Article Title: Associations between protein to non-protein ratio and intakes of other dietary components in a cohort aged 65-75 years: the Nutrition for Healthy Living Study Journal name: Public Health Nutrition

Supplementary Fig. S1. Flow diagram of participants

Supplementary Table S2. Participants characteristics (percentages and number of participants; median and interquartile range) of reporters and non-reporters ($n=113$)

Characteristic	Reporters $n=107$	Reporters $n=6$	P^{1}
Sex			0.18
Female	68 (73)	33 (2)	
Male	32 (34)	67 (4)	
Age (years)	69 (67-71)	69 (67-75)	0.79
Weight (kg)	74.4 (66.4-83.1)	68.5 (63.8-71.8)	0.22
BMI (kg/m²)	26.9 (24.8-29.3)	24.8 (23.6-27.6)	0.69
PASE ($n=102$)	130.0 (93.6-161.1)	63.3 (33.6-126.8)	0.61
Education Level ($n=112$)			0.54
High	86 (92)	80 (4)	
Low	14 (15)	20 (1)	
Source of income ($n=105$)			0.18
Age Pension only	19 (19)	50 (2)	
Other	81 (82)	50 (2)	
Marital status ($n=112$)			0.68
Married	51 (55)	40 (2)	
Not married	49 (52)	60 (3)	
Housing arrangements ($n=$ 110)			0.61
Outright owner	74 (78)	60 (3)	
Other	26 (27)	40 (2)	
Country of Birth ($n=111$)			1.00
Australia/New Zealand	58 (62)	60 (3)	

Other	$42(44)$	$40(2)$	
Smoking status $(n=111)$			0.16
Ex-smokers	$39(41)$	$0(0)$	
Never smoked	$61(65)$	$100(5)$	
Self-rated health $(n=109)$	$83(86)$	$100(5)$	0.59
Excellent/good	$17(18)$	$0(0)$	
Fair/poor/very poor	$89(95)$	$100(6)$	1.00
Living Location	$11(12)$	$0(0)$	
Metropolitan			
Rural	$96(99)$	$100(5)$	
Ability to prepare own meals	$4(4)$	$0(0)$	
$(n=108)$			
Yes			
No			

BMI, body mass index, PASE, Physical Activity Scale for the Elderly. ${ }^{1} \mathrm{P}$ values were obtained using the median, chi-square and Fisher's exact tests to compare reporters and non-reporters for differences in participant characteristics.

Supplementary Table S3. Participants characteristics (percentages and number of participants; median and interquartile range) of plausible and non-plausible reporters ($n=107$)

Characteristic	Plausible $n=88$	Non-plausible $n=19$	P^{1}
Sex			0.61
Female	67 (59)	74 (14)	
Male	33 (29)	26 (5)	
Age (years)	69 (67-71)	71 (68-72)	0.22
Weight (kg)	72.9 (66.0-82.9)	78.6 (69.8-83.6)	0.58
BMI (kg/m²)	27.3 (25.0-29.5)	29.2 (26.4-31.5)	0.039
PASE ($n=98$)	128.4 (95.4-160.5)	138.7 (74.6-170.1)	0.79
Education Level			0.73
High	86 (76)	84 (16)	
Low	14 (12)	16 (3)	
Source of income ($n=101$)			0.75
Age Pension only	19 (15)	21 (4)	
Other	82 (67)	79 (15)	
Marital status			0.21
Married	55 (48)	37 (7)	
Not married	46 (40)	63 (12)	
Housing arrangements ($n=$ 105)			0.25
Outright owner	77 (66)	63 (12)	
Other	23 (20)	37 (7)	
Country of Birth ($n=106$)			0.073
Australia/New	63 (55)	39 (7)	
Other	38 (33)	61 (11)	

Smoking status $(n=106)$	$37(32)$	0.44	
Ex-smokers		$32(6)$	
Never smoked	$63(55)$	$68(13)$	1.00
Self-rated health $(n=104)$			
Excellent/good	$82(70)$	$16(3)$	0.12
Fair/poor/very poor	$18(15)$	$100(19)$	
Living Location	$86(76)$	$0(0)$	0.14
Metropolitan	$14(12)$	$89(16)$	$11(2)$
Rural	$98(83)$	$2(2)$	
Ability to prepare own meals $(n=103)$			

Supplementary Table S4: Associations between dietary protein to non-protein ratios with intakes of energy, nutrients, food groups, and food subgroups in unadjusted analyses, using linear regression presented as beta coefficients

Dietary Component	$\begin{gathered} \text { Low P:NP } \\ 0.19(0.18,0.21) \\ n=29 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Medium P:NP } \\ 0.24(0.23,0.25) \\ n=30 \\ \hline \end{gathered}$	$\begin{gathered} \text { High P:NP } \\ 0.29(0.28,0.33) \\ n=29 \\ \hline \end{gathered}$	As continuous variable P:NP \% (each 1% increment)
Energy (kJ)*	Ref	$\begin{aligned} & -924.33(-1785.20,-63.46) \\ & \mathrm{P}=.036 \end{aligned}$	$\begin{aligned} & -1104.17(-1972.30,-236.03) \\ & \mathrm{P}=.013 \end{aligned}$	$\begin{aligned} & -69.83(-139.37,-0.28) \\ & \mathrm{P}=.049 \end{aligned}$
Nutrients				
Protein (g/kg BW)	Ref	$0.14(-0.03,0.30) \mathrm{P}=.10$	0.26 (0.10,0.43) P = . 002	0.03 (0.02,0.04) P < . 001
Protein (g)	Ref	$7.51(-2.72,17.75) \mathrm{P}=.15$	20.87 (10.55,31.19) $\mathrm{P}<.001$	2.18 (1.43,2.94) P < . 001
Protein (\%E)	Ref	3.25 (2.30,4.20) P < . 001	6.44 (5.48,7.40) P < . 001	0.58 (0.53,0.62) P < . 001
Carbohydrate (g)	Ref	-30.22 (-53.97,-6.46) P = . 013	-54.65 (-78.60,-30.69) P < . 001	-3.75 (-5.69,-1.81) P < . 001
Carbohydrate (\%E)	Ref	-0.96 (-4.07,2.14) P = . 54	-5.64 (-8.77,-2.51) $\mathrm{P}=.001$	-4.10 (-0.66,-0.16) $\mathrm{P}=.002$
Total fat (g)	Ref	-9.93 (-21.57,1.70) $\mathrm{P}=.093$	-14.89 (-26.63,-3.16) $\mathrm{P}=.014$	-1.24 (-2.16,-0.32) $\mathrm{P}=.009$
Total fat \%E)	Ref	-0.80 (-3.63,2.04) $\mathrm{P}=.58$	-1.26 (-4.67,1.04) $\mathrm{P}=.21$	-0.23 (-0.45,-0.01) P = . 039
Saturated fat (g)	Ref	-4.32 (-8.60,-0.04) P = . 048	-8.55 (-12.86,-4.23) $\mathrm{P}<.001$	-0.72 (-1.05,-0.38) P < . 001
Saturated fat (\%E)	Ref	-0.32 (-1.61,0.98) $\mathrm{P}=.63$	-1.98 (-3.28,-0.67) $\mathrm{P}=.003$	-0.20 (-0.30,-0.10) P < . 001
Linoleic acid (g)	Ref	-0.65 (-2.95,1.66) $\mathrm{P}=.58$	$-0.57(-2.89,1.76) \mathrm{P}=.63$	-0.08 (-0.26,0.11) $\mathrm{P}=.41$
Linoleic acid (\%E)	Ref	0.00 (-0.01,0.01) $\mathrm{P}=.79$	$0.00(0.00,0.01) \mathrm{P}=.34$	$0.00(0.00,0.00) \mathrm{P}=.76$
Alpha-linolenic acid (g)	Ref	$-0.34(-0.78,0.10) \mathrm{P}=.13$	$-0.40(-0.84,0.05) \mathrm{P}=.082$	$-0.03(-0.07,0.00) \mathrm{P}=.055$
Alpha-linolenic acid (\%E)	Ref	$0.00(0.00,0.00) \mathrm{P}=.56$	$0.00(0.00,0.00) \mathrm{P}=.42$	$0.00(0.00,0.00) \mathrm{P}=.26$
Long chain omega- $3(\mathrm{mg})$	Ref	$184.10(-60.11,428.32) \mathrm{P}=.14$	$154.95(-91.33,401.22) \mathrm{P}=.21$	$16.65(-2.67,35.97) \mathrm{P}=.090$
Dietary fibre (g)	Ref	-3.63 (-8.30,1.04) $\mathrm{P}=.13$	-0.21 (-4.91,4.50) P = . 93	-0.08 (-0.46,0.29) $\mathrm{P}=.67$
Dietary fibre (\%E)	Ref	-0.22 (-0.70,0.26) $\mathrm{P}=.36$	0.17 (-0.32,0.65) P = . 50	$0.00(-0.04,0.04) \mathrm{P}=.96$
Free sugar (g)	Ref	-22.67 (-30.85,-14.49) P < . 001	-33.84 (-42.09,-25.60) P < . 001	-2.36 (-3.07,-1.64) P < . 001
Free sugar (\%E)	Ref	-3.71 (-5.36,-2.06) P $<.001$	-6.05 (-7.72,-4.38) P $<.001$	-0.42 (-0.56,-0.28) P < . 001

Alcohol (std drink)	Ref	-0.49 (-1.45, 0.48) $\mathrm{P}=.32$	-0.06 (-1.04, 0.92$) \mathrm{P}=.90$	$0.00(-0.08,0.08) \mathrm{P}=.99$
Alcohol (\%E)	Ref	-1.22 (-4.32,1.89) $\mathrm{P}=.44$	$0.46(-2.67,3.60) \mathrm{P}=.77$	0.03 (-0.22,0.27) $\mathrm{P}=.84$
Thiamin (mg)	Ref	-0.13 (-0.47, 0.22) P = . 47	$0.000(-0.35,0.34) \mathrm{P}=.99$	$0.01(-0.02,0.03) \mathrm{P}=.65$
Riboflavin (mg)	Ref	$0.08(-0.33,0.48) \mathrm{P}=.71$	$0.00(-0.41,0.41) \mathrm{P}=.99$	$0.01(-0.02,0.04) \mathrm{P}=.44$
Vitamin C (mg)	Ref	$-11.52(-46.06,23.02) \mathrm{P}=.51$	18.46 (-16.37,53.29) $\mathrm{P}=.30$	1.13 (-1.65,3.90) $\mathrm{P}=.42$
Vitamin E (mg)	Ref	-0.93 (-5.53,3.67) P = . 69	-1.67 (-6.31,2.97) P $=.48$	-0.17 (-0.53,0.20) P = . 36
Vitamin B6 (mg)	Ref	$0.02(-0.27,0.32) \mathrm{P}=.88$	0.18 (-0.11,0.48) $\mathrm{P}=.13$	$0.02(0.00,0.04) \mathrm{P}=.069$
Folate (ug)	Ref	15.73 (-103.93,135.39) $\mathrm{P}=.79$	-21.75 (-142.42,98.92) $\mathrm{P}=.72$	-3.79 (-13.26,5.68) P = . 43
Vitamin B12 (ug)	Ref	0.68 (-0.23,1.58) P = . 14	0.91 (0.00,1.83) P = . 050	0.10 (0.03,0.17) P = . 005
Calcium (mg)	Ref	-0.16 (-195.77,195.45) $\mathrm{P}=1.00$	$8.25(-189.01,205.51) \mathrm{P}=.93$	4.55 (-10.93,20.03) $\mathrm{P}=.56$
Iodine (ug)	Ref	$20.87(-17.87,59.62) \mathrm{P}=.29$	6.48 (-32.59,45.55) $\mathrm{P}=.74$	0.89 (-2.19,3.98) $\mathrm{P}=.57$
Iron (mg)	Ref	-0.76 (-2.35,0.83) P $=.34$	-0.32 (-1.92,1.29) P = . 70	-0.01 (-0.14,0.12) P = . 89
Zinc (mg)	Ref	0.08 (-1.32,1.47) P = . 91	$1.29(-0.12,2.70) \mathrm{P}=.073$	0.14 (0.03,0.02) P = . 015
Potassium (mg)	Ref	-92.22 (-619.45,435.01) $\mathrm{P}=.73$	$359.85(-171.83,891.53) \mathrm{P}=.18$	$38.06(-3.73,79.85) \mathrm{P}=.074$
Sodium (mg)	Ref	$\begin{aligned} & -108.45(-537.85,320.94) \\ & \mathrm{P}=.62 \end{aligned}$	$\begin{aligned} & -175.93(-608.95,257.09) \\ & \mathrm{P}=.42 \end{aligned}$	$\begin{aligned} & -14.63(-48.66,19.39) \\ & P=.40 \end{aligned}$
Food Groups and Food Subgroups				
Vegetables	Ref	-1.31 (-2.69,0.07) $\mathrm{P}=.062$	0.33 (-1.06,1.71) $\mathrm{P}=.64$	$0.01(-0.10,0.13) \mathrm{P}=.80$
Dark green	Ref	-0.04 (-0.28,0.21) $\mathrm{P}=.77$	0.13 (-0.12,0.37) $\mathrm{P}=.31$	$0.01(-0.01,0.03) \mathrm{P}=.43$
Red and orange	Ref	-0.14 (-0.54, 0.27) $\mathrm{P}=.50$	0.26 (-0.15,0.67) $\mathrm{P}=.21$	$0.01(-0.02,0.05) \mathrm{P}=.41$
Legumes	Ref	$0.04(-0.07,0.15) \mathrm{P}=.51$	$0.04(-0.07,0.15) \mathrm{P}=.50$	$0.00(-0.01,0.01) \mathrm{P}=.94$
Other	Ref	-0.79 (-1.631,0.05) P = . 064	$0.14(-0.71,0.98) \mathrm{P}=.75$	$0.01(-0.06,0.08) \mathrm{P}=.74$
Starchy	Ref	$-0.38(-0.85,0.08) \mathrm{P}=.11$	-0.24 (-0.71, 0.23) P = . 32	-0.02 (-0.06,0.02) P = . 34
Starchy (\%)	Ref	-0.64 (-11.35,10.08) P = . 91	-3.53 (-14.33,7.27) P = . 52	$-0.30(-1.15,0.55) \mathrm{P}=.49$
Meat and alternatives	Ref	$0.58(0.00,1.17) \mathrm{P}=.050$	0.99 (0.40,1.58) P < . 001	0.09 (0.04,0.13) P < . 001
Red meat	Ref	$0.14(-0.07,0.34) \mathrm{P}=.18$	0.51 (0.30,0.71) P < . 001	0.04 (0.03,0.06) P < . 001
Processed meat	Ref	$0.03(-0.08,0.15) \mathrm{P}=.55$	$0.04(-0.07,0.16) \mathrm{P}=.45$	0.00 (-0.01,0.01) P = . 79
Seafood	Ref	$0.10(-0.05,0.26) \mathrm{P}=.20$	0.18 (0.02,0.34) P = . 030	$0.02(0.01,0.03) \mathrm{P}=.002$
Nuts and seeds	Ref	$0.20(-0.24,0.63) \mathrm{P}=.37$	-0.08 (-0.51, 0.36) P = . 73	-0.01 (-0.05,0.02) P = . 47

Legumes	Ref	0.03 (-0.04,0.09) $\mathrm{P}=.39$	$0.02(-0.04,0.08) \mathrm{P}=.50$	0.00 (-0.01,0.00) P = . 94
Soy products	Ref	$0.01(-0.04,0.07) \mathrm{P}=.65$	$0.01(-0.04,0.07) \mathrm{P}=.63$	$0.00(0.00,0.00) \mathrm{P}=.98$
Poultry	Ref	-0.02 (-0.23,0.18) $\mathrm{P}=.82$	$0.24(0.04,0.45) \mathrm{P}=.020$	0.03 (0.02,0.05) P < . 001
Eggs	Ref	$0.10(0.00,0.21) \mathrm{P}=.049$	$0.07(-0.04,0.17) \mathrm{P}=.22$	$0.00(-0.01,0.01) \mathrm{P}=.67$
Dairy and alternatives	Ref	$0.14(-0.44,0.72) \mathrm{P}=.63$	$0.08(-0.51,0.66) \mathrm{P}=.80$	$0.02(-0.02,0.07) \mathrm{P}=.36$
Milk	Ref	$0.36(-0.21,0.93) \mathrm{P}=.21$	-0.04 (-0.61,0.54) P = . 90	$0.01(-0.04,0.05) \mathrm{P}=.75$
Cheese	Ref	-0.13 (-0.34,0.08) $\mathrm{P}=.23$	$0.01(-0.20,0.22) \mathrm{P}=.94$	0.00 (-0.02,0.02) P = . 93
Yoghurt	Ref	$-0.11(-0.28,0.06) \mathrm{P}=.19$	$0.02(-0.16,0.19) \mathrm{P}=.86$	$0.01(-0.01,0.02) \mathrm{P}=.30$
Milk alternatives	Ref	$0.02(-0.08,0.12) \mathrm{P}=.67$	$0.09(-0.01,0.19) \mathrm{P}=.071$	$0.01(0.00,0.01) \mathrm{P}=.12$
Fruit	Ref	$-0.08(-0.53,0.38) \mathrm{P}=.73$	0.16 (-0.30,0.62) $\mathrm{P}=.50$	$0.02(-0.01,0.06) \mathrm{P}=.19$
Citrus, melons and berries	Ref	$0.07(-0.12,0.26) \mathrm{P}=.49$	$0.04(-0.15,0.23) \mathrm{P}=.66$	$0.00(-0.02,0.02) \mathrm{P}=.99$
Other fruit	Ref	-0.02 (-0.41,0.37) $\mathrm{P}=.92$	0.19 (-0.20,0.58) $\mathrm{P}=.34$	0.02 (-0.01,0.05) $\mathrm{P}=.12$
Fruit juice	Ref	-0.13 (-0.26,0.01) $\mathrm{P}=.069$	$-0.08(-0.21,0.06) \mathrm{P}=.28$	0.00 (-0.01,0.01) P = . 96
Fruit juice (\%)	Ref	-6.70 (-13.67,0.28) P = . 060	-4.62 (-11.65,2.41) $\mathrm{P}=.20$	-0.17 (-0.73,0.39) P = . 55
Grains	Ref	-0.03 (-0.99,0.94) $\mathrm{P}=.95$	-0.71 (-1.69,0.26) $\mathrm{P}=.15$	-0.06 (-0.14,0.02) $\mathrm{P}=.14$
Refined grains	Ref	-0.08 (-0.84, 0.67) P = . 83	-0.39 (-1.15,0.38) $\mathrm{P}=.32$	-0.03 (-0.09,0.03) $\mathrm{P}=.28$
Wholegrains	Ref	0.06 (-0.73, 0.84$) \mathrm{P}=.89$	$-0.32(-1.12,0.47) \mathrm{P}=.42$	-0.03 (-0.09, 0.04) P = . 42
Wholegrains (\%)	Ref	1.93 (-8.67,12.53) $\mathrm{P}=.72$	3.55 (-7.15,14.24) $\mathrm{P}=.51$	$0.27(-0.57,1.11) \mathrm{P}=.52$
Discretionary Foods	Ref	-7.44 (-10.22,-4.65) $\mathrm{P}<.001$	-10.72 (-13.54,-7.91) $\mathrm{P}<.001$	-0.77 (-1.01,-0.53) P $<.001$

P:NP, protein to non-protein; kJ, kilojoule; BW, body weight; \%E, as a percentage of energy.

