
Simulations lexico-semantic experiment Menut et al.

First we analyze the data of the experiment with a Rasch model 2PL (difficulty of items and
discrimination are allowed to vary; is the standard Rasch analysis). Datafile is LST_LMM.xlsx.

library(readxl)
library(ltm)
LST_LMM <- read_excel("LST_LMM.xlsx")
mydata <- LST_LMM[-c(1:3)]
fit1 <- rasch(mydata)
summary(fit1)
plot(fit1, legend = TRUE, cx = "bottomright", lwd = 3, cex.main = 1.5, cex.lab = 1.3, cex = 1.1)

This is a plot of how the analysis looks like (ordinate = ability of the participant, probability =
chances of getting the item right; different lines = different stimuli – easy and more difficult
ones)

Next we generate new stimuli according to a similar Rasch model. We assume that the 90
participants are equally spread between z-values -2 and +2. We also assume that items are
equally spread between -2 and +1 (asymmetric, so that items are not too easy).

We generate the first 40 stimuli for the non-shared condition.

ppar <- runif(90,min = -2, max = 2)
spar <- runif(40,min =-2.0, max = 1)
mydata2 <- sim.2pl(ppar, spar, discrim = 0.5,cutpoint="randomized")

Next we generate the second 40 stimuli according to the same equation for the shared condition
(i.e., d = .0)

d = 0.0
spar <- runif(40,min =-(2.0-d), max = (1-d))
mydata3 <- sim.2pl(ppar, spar, discrim = 0.5,cutpoint="randomized")

This is how the Rasch looks like for some stimuli:

We also have to define the proficiency of the participants. To some extent, this is given by the
variable ppar (ability of the participants). However, if we use this variable in our MME analysis,
there is no variance in participant intercepts left. It is also unlikely that we have a proficiency
measure that correlates 1.00 with true language proficiency. A correlation of r = .7 seems
reasonable. So, we use a proficiency measure that correlates more or less r = .7 with the ability
used to generate Rasch. This is done by adding noise to the ppar variable.

prof = ppar + rnorm(90,0,1.7)

Now we have everything to generate a data file to be analyzed with MME.

For this we can use the R lines:

fit3 <- glmer(Value ~ Proficiency*Condition + (Condition|Part) +(1 | Stim), data=output,
family=binomial)
summary(fit3)

Which gives the following output.

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
 Family: binomial (logit)
Formula: Value ~ Proficiency * Condition + (Condition | Part) + (1 | Stim)
 Data: output

 AIC BIC logLik deviance df.resid
 8241.1 8296.1 -4112.5 8225.1 7192

Scaled residuals:
 Min 1Q Median 3Q Max
-5.0377 -0.7293 0.3480 0.6732 3.4451

Random effects:
 Groups Name Variance Std.Dev. Corr
 Part (Intercept) 0.76053 0.8721
 Conditionshared 0.02546 0.1596 -0.38
 Stim (Intercept) 0.56181 0.7495
Number of obs: 7200, groups: Part, 90; Stim, 80

Fixed effects:

 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.35822 0.15587 2.298 0.0215 *
Proficiency 0.34494 0.05501 6.271 3.59e-10 ***
Conditionshared 0.01028 0.17752 0.058 0.9538
Proficiency:Conditionshared -0.02139 0.03249 -0.658 0.5102

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
 (Intr) Prfcnc Cndtns
Proficiency -0.090
Conditnshrd -0.586 0.010
Prfcncy:Cnd 0.019 -0.373 -0.021

For comparison, this is the jamovi output:

Model Info

Info Value Comment

Model Type Logistic Model for binary y

Call glm Value ~ 1 + Proficiency + Condition + Condition:Proficiency + (1 | Stim) + (1 +
Condition | Part)

Link
function

 Logit Log of the odd of y=1 over y=0

Direction P(y=1)/P(y=0) P(Value =) / P(Value =)

Distribution Binomial Dichotomous event distribution of y

LogLikel. -4112.5436 Less is better

R-squared 0.0757 Marginal

R-squared 0.3349 Conditional

AIC 8241.0900 Less is better

BIC 8296.1418 Less is better

Deviance 7659.0813 Conditional

Residual DF 7192.0000

Converged yes

Optimizer bobyqa

Fixed Effect Omnibus tests

 X² df p

Proficiency 42.598 1.00 < .001

Condition 5.31e-4 1.00 0.982

Condition ✻ Proficiency 0.433 1.00 0.510

Random Components

Groups Name SD Variance

Part (Intercept) 0.845 0.7139

 Condition1 0.160 0.0255

Stim (Intercept) 0.750 0.5618

Residuals 1.000 1.0000

Note. Number of Obs: 7200 , groups: Part 90, Stim 80

Random Parameters correlations

Groups Param.1 Param.2 Corr.

Part (Intercept) Condition1 -0.298

Effects Plots

Compare the jamovi output to the output of the experiment itself.

Model Info

Info Value Comment

Model Type Logistic Model for binary y

Call glm response ~ 1 + suffix + sPLexT + suffix:sPLexT + (1 + suffix | id) + (1 | items)

Link function Logit Log of the odd of y=1 over y=0

Direction P(y=1)/P(y=0) P(response =) / P(response =)

Distribution Binomial Dichotomous event distribution of y

LogLikel. -2947.4284 Less is better

R-squared 0.0923 Marginal

R-squared 0.4200 Conditional

AIC 5910.8600 Less is better

BIC 5965.6218 Less is better

Deviance 5401.9640 Conditional

Residual DF 6936.0000

Converged yes

Optimizer bobyqa

Fixed Effect Omnibus tests

 X² df p

suffix 0.124 1.00 0.725

sPLexT 116.295 1.00 < .001

suffix ✻ sPLexT 3.887 1.00 0.049

Random Components

Groups Name SD Variance

id (Intercept) 0.543 0.2947

 suffix1 0.221 0.0489

items (Intercept) 1.245 1.5493

Residuals 1.000 1.0000

Note. Number of Obs: 6944 , groups: id 92, items 80

Random Parameters correlations

Groups Param.1 Param.2 Corr.

id (Intercept) suffix1 0.612

 Effects Plots

Now that we have the basic model, we can run simulations. In the program below, we have 400
datasets simulated and analyzed.

#Simulate and look at the distribution of z-values

nSim = 400
zProfi <- numeric(nSim)
zCond <- numeric(nSim)
zInter <- numeric(nSim)

create progress bar in case it takes a while
pb <- winProgressBar(title = "progress bar", min = 0, max = nSim, width = 300)

for(i in 1:nSim){ #for each simulated experiment
 setWinProgressBar(pb, i, title=paste(round(i/nSim*100, 1), "% done"))
 ppar <- runif(90,min = -2, max = 2)
 prof = ppar + rnorm(90,0,1.7)
 proficiency <- rep(prof, times=40)
 spar <- runif(40,min =-2.0, max = 1)
 mydata2 <- sim.2pl(ppar, spar, discrim = 0.5,cutpoint="randomized")
 output1 <- melt(mydata2, id.vars=rownames(mydata2))
 condition <- rep("nonshared", times = 40*90)
 output1 <- cbind(output1,proficiency,condition)

 d=0.0
 spar <- runif(40,min = (-2.0-d), max = (1-d))
 mydata3 <- sim.2pl(ppar, spar, discrim = 0.5,cutpoint="randomized")
 output2 <- melt(mydata3, id.vars=rownames(mydata3))
 condition <- rep("shared", times = 40*90)
 output2 <- cbind(output2,proficiency,condition)
 output2[,2] <- output2[,2] + 40

 output <- rbind(output1,output2)
 colnames(output) <- c("Part","Stim", "Value", "Proficiency", "Condition")
 fit3 <- glmer(Value ~ Proficiency*Condition + (Condition|Part) +(1 | Stim), data=output, family=binomial)
 zProfi[i] <- coef(summary(fit3))[2,"z value"]
 zCond[i] <- coef(summary(fit3))[3,"z value"]
 zInter[i] <- coef(summary(fit3))[4,"z value"]
}
close(pb)#close progress bar

par(mfrow=c(3,1))
hist(zProfi)
hist(zCond)
hist(zInter)

This gives the following outcond for proficiency, suffix condition, and the interaction (z-values).
We see that the effect of proficiency is significant in each simulation (z > 1.96). There is no
effect of condition beyond the alpha level (power = .05). However, there are too many
interactions that are significant (power = .17). Further simulation suggests that this is due to the
wide distribution of participants. When the distribution becomes narrower (z-values participants
form a standard normal distribution) then you get better values. Bottom line is that one should be
careful to interpret significant interactions! Are likely to be a fluke.

We can now shift the item values in the shared condition by d = .4 or d = .6. Below are the
powers we get. Bottom line is that we have 44% chance of finding a shift of d = .4 and 78% to
find a shift of d = .6.

Power (p < .05) d = .0 d = .4 d = .6

Proficiency 1.00 1.00 1.00
Shared 0.05 0.44 0.78
P * S 0.17 0.13 0.16

Below you see how the effects look like if the data of a d = .6 experiment are analyzed.

d = .6

Effects Plots

The programs used are available at https://osf.io/cv8ny/files/ in the folder Simulations power.

