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This appendix provides (i) derivations of optimal demands with short-selling constraints, as
in Sections 2.1 and 3.3 of the main text, and (ii) supporting material for the generalizations
and extensions in Section 3.3, Section 5 (start) and Sections 5.1–5.3 of the main text.

1 Derivations

In this section we derive the optimal demand schedules for the cases of unconditional short-
selling constraints (benchmark model) and conditional short-selling constraints (Section 3.3).

1.1 Derivation of demands in the benchmark model

Each type h ∈ H solves the following problem:1

max
zt,h

Ẽt,h[wt+1,h]−
a

2
Ṽt,h[wt+1,h] s.t. zt,h ≥ 0 (1)

where wt+1,h = (pt+1+dt+1)zt,h+(1+ r̃)(wt,h−ptzt,h) is future wealth, wt,h−ptzt,h is holdings
of the risk-free asset, a, r̃ > 0 are parameters and Ṽt,h[wt+1,h] = σ2z2t,h, with σ2 > 0.

Formulating the above problem as a Lagrangean:

max
zt,h,λt,h

Lt,h = Ẽt,h [wt+1,h]−
a

2
Ṽt,h [wt+1,h] + λt,hzt,h (2)

where λt,h ≥ 0 is the Lagrange multiplier on the short-selling constraint, zt,h ≥ 0.

The first-order conditions are

zt,h : Ẽt,h [pt+1] + Ẽt,h [dt+1]− (1 + r̃)pt − aσ2zt,h + λt,h = 0 (3)

λt,h : zt,h ≥ 0 (4)

and the complementary slackness condition is:

λt,hzt,h = 0. (5)

By (3), λt,h = −(Ẽt,h [pt+1] + Ẽt,h [dt+1]− (1 + r̃)pt − aσ2zt,h). Note that λt,h = 0 if and only
if zt,h = (aσ2)−1(Ẽt,h [pt+1] + Ẽt,h [dt+1] − (1 + r̃)pt). This zt,h satisfies (5) (given λt,h = 0)
and therefore it is an optimal demand iff Ẽt,h [pt+1] + Ẽt,h [dt+1] ≥ (1 + r̃)pt; see (4).

1We assume (as is standard) that these operators satisfy some basic properties of conditional expectation
operators, namely, Ẽt,h[yt] = yt and Ṽt,h[yt] = 0 for any variable yt that is determined at date t; Ẽt,h[xt+1 +

yt+1] = Ẽt,h[xt+1] + Ẽt,h[yt+1] for any variables x and y; and Ṽt,h[xtyt+1] = x2
t Ṽt,h[yt+1].
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If Ẽt,h [pt+1] + Ẽt,h [dt+1] < (1 + r̃)pt. we can reject λt,h = 0, since the condition in (4) is
not satisfied. It follows that λt,h > 0 when Ẽt,h [pt+1] + Ẽt,h [dt+1] < (1 + r̃)pt, and by the
complementary slackness condition (5) it follows that zt,h = 0 (which satisfies (4)).

Therefore, the demand schedule of type h ∈ H is given by

zt,h =


Ẽt,h [pt+1] + Ẽt,h [dt+1]− (1 + r̃)pt

aσ2
if pt ≤

Ẽt,h [pt+1] + Ẽt,h [dt+1]

1 + r̃

0 if pt >
Ẽt,h [pt+1] + Ẽt,h [dt+1]

1 + r̃

(6)

as stated in Equation (2) of the main text.

1.2 Derivation of demands for conditional short-selling constraint

If g(pt−1, ..., pt−K) > 0, the short-selling constraint is absent at date t; if g(pt−1, ..., pt−K) ≤ 0
the short-selling constraint is present. We introduce an indicator variable 1t := 1{g(pt−1,...,pt−K)≤0}
equal to 1 if the short-selling constraint is present at date t (i.e. if g(pt−1, ..., pt−K) ≤ 0), and
equal to 0 otherwise. The problem of type h ∈ H at date t is thus amended from (1) to:

max
zt,h

Ẽt,h[wt+1,h]−
a

2
Ṽt,h[wt+1,h] s.t. 1tzt,h ≥ 0 (7)

where wt+1,h = (pt+1 + dt+1)zt,h + (1 + r̃)(wt,h − ptzt,h) as above.
Note that if 1t = 0, the portfolio choice of all types h ∈ H is unconstrained at date t,

since 1tzt,h = 0 ≥ 0 is satisfied for any zt,h ∈ R. On the other hand, if 1t = 1 then all types
face the same maximization problem as in (1), i.e. short-selling is banned at date t.

Formulating the above problem as a Lagrangean:

max
zt,h,λt,h

Lt,h = Ẽt,h [wt+1,h]−
a

2
Ṽt,h [wt+1,h] + λt,h1tzt,h (8)

where λt,h ≥ 0 is the Lagrange multiplier on the constraint 1tzt,h ≥ 0.

The first-order conditions are

zt,h : Ẽt,h [pt+1] + Ẽt,h [dt+1]− (1 + r̃)pt − aσ2zt,h + λt,h1t = 0 (9)

λt,h : 1tzt,h ≥ 0 (10)

and the complementary slackness condition is:

λt,h1tzt,h = 0. (11)

If 1t = 0, then (10)–(11) are satisfied and zt,h = (aσ2)−1(Ẽt,h [pt+1]+Ẽt,h [dt+1]−(1+r̃)pt) ∈ R
by (9). Hence, demands are unconstrained if 1t = 0. If 1t = 1, the first-order conditions
(9)–(11) are identical to (3)–(5), so the cases are the same as discussed below Eq. (5).

Therefore, demands are zt,h = (aσ2)−1(Ẽt,h [pt+1] + Ẽt,h [dt+1] − (1 + r̃)pt) if 1t = 0 or

pt ≤ Ẽt,h[pt+1]+Ẽt,h[dt+1]

1+r̃
; and zt,h = 0 otherwise (i.e. if 1t = 1 and pt >

Ẽt,h[pt+1]+Ẽt,h[dt+1]

1+r̃
).
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2 Minor generalizations and nested cases

In this section we discuss some minor generalizations and nested cases briefly mentioned at
the start of Section 5 in the main paper: individual investors or types who may be connected
in a social network; housing as a physical investment asset subject to a short-selling ban;
and short-selling constraints that permit negative positions up to some limit.

2.1 Individuals in a social network

First, note that if the types h1, h2, ..., hH are individual investors we may fix the population
shares at nt,h = 1/H. This interpretation is relevant for asset pricing models with many
agents that differ in beliefs; for example, agent-based models as in LeBaron et al. (1999)
or the social network model with individual-specific types in Hatcher and Hellmann (2022).
Alternatively, some papers consider type adoption as in the Brock and Hommes (1998) model,
but with local social networks. In the model of Panchenko et al. (2013), for example, type
updating follows Brock and Hommes (1998) except that only the types (and performance)
of investors in an agent’s social network can be observed and adopted; see Panchenko et al.
(2013, Eq. 10). Both the above cases are nested by the benchmark results because the
demand schedules in these papers have the same functional form as in Equations (2) and (4)
in the main paper, and beliefs and population shares satisfy Assumptions 1–2 (main paper).

2.2 Housing as the risky asset

In this section we demonstrate how our results can be applied when the risky asset is housing
as in Bolt et al. (2019) and Hatcher (2021). In these models, housing is an investment
asset that differs from shares due to the interpretation of ‘dividends’. In Bolt et al. (2019)
dividends are replaced by imputed rent based on an arbitrage condition between the user
and rental costs, whereas Hatcher (2021) assumes linear housing utility scaled by a housing
preference variable.2 In both models, these additional variables are exogenous processes
whose properties are known to the investors. We assume a fixed supply of housing Z > 0.

With linear excess returns and an unconditional short-selling constraint, demands are:

zt,h =


Ẽt,h [pt+1] +Qt(1 + R̂)− (1 + r̃)pt

aσ2
if pt ≤

Ẽt,h [pt+1] +Qt(1 + R̂)

1 + r̃

0 if pt >
Ẽt,h [pt+1] +Qt(1 + R̂)

1 + r̃

(BDDHL1)

where Qt is the exogenous rental price and R̂ is the fixed risk-free mortgage rate; and

zt,h =


Ẽt,h [pt+1] + ΘtU z − (1 + r̃)pt

aσ2
if pt ≤

Ẽt,h [pt+1] + ΘtU z

1 + r̃

0 if pt >
Ẽt,h [pt+1] + ΘtU z

1 + r̃

(Hatcher1)

2Using quadratic utility from housing in the framework of Hatcher (2021) is also possible (under certain
conditions) as this mirrors the mean-variance assumption in the benchmark model.
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where Θt > 0 is an exogenous relative preference for housing utility versus financial wealth,
and U z > 0 is a fixed marginal utility of housing (which does not depend on zt,h).

Defining ft,h := f̃t,h + Ẽt,h [dt+1] − aσ2Z and r := r̃ − c, with Ẽt,h [dt+1] = Qt(1 + R̂) (or
Ẽt,h [dt+1] = ΘtU z), the above demands can be written as

zt,h =


ft,h − (1 + r)pt + aσ2Z

aσ2
if pt ≤

ft,h + aσ2Z

1 + r

0 if pt >
ft,h + aσ2Z

1 + r

(12)

as in Equation (4) of the main text.

2.3 Short-selling constraints of the form: zt,h ≥ L

Suppose that negative positions are permitted up to some limit L ≤ 0, such that zt,h ≥ L,
∀t, h. Formulating the maximization problem of type h as a Lagrangean:

max
zt,h,λt,h

Lt,h = Ẽt,h [wt+1,h]−
a

2
Ṽt,h [wt+1,h] + λt,h(zt,h − L) (13)

where λt,h ≥ 0 is the Lagrange multiplier on the short-selling constraint zt,h ≥ L.

The first-order conditions are

zt,h : Ẽt,h [pt+1] + Ẽt,h [dt+1]− (1 + r̃)pt − aσ2zt,h + λt,h = 0, λt,h : zt,h ≥ L (14)

and the complementary slackness condition is: λt,h(zt,h − L) = 0.

Analogous to the discussion after (3)–(5), λt,h = 0 and zt,h = (aσ2)−1(Ẽt,h [pt+1]+Ẽt,h [dt+1]−
(1 + r̃)pt) is an optimal demand iff Ẽt,h [pt+1] + Ẽt,h [dt+1] − (1 + r̃)pt ≥ aσ2L, while if
Ẽt,h [pt+1] + Ẽt,h [dt+1]− (1 + r̃)pt < aσ2L, then λt,h > 0 and zt,h = L.

Hence, the demand schedule of type h ∈ H is given by

zt,h =


Ẽt,h [pt+1] + Ẽt,h [dt+1]− (1 + r̃)pt

aσ2
if pt ≤

Ẽt,h [pt+1] + Ẽt,h [dt+1]− aσ2L

1 + r̃

L if pt >
Ẽt,h [pt+1] + Ẽt,h [dt+1]− aσ2L

1 + r̃
.

(15)

Defining ft,h := f̃t,h+ Ẽt,h [dt+1]− aσ2Z, r := r̃− c and z̃t,h := zt,h−L, the demands (15) are

z̃t,h =


ft,h + aσ2Z̃ − (1 + r)pt

aσ2
if pt ≤

ft,h + aσ2Z̃

1 + r

0 if pt >
ft,h + aσ2Z̃

1 + r

, where Z̃ := Z − L. (16)

Note that the demands in (31) have the same form as in Eq. (4) in the main paper, except
that zt,h is replaced by z̃t,h and Z is replaced by Z̃. Similarly, market-clearing is:∑

h∈H

nt,hzt,h = Z =⇒
∑
h∈H

nt,hz̃t,h = Z̃ (17)

where
∑

h∈H nt,h = 1 is used. We can therefore state the following result.
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Remark 1 In the above model, demands and market-clearing are as in the benchmark model,
except that zt,h is replaced by z̃t,h and Z is replaced by Z̃. Therefore, the market-clearing
price and demands follow Proposition 1 with z̃t,h replacing zt,h and Z̃ replacing Z.

3 Supporting results for Remarks in the main paper

This section gives propositions supporting the Remarks in Section 3.3 and the ‘Extensions’
section #5 of the main paper. Any non-trivial proofs are in Section 6 of this appendix.

3.1 Conditional short-selling constraints

Recall from Section 1.2 that we introduced an indicator variable 1t := 1{g(pt−1,...,pt−K)≤0} that
is equal to 1 if the short-selling constraint is in place at date t (i.e. if g(pt−1, ..., pt−K) ≤ 0)
and is equal to 0 otherwise (i.e. if g(pt−1, ..., pt−K) > 0).

The demands for types h ∈ H are given by:

zt,h =


ft,h − (1 + r)pt + aσ2Z

aσ2
if pt ≤

ft,h + aσ2Z

1 + r
or 1t = 0

0 if pt >
ft,h + aσ2Z

1 + r
and 1t = 1

(18)

where r := r̃ − c and ft,h := f̃t,h + d− aσ2Z.

Proposition 1 (Proposition 1 (main) adapted to conditional constraint) Let pt be
the market-clearing price at date t ∈ N+, let nt,h = n̂h(nt−1,ut−1) be the population share of
type h at date t, and let Bt ⊆ H (St := H \ Bt) be the set of types that are unconstrained
(short-selling constrained) at date t. Then the following holds:

(i) If
∑

h∈H nt,h(ft,h − minh∈H{ft,h}) ≤ aσ2Z or 1t = 0, then no type is short-selling
constrained (B∗

t = H, S∗
t = ∅) and the market-clearing price is

pt =

∑
h∈H nt,hft,h

1 + r
:= p∗t (19)

with demands zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + r)pt) ∀h ∈ H with zt,h ∈ R if 1t = 0,
and zt,h ≥ 0 otherwise (i.e. if 1t = 1 and

∑
h∈H nt,h(ft,h −minh∈H{ft,h}) ≤ aσ2Z).

(ii) If 1t = 1 and
∑

h∈H nt,h(ft,h − minh∈H{ft,h}) > aσ2Z, then at least one type is
short-selling constrained and there exist unique non-empty sets B∗

t ⊂ H and S∗
t such

that
∑

h∈B∗
t
nt,h(ft,h −minh∈B∗

t
{ft,h}) ≤ aσ2Z <

∑
h∈B∗

t
nt,h(ft,h −maxh∈S∗

t
{ft,h}), and the

market-clearing price and demands are

pt =

∑
h∈B∗

t
nt,hft,h − (1−

∑
h∈B∗

t
nt,h)aσ

2Z

(1 + r)
∑

h∈B∗
t
nt,h

> p∗t (20)

and zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + r)pt) ≥ 0 ∀h ∈ B∗
t , zt,h = 0 ∀h ∈ S∗

t .

Proof. See Section 6.1 of this appendix.
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3.2 Multiple markets and endogenous participation

In this section we adapt Proposition 1 for the case of multiple risky assets m ∈ {1, ...,M}
when participation shares wm

t ∈ (0, 1) in each market are determined by attractiveness
relative to other markets; see Westerhoff (2004) and Section 5.1 of the main paper.

We note in the main text that demand of type h in market m is given by

zmt,h =

wm
t

(
fm
t,h+aσ2

mZm/wm
t −(1+rm)pmt

aσ2
m

)
if pmt ≤ fm

t,h+aσ2
mZm/wm

t

1+rm

0 if pmt >
fm
t,h+aσ2

mZm/wm
t

1+rm

(21)

where fm
t,h := f̃m

t,h + d
m − aσ2

mZm/w
m
t and rm := r̃ − cm.

Market-clearing in market m is given by∑
h∈H

nm
t,hz̃

m
t,h = Zm/w

m
t , where z̃mt,h := zmt,h/w

m
t . (22)

With this change in variables, the market-clearing condition has the same form as in the
benchmark model (aside from a scaling of supply by 1/wm

t ). We therefore have the following.

Proposition 2 (Proposition 1 adapted to multiple markets) Let pmt be the market-
clearing price at date t ∈ N+, let n

m
t,h = n̂h(n

m
t−1,u

m
t−1) be the population share of type h in

market m at date t, and let Bm
t ⊆ H (Sm

t := H \ Bm
t ) be the set of unconstrained types

(short-selling constrained types) in market m at date t. Then the following holds:

(i) If
∑

h∈H nm
t,h(f

m
t,h−minh∈H{fm

t,h}) ≤ aσ2
mZm/w

m
t , then no type is short-selling constrained

(Bm∗
t = H, Sm∗

t = ∅) and the market-clearing price in market m is

pmt =

∑
h∈H nm

t,hf
m
t,h

1 + rm
:= pm∗

t (23)

with demands zmt,h = wm
t (aσ

2
m)

−1(fm
t,h + aσ2

mZm/w
m
t − (1 + rm)pmt ) ≥ 0 ∀h ∈ H.

(ii) If
∑

h∈H nm
t,h(f

m
t,h − minh∈H{fm

t,h}) > aσ2
mZm/w

m
t , then at least one type is short-selling

constrained at date t and there exist unique non-empty sets Bm∗
t ⊂ H and Sm∗

t such that∑
h∈Bm∗

t
nm
t,h(f

m
t,h−minh∈Bm∗

t
{fm

t,h}) ≤ aσ2
mZm/wm

t <
∑

h∈Bm∗
t

nm
t,h(f

m
t,h−maxh∈Sm∗

t
{fm

t,h}), and the
market-clearing price and demands are

pmt =

∑
h∈Bm∗

t
nm
t,hf

m
t,h − (1−

∑
h∈Bm∗

t
nm
t,h)aσ

2
mZm/w

m
t

(1 + rm)
∑

h∈Bm∗
t

nm
t,h

> pm∗
t (24)

and zmt,h = wm
t (aσ

2
m)

−1(fm
t,h + aσ2

mZm/w
m
t − (1 + rm)pmt ) ≥ 0 ∀h ∈ Bm∗

t , zmt,h = 0 ∀h ∈ Sm∗
t .

Proof. It follows from the Proposition 1 Proof (main paper) when pt, ft,h, r and Z are
replaced by pmt , f

m
t,h, r

m and Zm/w
m
t , and the demands zt,h are replaced by zmt,h in (21).
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3.3 Market maker: benchmark demand specification

As discussed in Section 5.3 of the main text, the demands in the case are the same as in
Equations (2) and (4) of the paper, but the price is now given by

pt = pt−1 + µ[λ(Zt − Z) + (1− λ)(Zt−1 − Z)] (25)

where µ > 0, λ ∈ (0, 1] and Zt :=
∑

h∈H nt,hzt,h is aggregate demand per investor at date t,

such that Zt − Z can be interpreted as (average) excess demand per investor.

We now present amended versions of Proposition 1, Corollary 1 and the Computational
Algorithm for the benchmark demand specification plus market maker price setting.

Proposition 3 Let pt be the price given by (25) at date t ∈ N+, let nt,h = n̂h(nt−1,ut−1)
be the population share of type h at date t, and let Bt ⊆ H (St := H \ Bt) be the set of
unconstrained (short-selling constrained) types at date t. Then the following holds:

1. If pt−1− 1
1+r

min
h∈H

{ft,h}+ µλ
aσ2

∑
h∈H

nt,h(ft,h−min
h∈H

{ft,h})+µ(1−λ)Zt−1 ≤ (µ+ (1 + r)−1aσ2)Z,

then no type is short-selling constrained (B∗
t = H, S∗

t = ∅, zt,h ≥ 0 ∀h) and price is given by

pt =
pt−1 +

µλ
aσ2

∑
h∈H nt,hft,h + µ(1− λ)(Zt−1 − Z)

1 + µλ(1 + r)(aσ2)−1
.

2. If pt−1− 1
1+r

min
h∈H

{ft,h}+ µλ
aσ2

∑
h∈H

nt,h(ft,h−min
h∈H

{ft,h})+µ(1−λ)Zt−1 > (µ+ (1 + r)−1aσ2)Z,

then one or more types are short-selling constrained with zt,h = 0 and we have the following:

(i) If ∃ B∗
t ,S∗

t ⊂ H such that µλ
aσ2

∑
h∈B∗

t

nt,h(ft,h − min
h∈B∗

t

{ft,h})− 1
1+r min

h∈B∗
t

{ft,h} ≤
(
µ+ aσ2

1+r

)
Z −

pt−1 − µ(1− λ)Zt−1 <
µλ
aσ2

∑
h∈B∗

t

nt,h(ft,h −max
h∈S∗

t

{ft,h})− 1
1+r max

h∈S∗
t

{ft,h}, price is

pt =
pt−1 +

µλ
aσ2

∑
h∈B∗

t
nt,hft,h + µ[(1− λ)Zt−1 − (1− λ

∑
h∈B∗

t
nt,h)Z]

1 + µλ(1 + r)(aσ2)−1
∑

h∈B∗
t
nt,h

with demands zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + r)pt) ≥ 0 ∀h ∈ B∗
t , zt,h = 0 ∀h ∈ S∗

t .

(ii) Else, ∃B∗
t = ∅,S∗

t = H such that pt−1+µ(1−λ)Zt−1− 1
1+r

maxh∈S∗
t
{ft,h} >

(
µ+ aσ2

1+r

)
Z,

all types are constrained (zt,h = 0 ∀h), and price is pt = pt−1 + µ[(1− λ)Zt−1 − Z].

Proof. See Section 6.2 of this Appendix.

Note that there are three distinct cases in Proposition 3, in contrast to Proposition 1
in the main paper, since all types may be short-selling constrained at the price set by the
market maker. Corollary 1 and the Computational Algorithm are amended as follows.
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Corollary 1 (amended) Let H̃t = {1, ..., H̃t} be the set such that types are ordered as
ft,1 < ft,2 < ... < ft,H̃t

. Let dispt,k :=
µλ
aσ2

∑
h>k nt,h(ft,h−ft,k)− 1

1+r
ft,k for k ∈ {1, ..., H̃t−1},

and g̃t := (µ+ (1 + r)−1aσ2)Z − pt−1 − µ(1− λ)Zt−1. Then the price solution is:

pt =



pt−1 +
µλ
aσ2

∑H̃t

h=1 nt,hft,h + µ(1− λ)(Zt−1 − Z)

1 + µλ(1 + r)(aσ2)−1
:= p∗t if dispt,1 ≤ g̃t

pt−1 +
µλ
aσ2

∑H̃t

h=2 nt,hft,h + µ[(1− λ)Zt−1 − (1− λ
∑H̃t

h=2 nt,h)Z]

1 + µλ(1 + r)(aσ2)−1
∑H̃t

h=2 nt,h

:= p
(1)
t if dispt,2 ≤ g̃t < dispt,1

pt−1 +
µλ
aσ2

∑H̃t

h=3 nt,hft,h + µ[(1− λ)Zt−1 − (1− λ
∑H̃t

h=3 nt,h)Z]

1 + µλ(1 + r)(aσ2)−1
∑H̃t

h=3 nt,h

:= p
(2)
t if dispt,3 ≤ g̃t < dispt,2

...
...

pt−1 +
µλ
aσ2nt,H̃t

ft,h + µ[(1− λ)Zt−1 − (1− λnt,H̃t
)Z]

1 + µλ(1 + r)(aσ2)−1nt,H̃t

:= p
(H̃t−1)
t if dispt,H̃t

≤ g̃t < dispt,H̃t−1

pt−1 + µ[(1− λ)Zt−1 − Z] := p
(H̃t)
t if dispt,H̃t

> g̃t

where p
(k∗)
t is the price if types 1, ..., k∗ are short-selling constrained, p∗t is the corresponding

price if short-selling constraints were absent (which satisfies p∗t < p
(k)
t , ∀k ≤ k∗), and

p
(k−1)
t < p

(k)
t < p

(k∗)
t , for all k < k∗, p

(0)
t := p∗t . (26)

Proof. See Section 6.3 of this appendix.

Given Corollary 1, the computational algorithm needs to be amended as shown below. Note
the algorithm uses our definition of g̃t := (µ+ (1 + r)−1aσ2)Z− pt−1−µ(1−λ)Zt−1 above.

3.3.1 Computational algorithm (Market maker and benchmark demands)

1. Construct the set H̃t by ordering types by optimism as ft,1 < ft,2 < ... < ft,H̃t
, and

find the associated population shares nt,h of types h = 1, ..., H̃t.

2. Compute dispt,1 =
µλ
aσ2

∑H̃t

h=2 nt,h(ft,h − ft,1)− 1
1+r

ft,1. If dispt,1 ≤ g̃t, accept pt = p∗t as
the price, compute demands and move to period t+ 1. Otherwise, move to Step 3.

3. Compute dispt,H̃t
= − 1

1+r
ft,H̃t

. If dispt,H̃t
> g̃t, accept pt = pt−1 + µ[(1− λ)Zt−1 − Z]

as the price, set all demands at zero and move to period t+ 1. Else, move to Step 4.

4. Set pguesst = p∗t . Find the largest k such that zguesst,k =
ft,k+aσ2Z−(1+r)pguesst

aσ2 < 0, say k.
Starting from k = k, check if dispt,k+1 ≤ g̃t < dispt,k; if not, try k = kprev + 1 until a
k∗ ∈ {1, ..., H̃t − 1} is found such that dispt,k∗+1 ≤ g̃t < dispt,k∗ and go to step 5.

5. Accept k∗ as the number of short-selling constrained types, such that the price is

pt = p
(k∗)
t :=

pt−1+
µλ

aσ2

∑H̃t
h=k∗+1

nt,hft,h+µ[(1−λ)Zt−1−(1−λ
∑H̃t

h=k∗+1
nt,h)Z]

1+µλ(1+r)(aσ2)−1
∑H̃t

h=k∗+1
nt,h

, compute demands at

this price, and move to period t+ 1.
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3.4 Market maker: alternative demand specification

Similar to Westerhoff (2004) we consider demands of the form ãh(ft,h − pt), where ãh > 0
for all h. With a short-selling constraint zt,h ≥ 0, the demands are adjusted to

zt,h =

{
ãh(Ẽt,h [pt+1]− pt) if pt ≤ Ẽt,h [pt+1]

0 if pt > Ẽt,h [pt+1].
(27)

Given price beliefs in Assumption 1, we have Ẽt,h [pt+1] = cpt + f̃t,h, where we now assume
c ∈ [0, 1) (since the interest rate is zero). We define ft,h := f̃t,h and write the demands as

zt,h =

ãh(ft,h − (1− c)pt) if pt ≤
ft,h
1− c

0 if pt >
ft,h
1− c

.
(28)

Since c ∈ [0, 1), the demands are decreasing in the current price. The price equation is
pt = pt−1 + µ[λZt + (1− λ)Zt−1 − Z], where Zt :=

∑
h∈H nt,hzt,h is aggregate demand.

Proposition 4 (Proposition 1 (main) adapted to new demand specification) Let pt
be the price at date t ∈ N+, let nt,h = n̂h(nt−1,ut−1) be the population share of type h at
date t, and let Bt ⊆ H (St := H\Bt) be the set of types that are unconstrained (short-selling
constrained) at date t. Further, let ñt,h := nt,hãh and ft,h := f̃t,h. Then the following holds:

1. If pt−1 − 1
1−c

min
h∈H

{ft,h}+ µλ
∑
h∈H

ñt,h(ft,h −min
h∈H

{ft,h}) + µ(1− λ)Zt−1 ≤ µZ, then no type

is short-selling constrained (B∗
t = H, S∗

t = ∅, zt,h ≥ 0 ∀h ∈ H) and the price is

pt =
pt−1 + µλ

∑
h∈H ñt,hft,h + µ[(1− λ)Zt−1 − Z]

1 + µλ(1− c)
∑
h∈H

ñt,h

.

2. If pt−1 − 1
1−c

min
h∈H

{ft,h} + µλ
∑
h∈H

ñt,h(ft,h −min
h∈H

{ft,h}) + µ(1 − λ)Zt−1 > µZ, then one or

more types h ∈ H are short-selling constrained with zt,h = 0 and we have the following:

(i) If ∃ B∗
t ,S∗

t ⊂ H such that µλ
∑

h∈B∗
t

ñt,h(ft,h−min
h∈B∗

t

{ft,h})− 1
1−c min

h∈B∗
t

{ft,h} ≤ µ[Z−(1−λ)Zt−1]−

pt−1 < µλ
∑

h∈B∗
t

ñt,h(ft,h −max
h∈S∗

t

{ft,h})− 1
1−c max

h∈S∗
t

{ft,h}, price is given by

pt =
pt−1 + µλ

∑
h∈B∗

t
ñt,hft,h + µ[(1− λ)Zt−1 − Z]

1 + µλ(1− c)
∑

h∈B∗
t

ñt,h

and demands are zt,h = ãh(ft,h − (1− c)pt) ≥ 0 ∀h ∈ B∗
t and zt,h = 0 ∀h ∈ S∗

t .

(ii) Else, ∃B∗
t = ∅,S∗

t = H such that pt−1 + µ(1 − λ)Zt−1 − 1
1−c

maxh∈S∗
t
{ft,h} > µZ, all

types are constrained (zt,h = 0 ∀h ∈ H), and price is pt = pt−1 + µ[(1− λ)Zt−1 − Z].

Proof. See Section 6.4 of this appendix.
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Corollary 2 (amended) Let H̃t = {1, ..., H̃t} be the set such that types are ordered as

ft,1 < ft,2 < ... < ft,H̃t
. Let dispt,k := µλ

∑H̃t

h=k+1 ñt,h(ft,h − ft,k) − ft,k
1−c

and g(pt−1, Zt−1) :=

µ[Z − (1− λ)Zt−1]− pt−1, for k ∈ {1, ..., H̃t − 1}, ñt,h := ãhnt,h. The price solution is:

pt =



pt−1 + µλ
∑H̃t

h=1 ñt,hft,h + µ[(1− λ)Zt−1 − Z]

1 + µλ(1− c)
∑H̃t

h=1 ñt,h

:= p∗t if dispt,1 ≤ g(pt−1, Zt−1)

pt−1 + µλ
∑H̃t

h=2 ñt,hft,h + µ[(1− λ)Zt−1 − Z]

1 + µλ(1− c)
∑H̃t

h=2 ñt,h

:= p
(1)
t if dispt,2 ≤ g(pt−1, Zt−1) < dispt,1

pt−1 + µλ
∑H̃t

h=3 ñt,hft,h + µ[(1− λ)Zt−1 − Z]

1 + µλ(1− c)
∑H̃t

h=3 ñt,h

:= p
(2)
t if dispt,3 ≤ g(pt−1, Zt−1) < dispt,2

...
...

pt−1 + µλñt,H̃t
ft,h + µ[(1− λ)Zt−1 − Z]

1 + µλ(1− c)ñt,H̃t

:= p
(H̃t−1)
t if dispt,H̃t

≤ g(pt−1, Zt−1) < dispt,H̃t−1

pt−1 + µ[(1− λ)Zt−1 − Z] := p
(H̃t)
t if dispt,H̃t

> g(pt−1, Zt−1)

where p
(k∗)
t is the price if types 1, ..., k∗ are short-selling constrained, p∗t is the corresponding

price if short-selling constraints were absent (which satisfies p∗t < p
(k)
t , ∀k ≤ k∗), and

p
(k−1)
t < p

(k)
t < p

(k∗)
t , for all k < k∗, p

(0)
t := p∗t . (29)

Proof. See Section 6.5 of this appendix.

Given Corollary 2, the computational algorithm needs to be amended as shown below.

3.4.1 Computational algorithm (Market maker and heterogeneous slopes)

1. Construct the set H̃t by ordering types by optimism as ft,1 < ft,2 < ... < ft,H̃t
, and

find the associated population shares nt,h of types h = 1, ..., H̃t.

2. Compute dispt,1 = µλ
∑H̃t

h=2 ñt,h(ft,h−ft,1)− ft,1
1−c

. If dispt,1 ≤ µ[Z− (1−λ)Zt−1]−pt−1,
accept pt = p∗t , compute demands and move to period t+ 1. Otherwise, go to Step 3.

3. Compute dispt,H̃t
= −ft,H̃t

1−c
. If dispt,H̃t

> µ[Z − (1 − λ)Zt−1] − pt−1, accept pt =

pt−1 + µ[(1 − λ)Zt−1 − Z] as the price, set all demands at zero, move to period t + 1.
Else, move to Step 4.

4. Set pguesst = p∗t . Find the largest k such that zguesst,k = ãk(ft,k − (1 − c)pguesst ) < 0,

say k. Starting from k = k, check if dispt,k+1 ≤ µ[Z − (1 − λ)Zt−1] − pt−1 < dispt,k;
if not, try k = kprev + 1 until a k∗ ∈ {1, ..., H̃t − 1} is found such that dispt,k∗+1 ≤
µ[Z − (1− λ)Zt−1]− pt−1 < dispt,k∗ and go to step 5.

5. Accept k∗ as the number of short-selling constrained types, such that the price is

pt = p
(k∗)
t :=

pt−1+µλ
∑H̃t

h=k∗+1
ñt,hft,h+µ[(1−λ)Zt−1−Z]

1+µλ(1−c)
∑H̃t

h=k∗+1
ñt,h

, compute demands, move to t+ 1.
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4 Additional heterogeneity

4.1 Heterogeneous responses to pt

In the case of heterogeneous forecast coefficients on pt, price beliefs are amended to

Ẽt,h [pt+1] = chpt + f̃t,h (30)

where ch ∈ [0, 1 + r̃) for all h ∈ H.
As discussed below, this case requires an amendment to the computational algorithm

because ranking types in terms of ft,h is no longer sufficient. We first provide an amended
version of Proposition 1 before discussing the necessary changes to the algorithm.

Defining ft,h := f̃t,h + d− aσ2Z and rh := r̃ − ch, the demands are amended to:

zt,h =


ft,h − (1 + rh)pt + aσ2Z

aσ2
if pt ≤

ft,h + aσ2Z

1 + rh

0 if pt >
ft,h + aσ2Z

1 + rh
.

(31)

Using the market-clearing condition
∑

h∈H nt,hzt,h = Z, we have the following.

Proposition 5 (Heterogeneous pt coefficients) Let pt be the market-clearing price at
date t ∈ N+, let nt,h = n̂h(nt−1,ut−1) be the population share of type h at date t, and let
Bt ⊆ H (St := H \ Bt) be the set of unconstrained types (constrained types). Let ft,h, rh be
defined as above and ñt,h := nt,h(1 + rh). Then the following holds:

(i) If
∑

h∈H nt,hft,h −minh∈H{ft,h+aσ2Z

1+rh
}
∑

h∈H ñt,h ≤ 0, then no type is short-selling con-

strained (B∗
t = H, S∗

t = ∅) and the market-clearing price is

pt =

∑
h∈H nt,hft,h∑

h∈H ñt,h

(32)

with demands zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + rh)pt) ≥ 0 ∀h ∈ H.

(ii) If
∑

h∈H nt,hft,h − minh∈H{ft,h+aσ2Z

1+rh
}
∑

h∈H ñt,h > 0, at least one type is short-selling

constrained and ∃ unique B∗
t ,S∗

t ⊂ H such that
∑

h∈B∗
t
nt,hft,h−

∑
h∈B∗

t
ñt,hminh∈B∗

t
{ft,h+aσ2Z

1+rh
} ≤

(1−
∑

h∈B∗
t
nt,h)aσ

2Z <
∑

h∈B∗
t
nt,hft,h −

∑
h∈B∗

t
ñt,hmaxh∈S∗

t
{ft,h+aσ2Z

1+rh
}, and the price is

pt =

∑
h∈B∗

t
nt,hft,h − (1−

∑
h∈B∗

t
nt,h)aσ

2Z∑
h∈B∗

t
ñt,h

(33)

with demands zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + rh)pt) ≥ 0 ∀h ∈ B∗
t , zt,h = 0 ∀h ∈ S∗

t .

Proof. See Section 6.6 of this appendix.

Note that types with the lowest values of (ft,h + aσ2Z)/(1 + rh) should be considered least
optimistic, as they are more likely to be short-selling constrained at any given price. We
thus define f̂t,h := (ft,h + aσ2Z)/(1 + rh), which allows us to state the following result.
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Corollary 3 Let H̃t = {1, ..., H̃t} be the set of types such that f̂t,1 < f̂t,2 < ... < f̂t,H̃t
,

where f̂t,h :=
ft,h+aσ2Z

1+rh
. Let dispt,k :=

∑H̃t

h=k nt,hft,h −
(

ft,k+aσ2Z

1+rk

)∑H̃t

h=k ñt,h and ˜dispt,k :=

dispt,k + nt,kaσ
2Z for k ∈ {1, ..., H̃t − 1}, ñt,h := nt,h(1 + rh). The market-clearing price is:

pt =



∑H̃t

h=1 nt,hft,h∑H̃t

h=1 ñt,h

:= p∗t if dispt,1 ≤ (1−
∑H̃t

h=1 nt,h)aσ
2Z (= 0)∑H̃t

h=2 nt,hft,h − nt,1aσ
2Z∑H̃t

h=2 ñt,h

:= p
(1)
t if dispt,2 ≤ (1−

∑H̃t

h=2 nt,h)aσ
2Z < ˜dispt,1∑H̃t

h=3 nt,hft,h − (nt,1 + nt,2)aσ
2Z∑H̃t

h=3 ñt,h

:= p
(2)
t if dispt,3 ≤ (1−

∑H̃t

h=3 nt,h)aσ
2Z < ˜dispt,2

...
...

nt,H̃t
ft,H̃t

− (
∑H̃t−1

h=1 nt,h)aσ
2Z

ñt,H̃t

:= p
(H̃t−1)
t if ˜dispt,H̃t−1 > (1−

∑H̃t

h=H̃t−1
nt,h)aσ

2Z

where p
(k∗)
t is the price if types 1, ..., k∗ are short-selling constrained, p∗t is the corresponding

price if short-selling constraints were absent (which satisfies p∗t < p
(k)
t , ∀k ≤ k∗), and

p
(k−1)
t < p

(k)
t < p

(k∗)
t , for all k < k∗, p

(0)
t := p∗t . (34)

Proof. It follows from Proposition 5 and the proof of Corollary 1 (see main paper).

In light of the changes in Corollary 3, our algorithm needs to be amended as shown below.
We stick with the above notation for which ñt,h = nt,h(1 + rh) for all h ∈ {1, ..., H̃t}.

4.1.1 Computational algorithm (Heterogeneous coefficients on pt)

1. Construct the set H̃t by ordering types by optimism as f̂t,1 < f̂t,2 < ... < f̂t,H̃t
, where

f̂t,h =
ft,h+aσ2Z

1+rh
, and find the associated population shares nt,h of types h = 1, ..., H̃t.

2. Compute dispt,1 =
∑H̃t

h=1 nt,hft,h −
(

ft,1+aσ2Z

1+r1

)∑H̃t

h=1 ñt,h. If dispt,1 ≤ 0, accept pt = p∗t
as the date t price, compute demands, move to period t+ 1. Otherwise, go to Step 3.

3. Set pguesst = p∗t . Find the largest k such that zguesst,k =
ft,k+aσ2Z−(1+rk)p

guess
t

aσ2 < 0, say k.

Starting from k = k, check if dispt,k+1 ≤ (1 −
∑H̃t

h=k+1 nt,h)aσ
2Z < ˜dispt,k; if not, try

k = kprev+1 until a k∗ is found such that dispt,k∗+1 ≤ (1−
∑H̃t

h=k∗+1 nt,h)aσ
2Z < ˜dispt,k∗ .

4. Accept k∗ as the number of short-selling constrained types, such that the price is

pt = p
(k∗)
t :=

∑H̃t
h=k∗+1

nt,hft,h−
[∑k∗

h=1 nt,h

]
aσ2Z∑H̃t

h=k∗+1
ñt,h

, compute demands, move to period t+ 1.

12



4.1.2 Numerical example

We now turn to a numerical example. Consider H = 3,000 belief types with heterogeneity
in the weights ch on the current price (see Section 5.2.1 main paper and 4.1 above) and fixed
population shares nt,h = 1/H for all t, h. There are three groups of investors consisting of
1,000 types each; within each group individuals use the same forecasting method, but their
individual forecasts differ due to different weights ch and idiosyncratic shocks in some periods
(see below). Trend-followers expect the future change in price to be linked to past changes
in price; contrarians believe the recent trend in prices will be reversed; and arbitrageurs base
their expectations on the deviation of the current price from a fundamental price p.

The first 1,000 types are trend-followers, types 1,001–2,000 are contrarians, and types
2,001–3,000 are arbitrageurs. All investors use the current price as a reference point, but
we allow heterogeneity in the weights ch. In addition, each type has an idiosyncratic
random component to beliefs ut,h. Beliefs of trend-followers have the form Ẽt,h[pt+1] =
chpt + g1h∆pt−1 + g2h∆pt−2 + ut,h, where g1h, g

2
h > 0 and ∆pt = pt − pt−1. Contrarians have

beliefs Ẽt,h[pt+1] = chpt + g3h∆pt−1 + g4h∆pt−2 + ut,h, where g3h, g
4
h < 0. For arbitrageurs,

Ẽt,h[pt+1] = chpt − g5h(pt−1 − p) + ut,h, where g5h > 0. We set dt = d = 1.1, Ẽt,h[dt+1] = d for

all h, r̃ = 0.1, a = σ2 = 1 and Z = 0.1. The fundamental price is therefore p = d−aσ2Z
r̃

= 10.
Prior to period 1, the parameters g1h and g2h are drawn from uniform distributions on

(0,0.5) and (0,0.2), g3h, g
4
h are drawn from a uniform distribution on (-0.1,0), and g5h is drawn

from a uniform distribution on (0.2,0.8). The ch parameters are drawn from a uniform
distribution on (0.95, 1.05). The idiosyncratic shocks ut,h are set at zero in periods 1–10
and are drawn from a normal distribution N (0, 0.042) in all later periods. Initial prices are
set at p + 0.6 = 10.6. Figure 1 shows time series of the price and number of short-selling
constrained types in a simulation of T = 500 periods, of which the first 40 periods are shown.

Figure 1: Simulation paths plotted over the first 40 periods (H = 3, 000 types). The left
panel shows the dynamics of the asset price pt from periods t = 1, .., 40 and the right panel
shows the number of short-selling constrained types, |S∗

t |, in each period.
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Figure 1 (left panel) shows that short-selling constraints have a substantial impact on
the asset price dynamics. With short-selling constraints there are persistent price cycles
(solid line); by contrast, when short-selling constraints are absent there are dampening price
oscillations that rapidly converge toward the fundamental price (dashed line, left panel).
The price is higher with short-selling constraints, and it oscillates depending the number of
types which are short-selling constrained in a given period (see right panel).

Table 1: Computation times and accuracy: H = 3, 000 types and T = 500 periods

Case Short-sale constraints Time (s) Bind freq. max(Errort)

No heterogeneity: No 0.09 - 3.8e-16
ch = 1 for all h Yes 0.16 497/500 4.3e-14

Heterogeneity 1: No 0.40 - 2.0e-15

ch ∈ (0.95, 1.05) Yes 0.66 500/500 8.9e-16

Heterogeneity 2: No 0.13 - 5.3e-16
ch ∈ (0.995, 1.005) Yes 0.22 500/500 4.1e-15

Note: max(Errort) = max{Error1, ..., ErrorT }, Errort := |
∑

h∈H nt,hzt,h − Z|. The middle row

of the table (bold font) shows the results for the case in Figure 1 and described above. The other

cases change the amount of heterogeneity in ch with all other parameters and shocks fixed.

In Table 1 we report computation times and a measure of accuracy for the example
in Figure 1, as well as two variations on this example. The first variant (bottom row)
reduces the heterogeneity in ch, while the second case (top row) eliminates heterogeneity in
ch altogether. Our measure of accuracy (final column) is based on the maximum deviation
from market clearing across all periods, i.e. max(Errort) := max1≤t≤T |

∑
h∈H nt,hzt,h −Z|.

The results in Table 1 show that the solutions with short-selling constraints are computed
quickly using our amended computational algorithm: computation times for a 500 period
simulation with 3,000 types are below 1 second in all three cases. Further, both computation
time and accuracy are comparable to the case where short-selling constraints are absent (see
top rows in Table 1), which is based on the standard analytical solution p∗t and does not
require any search procedure.3

The price time series for the low heterogeneity and zero heterogeneity cases (not shown)
are qualitatively similar to those in the case where short-selling constraints are absent (see
Figure 1, dashed line). Intuitively, if heterogeneity is small its effects may largely ‘wash out’,
but adding extra heterogeneity means constraints bind more often and on more types. Sim-
ulation codes are available at the author’s GitHub page: https://github.com/MCHatcher.

3The simulations were run in Matlab 2020a (Windows version) on a Viglen Genie desktop PC with
Intel(R) Core(TM) i5-4570 CPU 3.20GHz processor and 8GB of RAM.

14



4.2 Heterogeneity in variances

In the case of heterogeneous subjective return variances, demands are given by

zt,h =


Ẽt,h [pt+1] + d− (1 + r̃)pt

aσ2
h

if pt ≤
Ẽt,h [pt+1] + d

1 + r̃

0 if pt >
Ẽt,h [pt+1] + d

1 + r̃

(35)

where σ2
h > 0 is the subjective return variance of type h and Ẽt,h [pt+1] = cpt + f̃t,h.

Defining ãh := (aσ2
h)

−1, ft,h := f̃t,h + d− Z/ãh and r := r̃ − c, the demands in (35) are

zt,h =

ãh(ft,h + Z/ãh − (1 + r)pt) if pt ≤
ft,h + Z/ãh

1 + r

0 if pt >
ft,h + Z/ãh

1 + r
.

(36)

In (35) and (36), the subjective variances are heterogeneous, but it should be clear that
heterogeneity in risk aversion is also nested by this approach. Time variation is also straight-
forward: add time subscripts. By (36) and market-clearing, we have the following.

Proposition 6 (Heterogeneous subjective variances) Let pt be the market-clearing price
at date t ∈ N+, let nt,h = n̂h(nt−1,ut−1) be the population share of type h at date t, and let
Bt ⊆ H (St := H\Bt) be the set of unconstrained types (constrained types). Let ãh = (aσ2

h)
−1,

ñt,h := ãhnt,h and ft,h as above. Then the following holds:

(i) If
∑

h∈H ñt,h(ft,h −minh∈H{ft,h +Z/ãh}) ≤ 0, then no type is short-selling constrained
(B∗

t = H, S∗
t = ∅) and the market-clearing price is

pt =

∑
h∈H ñt,hft,h

(1 + r)
∑

h∈H ñt,h

(37)

with demands zt,h = ãh(ft,h + Z/ãh − (1 + r)pt) ≥ 0 ∀h ∈ H.

(ii) If
∑

h∈H ñt,h(ft,h − minh∈H{ft,h + Z/ãh}) > 0, at least one type is short-selling con-
strained and ∃ unique B∗

t ,S∗
t ⊂ H such that

∑
h∈B∗

t
ñt,h(ft,h −minh∈B∗

t
{ft,h + Z/ãh}) ≤

(1−
∑

h∈B∗
t
nt,h)Z <

∑
h∈B∗

t
ñt,h(ft,h −maxh∈S∗

t
{ft,h + Z/ãh}), and the price is

pt =

∑
h∈B∗

t
ñt,hft,h − (1−

∑
h∈B∗

t
nt,h)Z

(1 + r)
∑

h∈B∗
t
ñt,h

(38)

with demands zt,h = ãh(ft,h + Z/ãh − (1 + r)pt) ≥ 0 ∀h ∈ B∗
t , zt,h = 0 ∀h ∈ S∗

t .

Proof. See Section 6.7 of this appendix.

Note that types with the lowest values of ft,h + Z/ãh should be considered least optimistic,
as they are more likely to be short-selling constrained at any given price. We thus define
f̂t,h := ft,h + Z/ãh to rank types by optimism, which allows us to state the following result.
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Corollary 4 Let H̃t = {1, ..., H̃t} be the set such that types are ordered as f̂t,1 < f̂t,2 <

... < f̂t,H̃t
, where f̂t,h := ft,h + Z/ãh. Let dispt,k :=

∑H̃t

h=k ñt,h(ft,h − [ft,k + Z/ãk]) and
˜dispt,k := dispt,k + nt,kZ for k ∈ {1, ..., H̃t − 1}, ñt,h := ãhnt,h. The market-clearing price is:

pt =



∑H̃t

h=1 ñt,hft,h

(1 + r)
∑H̃t

h=1 ñt,h

:= p∗t if dispt,1 ≤ (1−
∑H̃t

h=1 nt,h)Z (= 0)∑H̃t

h=2 ñt,hft,h − nt,1Z

(1 + r)
∑H̃t

h=2 ñt,h

:= p
(1)
t if dispt,2 ≤ (1−

∑H̃t

h=2 nt,h)Z < ˜dispt,1∑H̃t

h=3 ñt,hft,h − (nt,1 + nt,2)Z

(1 + r)
∑H̃t

h=3 ñt,h

:= p
(2)
t if dispt,3 ≤ (1−

∑H̃t

h=3 nt,h)Z < ˜dispt,2

...
...

ñt,H̃t
ft,H̃t

− (
∑H̃t−1

h=1 nt,h)Z

(1 + r)ñt,H̃t

:= p
(H̃t−1)
t if ˜dispt,H̃t−1 > (1−

∑H̃t

h=H̃t−1
nt,h)Z

where p
(k∗)
t is the price if types 1, ..., k∗ are short-selling constrained, p∗t is the corresponding

price if short-selling constraints were absent (which satisfies p∗t < p
(k)
t , ∀k ≤ k∗), and

p
(k−1)
t < p

(k)
t < p

(k∗)
t , for all k < k∗, p

(0)
t := p∗t . (39)

Proof. It follows from Proposition 6 and from the same steps used in the proof of Corollary
1 (see main paper) with the necessary alterations being made.

4.2.1 Computational algorithm (Heterogeneous subjective variances)

1. Construct the set H̃t by ordering types by optimism as f̂t,1 < f̂t,2 < ... < f̂t,H̃t
, where

f̂t,h = ft,h+Z/ãh, and find the associated population shares nt,h of types h = 1, ..., H̃t.

2. Compute dispt,1 =
∑H̃t

h=1 ñt,h(ft,h − [ft,1 + Z/ã1]). If dispt,1 ≤ 0, accept pt = p∗t as the
date t price, compute demands and move to period t+ 1. Otherwise, move to Step 3.

3. Set pguesst = p∗t . Find the largest k such that zguesst,k = ãk(ft,k+Z/ãk−(1+r)pguesst ) < 0,

say k. Starting at k = k, check if dispt,k+1 ≤ (1−
∑H̃t

h=k+1 nt,h)aσ
2Z < ˜dispt,k; if not, try

k = kprev+1 until a k∗ is found such that dispt,k∗+1 ≤ (1−
∑H̃t

h=k∗+1 nt,h)aσ
2Z < ˜dispt,k∗ .

4. Accept k∗ as the number of short-selling constrained types, such that the price is

pt = p
(k∗)
t :=

∑H̃t
h=k∗+1

ñt,hft,h−
[∑k∗

h=1 nt,h

]
Z

(1+r)
∑H̃t

h=k∗+1
ñt,h

, compute demands, and move to period t+ 1.

4.2.2 Numerical example

We stick with the same numerical example as set out above, except we set ch = c = 1 for
all h and draw the subjective variances of different types from a uniform distribution, such
that σ2

h ∼ U(σ2
min, σ

2
max). The results in Table 2 show that the solutions with short-selling

16



Figure 2: Simulation with low and high heterogeneity in σ2
h (H = 3, 000 types)

Table 2: Computation times and accuracy: H = 3, 000 types and T = 500 periods

Heterogeneity Short-sale constraints Time (s) Bind freq. max(Errort)

High case: No 0.16 - 9.7e-16
σ2
h ∈ (0.9, 1.1) Yes 0.23 499/500 3.4e-15

Low case: No 0.14 - 8.1e-16
σ2
h ∈ (0.99, 1.01) Yes 0.22 497/500 4.0e-15

Note: max(Errort) = max{Error1, ..., ErrorT }, Errort := |
∑

h∈H nt,hzt,h − Z|.

constraints are fast and accurate, being comparable to those when short-selling constraints
are absent. The time series for the first 20 periods are plotted in Figure 2.

The codes used to generate the above results are available from the author’s GitHub page
at https://github.com/MCHatcher.
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5 Generalization to population shares nt,h ∈ [0, 1]

In this section we relax the assumption nt,h ∈ (0, 1) to allow nt,h ∈ [0, 1] at dates t ∈ N+,
subject to

∑
h∈H nt,h = 1. We show how our analytical results and algorithm can be adjusted

for this weaker assumption. The cases nt,h = 1 and nt,h = 0 can be dealt with together
because if nt,h′ = 1 for some h′, then nt,h = 0 for all h ̸= h′;4 and if nt,h′ = 0 for some types
h′ ∈ H, then the sum of population shares across all other types is equal to 1. Let Hsub

t ⊂ H
be the subset containing all types with a zero population share at date t, such that nt,h = 0
for all h ∈ Hsub

t and nt,h ∈ (0, 1] for all h ∈ H \ Hsub
t , with

∑
H\Hsub

t
nt,h = 1. Given that

nt,h = 0 for all h ∈ Hsub
t , market-clearing at date t is given by∑

h∈H

nt,hzt,h =
∑
h∈H∗

t

nt,hzt,h = Z, where H∗
t := H \Hsub

t ̸= ∅, (40)

which is analogous to the problem we solve in the main text, except that the set of types
under consideration (H∗

t ) is not restricted to be fixed over time.
Since H∗

t can be found without knowledge of the current (or future) market-clearing price
pt, nothing changes except H is replaced by H∗

t in Proposition 1. Formally, we have:

Proposition 7 (Proposition 1 adapted for 0 ≤ nt,h ≤ 1) Let pt be the market-clearing
price at date t ∈ N+, let nt,h = n̂h(nt−1,ut−1) be the population share of type h at date t, let
H∗

t be the set of types (with non-zero pop. shares) defined above, let Bt ⊆ H∗
t (St := H∗

t \ Bt)
be the set of unconstrained types (constrained types) at date t. Then the following holds:

(i) If
∑

h∈H∗
t
nt,h(ft,h − minh∈H∗

t
{ft,h}) ≤ aσ2Z, then no type is short-selling constrained

at date t (B∗
t = H∗

t , S∗
t = ∅) and the market-clearing price is

pt =

∑
h∈H∗

t
nt,hft,h

1 + r
:= p∗t (41)

with demands zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + r)pt) ≥ 0 ∀h ∈ H∗
t .

(ii) If
∑

h∈H∗
t
nt,h(ft,h−minh∈H∗

t
{ft,h}) > aσ2Z, at least one type is short-selling constrained

and ∃ unique non-empty sets B∗
t ⊂ H∗

t , S∗
t such that

∑
h∈B∗

t
nt,h(ft,h −minh∈B∗

t
{ft,h}) ≤

aσ2Z <
∑

h∈B∗
t
nt,h(ft,h −maxh∈S∗

t
{ft,h}), and the price and demands are given by

pt =

∑
h∈B∗

t
nt,hft,h − (1−

∑
h∈B∗

t
nt,h)aσ

2Z

(1 + r)
∑

h∈B∗
t
nt,h

> p∗t (42)

and zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + r)pt) ≥ 0 ∀h ∈ B∗
t , zt,h = 0 ∀h ∈ S∗

t .

Proof. It follows from Proposition 1 in the main text when the set H is replaced by H∗
t .

Corollary 1 does not require any amendments since we may re-define the function h̃t in the
main text as a function from the set H∗

t to the set H̃t, i.e. h̃t : H∗
t → H̃t. Finally, since we

keep the set H̃t, the computational algorithm also does not require any changes.
4Recall that nt,h ∈ [0, 1] and

∑
h∈H nt,h = 1. Hence, if nt,h′ = 1 for a type h′ ∈ H, then this implies that∑

h̸=h′ nt,h = 0. The latter is possible only if nt,h = 0 for all h ̸= h′, since negative shares are ruled out.
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6 Proofs

6.1 Proof of Proposition 1

By Section 3.1 the indicator variable 1t := 1{g(pt−1,...,pt−K)≤0} is equal to 1 if the short-selling

constraint is in place at date t (i.e. if g(pt−1, ..., pt−K) ≤ 0) and is 0 otherwise.

Case 1: 1t = 1

If the short-selling constraint is in place at date t (i.e. if 1t = 1), the cases for price

and demands are equivalent to those for an unconditional short-selling constraint, as in

Proposition 1 in the main paper and its proof. The short-selling constraint is slack for all

types if
∑

h∈H nt,h(ft,h −minh∈H{ft,h}) ≤ aσ2Z and binds for one or more types (but fewer

than H) otherwise, i.e. if
∑

h∈H nt,h(ft,h −minh∈H{ft,h}) > aσ2Z.

Case 2: 1t = 0

If the short-selling constraint is not in place at date t (i.e. if 1t = 0) then demands are given

by zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + r)pt) ∈ R for all h ∈ H, and thus the market-clearing

condition
∑

h∈H nt,hzt,h = Z gives pt = p∗t :=
∑

h∈H nt,hft,h
1+r

(which is the same expression as for

1t = 1,
∑

h∈H nt,h(ft,h −minh∈H{ft,h}) ≤ aσ2Z). This conclusion holds regardless of whether∑
h∈H nt,h(ft,h −minh∈H{ft,h}) ≤ aσ2Z or

∑
h∈H nt,h(ft,h −minh∈H{ft,h}) > aσ2Z. ■

6.2 Proof of Proposition 3

Case 1: Short-selling constraint is slack for all h ∈ H

Let us guess that zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + r)pt) ≥ 0 ∀h ∈ H, which implies by the

price equation that pt =
pt−1+

µλ

aσ2

∑
h∈H nt,hft,h+µ(1−λ)(Zt−1−Z)

1+µλ(1+r)(aσ2)−1 := p∗t . The guess is verified if and

only if ft,h+aσ2Z−(1+r)p∗t ≥ 0 ∀h ∈ H, which requires
(

1
1+r

+ µλ
aσ2

)
(aσ2Z+minh∈H{ft,h}) ≥

pt−1 +
µλ
aσ2

∑
h∈H nt,hft,h + µ(1− λ)(Zt−1 −Z), giving the inequality in Proposition 3 Part 1.

Case 2(i): Short-selling constraint slack for all h ∈ B∗
t and binds for all h ∈ H \B∗

t

Let us guess zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + r)pt) ≥ 0 ∀h ∈ B∗
t and zt,h = 0 ∀h ∈ S∗

t =

H \ B∗
t , so pt =

pt−1+
µλ

aσ2

∑
h∈B∗

t
nt,hft,h+µ[(1−λ)Zt−1−(1−λ

∑
h∈B∗

t
nt,h)Z]

1+µλ(1+r)(aσ2)−1
∑

h∈B∗
t
nt,h

. The guess is verified iff

ft,h + aσ2Z − (1 + r)pt ≥ 0 ∀h ∈ B∗
t and ft,h + aσ2Z − (1 + r)pt < 0 ∀h ∈ S∗

t , which requires

( 1
1+r

+ µλ(aσ2)−1
∑

h∈B∗
t
nt,h)(aσ

2Z + ft,h) ≥ (<) pt−1 +
µλ
aσ2

∑
h∈B∗

t
nt,hft,h + µ[(1− λ)Zt−1 −

(1− λ
∑

h∈B∗
t
nt,h)Z] ∀h ∈ B∗

t (∀h ∈ S∗
t ), giving the inequalities in Proposition Part 3(i).
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Case 2(ii): Short-selling constraint binds for all h ∈ H

Let us guess zt,h = 0 ∀h ∈ H, which implies that pt = pt−1 + µ[(1− λ)Zt−1 − Z]. The guess

is verified if and only if ft,h + aσ2Z − (1 + r)pt < 0 ∀h ∈ H, i.e. iff maxh∈H{ft,h}+ aσ2Z <

(1 + r)(pt−1 + µ[(1− λ)Zt−1 − Z]), which is the inequality in Proposition 3 Part 2(ii). ■

6.3 Proof of Corollary 1

The first (last) ‘if’ statement follows from Proposition 2 main paper as dispt,1 ≤ g̃t (dispt,H̃t
>

g̃t) is equivalent to pt−1− 1
1+r

minh∈H{ft,h}+ µλ
aσ2

∑
h∈H nt,h(ft,h−min

h∈H
{ft,h})+µ(1−λ)Zt−1 ≤

(µ+ (1 + r)−1aσ2)Z (resp. pt−1+µ(1−λ)Zt−1− 1
1+r

maxh∈S∗
t
{ft,h} > (µ+ aσ2

1+r
)Z). The other

cases follow as there are H̃t−1 other candidates for B∗
t ,S∗

t , i.e. St = {1},Bt = {2, ..., H̃t−1};
St = {1, 2},Bt = {3, ..., H̃t − 1};...St = {1, ..., H̃t},Bt = ∅. For arbitrary sets St = {1, ..., k},
Bt = {k+1, ..., H̃t}, where k ∈ {1, .., H̃t−1}, we have by Proposition 3 (above) that pt = p

(k)
t

and the guess is verified if and only if dispt,k+1 ≤ g̃t < dispt,k.

It remains to show p
(k)
t < p

(k∗)
t ∀k < k∗ and p

(k)
t > p

(k−1)
t for such k, where p

(0)
t := p∗t .

Recall that the demands zt,h(pt) are decreasing in the price for all h. Note that p∗t satisfies

µZ − Z̃t−1 = V ∗
t − p∗t , where Z̃t−1 := pt−1 + µ(1 − λ)Zt−1, V

∗
t := µλ

∑H̃t

h=1 nt,hzt,h(p
∗
t ), and

zt,1 < 0 since p∗t is not consistent with short-selling constraints (or else pt = p∗t ). Similarly,

p
(1)
t satisfies µZ− Z̃t−1 = V

(1)
t −p

(1)
t , where V

(1)
t := µλ

∑H̃t

h=2 nt,hzt,h(p
(1)
t ). Suppose p

(1)
t ≤ p∗t ,

which implies that V
(1)
t > V ∗

t . This leads to the contradiction V
(1)
t − p

(1)
t > µZ − Z̃t−1;

therefore p
(1)
t > p∗t . For arbitrary k and j = k − 1, k, note that p

(j)
t satisfies µZ − Z̃t−1 =

V
(j)
t − p

(j)
t , where V

(j)
t := µλ

∑H̃t

h>j nt,hzt,h(p
(j)
t ). Suppose p

(k)
t ≤ p

(k−1)
t . This leads to a

contradiction since µZ− Z̃t−1 = V
(k−1)
t −p

(k−1)
t < V

(k)
t −p

(k)
t ; therefore p

(k)
t > p

(k−1)
t . Finally,

p
(k∗)
t > p

(k)
t ∀k < k∗ follows from applying the above argument for j = k∗ − 1, k∗. ■

6.4 Proof of Proposition 4

Case 1: Short-selling constraint is slack for all h ∈ H

Let us guess that zt,h = ãh(ft,h − (1− c)pt) ≥ 0 ∀h ∈ H, which implies by the price equation

that pt =
pt−1+µλ

∑
h∈H ñt,hft,h+µ(1−λ)Zt−1−µZ

1+µλ(1−c)
∑

h∈H ñt,h
:= p∗t , where ñt,h := ãhnt,h. The guess is verified if

and only if ft,h ≥ (1− c)p∗t ∀h ∈ H, which requires (1− c)−1
(
1 + µλ(1− c)

∑
h∈H ñt,h

)
ft,h ≥

pt−1 + µλ
∑

h∈H ñt,hft,h + µ(1 − λ)Zt−1 − µZ ∀h ∈ H. Note that this is equivalent to (1 −
c)−1

(
1 + µλ(1− c)

∑
h∈H ñt,h

)
minh∈H{ft,h} ≥ pt−1 + µλ

∑
h∈H ñt,hft,h + µ(1− λ)Zt−1 − µZ,

which simplifies to the inequality in Proposition 4 Part 1.
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Case 2(i): Short-selling constraint slack for all h ∈ B∗
t and binds for all h ∈ H \B∗

t

Let us guess zt,h = ãh(ft,h− (1− c)pt) ≥ 0 ∀h ∈ B∗
t and zt,h = 0 ∀h ∈ S∗

t = H\B∗
t , such that

pt =
pt−1+µλ

∑
h∈B∗

t
ñt,hft,h+µ(1−λ)Zt−1−µZ

1+µλ(1−c)
∑

h∈B∗
t
ñt,h

by the price equation, with ñt,h := ãhnt,h. The

guess is verified iff ft,h ≥ (1 − c)pt ∀h ∈ B∗
t and ft,h < (1 − c)pt ∀h ∈ S∗

t , i.e. (1 −
c)−1

(
1 + µλ(1− c)

∑
h∈B∗

t
ñt,h

)
ft,h − (pt−1 + µλ

∑
h∈B∗

t
ñt,hft,h + µ(1 − λ)Zt−1 − µZ) ≥ 0

(< 0) ∀h ∈ B∗
t (∀h ∈ S∗

t ), which are equivalent to µλ
∑

h∈B∗
t
ñt,h(ft,h − minh∈B∗

t
{ft,h}) −

1
1−c

minh∈B∗
t
{ft,h} ≤ µ[Z − (1 − λ)Zt−1] − pt−1 < µλ

∑
h∈B∗

t
ñt,h(ft,h − maxh∈S∗

t
{ft,h}) −

1
1−c

maxh∈S∗
t
{ft,h}, as stated in Proposition 4 Part 2(i).

Case 2(ii): Short-selling constraint binds for all h ∈ H

Let us guess zt,h = 0 ∀h ∈ H, which implies pt = pt−1 + µ[(1 − λ)Zt−1 − Z] by the price

equation. The guess is verified if and only if ft,h < (1 − c)pt ∀h ∈ H, i.e. if and only if
1

1−c
maxh∈H{ft,h} < pt−1 + µ[(1− λ)Zt−1 − Z], as stated in Proposition 4 Part 2(ii). ■

6.5 Proof of Corollary 2

The first (last) ‘if’ statement follows from Proposition 4 (above) as dispt,1 ≤ g(pt−1, Zt−1)

(dispt,H̃t
> g(pt−1, Zt−1)) is equivalent to pt−1+µ(1−λ)Zt−1+µλ

∑
h∈H ñt,h(ft,h−min

h∈H
{ft,h})−

1
1−c

minh∈H{ft,h} ≤ µZ (resp. pt−1 + µ(1 − λ)Zt−1 − 1
1−c

maxh∈S∗
t
{ft,h} > µZ). The other

cases follow as there are H̃t−1 other candidates for B∗
t ,S∗

t , i.e. St = {1},Bt = {2, ..., H̃t−1};
St = {1, 2},Bt = {3, ..., H̃t − 1};...St = {1, ..., H̃t},Bt = ∅. For arbitrary sets St = {1, ..., k},
Bt = {k+1, ..., H̃t}, where k ∈ {1, .., H̃t − 1} and by Proposition 4 (above) pt = p

(k)
t and the

guess is verified iff dispt,k+1 ≤ g(pt−1, Zt−1) < dispt,k. The proof that p
(k)
t < p

(k∗)
t ∀k < k∗

and p
(k)
t > p

(k−1)
t for such k (where p

(0)
t := p∗t ) follows the Corollary 1 proof, Section 6.3. ■

6.6 Proof of Proposition 5

Existence of a unique price follows from Anufriev and Tuinstra (2013, Proposition 2.1) when

an appropriate relabelling of variables is used. We define rh := r̃−ch and ñt,h := nt,h(1+rh).

Case 1: Short-selling constraint is slack for all h ∈ H

Let us guess zt,h = (aσ2)−1(ft,h+aσ2Z−(1+rh)pt) ≥ 0 ∀h ∈ H, which implies by the market-

clearing condition
∑

h∈H nt,hzt,h = Z that pt = p∗t :=
∑

h∈H nt,hft,h∑
h∈H ñt,h

. The guess is verified if and

only if ft,h+aσ2Z−(1+rh)p
∗
t ≥ 0 ∀h ∈ H, i.e.

[
ft,h+aσ2Z

1+rh

]∑
h∈H ñt,h ≥

∑
h∈H nt,hft,h ∀h ∈ H,

which simplifies to
∑

h∈H nt,hft,h −minh∈H{ft,h+aσ2Z

1+rh
}
∑

h∈H ñt,h ≤ 0 as in Proposition 5.
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Case 2: Short-selling constraint slack for all h ∈ B∗
t and binds for all h ∈ H \ B∗

t

Let us guess that zt,h = (aσ2)−1(ft,h + aσ2Z − (1 + rh)pt) ≥ 0 ∀h ∈ B∗
t and zt,h = 0

∀h ∈ H \ B∗
t := S∗

t , where B∗
t ⊂ H is the set of investor types for which the short-

selling constraint is slack, and S∗
t is the set of all other types. Clearly, the above con-

ditions imply that minh∈B∗
t
{ft,h − (1 + rh)pt} > maxh∈S∗

t
{ft,h − (1 + rh)pt}. Under the

above guess,
∑

h∈H nt,hzt,h =
∑

h∈B∗
t
nt,hzt,h, so market-clearing is

∑
h∈B∗

t
nt,hzt,h = Z, giving

pt =
∑

h∈B∗
t
nt,hft,h−(1−

∑
h∈B∗

t
nt,h)aσ

2Z∑
h∈B∗

t
ñt,h

:= p
B∗
t

t . The guess is verified iff ft,h+aσ2Z−(1+rh)p
B∗
t

t ≥ 0

∀h ∈ B∗
t and ft,h + aσ2Z − (1 + rh)p

B∗
t

t < 0 ∀h ∈ S∗
t , i.e.

[
ft,h+aσ2Z

1+rh

]∑
h∈B∗

t
ñt,h ≥ (<)∑

h∈H nt,hft,h − (1−
∑

h∈B∗
t
nt,h)aσ

2Z ∀h ∈ B∗
t (∀h ∈ S∗

t ), which simplify to
∑

h∈B∗
t
nt,hft,h −∑

h∈B∗
t
ñt,h minh∈B∗

t
{f̂t,h} ≤ (1−

∑
h∈B∗

t
nt,h)aσ

2Z <
∑

h∈B∗
t
nt,hft,h−

∑
h∈B∗

t
ñt,h maxh∈S∗

t
{f̂t,h},

where f̂t,h :=
ft,h+aσ2Z

1+rh
, which is the inequality given in Proposition 5. ■

6.7 Proof of Proposition 6

Existence of a unique price follows from Anufriev and Tuinstra (2013, Proposition 2.1) when

an appropriate relabelling of variables is used. We define ãh = (aσ2
h)

−1 and ñt,h := ãhnt,h.

Case 1: Short-selling constraint is slack for all h ∈ H

Let us guess zt,h = ãh(ft,h + Z/ãh − (1 + r)pt) ≥ 0 ∀h ∈ H, which implies by the market-

clearing condition
∑

h∈H nt,hzt,h = Z that pt = p∗t :=
∑

h∈H ñt,hft,h
(1+r)

∑
h∈H ñt,h

. The guess is verified if

and only if ft,h +Z/ãh − (1 + r)p∗t ≥ 0 ∀h ∈ H, i.e.
[
ft,h + Z/ãh

]∑
h∈H ñt,h ≥

∑
h∈H ñt,hft,h

∀h ∈ H, which simplifies to
∑

h∈H ñt,h(ft,h −minh∈H{ft,h + Z/ãh}) ≤ 0 as in Proposition 6.

Case 2: Short-selling constraint slack for all h ∈ B∗
t and binds for all h ∈ H \ B∗

t

Let us guess that zt,h = ãh(ft,h+Z/ãh−(1+r)pt) ≥ 0 ∀h ∈ B∗
t and zt,h = 0 ∀h ∈ H\B∗

t := S∗
t ,

where B∗
t ⊂ H is the set of investor types for which the short-selling constraint is slack, and S∗

t

is the set of all other types. Clearly, the above conditions imply that minh∈B∗
t
{ft,h+Z/ãh} >

maxh∈S∗
t
{ft,h + Z/ãh}. Under the above guess,

∑
h∈H nt,hzt,h =

∑
h∈B∗

t
nt,hzt,h, so market-

clearing is
∑

h∈B∗
t
nt,hzt,h = Z, giving pt =

∑
h∈B∗

t
ñt,hft,h−(1−

∑
h∈B∗

t
nt,h)Z

(1+r)
∑

h∈B∗
t
ñt,h

:= p
B∗
t

t . The guess

is verified iff ft,h + Z/ãh − (1 + r)p
B∗
t

t ≥ 0 ∀h ∈ B∗
t and ft,h + Z/ãh − (1 + r)p

B∗
t

t < 0

∀h ∈ S∗
t , i.e.

[
ft,h + Z/ãh

]∑
h∈B∗

t
ñt,h ≥ (<)

∑
h∈H ñt,hft,h − (1 −

∑
h∈B∗

t
nt,h)Z ∀h ∈ B∗

t

(∀h ∈ S∗
t ), which simplify to

∑
h∈B∗

t
ñt,h(ft,h −minh∈B∗

t
{ft,h +Z/ãh}) ≤ (1−

∑
h∈B∗

t
nt,h)Z <∑

h∈B∗
t
ñt,h(ft,h −maxh∈S∗

t
{ft,h + Z/ãh}), which is the inequality given in Proposition 6. ■
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