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Online Appendix

A Inflation and Price Dispersion Dynamics

This sub-appendix shows how first order conditions expressed as summations, as in Calvo price
or wage contracts, can be expressed as difference equations suitable for coding in Dynare. Then

the dynamic form of price or wage dispersion, A} is derived.

A.1 A Useful Lemma

In the first order conditions for Calvo contracts and expressions for value functions we are

confronted with expected discounted sums of the general form

Q =E; lz ﬁkXt7t+kYt+k] (A.1)
k=0

where X ;) has the property Xy ¢y = X441 X¢41,4% and Xy ¢ = 1 (for example an inflation,
interest or discount rate over the interval [t, ¢ + k]).
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Q; can be expressed as
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A.2 Price and Wage Dynamics

Consider the optimal price which can be written as

PP Jf

It gt A.

and summations JJ and J! are of the form considered in the Lemma above. Applying the

Lemma we then have the recursive form:
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as in the main text.
With indexing by an amount « € [0, 1], the optimal price-setting first-order condition for a

firm j setting a new optimized price Pto (j) is now given by
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Price dynamics are now given by
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Wage dynamics follows similarly.

A.3 Dynamics of Price Dispersion

Price dispersion lowers aggregate output as follows. As with consumption goods, the demand
equations for each differentiated good m with price P;(m) forming aggregate investment and
public services takes the form

I(m) = (Ptg))c” L Gim) = (Pt(m))cp G, (A.5)

Hence equilibrium for good m gives

Yi(m) = A,Hy(m) (ﬁ((:j)) ) R (P’*g“))_gp (A.6)

where Y;(m), Hy(m) and K(m) are the quantities of output, hours and capital needed in the
wholesale sector to produce good m in the retail sector. Since the capital-labour ratio is constant
integrating over m, and using Hy = fol H(m)dm we obtain

_ F(A4, Hy, Ky)

Y = (A7)
A

as in the main text.
Price dispersion is linked to inflation as follows. Assuming as before that the number of firms
is large we obtain the following dynamic relationship:

p Cp ‘]7;50 74?
A1t - prt Ap1 + (1 - fp) D (A-8)
JJ;

Proof
In the next period, &, of these firms will keep their old prices, and (1 — &,) will change their
prices to Pgrl. By the law of large numbers, we assume that the distribution of prices among

those firms that do not change their prices is the same as the overall distribution in period ¢. It



follows that we may write
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Wage dispersion follows similarly.

B The Stationary Equilibrium

To stationarize the model labour-augmenting technical progress parameter is decomposed into a

cyclical component, stationary A;, and a deterministic trend Ay:

Ay = A AS

A= (14 9)A

Then we can define stationarized variables by
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where the growth-adjusted discount rate is defined as

Bg=B(1+g)7,



the Euler equation is still

Ey [Atir1Ri41]

Now stationarize remaining variables by defining cyclical components:
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S(Xy) = ¢x(X¢ =1 - g)?
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Retail firm:
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Monetary policy:
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Shock processes:

log Ay —log A= pa(log A;—1 —log A) +€a,
log Gt —log G = pg(log Gi—1 —1og G) + i+
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log RPS; — log RPS = prps(log RPS;—1 — log RPS) + €rps,t

B.1 Summary of the Dynamic Equilibrium

Use this change of variables and dropping the superscript ¢ in trended variables such Qf, Uf, Cf

etc to arrive to the following stationarized equilibrium conditions:
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Monetary policy:
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Aggregation:
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Shock processes:
log Ay —log A =pa(log A;—1 —log A) + € (B.37)
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log MRSS; —log MRSS = pyrss(log MRSS;—1 —log MRSS) + enrrssy (B.40)
log IS; —log IS = prs(log 1.S;—1 —log IS) + €154 (B.41)
log MPS; —log MPS = pyrps(log MPS;—1 —log MPS) + enrps,t (B.42)
log RPS; —log RPS = prps(log RPS;_1 —log RPS) + €rpsy (B.43)

This is a system of 43 equation in the following 43 macroeconomic variables (in order of

appearance): V, U, C, H, K, S(X), X, I, IS, S'"(X), \, Wy, v, d’(u), RPS, A, R, Q, u, a(u),
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Ry, TL I, W, J*, HY, MRSS, JJ", Wi A, YW, A, BY MC, v, Y, MCS, JJ7, B} A,
MPS, G, R¥ plus 7 AR1 Shock Processes.
Finally we define a consumption equivalent welfare measure C'E} as the inter-temporal increase

in welfare resulting from a permanent 1% increase in the equilibrium path of consumption as

CE; = E, [Z BU(1.01C 45, 1.01C; 14, Ht+s)]
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The stationary version is then
CE; = (1.01'77 — 1)U, + B(1 + g)' " E,CEy 44 (B.45)

In our results we compute consumption equivalent differences using the stationary steady state

CE.

B.2 The Balanced-Growth Deterministic Steady State

Having stationarized the model we now drop the superscript c. The exogenous variables have
steady states A = MCS = MRSS = 1S = MPS = RPS =1, G = g,Y. Moreover, u = 1 in
steady state. Given the steady state inflation rate II and hours H, the steady state values of the

other variables can be computed in stationary form as

S(X)=0

S'(X)=0
I = (1+ g)II

Q=1
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To examine the impact of trend inflation II on the steady state further we consider the zero

growth case g = 0 for which wage and price inflation are equal (IT* = II). Then we have for

price-setting:
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Thus for ¢, > 1, both the optimized price P and price dispersion A, increase with the trend
inflation rate II. However noting that the price mark-up is the inverse of the real marginal cost,
i.e. equal to = 1/MC, we can see that the price response to the re-optimized price decreases

with II. Analogous results for ¢, > 1 hold for the optimized nominal wage, wage dispersion and

the wage mark-up which is the inverse of 32
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B.3 Solution of the Deterministic Steady State

We solve for the steady state as follows:
1. We guess the value of H.
2. We solve for the steady state of the model given our guess.

3. We use the foc on hours

Cy_
[Ct - X 1:_91] HZ/}
) Ci_1
o U1 Ct=X
1—Bx(1+g) 7 7@“_;%
g

to evaluate our guess. Note that the above equation in steady state simplifies to

o xig]

Wh=12 Bx(1+g)=°

which eliminates the need to compute the steady state value for utility.

The rest of the variables can be computed as
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(1.01'77 — 1)U

CF=1_ B(l+g)t=

C Calibrated and Estimated Parameters

From our non-zero-inflation-growth steady state we impose the restrictions

II
R, = —/——m— C.46
B+g)—° (€46)
on B. This implies that 8 can be calibrated as
II
e C.47
v Rn(1+g)~° (47

However, in order to evaluate welfare ranking with a consistent form of the objective function,
we set 3 given (C.47) with IT and g both estimated directly as the trend of the data with o
imposed at the prior given by 1.5. For our US data and estimation period, this gives 8 = 0.9995
which is then imposed on the rest of the estimation and used for the optimized rules.

The first-order condition for capital utilisation is

'rf( = a,(ut) (048)
which has the linear approximation
Pl = 2g, (C.49)
B!

Smets and Wouters write the above equation as (see equation (6) in their paper)
_ .k
2y = 217y (C.50)

1-y

where z; = 7 and they estimate 1. Consequently, z; = 2

o2

Recall that the capital utilisation adjustment function is

a(ug) =y (ug — 1) + %(ut —1)? (C.51)
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which can be rewritten as

a(u) = y1(ug — 1) + B%(Ut —1)?

e
1
=l = 1)+ = 1)
=yu -1+ — iﬁ¢’y21(ut —1)? (C.52)
Its derivative is
o/ (ug) = 1 + &%(ut _ (C.53)

The production function (equation (5) in the paper) is given by
yr = ¢paki + (1 — a)ly +€f) (C.54)

is one plus the share of fixed costs in production.(") They use the prior

where ¢, = y*yiq)
N

¢p ~ N (1.25,0.25) for the parameter (may be missing from the paper altogether), which implies

that z% ~ N(0.25,0.25). Hence we need to rewrite the equilibrium condition (??) as
w d)“ l—a _ oy W
v = (AH!) (wKi 1)~ FY (C.57)

and define the prior on F = YLW
A

(1n the technical appendix the production function is given by

ye(i) = Zike()* Le(i)' ~ — @ (C.55)
which becomes
Y Y 3N LD .
5 = yy* k+(1—a)yy+ Lt+yy+ 7 (C.56)

when loglinearized.
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D Identification, MCMC Convergence in Estimation and a

Model Specification Test

This section describes and provides results for a range of identification tests, MCMC convergence

a model specification test using an estimated DSGE-VAR.

D.1 Identification

Following Iskrev and Ratto (2010), we provide the identification (locally) analysis of the our tool

model here.
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Figure 1: Identification Strength in the tool Model

In the upper panel of the figure the bars depict the identification strength of the parameters
based in the Fisher information matrix normalized by either the parameter at the prior mean
(blue bars) or by the standard deviation at the prior mean (red bars). Intuitively, the bars
represent the normalized curvature of the log likelihood function at the prior mean in the direction
of the parameter. If the strength is 0 (for both bars) the parameter is not identified as the

likelihood function is flat in this direction. The larger the absolute value if the bars, the stronger
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the identification. Hence, it is clear that all parameters are identified in the model. However, the
feedback parameters, 0y, 04,, on the real economic activities are weekly identified.

We also use dynare 7 to examine the identification exercise of the model with different criteria.
For instance, Komunjer and Ng (2011) provide a difference route to the local identification of a
linear state space, they examine directly the relationship between the coefficients of the state-
space representation of the DSGE model and the parameter vector #. In addition, the setup also
accounts for the condition of left-invertablity (or the number of structural shocks is different
from the that of the observables). However, in our setup, we always have the ”squared matrix”,
so the full-rank condition on the coefficients matrix and on the Jacobian matrix as in Ratto
(2008) is sufficient for local identification.

Qu and Tkachenko (2012) work in the frequency domain, i.e. whether the mean and spectrum
of observables is uniquely determined by the deep parameters at all frequencies? Using a frequency
domain approximation of the likelihood function and utilizing the information matrix equality,
they express the Hessian as the outer product of the Jacobian matrix of derivatives of the spectral
density with respect to the set of estimated parameters denoted §. However, this approach has
to be implemented numerically. For each conjectured 6y we have to compute the rank of the
spectral density matrixy. Because in a typical implementation the computation of the matrix
relies on numerical differentiation (and integration) over the subset frequency domains, there
might arise discordant results in the matrix rank. For instance, if two parameters jointly enter
the model and play a very similar role in the model after linearization (i.e. stickiness level of
price parameter and the rate of substitution jointly determine the speed of adjustment of prices
through the Calvo probability), thus they are separately unidentifiable. Qu and Tkachenko
(2012) procedure tests the identification over a subset of estimated parameters, so the model
fails to pass the test over each subset of parameters on the persistence of shocks. The usual

procedure to bypass this problem is to fix one of the subset parameters.

D.2 MCMC Convergence

The convergence property is represented in figure (2). The appended (Interval) shows the

Brooks and Gelman’s convergence diagnostics for the 80% interval. The blue line shows the 80%
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Interval
12 T

Figure 2: Multivariate convergence diagnostic

interval/quantile range based on the pooled draws from all sequences, while the red line shows
the mean interval range based on the draws of the individual sequences. The appended (m2) and
(m3) show an estimate of the same statistics for the second and third central moments, i.e. the
squared and cubed absolute deviations from the pooled and the within-sample mean, respectively.
All statistics are based on the range of the posterior likelihood function. The posterior kernel
is used to aggregate the parameters. Convergence is indicated by the two lines stabilizing and
being close to each other.

The figures from (3) to (6) indicate the prior-posterior plots. The grey line shows the prior
density, while the black line shows the density of the posterior distribution. The green horizontal
line indicates the posterior mode. If the posterior looks like the prior, either your prior was a
very accurate reflection of the information in the data or the parameter under consideration is

only weakly identified and the data does not provide much information to update the prior.
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Figure 3: Priors and Posteriors for 100000 MCMC draws
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Figure 4: Priors and Posteriors for 100000 MCMC draws
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D.3 DSGE-VAR

Following An and Schorfheide (2007), we also examine the estimated DSGE model’s Impulse-
Response functions (IRFs) to shocks with an estimated DSGE-VAR. The marginal posterior
density is from a sample of AT observations generated from the DSGE model, T' generated
by the VAR and (X 4+ 1)T" generated by the DSGE-VAR where T is the sample size. \ is a
hyper-parameter that scales the prior covariance matrix. The prior is diffuse for small values of
A and shifts its mass closer to the DSGE model restrictions as A — oo.

Overall, the sign and magnitude of the DSGE and DSGE-VAR impulse responses are quite
similar. Especially, regarding the IRFs to technology shock (figure (7)), the IRFs are almost
identical. However, along some dimensions, such as the impact of preference and investment shocks
(figures (12) and (13)) on policy rate, there is substantial uncertainty about how it propagates
through the system, but still shows a almost-close initial reaction to shocks. Nevertheless, the

model dynamics can be broadly described using the estimated impulse responses.
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Figure 7: We compare the IRFs to technology shock, €4 of the DSGE__ VAR with the estimated
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the DSGE-VAR’s IRFs, the bold dark curve is theposterior mean of the
DSGE’s IRfs and the shaded surface covers the space between the first

and ninth posterior deciles of the DSGE’s IRFs.
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Figure 12:

Figure 13:
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Table 1: Estimated results (posterior mean with a number of draws equal to 100000) of the
pure DSGE and DSGE-VAR

’Parameters Notations\ Prior \ DSGE-VAR \ DSGE ‘

pdf  Mean Std Post. Mean Sdt. |Post. Mean Sdt.
Technology shock €A IG 0.001 0.02 ]0.005 0.0006 | 0.0083 0.0005
Government spending shock eg IG 0.001 0.02 ]0.0238 0.0023 [ 0.0452 0.0021
Markup shock EMCS IG 0.001 0.02 ]0.0105 0.0007 | 0.0114 0.0007
Wage Markup shock EMRSS IG 0.001 0.02 ]0.0169 0.0032 | 0.0308 0.0040
Monetary shock EMPS IG 0.001 0.02 ]0.0019 0.0003 | 0.0033 0.0002
Preference shock €RPS IG 0.001 0.02 |0.0017 0.0001 |0.0028 0.0003
Investment shock €15 IG 0.001 0.02 ]0.0093 0.0017{0.0168 0.0018
ARI1 technology shock PA B 0.50 0.20 ]0.8962 0.0274|0.9730 0.0039
AR1 gov. spending shock  pg B 0.50 0.20 ]0.8713 0.0343 1 0.9427 0.0080
AR1 mark-up shock PMCS B 0.50 0.20 |0.5076 0.1184|0.9469 0.0127
AR1 Wage Markup shock  parrss B 0.50 0.20 ]0.9657 0.0096 | 0.9388 0.0109
AR1 Monetary shock PMPS B 0.50 0.20 ]0.2208 0.0609 | 0.2944 0.0478
ARI1 Preference shock PRPS B 0.50 0.20 0.9022 0.0111]0.8769 0.0329
AR1 Investment shock pPIS B 0.50 0.20 ]0.7811 0.0040 | 0.9651 0.0086
Investment adj cost ox N 2 0.75 ]0.5306 0.0406 | 0.2531 0.0449
Inverse intertemporal EOS o N 1.5  0.375 ]0.9207 0.1213 [ 1.2945 0.0991
Internal Habit X B 0.5 0.1 0.3278 0.053710.2101 0.0350
Weight on Leisure in utility N 2 0.75 |1.3936 0.6148 (2.1395 0.4105
Calvo’s price & B 0.50 0.10 ]0.5347 0.0584 | 0.4425 0.0359
Calvo’s wage ¢w B 0.50 0.10 |0.3609 0.0589 | 0.4839 0.0428
Price indexation Vp B 0.50 0.10 ]0.4302 0.1058 | 0.4055 0.0895
Wage indexation Y B 0.50 0.10 ]0.5258 0.1055 [ 0.6297 0.0882
Capital utilisation Yo B 0.50 0.15 ]0.8306 0.0586 | 0.8537 0.0410
Profit F N 0.25 0.250 |0.4992 0.1010 | 0.3698 0.0564
Feedback inflation 0 N 2 0.25 [2.0304 0.1649 | 2.5073 0.1421
Lagged interest rate Or B 0.70 0.10 ]0.6962 0.0553 |0.7323 0.0275
Feedback output gap 0, N 0.125 0.05 ]0.0204 0.0180 |-0.0036 0.0090
Feedback output growth Oy N 0.125 0.05 ]0.1507 0.0451 | 0.2039 0.0427
DSGE prior weight A Unif 0.950 0.5485|0.3264 0.0413
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We next compare the ZLB mandate results between the estimated DSGE and estimated
DSGE-VAR. Overall, the OSR of the DSGE-VAR also converges to a price-level rule. However,

the optimal inflation target of the DSGE is significantly smaller than that of the DSGE-VAR.

Table 2: Comparing the welfare between the estimated DSGE and estimated DSGE-
VAR. The CEV of the DSGE-VAR is calculated from the associated welfare of the
Ramsey policy equaling to 71555.55, and Steady State Consumption Equivalent (CE)

equaling to 76.76.

(C) OSR with ZLB Mandate - PURE DSGE

Regimes Py lan oy oy, |17 Act wel |CEV (%) |p_zlb |w} | MPS

(C1) OSR with ZLB (p.;, = 0.01) |1.0|/1.1 [0.01 [0.13 [1.0094 |-2639.69 |-0.061 0.01 |16 |0.0

(C2) OSR with ZLB (p.;» = 0.05) |1.0|1.73 [0.02 [0.26 [1.006 [-2639.48|-0.0334 |0.05 |8 |[0.0

(C3) OSR with ZLB (p.;, = 0.096) | 1.0|2.64 [0.03 [0.44 [1.004 |-2639.41-0.024 0.096 (4 |0.0

(C) OSR with ZLB Mandate - DSGE-VAR

Regimes Py oy oy oy, |17 Act wel |CEV (%) [p_zlb | w} | MPS

(C1) OSR with ZLB (p.;, = 0.01) |1.0|0.754|0.00 [0.014[1.005 |71554.1 |[-0.0189 |0.01 |12 [0.0

(C2) OSR with ZLB (p.;» = 0.05) |1.0|1.337[0.003 [0.066 | 1.003 |71554.8 [-0.0098 |0.05 |4 [0.0

(C3) OSR with ZLB (p.;» = 0.096) | 1.0|1.733[0.01 [0.104 [1.0019 | 71555.0 |-0.0072 |0.096 |2 |0.0
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E The Linear Quadratic Approximation Approach

This Section provides details of the LQ approach as used by Debortoli et al. (2019)
and discussed in the Introduction. From Levine et al. (2008a) consider the following

general deterministic optimization problem
max Z,Bt Xt, Wt s.t. Xt = f(Xt—17 Wt) (El)

where X; is vector of state variables and W; a vector of instruments.(*™) There are given initial
and the usual tranversality conditions. For our purposes, we consider this as including models
with forward-looking expectations, so that the optimal solution to the latter setup is the pre-
commitment solution. Suppose the solution converges to a steady state X,W as t — oo for
the states X; and the policies W;. Define z; = X; — X and wy = W, — W as representing
the first-order approximation to absolute deviations of states and policies from their steady
states.("™)

The Lagrangian for the general problem is defined as,
Zﬂt (X1, W) = N( Xt = f( X1, Wh))] (E.2)

where ); is the Lagrange multiplier so that a necessary condition for the solution to (E.1) is that

the Lagrangian is stationary at all {X}, {W} i.e.

Uw 4+ Xfw =0 Ux =M+ BN fx =0 (E.3)

(") An alternative representation of the problem is U(X;, W;) and E;[X;11] = f(X;, W) where X; includes
forward-looking non-predetermined variables and E;[X;11] = X;y1 for the deterministic problem where
perfect foresight applies. Whichever one uses, it is easy to switch from one to the other by a simple
re-definition. As we demonstrate in Levine et al. (2008b), although the inclusion of forward-looking
variables significantly alters the nature of the optimization problem, these changes only affect the boundary
conditions and the second-order conditions, but not the steady state of the optimum which is all we
require for LQ approximation.

(") Alternatively z; = (X; — X)/X and w; = (W; —W)/W, depending on the nature of the economic variable.

Then the Theorem follows in a similar way with an appropriate adjustment to the Jacobian Matrix.

30



Assume a steady state A for the Lagrange multipliers exists as well. Now define the Hamiltonian
Hy = U(X, Wy) — AL f(Xi—1, Wy). The following is the discrete time version of Magill (1977):
Theorem: If a steady state solution (X, W, M) to the optimization problem (E.1) exists,

then any perturbation (z,w;) about this steady state can be expressed as the solution to

Jp Hxx Hxw Ty
max 3 Z gt [ x, w, ] s.it. = fxx: + fwwy (E.4)
t=0 Hwx Hww wy
where Hxx, etc denote second-order derivatives evaluated at (X,W). This can be directly

extended to the case incorporating disturbances.

Thus our general procedure is as follows:

1. Set out the deterministic non-linear problem for the Ramsey Problem, to maximize the

representative agents’ utility subject to non-linear dynamic constraints.
2. Write down the Lagrangian for the problem.

3. Calculate the first order conditions. We do not require the initial conditions for an optimum

since we ultimately only need the steady-state of the Ramsey problem.

4. Calculate the steady state of the first-order conditions. The terminal condition implied by

this procedure is such that the system converges to this steady state.

5. Calculate a second-order Taylor series approximation, about the steady state, of the
Hamiltonian associated with the Lagrangian in 2. Note this involves only the steady

state M of the multipliers.

6. Calculate a first-order Taylor series approximation, about the steady state, of the first-order

conditions and the original constraints.

7. Use 4. to eliminate the steady-state Lagrangian multipliers in 5. By appropriate elimination
both the Hamiltonian and the constraints can be expressed in minimal form. This then
gives us the accurate LQ approximation of the original non-linear optimization problem in
the form of a minimal linear state-space representation of the constraints and a quadratic

form of the utility expressed in terms of the states.
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The Lagrangian for the NK model is

A Hp)e Uy
Zﬁt[ (o) + Al,t(n—(tAt”)+A2,t<Ut )

- U
T s (Wt — aMGAHY 1) + A (At,t+1 - 5[(]/%)
C
+ (JJt fEt At t+1Ht+1 JJt+1] Y;)

1

Jp — EE¢[Ay t+1Ht+1Jt+1] (1 > YtMCtMSt>

1
|
1
- (1 I 4+ (1—¢) (JJD )
-

Ji

+ Aoy (At - é*HfAtfl -(1-9 (th

—C
) ) + >\10,t(Yt - Cy — Ct)]

From Levine et al. (2008a) with no habit (h¢ =0) and ® =1 — % the inefficiency wedge in
the model here with wage flexibility (defined as « in Levine et al. (2008a)) we finally arrive at
the correct quadratic approzimation to the nonlinear Ramsey problem as the maximization of

Eo 322 8'U] with respect to {m}, subject to

Ty = B + (1 — E)S — /86) ((¢ + U)Z/t - (1+ ¢)at> (E5)
where
1 Y1+¢ 5
Ui = —5oirs |00 + 6@+ Xa(1 + 9y — 201+ 8)(® + N(1+ 6))ar + 2060
¢ 2
— Xeo(o+1)y2 + =601 59 (® + (14 p)Ng)7? (E.6)

where \g = %. Then in the efficient case we have ® = 1 and Ag = 0 in which case the term in

big brackets in (E.6) reduces to

i, 140 Y’ €
2<( +0) (=g BT TSTeary t) (ET)
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plus terms in G; which are independent of policy. Since %a is the flexible-price level of output
this is a quadratic loss function in terms of inflation and the output gap. In fact it is the

welfare-based loss function of the canonical NK model as derived by Woodford (2003).

F Quadratic Loss Function Mandates

Tables 3-6 set out the numerical results for our 4 quadratic mandates. The optimal mandate
is described by the choice of weights (w, wj;y) for mandate I, w; for mandate II, (w;,w},, ) for
mandate IIT and (w;, w,) for mandate IV. In the tables we report the welfare-optimal mandate
for the cases p,;p = 0.01, 0.05 and 0.096 by choosing appropriate grids for the pair of weights
then we comparing the pair of weights that produce lowest welfare cost for each given p,;,. Table

(4) is then the mandate equilibrium given the grids on the weights.

Table 3: Results for Mandate 1

OSR with Quadratic Mandate (w}, = 0.2)

Regimes Py e ag, I |12 CEV (%)|pap |}

OSR with ZLB (p.;» = 0.01) [1.0/0.78]0.08/1.0087|-2639.71|-0.0634 |0.01 |1

OSR with ZLB (p.;» = 0.05) |1.0/0.78/|0.08/1.0046|-2639.53|-0.0399 [0.05 |1

OSR with ZLB (p.;» = 0.096)[1.0/0.78/0.08/1.0026|-2639.50|-0.0360 |0.096/1

OSR with Quadratic Mandate (wj, = 0.5)

Regimes oy e ag, I |Q CEV (%)|pp |w

T

OSR with ZLB (p.;» = 0.01) |1.0/0.95|0.23]1.0092|-2639.72|-0.0647 [0.01 |1

OSR with ZLB (p.;» = 0.05) [1.0/0.95/0.23|1.0050/-2639.53|-0.0399 |0.05 |1

OSR with ZLB (p.;» = 0.096)[1.0/0.95/0.23|1.0029|-2639.47|-0.0321  |0.096/1

OSR with Quadratic Mandate (wg, = 1.0)

Regimes oy | ag, I |Q CEV (%) Py |we

OSR with ZLB (p.;» = 0.01) [1.0/1.23/0.5 |1.01 |-2639.80|-0.0752 |0.01 |1

OSR with ZLB (p.;» = 0.05) [1.0/1.23]0.5 |1.0056|-2639.58|-0.0465 |0.05 (1

OSR with ZLB (p.;, = 0.096)|1.0(1.22|0.5 [1.0033|-2639.51|-0.0373 |0.096|1
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Table 4: Results for Mandate 11

OSR with Quadratic Mandate
Regimes Py o |ag, I 1Q CEV (%)|pip |w;:
OSR with ZLB (p.;» = 0.01) [1.0{1.02/0.0 [1.0093|-2639.73|-0.0660 |0.01 |0.6
OSR with ZLB (p.;» = 0.05) [1.0[1.36/0.0 [1.0055|-2639.53|-0.0399 |0.05 |0.4
OSR with ZLB (p.;» = 0.096)|1.0{1.36|0.0 |1.0033|-2639.46|-0.0308 |0.096(0.4

Table 5: Results for Mandate I1I

OSR with Quadratic Mandate (wg, = 0.1)

*

*

*

Regimes pr |k |ag, II* Q2 CEV (%) [Py |wi
OSR with ZLB (p.;, = 0.01) |1.0/1.15|0.03|1.0095|-2639.71 |-0.0634 |0.01 |0.5
OSR with ZLB (p.;, = 0.05) |1.0/1.15/0.03]1.0052}-2639.51 |-0.0373 |0.05 |0.5
OSR with ZLB (p.;, = 0.096)|1.0/1.15/0.03]1.0031}-2639.45 |-0.0295 |0.096/0.5
OSR with Quadratic Mandate (wg, = 0.5)
Regimes pr ok |ag, I |Q CEV (%) |pap |w;
OSR with ZLB (p.;, = 0.01) |1.0{1.24|0.24]1.0096|-2639.61 |-0.0504 |0.01 |0.5
OSR with ZLB (p.;; = 0.05) |1.0{4.56/1.00{1.007 |-2639.41 |-0.0243 ]0.05 |0.0
OSR with ZLB (p.;, = 0.096)|1.0{4.57|1.00{1.0045|-2639.33 |-0.0138 ]0.096|0.0
OSR with Quadratic Mandate (w),, = 1)
Regimes pr ok |ab, I |Q CEV (%)|paip |w;:
OSR with ZLB (p.;; = 0.01) |1.0/1.37|0.50/1.0098|-2639.58|-0.0465 |0.01 |0.5
OSR with ZLB (p.;» = 0.05) [1.0/2.73|1.00/1.0063|-2639.36/-0.0178 |0.05 |0.0
OSR with ZLB (p.;» = 0.096)|1.0/2.74/1.00{1.0039|-2639.28|-0.0073 |0.096|0.0
OSR with Quadratic Mandate (w},, = 1.5)
Regimes ooz laz, |0 CEV (%)|pay [}
OSR with ZLB (p.;, = 0.01) |1.0/0.90|0.43|1.0092|-2639.60 |-0.0491 [0.01 |1
OSR with ZLB (p.;, = 0.05) [1.0(1.47|0.74|1.0056/-2639.38 |-0.0204 |0.05 |0.5
OSR with ZLB (p.;, = 0.096)|1.0/1.46|0.73]1.0034]-2639.31 |-0.0112 |0.096/0.5
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Table 6: Results for Mandate IV

OSR with Quadratic Mandate (wgy, = 0.1)

* *

Regimes pr ok |ab, IIF|Q CEV (%)|paip |w

OSR with ZLB (p.;, = 0.01) [1.0{1.27|0.05|1.0098|-2639.73|-0.0660 |0.01 0.5

OSR with ZLB (p.;» = 0.05) [1.0/1.26|0.05|1.0054/-2639.52[-0.0386  [0.05 [0.5

OSR with ZLB (p.;» = 0.096)|1.0/1.26|0.05]1.0032|-2639.46|-0.0308 |0.0960.5

OSR with Quadratic Mandate (w};, = 0.2)

Regimes pi ok o, II*|Q CEV (%) |paip |wy:

T

OSR with ZLB (p.;» = 0.01) [1.0/0.75|0.15|1.0090/-2639.74|-0.0674 [0.01 [1.5

OSR with ZLB (p.i» = 0.05) [1.0/1.05|0.24|1.0056|-2639.53|-0.0399 |0.05 |1

OSR with ZLB (p.i, = 0.096)|1.0/1.88|0.49|1.0041|-2639.45|-0.0295 |0.096/0.5

OSR with Quadratic Mandate (wgy, = 0.5)

Regimes pr ok |ag, [IT* Q CEV (%) Py |w

r

OSR with ZLB (p.i» = 0.01) [1.0/0.78/0.26|1.0095|-2639.79|-0.0739 |0.01 |2

OSR with ZLB (p.i, = 0.05) [1.0{1.0 |0.36|1.0057|-2639.57|-0.0452 ]0.05 |1.5

OSR with ZLB (p.;, = 0.096)|1.0/1.42|0.55|1.0040}-2639.49|-0.0347 {0.096|1
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