Spanish-English, and Chinese-English simultaneous bilinguals:

Supplemental Materials

Marks, Labotka, Sun, Nickerson, Zhang, Eggleston, Yu, Uchikoshi, Hoeft & Kovelman

Contents of Supplement:

Table S1. Demographic Characteristics of Participants in Study 1 and Study 2	2
Study 1: Associations Between Morphology and Word Reading	
Table S2. Study 1 Participants' Language Background by Grade and by Site	3
Table S3. Mean Accuracy on ELMM Items by Grade and Language Background	3
Table S4. Hierarchical Regression Predicting Word Reading in K-1 st Graders	4
Table S5. Hierarchical Regressions Predicting Word Reading in K-1 st Graders fromDerivational Awareness and Compound Awareness Separately	4
Table S6. <i>Hierarchical Regression Predicting Word Reading in 2nd-3rd Graders</i>	5
Table S7. Hierarchical Regressions Predicting Word Reading in K-1 st Graders from Derivational Awareness and Compound Awareness Separately	5

Study 2: Bilingual Transfer Effects on Morphological Awareness and English Reading

The role of heritage language morphological awareness in English word reading	6
Table S8. Regression analysis predicting English word reading in Spanish bilinguals	7
Table S9. Regression analysis predicting English word reading in Chinese bilinguals	7

	Study 1 (n = 340)	Study 2 (<i>n</i> = 207)		
Variable	n	%	n	%	
Sex					
Male	190	54.3	110	53.1	
Female	160	45.7	97	46.9	
Grade					
Pre-K – K	70	20.0	50	24.2	
1 st	137	39.1	77	37.2	
2 nd	93	26.6	50	24.2	
3 rd	50	14.3	30	14.5	
Geographic location					
Site 1	238	68.0	157	75.8	
Site 2	112	32.0	50	24.2	
Language					
English monolingual	175	50.0	69	33.3	
Spanish-English bilingual	78	22.3	69	33.3	
Chinese-English bilingual	89	25.4	69	33.3	
Other home language(s)	9	2.6	0	0	
Race and ethnicity					
Asian	96	27.4	63	30.4	
Black or African American	7	2.0	5	2.4	
Hispanic or Latinx	71	20.3	58	28.0	
Multiracial or Multiethnic	55	15.7	35	16.9	
White or European American	121	34.6	46	22.2	
Maternal educational attainment					
No high school diploma	6	1.7	6	2.9	
High school or GED	10	2.9	6	2.9	
Some college	14	4.0	8	3.8	
Associate's degree	11	3.1	5	2.4	
Bachelor's degree	106	30.3	64	31.5	
Some graduate school	9	2.6	6	2.9	
Master's degree	139	39.7	76	36.7	
Professional or doctoral degree	51	14.6	32	15.5	
Missing data	4	1.1	4	1.9	

Supplemental Table 1 Demographic Characteristics of Participants in Study 1 and Study 2

Study 1: Associations Between Morphology and Word Reading

Supplemental Table 2

~~ r r		—			
Study 1 Pa	articipants' I	Language	Background	by Grade	and by Site

	En	glish	Spanisl	n-English	Chinese-English		Other home		
	mono	inguals	bilir	nguals	bili	nguals	lang	guage	Total
Grade	N	%	Ν	%	Ν	%	Ν	%	Ν
Pre-K – K	27	38.6	16	22.9	27	38.6	0	-	70
1 st grade	60	43.8	34	24.8	38	27.7	5	3.6	137
2 nd grade	35	37.6	31	33.3	23	24.7	4	4.3	93
3 rd grade	21	42.0	16	32.0	13	26.0	0	-	50
Site									
Site 1	100	42.0	66	27.7	72	30.3	0	-	238
Site 2	43	38.4	31	27.7	29	25.9	9	8.0	112

Supplemental Table 3

Mean Accuracy on ELMM Items by Grade and Language Background

Early Acquired Derivations								
	English monolinguals	Spanish bilinguals	Chinese bilinguals	All	English monolinguals	Spanish bilinguals	Chinese bilinguals	All
Pre-K – K	5.41 (3.52)	4.13 (2.39)	4.28 (2.56)	4.84 (3.06)	6.59 (3.19)	6.00 (2.16)	6.00 (2.48)	6.34 (2.73)
1 st grade	9.50 (2.74)	8.16 (3.26)	8.93 (3.34)	9.25 (2.95)	9.33 (2.74)	8.52 (2.32)	8.83 (3.76)	9.15 (3.00)
2 nd grade	10.97 (2.07)	8.80 (3.83)	9.94 (2.84)	10.36 (2.78)	10.73 (2.04)	10.40 (2.21)	10.78 (3.02)	10.77 (2.23)
3 rd grade	11.90 (1.22)	10.31 (3.13)	12.38 (0.87)	11.52 (2.13)	11.86 (1.49)	10.75 (2.38)	11.08 (1.66)	11.30 (1.89)
		All D	erivations			All C	compounds	
Pre-K – K	7.89 (5.12)	6.81 (4.02)	5.88 (4.22)	7.14 (4.77)	6.59 (3.19)	6.00 (2.16)	6.04 (2.52)	6.39 (2.79)
1st grade	15.93 (4.82)	13.36 (5.67)	14.23 (5.78)	15.20 (5.23)	9.58 (2.99)	8.56 (3.28)	9.20 (4.06)	9.38 (3.21)
2 nd grade	18.71 (3.98)	14.85 (7.01)	16.17 (5.68)	17.47 (5.23)	11.41 (2.45)	10.55 (2.35)	11.28 (3.39)	11.30 (2.60)
3 rd grade	20.57 (2.64)	18.50 (4.53)	21.85 (1.82)	20.24 (3.41)	12.76 (2.10)	11.06 (2.62)	12.15 (2.27)	12.06 (2.39)

Supplemental Table 4

0	ß	5 t	n 0	R	R^2	$\wedge R^2$
Stern 1	P	i	P	522		ΔΛ
Step 1				.522	.272	
Constant		-3.52	.001			
Age	.51	8.04	<.001			
Bilingual status	.22	3.51	.001			
Maternal education	.06	0.91	.363			
Step 2				.733	.537	.264
Constant		-4.36	<.001			
Age	.28	4.81	<.001			
Bilingual status	.24	4.44	<.001			
Maternal education	.04	0.72	.470			
Vocabulary	.11	1.80	.073			
Phonological awareness	.52	9.54	<.001			
Step 3				.763	.582	.045
Constant		-2.33	.021			
Age	.17	2.84	.005			
Bilingual status	.28	5.23	<.001			
Maternal education	.03	0.59	.556			
Vocabulary	.05	0.77	.445			
Phonological awareness	.41	7.06	<.001			
Derivations	.24	2.72	.007			
Compounds	.09	1.14	.255			

Hierarchical Regression Predicting Word Reading in K-1st Graders

Note. Final model explains significant variance in word reading, F(7,185) = 36.76, p < .001

Supplemental Table 5

Hierarchical Regressions Predicting Word Reading in K-1st Graders from Derivational Awareness and Compound Awareness Separately

	β	t	р	β	t	р
Constant		-2.23	.027		-3.65	<.001
Age	.18	2.88	.004	.22	3.74	<.001
Bilingual status	.28	5.29	<.001	.26	4.77	<.001
Maternal education	.03	0.51	.608	.04	0.81	.419
Vocabulary	.05	0.77	.444	.08	1.29	.198
Phonological awareness	.41	7.14	<.001	.24	8.13	<.001
Derivations	.30	4.31	<.001			
Compounds				.21	3.49	<.001

Hierarchical Regression Predicting Word Redding in 2 ^{ma} -5 ^{ma} Graders							
	β	t	р	R	R^2	ΔR^2	
Step 1				.422	.178		
Constant		-0.05	.957				
Age	.26	3.33	.001				
Bilingual status	.08	1.01	.316				
Maternal education	.34	4.21	<.001				
Step 2				.776	.603	.425	
Constant		-0.94	.351				
Age	.07	1.24	.217				
Bilingual status	.09	1.49	.140				
Maternal education	.08	1.33	.186				
Vocabulary	.25	3.86	<.001				
Phonological awareness	.60	9.75	<.001				
Step 3				.802	.644	.041	
Constant		-0.26	.797				
Age	.04	0.72	.476				
Bilingual status	.11	2.04	.043				
Maternal education	.06	0.98	.327				
Vocabulary	.13	1.73	.085				
Phonological awareness	.51	8.20	<.001				
Derivations	.21	2.33	.021				
Compounds	.10	1.46	.147				

Supplemental Table 6 *Hierarchical Regression Predicting Word Reading in 2nd-3rd Graders*

Note. Final model explains significant variance in word reading, F(7,135) = 33.05, p < .001.

Supplemental Table 7

Hierarchical Regressions Predicting Word Reading in 2nd-3rd Graders from Derivational Awareness and Compound Awareness Separately

	β	t	р	β	t	р
Constant		0.11	.910		-1.20	.233
Age	.04	0.63	.533	.07	1.15	.251
Bilingual status	.11	1.98	.050	.10	1.82	.072
Maternal education	.06	1.03	.306	.07	1.13	.261
Vocabulary	.12	1.57	.118	.22	3.32	.001
Phonological awareness	.53	8.50	<.001	.54	8.66	<.001
Derivations	.28	3.54	<.001	-	-	-
Compounds	-	-	-	.19	3.01	.003

Study 2: Bilingual Transfer Effects on Morphological Awareness and English Reading

The role of heritage language morphological awareness in English word reading

As part of a larger project, some participants in the current study completed an additional morphological awareness task in Spanish or Chinese. This was an oddball task, in which children heard three words: two that shared a morpheme (e.g. class<u>room</u> and bed<u>room</u>), and one with a phonological distractor (e.g., mush<u>room</u>). In Spanish, an example triplet includes the words *automóvil* (automobile), *autopartes* (car parts), and the distractor *autoridad* (authority). In Chinese, an example triplet includes the words 眼镜 (*yan3 jing4*, eyeglasses), 墨镜 (*mo4 jing4*, sunglasses), and the distractor 安静 (*an1 jing4*, quiet). These example items all demonstrate triplets in which two words share a root morpheme; however, the tasks also contain items that share a derived affix.

Of the bilingual children in the matched groups of Study 2, N = 52 Spanish bilinguals (*M* accuracy = 60.04%, *SD* = 16.62) and N = 43 Chinese bilinguals (*M* accuracy = 60.10%, *SD* = 14.69) completed this oddball task in their heritage language. There were no significant differences in accuracy between groups, t(93) = -0.02, p = .984.

These data are unfortunately not available for all bilinguals in the current sample. Furthermore, because these tasks are designed in two different languages and completed by two different samples of participants, we cannot guarantee that the heritage language tasks are perfectly matched in the difficulty of each item. However, the incomplete data available suggest that the bilingual groups are well-matched in terms of their heritage language proficiency.

We then examined how heritage language morphological awareness might contribute to English word reading skill, after taking into account the contribution of English morphological awareness. We conducted two separate regression analyses, one for the Spanish-English bilinguals and one for the Chinese-English bilinguals who had completed the heritage language morphology task.

Among Spanish-English bilinguals, English compound awareness and Spanish morphological awareness, but not English derivational awareness, were significantly associated with English word reading (Supplemental Table 1). Among Chinese-English bilinguals, only English derivational awareness was significantly associated with English word reading (Supplemental Table 2).

These results extend and clarify the findings of Study 2, which reveal that participants' sensitivity to the type of English morphology that is *less characteristic* is associated with differences in their English word reading. In this supplemental analysis, we see that the interaction pattern discovered in Study 2 holds even when heritage language proficiency is included in the model. Additionally, we find that morphological awareness measured in Spanish contributes to Spanish bilinguals' English word reading, whereas morphological awareness measured in Chinese does not. This result is perhaps related to the linguistic distance between English and Chinese, which makes it more difficult to transfer Chinese morphological awareness directly to support English literacy.

<u>Regression analysis predicting Eng</u>	glish word i	reading ir	i Spanish t	nlinguals.
	В	β	t	р
(Constant)	5.77		1.08	.285
English derivations	0.97	.23	1.67	.102
English compounds	1.64	.35	2.38	.021 *
Spanish morphological awareness	0.31	.34	3.17	.003 **

Supplemental Table 8 *Regression analysis predicting English word reading in Spanish bilinguals*

Note. Model explains significant unique variance, F(3, 48) = 25.03, p < .001.

Supplemental Table 9

Regression analysis predicting English word reading in Chinese bilinguals.

	В	β	t	р
(Constant)	17.19		2.82	.008
English derivations	3.03	.77	4.89	<.001 ***
English compounds	-0.15	04	-0.23	.818
Chinese morphological awareness	.12	.12	1.12	.268
	E(2, 20)	22.27	001	

Note. Model explains significant unique variance, F(3, 39) = 22.27, p < .001.