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Online Appendix

A Inflation and Price Dispersion Dynamics

This sub-appendix shows how first order conditions expressed as summations, as in Calvo price

or wage contracts, can be expressed as difference equations suitable for coding in Dynare. Then

the dynamic form of price or wage dispersion, ∆p
t is derived.

A.1 A Useful Lemma

In the first order conditions for Calvo contracts and expressions for value functions we are

confronted with expected discounted sums of the general form

Ωt = Et

[ ∞∑
k=0

βkXt,t+kYt+k

]
(A.1)

where Xt,t+k has the property Xt,t+k = Xt,t+1Xt+1,t+k and Xt,t = 1 (for example an inflation,

interest or discount rate over the interval [t, t+ k]).

Lemma

Ωt can be expressed as

Ωt = Yt + βEt [Xt,t+1Ωt+1] (A.2)

Proof

Ωt = Xt,tYt + Et

[ ∞∑
k=1

βkXt,t+kYt+k

]

= Yt + Et

[ ∞∑
k′=0

βk
′+1Xt,t+k′+1Yt+k′+1

]

= Yt + βEt

[ ∞∑
k′=0

βk
′
Xt,t+1Xt+1,t+k′+1Yt+k′+1

]
= Yt + βEt [Xt,t+1Ωt+1] □
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A.2 Price and Wage Dynamics

Consider the optimal price which can be written as

POt
Pt

= Jpt
JJpt

(A.3)

and summations JJpt and Jpt are of the form considered in the Lemma above. Applying the

Lemma we then have the recursive form:

JJpt − ξpEt[Λt,t+1Πζp−1
t+1 JJpt+1] = Yt

Jpt − ξpEt[Λt,t+1Πζp

t+1J
p
t+1] = 1

1 − 1
ζp

YtMCtMSt

1 = ξpΠ
ζp−1
t + (1 − ξp)

(
Jpt
JJpt

)1−ζp

MCt = PWt
Pt

= Wt

PtFH,t
(A.4)

∆p
t ≡ 1

n

n∑
j=1

(Pt(j)/Pt)−ζp = ξpΠ
ζp

t ∆t−1 + (1 − ξp)
(
Jpt
JJpt

)−ζp

as in the main text.

With indexing by an amount γ ∈ [0, 1], the optimal price-setting first-order condition for a

firm j setting a new optimized price POt (j) is now given by

POt (j) =
1

(1−1/ζp)Et
[∑∞

k=0 ξ
k
pΛt,t+kPt+kMCt+kMSt+kYt+k(j)

]
Et
[∑∞

k=0 ξ
k
pDt,t+kYt+k(j)

(
Pt+k−1
Pt−1

)γ]
Price dynamics are now given by

POt
Pt

= Jpt
JJpt

JJpt − ξpβEt[Π̃
ζp−1
t+1 JJpt+1] = YtUC,t

Jpt − ξpβEt[Π̃
ζp

t+1J
p
t+1] = 1

1 − 1
ζp

MCtMStYtUC,t

Π̃t ≡ Πt

Πγ
t−1
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Wage dynamics follows similarly.

A.3 Dynamics of Price Dispersion

Price dispersion lowers aggregate output as follows. As with consumption goods, the demand

equations for each differentiated good m with price Pt(m) forming aggregate investment and

public services takes the form

It(m) =
(
Pt(m)
Pt

)−ζp

It ; Gt(m) =
(
Pt(m)
Pt

)−ζp

Gt (A.5)

Hence equilibrium for good m gives

Yt(m) = AtHt(m)
(
Kt(m)
Yt(m)

) 1−α
α

= (Ct + It +Gt)
(
Pt(m)
Pt

)−ζp

(A.6)

where Yt(m), Ht(m) and Kt(m) are the quantities of output, hours and capital needed in the

wholesale sector to produce good m in the retail sector. Since the capital-labour ratio is constant

integrating over m, and using Ht =
∫ 1

0 Ht(m)dm we obtain

Yt = F (At, Ht,Kt)
∆p
t

(A.7)

as in the main text.

Price dispersion is linked to inflation as follows. Assuming as before that the number of firms

is large we obtain the following dynamic relationship:

∆p
t = ξpΠ

ζp

t ∆t−1 + (1 − ξp)
(
Jpt
JJpt

)−ζp

(A.8)

Proof

In the next period, ξp of these firms will keep their old prices, and (1 − ξp) will change their

prices to POt+1. By the law of large numbers, we assume that the distribution of prices among

those firms that do not change their prices is the same as the overall distribution in period t. It
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follows that we may write

∆p
t+1 = ξp

∑
jno change

(
Pt(j)
Pt+1

)−ζp

+ (1 − ξp)
(
Jpt+1
JJpt+1

)−ζp

= ξp

(
Pt
Pt+1

)−ζp ∑
jno change

(
Pt(j)
Pt

)−ζp

+ (1 − ξp)
(
Jpt+1
JJpt+1

)−ζp

= ξp

(
Pt
Pt+1

)−ζp ∑
j

(
Pt(j)
Pt

)−ζp

+ (1 − ξp)
(
Jpt+1
JJpt+1

)−ζp

= ξpΠ
ζp

t+1∆t + (1 − ξp)
(
Jpt+1
JJpt+1

)−ζp

□

Wage dispersion follows similarly.

B The Stationary Equilibrium

To stationarize the model labour-augmenting technical progress parameter is decomposed into a

cyclical component, stationary At, and a deterministic trend Āt:

At = ĀtA
c
t

Āt = (1 + g)Āt−1

Then we can define stationarized variables by

Ωt

Ā1−σ
t

= Ut

Ā1−σ
t

+ βEt
Ωt+1

Ā1−σ
t+1

(
Āt+1

Āt

)1−σ

Ut

Ā1−σ
t

=

[
Ct

Āt
− χCt−1

Āt−1

Āt−1
Āt

]1−σ

1 − σ
exp

[
(σ − 1)H

1+ψ
t

1 + ψ

]

Λt,t+1 = β
UC,t+1
UC,t

= β(1 + g)−σ)U
c
C,t+1
U cC,t

≡ βg
1 + g

U cC,t+1
U cC,t

where the growth-adjusted discount rate is defined as

βg ≡ β(1 + g)1−σ,
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the Euler equation is still

Et [Λt,t+1Rt+1]

Now stationarize remaining variables by defining cyclical components:

UC,t

Ā−σ
t

=
(1 − σ) Ut

Ā1−σ
t

Ct

Āt
− χCt−1

Āt−1

Āt−1
Āt

− βχ

(
Āt+1

Āt

)−σ (1 − σ) Ut+1
Ā1−σ

t+1
Ct+1
Āt+1

− χCt

Āt

Āt

Āt+1

Y c
t ≡ Yt

Āt
=

(AtHd
t )α

(
Kt−1
Āt

)1−α
− Ft

Āt

∆p
t

=
(AtHd

t )α
(
Kc

t−1
(1+gt)

)1−α
− F

∆p
t

Kc
t ≡ Kt

Āt

Kc
t = (1 − δ)

Kc
t−1

1 + gt
+ (1 − S(Xc

t ))Ict

Xc
t = (1 + gt)

Ict
Ict−1

S(Xc
t ) = ϕX(Xc

t − 1 − gt)2

S′(Xc
t ) = 2ϕX(Xc

t − 1 − gt)

Cct ≡ Ct

Āt

Ict ≡ It

Āt

W c
t ≡ Wt

Āt

Rewrite the equilibrium conditions as

Household:

Ωt

Ā1−σ
t

= Ut

Ā1−σ
t

+ βEt
Ωt+1

Ā1−σ
t+1

(
Āt+1

Āt

)1−σ

Ut

Ā1−σ
t

=

[
Ct

Āt
− χCt−1

Āt−1

Āt−1
Āt

]1−σ

1 − σ
exp

[
(σ − 1)H

1+ψ
t

1 + ψ

]
Kt

Āt
= (1 − δ)Kt−1

Āt−1

Āt−1

Āt
+ (1 − S(Xt))

It

Āt
ISt

Xt =
It

Āt
Āt

It−1
Āt−1

Āt−1
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S(Xt) = ϕX(Xt − 1 − g)2

S′(Xt) = 2ϕX(Xt − 1 − g)

λt

Ā−σ
t

=
(1 − σ) Ut

Ā1−σ
t

Ct

Āt
− χCt−1

Āt−1

Āt−1
Āt

− βχ

(
Āt+1

Āt

)−σ (1 − σ) Ut+1
Ā1−σ

t+1
Ct+1
Āt+1

− χCt

Āt

Āt

Āt+1

Wh,t

Āt
=

[
Ct

Āt
− χCt−1

Āt−1

Āt−1
Āt

]
Hψ
t

1 − βχ
Ut+1/Ā

1−σ
t+1

Ut/Ā
1−σ
t

(
Āt+1
Āt

)−σ Ct
Āt

−χCt−1
Āt−1

Āt−1
Āt

Ct+1
Āt+1

−χCt
Āt

Āt
Āt+1

rKt = a′(ut)

1 = RPStEt [Λt,t+1Rt+1]

Qt = Et
{

Λt,t+1
[
rKt+1ut+1 − a(ut+1) +Qt+1(1 − δ)

]}
1 = Qt

[
1 − S(Xt) − S′(Xt)Xt

]
ISt

+ Et
[
Λt,t+1Qt+1S

′(Xt+1)X2
t+1ISt+1

]
Λt,t+1 = β

λt+1
Ā−σ

t+1
Ā−σ
t+1

λt

Ā−σ
t

Ā−σ
t

Rt =
[
Rn,t−1

Πt

]
a(ut) = γ1(ut − 1) + γ2

1 − γ2

γ1
2 (ut − 1)2

a′(ut) = γ1 + γ2
1 − γ2

γ1(ut − 1)

Wage setting:

Πw
t =

Wt

Āt

Wt−1
Āt−1

Āt−1
Āt

Πt

Jwt
Āt

= 1
1 − 1

ζw

Wh,t

Āt
Hd
tMRSSt

+ ξwEtΛt,t+1

(
Πw
t,t+1

)ζw

(Πt−1,t)γwζw

Jwt+1
Āt+1

Āt+1

Āt

JJwt = Hd
t + ξwEtΛt,t+1

(
Πw
t,t+1

)ζw

(Πt−1,t)γw(ζw−1) Πt,t+1
JJwt+1
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WO
n,t

Wn,t
=

Jw
t

Āt

Wt

Āt
JJwt

1 = ξw

(
Πγw
t−1

Πw
t

)1−ζw

+ (1 − ξw)
(
WO
n,t

Wn,t

)1−ζw

∆w,t = ξw
(Πw

t )ζw

Πζwγw
t−1

∆w,t−1 + (1 − ξw)
(
WO
n,t

Wn,t

)−ζw

Retail firm:

Y W
t

Āt
=
(
At

Āt
Hd
t

)α(
ut
Kt−1

Āt−1

Āt−1

Āt

)1−α

− F̃
Y W
t

Āt

Wt

Āt
= α

PWt
Pt

Y W
t

Āt
+ F̃

Y W
t

Āt

Hd
t

rKt = (1 − α)P
W
t

Pt

Y W
t

Āt
+ F̃

Y W
t

Āt

ut
Kt−1
Āt−1

Āt−1
Āt

Price setting:

MCt = PWt
Pt

Jpt
Āt

= 1
1 − 1

ζp

Yt

Āt
MCtMCSt

+ ξpEtΛt,t+1
(Πt,t+1)ζp

(Πt−1,t)γpζp

Jpt+1
Āt+1

Āt+1

Āt

JJpt
Āt

= Yt

Āt
+ ξpEtΛt,t+1

(Πt,t+1)ζp−1

(Πt−1,t)γp(ζp−1)
JJpt+1
Āt+1

Āt+1

Āt

P 0
t

Pt
=

Jp
t

Āt

JJp
t

Āt

1 = ξp

(
Πγp

t−1
Πt

)1−ζp

+ (1 − ξp)
(
P 0
t

Pt

)1−ζp

∆p,t = ξp
Πζp

t

Πζpγp

t−1
∆p,t−1 + (1 − ξp)

(
P 0
t

Pt

)−ζp
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Monetary policy:

log
(
Rn,t
Rn

)
= ρr log

(
Rn,t−1
Rn

)
+ (1 − ρr)

(
θπ log

(Πt

Π

)
+ θy log

(
Yt
Y

)
+ θdy log

(
Yt
Yt−1

))
+ logMPSt

Aggregation:

Yt

Āt
= Ct

Āt
+ Gt

Āt
+ It

Āt
+ a(ut)

ISt

Kt−1

Āt−1

Āt−1

Āt

Ht = ∆w,tH
d
t

Y W
t

Āt
= ∆p,t

Yt

Āt

RKt = rKt ut − a(ut) +Qt(1 − δ)
Qt−1

Shock processes:

logAt − logA = ρA(logAt−1 − logA) + ϵA,t

logGt − logG = ρG(logGt−1 − logG) + ϵG,t

logMCSt − logMCS = ρMCS(logMCSt−1 − logMCS) + ϵMCS,t

logMRSSt − logMRSS = ρMRSS(logMRSSt−1 − logMRSS) + ϵMRSS,t

log ISt − log IS = ρIS(log ISt−1 − log IS) + ϵIS,t

logMPSt − logMPS = ρMPS(logMPSt−1 − logMPS) + ϵMPS,t

logRPSt − logRPS = ρRPS(logRPSt−1 − logRPS) + ϵRPS,t

B.1 Summary of the Dynamic Equilibrium

Use this change of variables and dropping the superscript c in trended variables such Ωc
t , U ct , Cct

etc to arrive to the following stationarized equilibrium conditions:
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Household:

Ωt = Ut + β(1 + g)1−σEtΩt+1 (B.1)

Ut =

[
Ct − χCt−1

1+g

]1−σ

1 − σ
exp

[
(σ − 1)H

1+ψ
t

1 + ψ

]
(B.2)

Kt = (1 − δ)Kt−1
1 + g

+ (1 − S(Xt))ItISt (B.3)

Xt = It
It−1

(1 + g) (B.4)

S(Xt) = ϕX(Xt − 1 − g)2 (B.5)

S′(Xt) = 2ϕX(Xt − 1 − g) (B.6)

λt = (1 − σ)Ut
Ct − χCt−1

1+g
− βχ(1 + g)−σ (1 − σ)Ut+1

Ct+1 − χ Ct
1+g

(B.7)

Wh,t =

[
Ct − χCt−1

1+g

]
Hψ
t

1 − βχ(1 + g)−σ Ut+1
Ut

Ct−χCt−1
1+g

Ct+1−χ Ct
1+g

(B.8)

rKt = a′(ut) (B.9)

1 = RPStEt [Λt,t+1Rt+1] (B.10)

Qt = Et
{

Λt,t+1
[
rKt+1ut+1 − a(ut+1) +Qt+1(1 − δ)

]}
(B.11)

1 = Qt
[
1 − S(Xt) − S′(Xt)Xt

]
ISt

+ Et
[
Λt,t+1Qt+1S

′(Xt+1)X2
t+1ISt+1

]
(B.12)

Λt,t+1 = β(1 + g)−σ λt+1
λt

(B.13)

Rt =
[
Rn,t−1

Πt

]
(B.14)

a(ut) = γ1(ut − 1) + γ2
1 − γ2

γ1
2 (ut − 1)2 (B.15)

a′(ut) = γ1 + γ2
1 − γ2

γ1(ut − 1) (B.16)

Wage setting:

Πw
t = (1 + g) Wt

Wt−1
Πt (B.17)
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Jwt = 1
1 − 1

ζw

Wh,tH
d
tMRSSt

+ ξw(1 + g)EtΛt,t+1

(
Πw
t,t+1

)ζw

(Πt−1,t)γwζw
Jwt+1 (B.18)

JJwt = Hd
t + ξwEtΛt,t+1

(
Πw
t,t+1

)ζw

(Πt−1,t)γw(ζw−1) Πt,t+1
JJwt+1 (B.19)

WO
n,t

Wn,t
= Jwt
WtJJwt

(B.20)

1 = ξw

(
Πγw
t−1

Πw
t

)1−ζw

+ (1 − ξw)
(
WO
n,t

Wn,t

)1−ζw

(B.21)

∆w,t = ξw
(Πw

t )ζw

Πζwγw
t−1

∆w,t−1 + (1 − ξw)
(
WO
n,t

Wn,t

)−ζw

(B.22)

Retail firm:

Y W
t =

(
AtH

d
t

)α (
ut
Kt−1
1 + g

)1−α
− F̃ Y W (B.23)

Wt = α
PWt
Pt

Y W
t + F̃ Y W

Hd
t

(B.24)

rKt = (1 − α)P
W
t

Pt

Y W
t + F̃ Y W

ut
Kt−1
1+g

(B.25)

Price setting:

MCt = PWt
Pt

(B.26)

Jpt = 1
1 − 1

ζp

YtMCtMCSt

+ ξp(1 + g)EtΛt,t+1
(Πt,t+1)ζp

(Πt−1,t)γpζp
Jpt+1 (B.27)

JJpt = Yt + ξp(1 + g)EtΛt,t+1
(Πt,t+1)ζp−1

(Πt−1,t)γp(ζp−1)JJ
p
t+1 (B.28)

P 0
t

Pt
= Jpt
JJpt

(B.29)

1 = ξp

(
Πγp

t−1
Πt

)1−ζp

+ (1 − ξp)
(
P 0
t

Pt

)1−ζp

(B.30)
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∆p,t = ξp
Πζp

t

Πζpγp

t−1
∆p,t−1 + (1 − ξp)

(
P 0
t

Pt

)−ζp

(B.31)

Monetary policy:

log
(
Rn,t
Rn

)
= ρr log

(
Rn,t−1
Rn

)
+ (1 − ρr)

(
θπ log

(Πt

Π

)
+ θy log

(
Yt
Y

)
+ θdy log

(
Yt
Yt−1

))
+ logMPSt (B.32)

Aggregation:

Yt = Ct +Gt + It + a(ut)
Kt−1
1 + g

(B.33)

Ht = ∆w,tH
d
t (B.34)

Y W
t = ∆p,tYt (B.35)

RKt = rKt ut − a(ut) +Qt(1 − δ)
Qt−1

(B.36)

Shock processes:

logAt − logA = ρA(logAt−1 − logA) + ϵA,t (B.37)

logGt − logG = ρG(logGt−1 − logG) + ϵG,t (B.38)

logMCSt − logMCS = ρMCS(logMCSt−1 − logMCS) + ϵMCS,t (B.39)

logMRSSt − logMRSS = ρMRSS(logMRSSt−1 − logMRSS) + ϵMRSS,t (B.40)

log ISt − log IS = ρIS(log ISt−1 − log IS) + ϵIS,t (B.41)

logMPSt − logMPS = ρMPS(logMPSt−1 − logMPS) + ϵMPS,t (B.42)

logRPSt − logRPS = ρRPS(logRPSt−1 − logRPS) + ϵRPS,t (B.43)

This is a system of 43 equation in the following 43 macroeconomic variables (in order of

appearance): V , U , C, H, K, S(X), X, I, IS, S′(X), λ, Wh, rK , a′(u), RPS, Λ, R, Q, u, a(u),

11



Rn, Π, Πw, W , Jw, Hd, MRSS, JJw, WO
n

Wn
, ∆w, Y W , A, PW

P , MC, Jp, Y , MCS, JJp, P 0

P , ∆p,

MPS, G, RK plus 7 AR1 Shock Processes.

Finally we define a consumption equivalent welfare measure CEt as the inter-temporal increase

in welfare resulting from a permanent 1% increase in the equilibrium path of consumption as

CEt = Et

[ ∞∑
t=s

βsU(1.01Ct+s, 1.01Ct−1+s, Ht+s)
]

− Et

[ ∞∑
t=s

βsU(Ct+s, Ct−1+s, Ht+s)
]

= [1.01Ct − χ1.01Ct−1]1−σ

1 − σ
exp

[
(σ − 1)H

1+ψ
t

1 + ψ

]
− U(Ct, Ct−1, Ht)

+ βEtCEt+1

= (1.011−σ − 1)Ut + βEtCEt+1 (B.44)

The stationary version is then

CEt = (1.011−σ − 1)Ut + β(1 + g)1−σEtCEt+1 (B.45)

In our results we compute consumption equivalent differences using the stationary steady state

CE.

B.2 The Balanced-Growth Deterministic Steady State

Having stationarized the model we now drop the superscript c. The exogenous variables have

steady states A = MCS = MRSS = IS = MPS = RPS = 1, G = gyY . Moreover, u = 1 in

steady state. Given the steady state inflation rate Π and hours H, the steady state values of the

other variables can be computed in stationary form as

S(X) = 0

S′(X) = 0

Πw = (1 + g)Π

Q = 1

12



Λ = β(1 + g)−σ

rK = 1
Λ − (1 − δ)

a(u) = 0

a′(u) = γ1

rK = γ1 ⇒ γ1 = 1
β(1 + g)−σ − (1 − δ)

P 0

P
=
(

1 − ξpΠ(1−γp)(ζp−1)

1 − ξp

) 1
1−ζp

∆p = 1 − ξp

1 − ξpΠζp(1−γp)

(
P 0

P

)−ζp

MC =
(

1 − 1
ζp

)
1 − ξp(1 + g)ΛΠζp(1−γp)

1 − ξp(1 + g)ΛΠ(ζp−1)(1−γp)
P 0

P

PW

P
= MC

WO
n

Wn
=
(

1 − ξwΠγw(1−ζw)(Πw)ζw−1

1 − ξw

) 1
1−ζw

∆w = 1 − ξw

1 − ξw
(Πw)ζw

Πζwγw

(
WO
n

Wn

)−ζw

Hd = H

∆w

K

Y W
= (1 − α)(1 + g)(1 + F̃ )

urK
PW

P

Y W = Hd

(1 + F̃ )
1
α

(
K
Y W

1 + g

) 1−α
α

K = Y W K

Y W

Y = Y W

∆p

I = K

1
g + δ

1 + g

G = gyY

C = Y −G− I

JJw = Hd

1 − ξwΛ (Πw)ζw Πγw(1−ζw)−1

W = α
PW

P

Y W + F

Hd
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Jw = WO
n

Wn
WJJw

Wh

W
=

(
1 − ξw(1 + g)Λ (Πw)ζw

Πγwζw

)(
1 − 1

ζw

)
Jw

WHd

=

(
1 − ξw(1 + g)Λ (Πw)ζw

Πγwζw

)(
1 − 1

ζw

)
WO

n
Wn

1 − ξwΛ (Πw)ζw Πγw(1−ζw)−1

To examine the impact of trend inflation Π on the steady state further we consider the zero

growth case g = 0 for which wage and price inflation are equal (Πw = Π). Then we have for

price-setting:

P 0

P
=
(

1 − ξpΠ(1−γp)(ζp−1)

1 − ξp

) 1
1−ζp

∆p = 1 − ξp

1 − ξpΠζp(1−γp)

(
P 0

P

)−ζp

MC =
(

1 − 1
ζp

)
1 − ξpΛΠζp(1−γp)

1 − ξp(1 + g)ΛΠ(ζp−1)(1−γp)
P 0

P

and for wage-setting:

WO
n

Wn
=
(

1 − ξwΠ(1−γw)(ζw−1)

1 − ξw

) 1
1−ζw

∆w = 1 − ξw
1 − ξwΠ(1−γw)ζw

(
WO
n

Wn

)−ζw

Wh

W
=

(
1 − ξwΛΠ(1−γw)ζw

) (
1 − 1

ζw

)
WO

n
Wn

1 − ξwΛΠ(1−γw)(ζw−1) .

Thus for ζp > 1, both the optimized price P 0

P and price dispersion ∆p increase with the trend

inflation rate Π. However noting that the price mark-up is the inverse of the real marginal cost,

i.e. equal to = 1/MC, we can see that the price response to the re-optimized price decreases

with Π. Analogous results for ζw > 1 hold for the optimized nominal wage, wage dispersion and

the wage mark-up which is the inverse of Wh
W .
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B.3 Solution of the Deterministic Steady State

We solve for the steady state as follows:

1. We guess the value of H.

2. We solve for the steady state of the model given our guess.

3. We use the foc on hours

Wh,t =

[
Ct − χCt−1

1+g

]
Hψ
t

1 − βχ(1 + g)−σ Ut+1
Ut

Ct−χCt−1
1+g

Ct+1−χ Ct
1+g

to evaluate our guess. Note that the above equation in steady state simplifies to

Wh =

[
C − χ C

1+g

]
Hψ

1 − βχ(1 + g)−σ

which eliminates the need to compute the steady state value for utility.

The rest of the variables can be computed as

U =

[
C − χ C

1+g

]1−σ

1 − σ
exp

[
(σ − 1)H

1+ψ

1 + ψ

]

V = U

1 − β(1 + g)1−σ

X = 1 + g

λ = (1 − σ)U
C − χ C

1+g
− βχ(1 + g)−σ (1 − σ)U

C − χ C
1+g

R = 1
Λ

Rn = RΠ

Jp = YMCMCS(
1 − 1

ζp

) (
1 − ξp(1 + g)ΛΠζp(1−γp))

JJp = Jp

P 0

P

RK = rK + 1 − δ

15



CE = (1.011−σ − 1)U
1 − β(1 + g)1−σ

C Calibrated and Estimated Parameters

From our non-zero-inflation-growth steady state we impose the restrictions

Rn = Π
β(1 + g)−σ (C.46)

on β. This implies that β can be calibrated as

β = Π
Rn(1 + g)−σ (C.47)

However, in order to evaluate welfare ranking with a consistent form of the objective function,

we set β given (C.47) with Π̄ and g both estimated directly as the trend of the data with σ

imposed at the prior given by 1.5. For our US data and estimation period, this gives β = 0.9995

which is then imposed on the rest of the estimation and used for the optimized rules.

The first-order condition for capital utilisation is

rKt = a′(ut) (C.48)

which has the linear approximation

r̂Kt = γ2
γ1
ût (C.49)

Smets and Wouters write the above equation as (see equation (6) in their paper)

zt = z1r
k
t (C.50)

where z1 = 1−ψ
ψ and they estimate ψ. Consequently, z1 = γ1

γ2
.

Recall that the capital utilisation adjustment function is

a(ut) = γ1(ut − 1) + γ2
2 (ut − 1)2 (C.51)

16



which can be rewritten as

a(ut) = γ1(ut − 1) + γ2
γ1

γ1
2 (ut − 1)2

= γ1(ut − 1) + 1
z1

γ1
2 (ut − 1)2

= γ1(ut − 1) + ψ

1 − ψ

γ1
2 (ut − 1)2 (C.52)

Its derivative is

a′(ut) = γ1 + ψ

1 − ψ
γ1(ut − 1) (C.53)

The production function (equation (5) in the paper) is given by

yt = ϕp(αkst + (1 − α)lt + εat ) (C.54)

where ϕp = y∗+Φ
y∗

is one plus the share of fixed costs in production.(*) They use the prior

ϕp ∼ N (1.25, 0.25) for the parameter (may be missing from the paper altogether), which implies

that Φ
y∗ ∼ N (0.25, 0.25). Hence we need to rewrite the equilibrium condition (??) as

Y W
t =

(
AtH

d
t

)α
(utKt−1)1−α − F̃ Y W (C.57)

and define the prior on F̃ = F
Y W

Āt

.

(*)In the technical appendix the production function is given by

yt(i) = Ztkt(i)αLt(i)1−α − Φ (C.55)

which becomes

ŷt = α
y∗ + Φ

y∗
k̂t + (1 − α)y∗ + Φ

y∗
L̂t + y∗ + Φ

y∗
Ẑt (C.56)

when loglinearized.
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D Identification, MCMC Convergence in Estimation and a

Model Specification Test

This section describes and provides results for a range of identification tests, MCMC convergence

a model specification test using an estimated DSGE-VAR.

D.1 Identification

Following Iskrev and Ratto (2010), we provide the identification (locally) analysis of the our tool

model here.

Identification strength with asymptotic Information matrix (log-scale)
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Sensitivity component with asymptotic Information matrix (log-scale)
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Figure 1: Identification Strength in the tool Model

In the upper panel of the figure the bars depict the identification strength of the parameters

based in the Fisher information matrix normalized by either the parameter at the prior mean

(blue bars) or by the standard deviation at the prior mean (red bars). Intuitively, the bars

represent the normalized curvature of the log likelihood function at the prior mean in the direction

of the parameter. If the strength is 0 (for both bars) the parameter is not identified as the

likelihood function is flat in this direction. The larger the absolute value if the bars, the stronger
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the identification. Hence, it is clear that all parameters are identified in the model. However, the

feedback parameters, θy, θdy, on the real economic activities are weekly identified.

We also use dynare ? to examine the identification exercise of the model with different criteria.

For instance, Komunjer and Ng (2011) provide a difference route to the local identification of a

linear state space, they examine directly the relationship between the coefficients of the state-

space representation of the DSGE model and the parameter vector θ. In addition, the setup also

accounts for the condition of left-invertablity (or the number of structural shocks is different

from the that of the observables). However, in our setup, we always have the ”squared matrix”,

so the full-rank condition on the coefficients matrix and on the Jacobian matrix as in Ratto

(2008) is sufficient for local identification.

Qu and Tkachenko (2012) work in the frequency domain, i.e. whether the mean and spectrum

of observables is uniquely determined by the deep parameters at all frequencies? Using a frequency

domain approximation of the likelihood function and utilizing the information matrix equality,

they express the Hessian as the outer product of the Jacobian matrix of derivatives of the spectral

density with respect to the set of estimated parameters denoted θ. However, this approach has

to be implemented numerically. For each conjectured θ0 we have to compute the rank of the

spectral density matrixy. Because in a typical implementation the computation of the matrix

relies on numerical differentiation (and integration) over the subset frequency domains, there

might arise discordant results in the matrix rank. For instance, if two parameters jointly enter

the model and play a very similar role in the model after linearization (i.e. stickiness level of

price parameter and the rate of substitution jointly determine the speed of adjustment of prices

through the Calvo probability), thus they are separately unidentifiable. Qu and Tkachenko

(2012) procedure tests the identification over a subset of estimated parameters, so the model

fails to pass the test over each subset of parameters on the persistence of shocks. The usual

procedure to bypass this problem is to fix one of the subset parameters.

D.2 MCMC Convergence

The convergence property is represented in figure (2). The appended (Interval) shows the

Brooks and Gelman’s convergence diagnostics for the 80% interval. The blue line shows the 80%
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Figure 2: Multivariate convergence diagnostic

interval/quantile range based on the pooled draws from all sequences, while the red line shows

the mean interval range based on the draws of the individual sequences. The appended (m2) and

(m3) show an estimate of the same statistics for the second and third central moments, i.e. the

squared and cubed absolute deviations from the pooled and the within-sample mean, respectively.

All statistics are based on the range of the posterior likelihood function. The posterior kernel

is used to aggregate the parameters. Convergence is indicated by the two lines stabilizing and

being close to each other.

The figures from (3) to (6) indicate the prior-posterior plots. The grey line shows the prior

density, while the black line shows the density of the posterior distribution. The green horizontal

line indicates the posterior mode. If the posterior looks like the prior, either your prior was a

very accurate reflection of the information in the data or the parameter under consideration is

only weakly identified and the data does not provide much information to update the prior.
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Figure 3: Priors and Posteriors for 100000 MCMC draws
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Figure 4: Priors and Posteriors for 100000 MCMC draws
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Figure 6: Priors and Posteriors for 100000 MCMC draws
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D.3 DSGE-VAR

Following An and Schorfheide (2007), we also examine the estimated DSGE model’s Impulse-

Response functions (IRFs) to shocks with an estimated DSGE-VAR. The marginal posterior

density is from a sample of λT observations generated from the DSGE model, T generated

by the VAR and (λ + 1)T generated by the DSGE-VAR where T is the sample size. λ is a

hyper-parameter that scales the prior covariance matrix. The prior is diffuse for small values of

λ and shifts its mass closer to the DSGE model restrictions as λ → ∞.

Overall, the sign and magnitude of the DSGE and DSGE-VAR impulse responses are quite

similar. Especially, regarding the IRFs to technology shock (figure (7)), the IRFs are almost

identical. However, along some dimensions, such as the impact of preference and investment shocks

(figures (12) and (13)) on policy rate, there is substantial uncertainty about how it propagates

through the system, but still shows a almost-close initial reaction to shocks. Nevertheless, the

model dynamics can be broadly described using the estimated impulse responses.
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Figure 7: We compare the IRFs to technology shock, ϵA of the DSGE_VAR with the estimated

DSGE. The Dashed lines are the first, fifth and ninth posterior deciles of

the DSGE-VAR’s IRFs, the bold dark curve is theposterior mean of the

DSGE’s IRfs and the shaded surface covers the space between the first

and ninth posterior deciles of the DSGE’s IRFs.
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Figure 8: We compare the IRFs to government spending shock, ϵG of the DSGE_VAR with

the estimated DSGE.
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Figure 9: We compare the IRFs to Price Markup shock, ϵMCS of the DSGE_VAR with the

estimated DSGE.
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Figure 10: We compare the IRFs to Wage Markup shock, ϵMRSS of the DSGE_VAR with the

estimated DSGE.
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Figure 11: We compare the IRFs to monetary policy shock, ϵMPS of the DSGE_VAR with the

estimated DSGE.
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Figure 12: We compare the IRFs to preference shock, ϵRPS of the DSGE_VAR with the

estimated DSGE.
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Figure 13: We compare the IRFs to investment shock, ϵIS of the DSGE_VAR with the estimated

DSGE.
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Table 1: Estimated results (posterior mean with a number of draws equal to 100000) of the

pure DSGE and DSGE-VAR

Parameters Notations Prior DSGE-VAR DSGE
pdf Mean Std Post. Mean Sdt. Post. Mean Sdt.

Technology shock ϵA IG 0.001 0.02 0.005 0.0006 0.0083 0.0005
Government spending shock ϵG IG 0.001 0.02 0.0238 0.0023 0.0452 0.0021
Markup shock ϵMCS IG 0.001 0.02 0.0105 0.0007 0.0114 0.0007
Wage Markup shock ϵMRSS IG 0.001 0.02 0.0169 0.0032 0.0308 0.0040
Monetary shock ϵMP S IG 0.001 0.02 0.0019 0.0003 0.0033 0.0002
Preference shock ϵRP S IG 0.001 0.02 0.0017 0.0001 0.0028 0.0003
Investment shock ϵIS IG 0.001 0.02 0.0093 0.0017 0.0168 0.0018
AR1 technology shock ρA B 0.50 0.20 0.8962 0.0274 0.9730 0.0039
AR1 gov. spending shock ρG B 0.50 0.20 0.8713 0.0343 0.9427 0.0080
AR1 mark-up shock ρMCS B 0.50 0.20 0.5076 0.1184 0.9469 0.0127
AR1 Wage Markup shock ρMRSS B 0.50 0.20 0.9657 0.0096 0.9388 0.0109
AR1 Monetary shock ρMP S B 0.50 0.20 0.2208 0.0609 0.2944 0.0478
AR1 Preference shock ρRP S B 0.50 0.20 0.9022 0.0111 0.8769 0.0329
AR1 Investment shock ρIS B 0.50 0.20 0.7811 0.0040 0.9651 0.0086
Investment adj cost ϕX N 2 0.75 0.5306 0.0406 0.2531 0.0449
Inverse intertemporal EOS σ N 1.5 0.375 0.9207 0.1213 1.2945 0.0991
Internal Habit χ B 0.5 0.1 0.3278 0.0537 0.2101 0.0350
Weight on Leisure in utility ψ N 2 0.75 1.3936 0.6148 2.1395 0.4105
Calvo’s price ξp B 0.50 0.10 0.5347 0.0584 0.4425 0.0359
Calvo’s wage ξw B 0.50 0.10 0.3609 0.0589 0.4839 0.0428
Price indexation γp B 0.50 0.10 0.4302 0.1058 0.4055 0.0895
Wage indexation γw B 0.50 0.10 0.5258 0.1055 0.6297 0.0882
Capital utilisation γ2 B 0.50 0.15 0.8306 0.0586 0.8537 0.0410
Profit F N 0.25 0.250 0.4992 0.1010 0.3698 0.0564
Feedback inflation θπ N 2 0.25 2.0304 0.1649 2.5073 0.1421
Lagged interest rate ρr B 0.70 0.10 0.6962 0.0553 0.7323 0.0275
Feedback output gap θy N 0.125 0.05 0.0204 0.0180 -0.0036 0.0090
Feedback output growth θdy N 0.125 0.05 0.1507 0.0451 0.2039 0.0427
DSGE prior weight λ Unif 0.950 0.5485 0.3264 0.0413
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We next compare the ZLB mandate results between the estimated DSGE and estimated

DSGE-VAR. Overall, the OSR of the DSGE-VAR also converges to a price-level rule. However,

the optimal inflation target of the DSGE is significantly smaller than that of the DSGE-VAR.

Table 2: Comparing the welfare between the estimated DSGE and estimated DSGE-

VAR. The CEV of the DSGE-VAR is calculated from the associated welfare of the

Ramsey policy equaling to 71555.55, and Steady State Consumption Equivalent (CE)

equaling to 76.76.

(C) OSR with ZLB Mandate - PURE DSGE
Regimes ρ∗

r α∗
π α∗

y α∗
dy Π∗ Act wel CEV (%) p_zlb w∗

r MPS
(C1) OSR with ZLB (p̄zlb = 0.01) 1.0 1.1 0.01 0.13 1.0094 -2639.69 -0.061 0.01 16 0.0
(C2) OSR with ZLB (p̄zlb = 0.05) 1.0 1.73 0.02 0.26 1.006 -2639.48 -0.0334 0.05 8 0.0
(C3) OSR with ZLB (p̄zlb = 0.096) 1.0 2.64 0.03 0.44 1.004 -2639.41 -0.024 0.096 4 0.0

(C) OSR with ZLB Mandate - DSGE-VAR
Regimes ρ∗

r α∗
π α∗

y α∗
dy Π∗ Act wel CEV (%) p_zlb w∗

r MPS
(C1) OSR with ZLB (p̄zlb = 0.01) 1.0 0.754 0.00 0.014 1.005 71554.1 -0.0189 0.01 12 0.0
(C2) OSR with ZLB (p̄zlb = 0.05) 1.0 1.337 0.003 0.066 1.003 71554.8 -0.0098 0.05 4 0.0
(C3) OSR with ZLB (p̄zlb = 0.096) 1.0 1.733 0.01 0.104 1.0019 71555.0 -0.0072 0.096 2 0.0
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E The Linear Quadratic Approximation Approach

This Section provides details of the LQ approach as used by Debortoli et al. (2019)

and discussed in the Introduction. From Levine et al. (2008a) consider the following

general deterministic optimization problem

max
∞∑
t=0

βtU(Xt,Wt) s.t. Xt = f(Xt−1,Wt) (E.1)

where Xt is vector of state variables and Wt a vector of instruments.(**) There are given initial

and the usual tranversality conditions. For our purposes, we consider this as including models

with forward-looking expectations, so that the optimal solution to the latter setup is the pre-

commitment solution. Suppose the solution converges to a steady state X,W as t → ∞ for

the states Xt and the policies Wt. Define xt = Xt − X and wt = Wt − W as representing

the first-order approximation to absolute deviations of states and policies from their steady

states.(***)

The Lagrangian for the general problem is defined as,

∞∑
t=0

βt[U(Xt,Wt) − λ′
t(Xt − f(Xt−1,Wt))] (E.2)

where λt is the Lagrange multiplier so that a necessary condition for the solution to (E.1) is that

the Lagrangian is stationary at all {Xs}, {Ws} i.e.

UW + λ′
tfW = 0 UX − λ′

t + βλ′
tfX = 0 (E.3)

(**)An alternative representation of the problem is U(Xt,Wt) and Et[Xt+1] = f(Xt,Wt) where Xt includes

forward-looking non-predetermined variables and Et[Xt+1] = Xt+1 for the deterministic problem where

perfect foresight applies. Whichever one uses, it is easy to switch from one to the other by a simple

re-definition. As we demonstrate in Levine et al. (2008b), although the inclusion of forward-looking

variables significantly alters the nature of the optimization problem, these changes only affect the boundary

conditions and the second-order conditions, but not the steady state of the optimum which is all we

require for LQ approximation.
(***)Alternatively xt = (Xt −X)/X and wt = (Wt −W )/W , depending on the nature of the economic variable.

Then the Theorem follows in a similar way with an appropriate adjustment to the Jacobian Matrix.
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Assume a steady state λ for the Lagrange multipliers exists as well. Now define the Hamiltonian

Ht = U(Xt,Wt) − λ′
tf(Xt−1,Wt). The following is the discrete time version of Magill (1977):

Theorem: If a steady state solution (X,W,M) to the optimization problem (E.1) exists,

then any perturbation (xt, wt) about this steady state can be expressed as the solution to

max 1
2

∞∑
t=0

βt
[
x′
t w′

t

]  HXX HXW

HWX HWW


 xt

wt

 s.t. xt = fXxt + fWwt (E.4)

where HXX , etc denote second-order derivatives evaluated at (X,W ). This can be directly

extended to the case incorporating disturbances.

Thus our general procedure is as follows:

1. Set out the deterministic non-linear problem for the Ramsey Problem, to maximize the

representative agents’ utility subject to non-linear dynamic constraints.

2. Write down the Lagrangian for the problem.

3. Calculate the first order conditions. We do not require the initial conditions for an optimum

since we ultimately only need the steady-state of the Ramsey problem.

4. Calculate the steady state of the first-order conditions. The terminal condition implied by

this procedure is such that the system converges to this steady state.

5. Calculate a second-order Taylor series approximation, about the steady state, of the

Hamiltonian associated with the Lagrangian in 2. Note this involves only the steady

state M of the multipliers.

6. Calculate a first-order Taylor series approximation, about the steady state, of the first-order

conditions and the original constraints.

7. Use 4. to eliminate the steady-state Lagrangian multipliers in 5. By appropriate elimination

both the Hamiltonian and the constraints can be expressed in minimal form. This then

gives us the accurate LQ approximation of the original non-linear optimization problem in

the form of a minimal linear state-space representation of the constraints and a quadratic

form of the utility expressed in terms of the states.
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The Lagrangian for the NK model is

∞∑
t=0

βt
[
U(Ct, Ht) + λ1,t

(
Yt − (AtHt)α

∆t

)
+ λ2,t

(
UH,t
UC,t

+Wt

)

+ λ3,t
(
Wt − αMCtA

α
t H

α−1
t

)
+ λ4,t

(
Λt,t+1 − β

UC,t+1
UC,t

)
+ λ5,t

(
JJt − ξEt[Λt,t+1Πζ−1

t+1JJt+1] − Yt
)

+ λ6,t

(
Jt − ξEt[Λt,t+1Πζ

t+1Jt+1] −
(

1
1 − 1

ζ

)
YtMCtMSt

)

+ λ7,t

(
1 − ξΠζ−1

t + (1 − ξ)
(
Jt
JJt

)1−ζ
)

+ λ8,t

(
MCt − Wt

αAαt H
α−1
t

)

+ λ9,t

(
∆t − ξΠζ

t∆t−1 − (1 − ξ)
(
Jt
JJt

)−ζ
)

+ λ10,t(Yt − Ct − Ct)
]

From Levine et al. (2008a) with no habit (hC = 0) and Φ ≡ 1 − 1
ζ the inefficiency wedge in

the model here with wage flexibility (defined as α in Levine et al. (2008a)) we finally arrive at

the correct quadratic approximation to the nonlinear Ramsey problem as the maximization of

E0
[∑∞

t=0 β
tUt
]

with respect to {πt}, subject to

πt = βπt+1 + (1 − ξ)(1 − βξ)
ξ

((ϕ+ σ)yt − (1 + ϕ)at) (E.5)

where

Ut = − 1
2Φ

Y 1+ϕ

A1+ϕ

[
σy2

t + ϕ(Φ + λ6(1 + ϕ))y2
t − 2(1 + ϕ)(Φ + λ6(1 + ϕ))ytat + 2λ6σy

2
t

− λ6σ(σ + 1)y2
t + ξζ

(1 − ξ)(1 − βξ)(Φ + (1 + ϕ)λ6)π2
t

]
(E.6)

where λ6 = 1−Φ
σ+ϕ . Then in the efficient case we have Φ = 1 and λ6 = 0 in which case the term in

big brackets in (E.6) reduces to

−1
2

(
(σ + ϕ)

(
yt − 1 + ϕ

σ + ϕ
at

)2
+ ξζ

(1 − βξ)(1 − ξ)π
2
t

)
(E.7)
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plus terms in ât which are independent of policy. Since 1+ϕ
σ+ϕa is the flexible-price level of output

this is a quadratic loss function in terms of inflation and the output gap. In fact it is the

welfare-based loss function of the canonical NK model as derived by Woodford (2003).

F Quadratic Loss Function Mandates

Tables 3-6 set out the numerical results for our 4 quadratic mandates. The optimal mandate

is described by the choice of weights (w∗
r , w

∗
dy) for mandate I, w∗

r for mandate II, (w∗
r , w

∗
dw) for

mandate III and (w∗
r , w

∗
dh) for mandate IV. In the tables we report the welfare-optimal mandate

for the cases p̄zlb = 0.01, 0.05 and 0.096 by choosing appropriate grids for the pair of weights

then we comparing the pair of weights that produce lowest welfare cost for each given p̄zlb. Table

(4) is then the mandate equilibrium given the grids on the weights.

Table 3: Results for Mandate I

OSR with Quadratic Mandate (w∗
dy = 0.2)

Regimes ρ∗
r α∗

π α∗
dy Π∗ Ω CEV (%) p̄zlb w∗

r

OSR with ZLB (p̄zlb = 0.01) 1.0 0.78 0.08 1.0087 -2639.71 -0.0634 0.01 1

OSR with ZLB (p̄zlb = 0.05) 1.0 0.78 0.08 1.0046 -2639.53 -0.0399 0.05 1

OSR with ZLB (p̄zlb = 0.096) 1.0 0.78 0.08 1.0026 -2639.50 -0.0360 0.096 1

OSR with Quadratic Mandate (w∗
dy = 0.5)

Regimes ρ∗
r α∗

π α∗
dy Π∗ Ω CEV (%) p̄zlb w∗

r

OSR with ZLB (p̄zlb = 0.01) 1.0 0.95 0.23 1.0092 -2639.72 -0.0647 0.01 1

OSR with ZLB (p̄zlb = 0.05) 1.0 0.95 0.23 1.0050 -2639.53 -0.0399 0.05 1

OSR with ZLB (p̄zlb = 0.096) 1.0 0.95 0.23 1.0029 -2639.47 -0.0321 0.096 1

OSR with Quadratic Mandate (wdy = 1.0)

Regimes ρ∗
r α∗

π α∗
dy Π∗ Ω CEV (%) p̄zlb w∗

r

OSR with ZLB (p̄zlb = 0.01) 1.0 1.23 0.5 1.01 -2639.80 -0.0752 0.01 1

OSR with ZLB (p̄zlb = 0.05) 1.0 1.23 0.5 1.0056 -2639.58 -0.0465 0.05 1

OSR with ZLB (p̄zlb = 0.096) 1.0 1.22 0.5 1.0033 -2639.51 -0.0373 0.096 1
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Table 4: Results for Mandate II

OSR with Quadratic Mandate

Regimes ρ∗
r α∗

π α∗
dy Π∗ Ω CEV (%) p̄zlb w∗

r

OSR with ZLB (p̄zlb = 0.01) 1.0 1.02 0.0 1.0093 -2639.73 -0.0660 0.01 0.6

OSR with ZLB (p̄zlb = 0.05) 1.0 1.36 0.0 1.0055 -2639.53 -0.0399 0.05 0.4

OSR with ZLB (p̄zlb = 0.096) 1.0 1.36 0.0 1.0033 -2639.46 -0.0308 0.096 0.4

Table 5: Results for Mandate III

OSR with Quadratic Mandate (wdw = 0.1)

Regimes ρ∗
r α∗

π α∗
dw Π∗ Ω CEV (%) p̄zlb w∗

r

OSR with ZLB (p̄zlb = 0.01) 1.0 1.15 0.03 1.0095 -2639.71 -0.0634 0.01 0.5

OSR with ZLB (p̄zlb = 0.05) 1.0 1.15 0.03 1.0052 -2639.51 -0.0373 0.05 0.5

OSR with ZLB (p̄zlb = 0.096) 1.0 1.15 0.03 1.0031 -2639.45 -0.0295 0.096 0.5

OSR with Quadratic Mandate (wdw = 0.5)

Regimes ρ∗
r α∗

π α∗
dw Π∗ Ω CEV (%) p̄zlb w∗

r

OSR with ZLB (p̄zlb = 0.01) 1.0 1.24 0.24 1.0096 -2639.61 -0.0504 0.01 0.5

OSR with ZLB (p̄zlb = 0.05) 1.0 4.56 1.00 1.007 -2639.41 -0.0243 0.05 0.0

OSR with ZLB (p̄zlb = 0.096) 1.0 4.57 1.00 1.0045 -2639.33 -0.0138 0.096 0.0

OSR with Quadratic Mandate (w∗
dw = 1)

Regimes ρ∗
r α∗

π α∗
dw Π∗ Ω CEV (%) p̄zlb w∗

r

OSR with ZLB (p̄zlb = 0.01) 1.0 1.37 0.50 1.0098 -2639.58 -0.0465 0.01 0.5

OSR with ZLB (p̄zlb = 0.05) 1.0 2.73 1.00 1.0063 -2639.36 -0.0178 0.05 0.0

OSR with ZLB (p̄zlb = 0.096) 1.0 2.74 1.00 1.0039 -2639.28 -0.0073 0.096 0.0

OSR with Quadratic Mandate (w∗
dw = 1.5)

Regimes ρ∗
r α∗

π α∗
dw Π∗ Ω CEV (%) p̄zlb w∗

r

OSR with ZLB (p̄zlb = 0.01) 1.0 0.90 0.43 1.0092 -2639.60 -0.0491 0.01 1

OSR with ZLB (p̄zlb = 0.05) 1.0 1.47 0.74 1.0056 -2639.38 -0.0204 0.05 0.5

OSR with ZLB (p̄zlb = 0.096) 1.0 1.46 0.73 1.0034 -2639.31 -0.0112 0.096 0.5
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Table 6: Results for Mandate IV

OSR with Quadratic Mandate (wdh = 0.1)

Regimes ρ∗
r α∗

π α∗
dh Π∗ Ω CEV (%) p̄zlb w∗

r

OSR with ZLB (p̄zlb = 0.01) 1.0 1.27 0.05 1.0098 -2639.73 -0.0660 0.01 0.5

OSR with ZLB (p̄zlb = 0.05) 1.0 1.26 0.05 1.0054 -2639.52 -0.0386 0.05 0.5

OSR with ZLB (p̄zlb = 0.096) 1.0 1.26 0.05 1.0032 -2639.46 -0.0308 0.096 0.5

OSR with Quadratic Mandate (w∗
dh = 0.2)

Regimes ρ∗
r α∗

π α∗
dh Π∗ Ω CEV (%) p̄zlb w∗

r

OSR with ZLB (p̄zlb = 0.01) 1.0 0.75 0.15 1.0090 -2639.74 -0.0674 0.01 1.5

OSR with ZLB (p̄zlb = 0.05) 1.0 1.05 0.24 1.0056 -2639.53 -0.0399 0.05 1

OSR with ZLB (p̄zlb = 0.096) 1.0 1.88 0.49 1.0041 -2639.45 -0.0295 0.096 0.5

OSR with Quadratic Mandate (wdh = 0.5)

Regimes ρ∗
r α∗

π α∗
dh Π∗ Ω CEV (%) p̄zlb w∗

r

OSR with ZLB (p̄zlb = 0.01) 1.0 0.78 0.26 1.0095 -2639.79 -0.0739 0.01 2

OSR with ZLB (p̄zlb = 0.05) 1.0 1.0 0.36 1.0057 -2639.57 -0.0452 0.05 1.5

OSR with ZLB (p̄zlb = 0.096) 1.0 1.42 0.55 1.0040 -2639.49 -0.0347 0.096 1
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