
Simulations lexico-semantic experiment Menut et al. 

 

First we analyze the data of the experiment with a Rasch model 2PL (difficulty of items and 
discrimination are allowed to vary; is the standard Rasch analysis). Datafile is LST_LMM.xlsx. 

library(readxl) 
library(ltm) 
LST_LMM <- read_excel("LST_LMM.xlsx") 
mydata <- LST_LMM[ -c(1:3) ] 
fit1 <- rasch(mydata) 
summary(fit1) 
plot(fit1, legend = TRUE, cx = "bottomright", lwd = 3, cex.main = 1.5, cex.lab = 1.3, cex = 1.1) 

 

This is a plot of how the analysis looks like (ordinate = ability of the participant, probability = 
chances of getting the item right; different lines = different stimuli – easy and more difficult 
ones) 

 

 



Next we generate new stimuli according to a similar Rasch model. We assume that the 90 
participants are equally spread between z-values -2 and +2. We also assume that items are 
equally spread between -2 and +1 (asymmetric, so that items are not too easy). 

We generate the first 40 stimuli for the non-shared condition. 

ppar <- runif(90,min = -2, max = 2) 
spar <- runif(40,min =-2.0, max = 1) 
mydata2 <- sim.2pl(ppar, spar, discrim = 0.5,cutpoint="randomized") 
 
 
Next we generate the second 40 stimuli according to the same equation for the shared condition 
(i.e., d = .0) 
 
d = 0.0 
spar <- runif(40,min =-(2.0-d), max = (1-d)) 
mydata3 <- sim.2pl(ppar, spar, discrim = 0.5,cutpoint="randomized") 
 
 
This is how the Rasch looks like for some stimuli: 
 

 
 



We also have to define the proficiency of the participants. To some extent, this is given by the 
variable ppar (ability of the participants). However, if we use this variable in our MME analysis, 
there is no variance in participant intercepts left. It is also unlikely that we have a proficiency 
measure that correlates 1.00 with true language proficiency. A correlation of r = .7 seems 
reasonable. So, we use a proficiency measure that correlates more or less r = .7 with the ability 
used to generate Rasch. This is done by adding noise to the ppar variable. 
 
prof = ppar  + rnorm(90,0,1.7) 
 
Now we have everything to generate a data file to be analyzed with MME.  
 
For this we can use the R lines: 
 
fit3 <- glmer(Value ~ Proficiency*Condition + (Condition|Part) +( 1 | Stim), data=output, 
family=binomial) 
summary(fit3) 
 
Which gives the following output. 
 
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: Value ~ Proficiency * Condition + (Condition | Part) + (1 | Stim) 
   Data: output 
 
     AIC      BIC   logLik deviance df.resid  
  8241.1   8296.1  -4112.5   8225.1     7192  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-5.0377 -0.7293  0.3480  0.6732  3.4451  
 
Random effects: 
 Groups Name     Variance  Std.Dev.  Corr  
 Part   (Intercept)      0.76053   0.8721         
        Conditionshared 0.02546   0.1596    -0.38 
 Stim   (Intercept)      0.56181   0.7495         
Number of obs: 7200, groups:  Part, 90; Stim, 80 
 
Fixed effects: 

                             Estimate  Std. Error  z value   Pr(>|z|)     
(Intercept)                      0.35822     0.15587    2.298     0.0215 *   
Proficiency                     0.34494     0.05501    6.271   3.59e-10 *** 
Conditionshared                0.01028     0.17752    0.058     0.9538     
Proficiency:Conditionshared   -0.02139     0.03249   -0.658    0.5102     
--- 



Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
            (Intr) Prfcnc Cndtns 
Proficiency -0.090               
Conditnshrd -0.586  0.010        
Prfcncy:Cnd  0.019 -0.373 -0.021 
 
 
For comparison, this is the jamovi output: 
 

Model Info 

Info Value Comment 

Model Type  Logistic  Model for binary y  

Call  glm  Value ~ 1 + Proficiency + Condition + Condition:Proficiency + (1 | Stim) + (1 + 
Condition | Part) 

 

Link 
function 

 Logit  Log of the odd of y=1 over y=0  

Direction  P(y=1)/P(y=0)  P( Value = ) / P( Value = )  

Distribution  Binomial  Dichotomous event distribution of y  

LogLikel.  -4112.5436  Less is better  

R-squared  0.0757  Marginal  

R-squared  0.3349  Conditional  

AIC  8241.0900  Less is better  

BIC  8296.1418  Less is better  

Deviance  7659.0813  Conditional  

Residual DF  7192.0000     

Converged  yes     

Optimizer  bobyqa     

  

Fixed Effect Omnibus tests 

  X² df p 

Proficiency  42.598  1.00  < .001  

Condition  5.31e-4  1.00  0.982  

Condition ✻ Proficiency  0.433  1.00  0.510  



  

Random Components 

Groups Name SD Variance 

Part  (Intercept)  0.845  0.7139  

   Condition1  0.160  0.0255  

Stim  (Intercept)  0.750  0.5618  

Residuals     1.000  1.0000  

Note. Number of Obs: 7200 , groups: Part 90, Stim 80 

  

Random Parameters correlations 

Groups Param.1 Param.2 Corr. 

Part  (Intercept)  Condition1  -0.298  

  

Effects Plots 

 



Compare the jamovi output to the output of the experiment itself. 

Model Info 

Info Value Comment 

Model Type  Logistic  Model for binary y  

Call  glm  response ~ 1 + suffix + sPLexT + suffix:sPLexT + (1 + suffix | id) + (1 | items)  

Link function  Logit  Log of the odd of y=1 over y=0  

Direction  P(y=1)/P(y=0)  P( response = ) / P( response = )  

Distribution  Binomial  Dichotomous event distribution of y  

LogLikel.  -2947.4284  Less is better  

R-squared  0.0923  Marginal  

R-squared  0.4200  Conditional  

AIC  5910.8600  Less is better  

BIC  5965.6218  Less is better  

Deviance  5401.9640  Conditional  

Residual DF  6936.0000     

Converged  yes     

Optimizer  bobyqa     

  

Fixed Effect Omnibus tests 

  X² df p 

suffix  0.124  1.00  0.725  

sPLexT  116.295  1.00  < .001  

suffix ✻ sPLexT  3.887  1.00  0.049  

  

  



Random Components 

Groups Name SD Variance 

id  (Intercept)  0.543  0.2947  

   suffix1  0.221  0.0489  

items  (Intercept)  1.245  1.5493  

Residuals     1.000  1.0000  

Note. Number of Obs: 6944 , groups: id 92, items 80 

  

Random Parameters correlations 

Groups Param.1 Param.2 Corr. 

id  (Intercept)  suffix1  0.612  

 

 Effects Plots 

 

 

 



Now that we have the basic model, we can run simulations. In the program below, we have 400 
datasets simulated and analyzed. 

#Simulate and look at the distribution of z-values 
 
nSim = 400 
zProfi <- numeric(nSim) 
zCond <- numeric(nSim) 
zInter <- numeric(nSim) 
 
# create progress bar in case it takes a while 
pb <- winProgressBar(title = "progress bar", min = 0, max = nSim, width = 300) 
 
for(i in 1:nSim){ #for each simulated experiment 
  setWinProgressBar(pb, i, title=paste(round(i/nSim*100, 1), "% done")) 
  ppar <- runif(90,min = -2, max = 2) 
  prof = ppar  + rnorm(90,0,1.7) 
  proficiency <- rep(prof, times=40) 
  spar <- runif(40,min =-2.0, max = 1) 
  mydata2 <- sim.2pl(ppar, spar, discrim = 0.5,cutpoint="randomized") 
  output1 <- melt(mydata2, id.vars=rownames(mydata2)) 
  condition <- rep("nonshared", times = 40*90) 
  output1 <- cbind(output1,proficiency,condition) 
   
  d=0.0 
  spar <- runif(40,min = (-2.0-d), max = (1-d)) 
  mydata3 <- sim.2pl(ppar, spar, discrim = 0.5,cutpoint="randomized") 
  output2 <- melt(mydata3, id.vars=rownames(mydata3)) 
  condition <- rep("shared", times = 40*90) 
  output2 <- cbind(output2,proficiency,condition) 
  output2[,2] <- output2[,2] + 40 
   
  output <- rbind(output1,output2) 
  colnames(output) <- c("Part","Stim", "Value", "Proficiency", "Condition") 
  fit3 <- glmer(Value ~ Proficiency*Condition + (Condition|Part) +( 1 | Stim), data=output, family=binomial) 
  zProfi[i] <- coef(summary(fit3))[2,"z value"] 
  zCond[i] <- coef(summary(fit3))[3,"z value"] 
  zInter[i] <- coef(summary(fit3))[4,"z value"] 
} 
close(pb)#close progress bar 
 
par(mfrow=c(3,1)) 
hist(zProfi) 
hist(zCond) 
hist(zInter) 

 



This gives the following outcond for proficiency, suffix condition, and the interaction (z-values). 
We see that the effect of proficiency is significant in each simulation (z > 1.96). There is no 
effect of condition beyond the alpha level (power = .05). However, there are too many 
interactions that are significant (power = .17). Further simulation suggests that this is due to the 
wide distribution of participants. When the distribution becomes narrower (z-values participants 
form a standard normal distribution) then you get better values. Bottom line is that one should be 
careful to interpret significant interactions! Are likely to be a fluke. 

 

We can now shift the item values in the shared condition by d = .4 or d = .6. Below are the 
powers we get. Bottom line is that we have 44% chance of finding a shift of d = .4 and 78% to 
find a shift of d = .6. 

Power (p < .05) d = .0 d = .4 d = .6

Proficiency 1.00 1.00 1.00
Shared 0.05 0.44 0.78
P * S 0.17 0.13 0.16  

Below you see how the effects look like if the data of a d = .6 experiment are analyzed. 

 



 

 

d = .6 

Effects Plots 

 

 

The programs used are available at https://osf.io/cv8ny/files/ in the folder Simulations power. 


