of DSeg	10
5.	References	12

[bookmark: _Toc516478518]Requirements
[bookmark: _Toc473284419]We developed DSeg in MATLAB (version R2017a) using the image processing toolbox. For easy processing of video files, a graphical-user-interface (GUI) is included. DSeg is tested on Windows 7 and 10 and is made for a 64-bit operating system. We recommend a minimum of 4 GB of RAM memory and enough hard drive space to ensure reliable operation when running long video files. We recommend at least a 2.0+ GHz processor and to display the GUI properly the screen resolution should be 1920x1200. To run the program source code, it is necessary to install MATLAB, however, to run the executable version of the program, the MATLAB Runtime R2017a can be installed without installing MATLAB. This can be downloaded at www.mathworks.com. DSeg processes both images and video files and the program supports a wide variety of formats, for example .png, .jpg, .tif, .avi, .mp4, .m4v, .mov. DSeg is a free open-source program written in MATLAB. DSeg can be downloaded as a MATLAB package or installer from https://sourceforge.net/projects/dseg-software
[bookmark: _Toc516478519]Quick start
Screenshots of the graphical user interface (GUI) implemented in MATLAB are shown in Figure S1. In the main interface the file input-output functionalities and parameters can be set. To conduct an analysis using DSeg please follow the procedure below. We also suggest watching the short instruction video showing functionalities and how to run the program: https://youtu.be/qMbM0shkk7A

[image: C:\Users\LASER\Dropbox\Streptomyces\Submission J of Microscopy and Microanalysis\Figures\JPG\Figure S1.jpg]
Figure S1. Screenshot of the main-, data analysis and drift correction interfaces. In the main interface the user controls the preprocessing filters and thresholding. In addition, the detection information provides object shape properties and the status of the segmentation process. Data analysis contains the statistics of both static and dynamic properties of object shape. The drift correction interface allows the user to check for drifts in the data and create a new video file.
[bookmark: _Toc473284417]
[bookmark: _Toc516478520]Basic Procedures
1. Unpack the .zip file to a folder and open MATLAB. Run DSeg.m in MATLAB to load the main interface.
2. Load a sample video or an image by pressing 'Load data' in the front panel, (Fig S1A) and select the data file.
3. In the 'Preprocessing' panel, first set the pixel-to-nm conversion factor and time between frames according to the sampling rate of the camera. In the software options: to determine a region-of-interest click 'Select ROI', to scale the video select 'Resize', to change the intensity features use 'Invert Intensity' or 'Normalize Intensity'. In addition, different filters can be applied using functions in the 'Filters' panel. Furthermore, it is also possible to apply a background subtraction function.
4. To show results in the display from the thresholding function check the 'Present thresholding results'. The original image will be covered by a binary mask as a result of the thresholding. 'Adaptive thresholding' is selected by default. It is possible to change the 'offset value' slider in the 'Thresholding method panel' to optimize the thresholding so object shapes are as clear as possible.
5. To select a starting frame, drag the slider located under the image display or input a number to the 'Frame number' directly. The frames for segmentation can be set in 'Num of frames', or simply input the 'End of Frame' so that the software will calculate the number of frames. The 'Select from Image' option is chosen by default and the user can press 'Detect' to find all objects using a point-and-click approach. The point-and-click function is activated in the display of the GUI after the 'Detect' button is pressed. To select objects of interest, single click on an object overlapped with thresholding mask in the display, and double click on the object if it is the last object to be analyzed. If the 'Auto detection' option is chosen, then all objects within the range of object length are selected.
6. All selected objects will appear in the list under the 'Detection Information' panel and from here, the user can check if all the object of interest is selected correctly. If you click on a line in the list the segmentation results of the selected object will appear in the image display as a colored mask. Press 'Add' to add new object using the point-and-click function or press 'Delete' to remove one of the selected objects from the list. The user can also fine tune the initial object shape using the 'Disconnect' and 'Connect' button
7. In the case of analyzing object segments without branches, the 'Backbone structure' option can be checked. To automatically segment and analyze all objects for the selected frames in a video, click 'Batch processing' in the 'Auto detection' tab. The user can also segment each object step-by-step by pressing 'Next frame' in the 'Manual refinement' tab, or reset the segmentation result of the object using the 'Initialize' button. Segmentation parameters in the 'Parameters for segmentation' panel can be changed during the segmentation process to get optimal results. We explain in detail in the Algorithm section how each parameter affects the segmentation results.
8. All results are saved as .mat files in a path '/Saved Data/Detection/' under the working directory by default with file names given by the texts in 'File name prefix' and the id number assigned to each object. Press 'Check & save all results' to save the results to the files for analysis. The image segmentation result of a selected object will present in the display by pressing 'Segmentation results', and the persistence length of the backbone structure of this object can be analyzed by pressing 'Backbone Analysis'.
[bookmark: _Toc516478521]Software parameter settings
Here we explain the functionalities and the range of values for functions used in the DSeg.
[bookmark: _Toc516478522]Invert intensity
DSeg finds objects based on intensity. We define objects as the pixels with the highest intensity values compared to a background. The 'Invert intensity' function can be applied to the images with dark objects in a bright background.
[bookmark: _Toc516478523]Resize
To reduce the execution time of the segmentation process the image can be resized. The program will by default set the image size to a maximum of 800 pixels in length or width when a video or image is loaded. The user can deactivate 'Resize' and conduct detection using the original image size, or change this value manually.
[bookmark: _Toc516478524]Filters
We include three types of noise reduction filters to improve the segmentation process. To remove sharp speckle noise, use the 'Median' filter for which the kernel radius value can be set from 0 to 10 pixels. The 'Gaussian' filter is a low pass filter that can smooth features in the image with its kernel radius set from 0 to 10 pixels. The variance of the Gaussian filter can be set manually where higher variance produces a smoother image. We suggest that the value of the variance is one third of the kernel diameter. The third option is anisotropic filter (Perona and Malik, 1990; Gerig et al., 1992) which can smooth the image intensities differently depending on the gradient value for each pixel. The iterations for anisotropic filter are restricted from 1 to 10 where a larger value generates a smoother image. The 'Step' and 'Kappa' values range from 0 to 1 control the smoothing effect for anisotropic filter. The step value should be set low to avoid intensity artifacts in the image.
[bookmark: _Toc516478525]Background removal
To create an image with high contrast and to remove background with unevenly distributed light intensities, apply the background removal function using a background image generated by a Gaussian low pass filter. The user can either subtract or divide each frame with the background image and the Gaussian kernel radius can be set from 1 to 30 pixels.
[bookmark: _Toc516478526]Thresholding
The adaptive thresholding function in DSeg can handle unevenly distributed background intensities, while the global thresholding method is more computationally efficient in finding object shape in a region-of-interest. The 'Offset value' is added to the thresholding values from either the adaptive function or the global method with thresholding value calculate by (Otsu 1979), in order for the results to be correct. The 'Threshold value' for global thresholding can be set manually ranging from 0 to 1.
[bookmark: _Toc516478527]Segmentation parameters
[bookmark: _GoBack]In order to find the contour of each object, a dynamic segmentation process based on the level-set function is implemented in the DSeg with four parameters to refine the results. We offer two check options 'Backbone structure' and 'Static objects' that help adjust the parameters and restrictions of the algorithm automatically for measuring the backbone of stationary objects growing in video data.
For detailed parameters settings, for example, the 'Enhance Edge ' can be set from 0 to 10. A large parameter value restricts the segmentation area of object based on the edge response. The 'Merge size' and 'Split size' must be a non-negative integer representing the pixel number. To detect a fast-growing object the 'Merge size' should be a large value. To keep the structure of a static object in a long-term recording a large value for 'Split size' is needed. The Intensity offset' is set from -1 to 1. A positive offset value will restrict the contour shape to pixels with strong intensities while a negative offset value includes more low intensity pixels as object. More details can be found in the Algorithm section.
[bookmark: _Toc516478528]Background objects
To reduce segmentation errors, the segmentation process not only detects the object of interest, but also finds background objects in each frame. The 'BG update radio' set the weight for background images detected in the current frame and the ones before. For example, a ratio of 0.9 indicates a previous background is weighted 0.9 and a current background image is weighted 0.1 to form the new background image. The ' BG threshold value' determines if the background signal is strong enough to change the segmentation result. This threshold is set from 0 to 1. The ' BG weight' is used to estimate the objects in the background. A large weight value up to 100 can be set when the background objects are static in the image. On the other hand, if the background objects moves abruptly, this value can be set to zero.
[bookmark: _Toc516478529]Data analysis
After all results are saved, the user can access these files using MATLAB or using the DSeg software by opening the 'Post-processing' menu and click 'Objects properties'. Then an interface will appear as shown in Figure S1B presenting both the statistics of multiple objects and the dynamic properties of each object. The user can select an object of interest from the 'Object list' and check how different morphological properties of this object change with time.
[bookmark: _Toc516478530]Lateral drift correction
To ensure static a background, we have implemented a drift correction algorithm in MATLAB based on a template-matching algorithm using multi-scale image pyramid generated by Gaussian filters. This function can be found in the 'Data' menu of the program. By following the procedure of drift correction a video free from lateral drift can be created. With this process, the segmentation results can be improved significantly. Instructions of the details procedure for drift correction can be found by clicking 'Help' menu in the interface as shown in Figure S1C.
[bookmark: _Toc516478531]Segmentation method
[bookmark: _Toc516478532]Intensity thresholding and object selection
Images acquired in microscopy experiments often differ in quality due to intensity fluctuations and noise, and the objects to track are often dissimilar. To design software that can handle data from different imaging systems and objects, a flexible thresholding value is required to get a binary mask that can represent the shape of the target object. This thresholding value can automatically be determined by a global image thresholding approach, for example by using the Otsu’s method. However, results from automatic thresholding can be inaccurate due to many factors, such as uneven illumination, intensity variation of the objects, artifacts from the sample device etc. Therefore, we implemented both adaptive thresholding and global thresholding based on the Otsu’s method with a possibility for the user to set an offset value to optimize the binary mask representing the target object. Thus the user can see if the shape of the object of interested is matched by the binary mask.
This binary mask works only as pre-step for the user to select which object to be analyzed. After finding the proper thresholding value, the user selects seed points, which are the objects to segment dynamically. For this step the binary mask evolves only for the selected object so that the algorithm can find the growing-pattern locally with minimum risk of getting false-positive detections from the neighboring objects.
[bookmark: _Toc516478533]Segmentation algorithm
Based on the initial binary mask of the selected object, the algorithm will then evolve the contour of the object to find its edges and thereby track the changes of object shape in each frame. This procedure is automatic and the workflow for this part of the algorithm is described in detail below.
[bookmark: _Toc516478534]Edge stop and level-set functions
To find the shape of a selected object we use the level-set method where the object’s estimated contour is optimized using image gradient information. We define I(x,y) to represent the intensity of an image where x and y are coordinates along the horizontal and vertical axis, respectively. We first calculate the gradients gx(x,y) and gy(x,y) of I(x,y) in x and y directions using the Sobel gradient operator (Sobel and Feldman, 1968). To smooth edges we apply a mean filter to calculate edge responses Gx(x,y) and Gy(x,y) and the corresponding magnitude,
		(1)
		(2)
			(3)
where N represents the radius of the mean filter kernel.
To use the gradient magnitude information in a level-set approach we define the normalized gradient, GN, to be the edge response magnitude, |G|, divided by its maximum value and we define an edge stop function by,
		(4)
This edge stop function is used within the level-set method to restrict the evolvement of the level-set function and thereby optimize the shape estimate. Furthermore, we define the level-set function values larger than 0 to represent the foreground and values smaller than 0 to be the background so that an object can be represented as foreground surrounded by the background. When evolving the level-set function ϕi(x,y), an implicit representation of a planar closed curve is created at zero level, the curve corresponds to ϕi(x,y) = 0, and the changes of the curve shape is described by,
			(5)
where V controls the evolving speed of the curve. For a binary implementation of the level-set method V can be represented by a sign function Fs(x,y) multiplied by the edge stop function, equation 4, as (Zhang et al., 2010),
			(6)
		(7)
where sgn(a) calculates the sign of the value a and produce values of -1 or 1 accordingly, Ω represents a two dimensional region of both foreground Ωf and local background around the object Ωb with their averaged intensity value defined by If and Ib, respectively. To find a complete shape of the object a good estimate of the region Ω is crucial. The initial estimate of Ω is found by using a binary image B(x,y) which consists of two parts, the foreground image Bf (x,y) and the background image Bb(x,y). The foreground image Bf (x,y) is generated from the above mentioned thresholding and object selection approach. The foreground region Ωf is then created by using pixels in Bf (x,y) with values equal to one. In this image we cluster connected components of 1:s using a connectivity of 8 and use the seed point to exclude components that are not in connection with the object of interest. The image Bf (x,y) contains after this process only the object of interest. The intensity If is determined by fitting a normal distribution model to the histogram of I(x,y) in Ωf and determining its expectation value.
We generate the local background of the object of interest Bb(x,y) by applying morphological operators, dilation and erosion, to Bf(x,y) using a binary mask K of a typical size 5x5. The dilation and erosion process can be described in a formal way using the notation,
		(8)
where the operator XOR(A,B) calculates the logic exclusive OR operation on the matrix A and B pixel by pixel, and ⊕ and erosion ⊖ are the dilation and erosion operators, respectively. The pixels with value 1 in Bb(x,y) represents the local background region Ωb of the object and the averaged intensity within this region from I(x,y) is Ib. Finally, the value of B(x,y) is 1 if either Bf (x,y) or Bb(x,y) is 1, so that the region Ω covers both Ωf and Ωb. The binary images for foreground and background are evaluated every time when a change in the level-set function occurs. Such change corresponds to switching pixels in the contour of the object from foreground to background, or vice versa. The update of the level-set function is described by the following discrete form of equation 5,
	(9)
where i represents the level-set function iteration number and N defines the maximum iteration number. The initial level-set state is obtained from the Bf (x,y). In equation 9, the change of the level-set function during one iteration is applied to the contour of the object of interest according to ∇ϕ(x,y), controlled by the sign function Fs and the edge stop function Estop. The former one switches pixels from foreground to the local background or vice versa, and the latter one restricts the evolvement of the object contour. According to the geodesic active contour approach (Caselles, Vicent and Kimmel, Ron and Sapiro, 1997) irregularities must be controlled during the evolution process. For the binary level-set method, this process is performed by using a Gaussian filter applied to the function ϕi+1.
[bookmark: _Toc516478535]Split and merge operations on objects
For better accuracy in the segmentation process it is important to design an algorithm that can adapt to the features of an object and restrict the evolvement of the level-set. By visual inspection of several experimental data sets we made the following two simplifying assumptions: 1. Objects are relatively static and 2. The growing area found from two consecutive frames is small compared to the total object size. We thus only track objects that move slowly, but we allow large shape deformation. Therefore, when updating the level-set function from ϕi to ϕi+1 , we analyze the object region using both ϕi and ϕi+1 to stop splitting one large object into small segments, and determining if newly detected objects should split or merge. We explain the details of these splitting and merging conditions below.
The condition for splitting objects is determined by comparing the foreground binary image Bf (x,y) before the level-set function evolvement with the image after one iteration Bf~ (x,y). We calculate the size of lost area represented by subtracting Bf (x,y) with Bf~(x,y) and compare the results with a threshold value using,
			(10)
where S(M) calculates the area size of connected components, 1:s, in a binary matrix M and use this size to label each pixel in M accordingly. The binary image Bs(x,y) represents objects which can be separated according to a threshold value ths. This condition stops evolvement in the level-set to avoid breaking long objects into two or more parts. In practice, we first check all pixels with the condition (Bf -Bf~)>0 to determine if the object is shrinking. If it is true for some pixels, then the corresponding pixels in Bs(x,y) are removed. It is worth noting that this restriction only applies to pixels with their area size larger than ths, while small objects can still be kept during the level-set evolvement.
A similar approach is used to merge two separate objects. In this case, we determine if the growing area is smaller than a threshold value thm as the maximum growing rate with the condition,
			(11)
In the end, the binary image Bs(x,y) and Bm(x,y) from the split and merge conditions, respectively, are added to Bf~(x,y). Then, as a pre-step before next level-set iteration using equation 9, we update the ϕi+1 values to 1 for all Bf~ (x,y)>0 and to -1 for Bf~ (x,y)=0.
The evolvement of the level-set function with split and merge conditions will continue until the iteration i reach N or a stop condition is fulfilled. It is important to set the stop condition objectively to avoid bias in the shape quantification process. In practice the stop condition is controlled using two criteria. The first criterion contains two conditions; the first compares pixel-by-pixel difference between Bf (x,y) and Bf~ (x,y) to see if the number of different pixels is smaller than a threshold number, indicating the level-set evolvement has reached a stable state. The second condition is to check if the absolute pixel difference in two consecutive iterations has the same value indicating that the error cannot be reduced further. When these two conditions are fulfilled, a second criterion is applied. This criterion updates the level-set function using equation 9 with a slightly different sign function comparing to equation 7,
		(12)
where ∆I is a small value in the range -1 to 1. Equation 9 with a positive ∆I give us the level-set function ϕ∆I , and a negative ∆I gives ϕ-∆I. From these level-set functions we can get foreground and background images as in the abovementioned sections. In addition, we can evaluate the intensity variance of foreground and background objects using,
		(13)
where wf and wb are weights calculated using the number of pixel 1:s in foreground image Bf (x,y) and local background image Bb (x,y), respectively; the σf2 and σb2 are calculated using non-zero values in I(x,y)Bf (x,y) and I(x,y)Bb (x,y), respectively. We compare the variance values to determine if both σ2(∆I) and σ2(-∆I) are larger than σ2(0). If this condition is fulfilled, the segmentation reaches a local optimal condition and therefore stops the level-set evolvement. Otherwise the level-set function ϕi+1(x,y) is updated with either ϕ∆I or ϕ-∆I depending on which one has the smallest variance value.
[bookmark: _Toc516478536]Combining level-set with thresholding
To make a robust and accurate segmentation algorithm we implement the binary level-set method in combination with thresholding. The level-set method is a robust approach when segmenting changes of object shape over time in the presence of drifts in images. The level-set method is however, a computational expensive process and therefore needs to be optimized to be efficient. To design an algorithm efficient in finding filamentous shape, we assign the last level-set result ϕi(x,y,t) at frame t directly to the next frame as the initial level-set function ϕ0(x,y,t+1). In addition, since the growing area is mainly close to the end of a filamentous structure the level-set method requires a large number of iterations to find the object shape. To reduce the number of iterations we apply a coarse estimation of the object shape using a simple global thresholding applied before the level-set evolvement.
To combine thresholding with the level-set method we define the coarse foreground of the image Bcf by,
 		(14)
where Bth is a binary image from any thresholding method, Bbo is a binary image of background objects excluding the target object. Details of the Bbo are explained in the following section. The Bcf is compared to the foreground image Bf generated from ϕ0(x,y,t+1). We exclude objects in Bcf which are not spatially connected to the objects in Bf based on the rules for connectivity of 8 neighboring pixels. We set pixels values to zero for all the excluded objects and the remaining pixel values in Bcf are 1s. Eventually the update of the level-set function ϕ0(x,y,t+1) is completed by adding Bf with Bcf and get the objects shape under the condition Bf (x,y)>0. The growing areas are region where (Bcf -Bf)>0. These growing areas are checked with the abovementioned merge conditions.
[bookmark: _Toc516478537]Background objects update
To distinguish objects of interest from other objects and the background, we use the information of background objects to avoid the level-set method to evolve an error region and apply an adaptive background update method based on the assumption that background pixels do not change abruptly in video, only small amount of movement in foreground pixels is expected. Most of the experiments related to objects growth are conducted in static background and the objects´ motions are relatively static. We get the initial Bbo(x,y,0) as background objects by applying thresholding to get Bth and subtract Bth with the Bf (x, y). The update of background object mask Bbo is conducted as the following,
 	(15)
where k is the threshold value given as the amount of weight in the previous detection. In our case, a pixel that belongs to the background object can have a high k value so that the background can remain as background. In the region of target object, the k value also set high to keep the detection free from noise in the background. On the other hand, if an overlap is detected between the previous background object region and current object region of interest, a lower k value can be applied. This is due to the fact that some newly developed areas of the object can have variations in intensities which lead to the segmentation results with broken parts in the object of interest. These small parts can easily be detected as false-positive background object and get excluded from the object. Therefore, the value k is adaptively updated with,
		(16)
where ∆k is the step size, the conditions for updating k is implemented using logic and operator to check each pixel. In practice k(x,y) is assigned with initial value and the range of value is limited from 0.5 to 0.99, so that the background mask Bobj is dependent on at least two frames up to the 100 last frames.
[bookmark: _Toc516478538]Data analysis
DSeg provides shape information of objects, such as persistence length, object length, etc. This section shows how these parameter values are obtained.
[bookmark: _Toc516478539]Skeletonized objects
DSeg derive the skeletonized object from the binary mask as a direct result from the segmentation process. For this we use the morphological thinning functions in MATLAB (Lam et al., 1992). This function produces a binary image that contains connected lines, in which each line is represented as one-pixel thick lines. This function allows for branching analysis as well as close loops. It is also possible to use the morphological skeleton function in MATLAB, however, the thinning function produce less branches along the contour of a segmented object making the results more accurate and easier for the analysis.
[bookmark: _Toc516478540]Extracting backbone patterns
We define the longest path in the topological structure of the skeletonized object as the backbone pattern. To find the longest path, we first consider each end of the skeletonized object as a starting point, and find all the joints from the skeletonized mask. Between two joints, two starting points, or one joint and one starting point there can exist a line defined as path segment for which the algorithm can find a combination of paths that contributes to the longest distance. For each of the path segment, the distance value is the length in pixels multiplied by a positive weighted mask from the history of detected paths. We assume a simple path problem where no path can be repeated, and the solution to this problem is implemented using the extract algorithm, where all possible permutations are searched to find the solution. Since the start and end of the path must be one of the skeleton ends, and the permutations can only be selected from paths, there exist a limited number of pathways, that is significantly less than in a longest path problem. The Pseudocode of our path detection algorithm is therefore given as;

Define a node as each path segment. Find all nodes in order to a group N and label each n with its order number to n.id and calculate the properties of length n.len and neighboring nodes list n.list.
For each staring point relate to a path segment n´ in N,
 Create a copy of N as N´,
 Set a check list L initialized with the label of n´,
 While (L is not empty)
 Initialized an empty list L´,
 For each node id in L
	Check each neighbor label i of n´ (id).list from N´,
	For each i,
	1. Update the n´(i).len in N’ to include the length from n(id).len, and expand the label n´(id).id to 	n´(i).id.
	2. Delete the id from neighboring list n´(i).list.
	end
	Attach all the neighboring label of n’ to L´,
 end
 Find only the unique label in L´ to replace L.
 end
 Find the maximum length value in N´ and get the corresponding path from the label
end
[bookmark: _Toc516478541]Calculation of persistence length, growth velocity and growth direction
To calculate the persistence length, P, we use the extracted backbone pattern. In short, the persistence length is a measure of how long distance the growing direction continues without curving. Since the persistence length can be measured with different models, and it is highly dependent on the ratio between the persistence length and contour length of the object, we implemented two different models. The first model is well suited when the object shows a high degree of curvature, that is when the persistence length is short in comparison to the contour length,
,			(17)
where a tangent-tangent correlation is measured using the angle θ between two points in the structure at a distance of l, the s is ranged from 1 to 2 in the denominator to represent equilibration or nonequilibration behavior of the chain object (Lamour et al., 2014). The estimated persistence length is then measured by fitting this equation to the tangent-tangent correlation as a function of l ranging from the resolution of imaging system to the total length of the structure. Another estimation of the persistence length is,
		(18)
where the mean square of end-to-end distance between two points in the structure at each l is measured instead of the tangent-tangent correlation (Boal, 2012).
To measure the growth velocity and growth directions we use the backbone pattern and measure differences between consecutive frames. The velocity is measured in the unit of area per time, thus it depends on the experimental settings which are related to the magnification of system, the size of the video recording area, number of pixels, and camera frame rate. The growth direction is given as degree of angles ranging from 0 to 360 where 0 indicates the direction along the horizontal line of the image to the right where the value increase for counter-clock wise changes.
[bookmark: _Toc516478542]Notes related to DSeg
The drift correction function in DSeg only corrects for linear translation, for example stage drift in the lateral plane. Therefore, it is important to align the microscopy system with the sample carefully to avoid any rotation or tilt.
The software is design for tracking the shape of objects in 2D images. To obtain the object shape as correctly as possible, we recommend that the growth of any organism is restricted in 2D. This can be achieved using a thin flow-chamber device as demonstrated in our experimental procedure or by using an adhesive coated surface. 3D data cannot be analyzed directly but a slice of the 3D data can be image segmented with the software.
The overlapping of objects cannot be handled completely by the software. However, in some cases when the time-lapse data contains growing objects covered partially by a small background object, the segmentation algorithm is capable of finding the backbone structure correctly. The segmentation result for data analysis only contains the backbone pattern of the object. The tracking of branches is not implemented in the software even though the shape of the branch is generated in the segmentation process.
For fast performance, the function image resize is activated to automatically resize the image to 800 pixels by default. Recall that this can reduce the accuracy when quantifying objects. Finally, the maximum number of objects that Dseg can detect is limited to 500.
[bookmark: _Toc516478543]References
Boal,D. (2012) Mechanics of the cell, second edition.
Caselles, Vicent and Kimmel, Ron and Sapiro,G. (1997) Geodesic active contours. Int. J. Comput. Vis., 22, 61–79.
Gerig,G. et al. (1992) Nonlinear anisotrophic filtering of MRI data. IEEE Trans. Med. Imaging, 11, 221–232.
Lam,L. et al. (1992) Thinning methodologies - a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell., 14, 869–885.
Lamour,G. et al. (2014) Easyworm: An open-source software tool to determine the mechanical properties of worm-like chains. Source Code Biol. Med., 9, 1–6.
Otsu,N. (1979) A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern., 9, 62–66.
Perona,P. and Malik,J. (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell., 12, 629–639.
Sobel,I. and Feldman,G. (1968) A 3x3 Isotropic Gradient Operator for Image Processing. In, presented at the Stanford Artificial Intelligence Project (SAIL).
Zhang,K. et al. (2010) Active Contours with Selective Local or Global Segmentation: A New Formulation and Level Set Method. Image Vis. Comput., 28, 668–676.

2

image1.jpeg

