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1 Borrowing Constraints

From entrepreneurs first order conditions we have

1

c̃t
= Et

(
γ

(
1

πt+1c̃t+1

zt
zt+1

)
+ λ̃b,t

)
Rt.

Therefore, in the steady state

π̄

R
=

γ

gz
+ λbcπ̄ (1*)

holds. From unconstrained households’s first order conditions with respect to borrowing we

get the following.

λ̃u,t − Eβuλ̃u,t+1
zt
zt+1

Rt

πt+1

= 0

which translates into the following equation in the steady state

π̄

R
=
βu
gz
. (2*)

Combining Equations 1* and 2* yields

βu
gz

=
γ

gz
+ λbcπ̄.

Given a positive inflation and positive growth (or a negative growth with deflation), for the

borrowing constraint to bind (λb > 0), the necessary and sufficient condition is

βu > γ.

Next, from constrained borrowers first order condition with respect to borrowing we have

µ̃t − Eβcµ̃t+1
zt
zt+1

Rt

πt+1

− λ̃c,tRt = 0,
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where µ is the budget constraint Lagrangian multiplier and λc,t is the borrowing constraint

Lagrangian multiplier.

In the steady state:

µ

(
1− βc

gz

R

π̄

)
= λcR

Given the Walrasian budget constraint, positive growth and inflation, for the borrowing con-

straint of constrained households to bind we need 1 > βc
gz
R
π̄

to hold. In other words, βu > βc

must be satisfied.

2 Stationary Equilibrium

All the variables are transformed by dividing the corresponding variable to zt. where zt =

A
1

1−µ
t x

µ
1−µ
t For example, Ỹt ≡ Yt

zt
, c̃t ≡ ct

zt
, b̃t ≡ bt

zt
, w̃t ≡ wt

zt
, q̃t ≡ qt

zt
, Mu,t ≡ Mu,t

zt
, etc. Investment

and capital stock follow Ĩt ≡ It
χtzt

, K̃t ≡ Kt
χtzt

gz,t =
zt
zt−1

→ gz =
ā+ µχ̄

1− µ
and gx,t =

χt
χt−1

→ gχ = χ̄

where gz denotes the steady state value of gz,t and gk ≡ gzgχ is the steady state rate

of capital stock growth. On the balanced growth path, investment grows at the same rate

as capital, therefore we have gI = gk. Additionally, we have λ̃u,t ≡ λu,tzt, λ̃c,t ≡ λc,tzt, µ̃t ≡

µtzt, λ̃b,t ≡ λb,tzt, and ũt ≡ utχt and λ̃k,t ≡ λk,tχtzt

Using the transformations indicated above, the full model becomes:

Ỹt =

(
Atχt

At−1χt−1

)− µ
1−µ

K̃µ
t−1h

ν
t−1L

α(1−µ−ν)
u,t L

(1−α)(1−µ−ν)
c,t (1*)

Ỹt
Xt

+b̃t = c̃t+q̃t (ht − ht−1)+
Rt−1

πt
b̃t−1

zt−1

zt
+w̃u,tLu,t+w̃c,tLc,t+Ĩt

ψH q̃t
2

(
ht − ht−1

ht−1

)2

ht−1 (2*)
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Rtb̃t = mtEt

[
q̃t+1

zt+1

zt
ht + ũt+1K̃t

xt
xt+1

]
πt+1 (3*)

1− ψK
2

(
Ĩt

Ĩt−1

χtzt
χt−1zt−1

− gI

)2
 Ĩt = K̃t − (1− δ)K̃t−1

χt−1zt−1

χtzt
(4*)

1

c̃t − ζc̃t−1
zt−1

zt

− Et
ζγ

c̃t+1
zt+1

zt
− ζc̃t

= λ̃t (5*)

λ̃t = Et

(
γ

(
λ̃t+1

πt+1

zt
zt+1

)
+ λ̃b,t

)
Rt (6*)

λ̃t = λ̃k,t

1− ψK
2

(
Ĩt

Ĩt−1

χtzt
χt−1zt−1

− gI

)2

− ψK

(
Ĩt

Ĩt−1

χtzt
χt−1zt−1

− gI

)
Ĩt

Ĩt−1

χtzt
χt−1zt−1


+Etγλ̃k,t+1

ztχt
zt+1χt+1

ψK

(
Ĩt+1

Ĩt

χt+1zt+1

χtzt
− gI

)(
Ĩt+1

Ĩt

χt+1zt+1

χtzt

)2
(7*)

Et

(
λ̃t+1γ

µỸt+1

Xt+1K̃t

+ λ̃b,tmtũt+1
zt+1

zt

χt
χt+1

πt+1 −
zt+1

zt
λ̃k,t + λ̃k,t+1

χt
χt+1

γ(1− δ)

)
= 0 (8*)

q̃tλ̃t

(
1 + ψH

(
ht − ht−1

ht−1

))
= Et

(
γλ̃t+1

(
νỸt+1

Xt+1ht
+ q̃t+1 +

1

2
ψH q̃t+1

(
h2
t+1 − h2

t

h2
t

)))

+Et

(
λ̃b,tmtq̃t+1

zt+1

zt
πt+1

) (9*)

α(1− µ− ν)Ỹt
XtLu,t

= w̃u,t (10*)

(1− α) (1− µ− ν)Ỹt
XtLc,t

= w̃c,t (11*)
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c̃u,t + q̃t (hu,t − hu,t−1) +
Rt−1

πt
b̃u,t−1

zt−1

zt
+
ψH q̃t

2

(
hu,t − hu,t−1

hu,t−1

)2

hu,t−1

= b̃u,t + w̃u,tLu,t + F̃t −

(
M̃u,t − M̃u,t−1

zt−1

zt

Pu,t

)
+ T̃u,t

(12*)

%t
c̃u,t − ζc̃u,t−1

zt−1

zt

− Et
ζβu%t+1

c̃u,t+1
zt+1

zt
− ζc̃u,t

= λ̃u,t (13*)

λ̃u,t − Etβuλ̃u,t+1
zt
zt+1

Rt

πt+1

= 0 (14*)

λ̃u,tq̃t

(
1 + ψH,u

hu,t − hu,t−1

hu,t−1

)
= %t

ju
hu,t

+ Etβuλ̃u,t+1q̃t+1

 ψ2
H,u(

h2u,t+1−h2u,t
h2u,t

)
+ 1

 (15*)

λ̃u,tw̃u,t = %tϕt (Lu,t)
η′−1 (16*)

c̃c,t + q̃t (hc,t − hc,t−1) +
Rt−1

πt
b̃c,t−1

zt−1

zt
+
ψH q̃t

2

(
ht − ht−1

ht−1

)2

ht−1

= b̃c,t + w̃c,tLc,t −

(
M̃c,t − M̃c,t−1

zt−1

zt

Pt

)
+ T̃c,t

(17*)

Rtb̃c,t ≤ Et

{
mc,tq̃t+1

zt+1

zt
hc,tπt+1

}
(18*)

%t
c̃c,t − ζc̃c,t−1

zt−1

zt

− Et
ζβc%t+1

c̃c,t+1
zt+1

zt
− ζc̃c,t

= µ̃t (19*)

µ̃t − Etβcµ̃t+1
zt
zt+1

Rt

πt+1

− λ̃c,tRt = 0 (20*)
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µ̃tq̃t

(
1 + ψH,c

(
hc,t − hc,t−1

hc,t−1

))
= %t

jc
hc,t

+ Et

{
βcq̃t+1µ̃t+1

(
ψH,c

2

(
h2
c,t+1 − h2

c,t

h2
c,t

)
+ 1

)
+ λ̃c,tmc,tq̃t+1

zt+1

zt
πt+1

} (21*)

w̃c,tµ̃t = %tϕt (Lc,t)
ηc−1 (22*)

F̃t =
(Xt − 1) Ỹt

Xt

(23*)

1 = ht + hu,t + hc,t (24*)

Ỹt = c̃t + c̃u,t + c̃c,t + Ĩt +
ψH q̃t

2

(
ht − ht−1

ht−1

)2

ht−1 (25*)

0 = b̃t + b̃u,t + b̃c,t (26*)

ũt =
λ̃k,t

λ̃t
(27*)

λ̃t =
1

c̃t
(28*)

g1
t = λ̃u,t (π∗t )

(1−ε) Ỹt + βuθEt

(
π∗t

π∗t+1πt+1

)1−ε

g1
t+1 (29*)

g2
t = λ̃u,t (π∗t )

−ε Ỹt
Xt

+ βuθEt

(
π∗t

π∗t+1πt+1

)−ε
g2
t+1 (30*)
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3 Steady State

π = π̄ (1*)

R =
1

βu
π̄gz (2*)

X =
ε

ε− 1
(3*)

F̃

Ỹ
=

(
1− 1

X

)
(4*)

K̃

Ỹ
= γ

µ

X

1

gz − (β′ − γ)m 1
gχ
− 1

gχ
γ(1− δ)

≡ ζ1 (5*)

Ĩ

Ỹ
=
K̃

Ỹ

(
1− (1− δ) 1

gzgχ

)
(6*)

c̃+ c̃u + c̃c

Ỹ
= 1− Ĩ

Ỹ
(7*)

q̃h

Ỹ
=

1

X

γν

1− (βu − γ)m− γ
≡ ζ2 (8*)

q̃hu
Ỹ
c̃u
Ỹ

=
ju (gz − ζ)

(gz − ζβu) (1− βu)
≡ ζ3 (9*)

q̃hc
Ỹ
c̃c
Ỹ

=
jc (gz − ζ)

(gz − ζβc) (1− βc −mc (βu − βc))
≡ ζ4 (10*)

b̃

Ỹ
= βum

(
q̃h

Ỹ
+
K̃

Ỹ

1

gzgx

)
(11*)
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w̃L̃u + F

Ỹ
=
α(1− µ− ν) +X − 1

X
≡ su (12*)

w̃cL̃c

Ỹ
=

(1− α) (1− µ− ν)

X
≡ sc (13*)

c̃

Ỹ
=
µ+ ν

X
− (1− βu)mζ2 −

(
(m (1− βu)− (1− δ)) 1

gzgχ
+ 1

)
ζ1 ≡ ζ5 (14*)

b̃c
Ỹ
c̃c
Ỹ

= βumcζ4 (15*)

c̃c

Ỹ
=

sc
1 + (1− βu)mcζ4

≡ ζ6 (16*)

c̃u

Ỹ
= su + (1− βu)

(
m

(
ζ2 + ζ1

1

gzgχ

)
+mcζ4ζ6

)
≡ ζ7 (17*)

h =
ζ2

ζ3ζ7 + ζ4ζ6 + ζ2

(18*)

hu =
ζ3ζ7

ζ3ζ7 + ζ4ζ6 + ζ2

(19*)

hc =
ζ4ζ6

ζ3ζ7 + ζ4ζ6 + ζ2

(20*)

Lu =

(
α(1− µ− ν) (gz − ζβu)

X̃ (gz − ζ) c̃u
Ỹ

) 1
ηu

(21*)

Lc =

(
(1− α) (1− µ− ν)

X̃

gz − ζβc
(gz − ζ) c̃c

Ỹ

) 1
ηc

(22*)
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Ỹ =

(
(āχ̄)−

µ
1−µ

(
K̃

Ỹ

)µ

hνLα(1−µ−ν)
u L(1−α)(1−µ−ν)

c

) 1
1−µ

(23*)

4 Estimation Procedure

The estimation procedure follows Fernández-Villaverde et al. (2015), who show that models

with stochastic volatility can be estimated without measurement error. To do this, we first

define the structural shocks are as

Zt = (log χ̃t, log jt, logmt, log Ãt, logω, t, log %t, logϕt)
′.

The structural shocks are assumed to follow the process below.

Zit+1 = ρiZit + Λσiσit+1εit+1 (1)

for all i ∈ 1, ...,m where σit+1 denotes the stochastic volatility shock and Λ represents the

perturbation parameter. The stochastic volatility shocks evolve as

log σit+1 = ρσi log σit + Λ
(
1− ρ2

σi

) 1
2 ηiuit+1. (2)

Next, we put the approximated model into a state space representation. The endogenous state

vector evolves as

St+1 = h (St,Zt−1,Σt−1, Et,Ut,Λ; γ) (3)

while two policy functions evolve according to the following processes

Yt = g (St,Zt−1,Σt−1, Et,Ut,Λ; γ) (4)

Yt+1 = g (St+1,Zt,Σt,ΛEt+1,ΛUt+1,Λ; γ) . (5)
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The functions h and g map Rn+4m into Rn and Rk. The vector of volatility shocks is defined as

Σt = (σ̂X,t, σ̂J,t, σ̂m,t, σ̂A,t, σ̂ω,t, σ̂%,t, σ̂ϕ,t)
′

where σ̂x,t = σx,t/σx. The innovations are divided between an m × 1 vector of innovation to

structural shocks, Et and an (m) × 1 vector of innovations to volatility shocks, Ut. For this

model, the vector of innovations are defined as

Et = (εXt, εJt, εmt, εAt, εωt, ε%t, εϕt)
′

and

Ut = (uXt, uJt, umt, uAt, uωt, u%t, uϕt)
′ .

As in Fernández-Villaverde et al. (2015), equations 1 to 3 are stacked into the following

transition equation

St+1 = h̃(St,Λ; γ) + ΞWt+1 (6)

where St =
(
S ′t,Z ′t−1,Σ

′
t, E ′t−1,U ′t−1

)′
and h̃ maps Rn+4m−2p+1 into Rn+4m−2p. The vectorWt+1 =(

W ′1t+1,W ′2t+1

)′
is a (2m − p) × 1 vector of random variables, where W1t+1 and W2t+1 are,

respectively, m× 1 and (m− p)× 1 vectors with N(0, I) distributions. The random variables

W1 align with the innovations to the shocks and the random variables W2 align with the

innovations to the stochastic volatility shocks. Ξ is an (n+ 4m− 2p)× (2m− p) matrix, where

the top n+2m−p rows equal to zero and the bottom of the matrix equal to a (2m−p)×(2m−p)

identity matrix. The policy function can also be rewritten as

Yt = g (St,Λ; γ) . (7)

Equations 6 and 7 are approximated around the steady-state using the perturbation method

to find a second-order approximation. The approximate solution then is used to calculate the

likelihood of YT = (Y1, ...,YT ) , where Yt is the data counterpart to the observable Yt in the

9



model. The likelihood can be written as

T∏
t=1

p
(
Yt = Yt|Yt−1; γ

)
(8)

where

p
(
Yt = Yt|Yt−1; γ

)
=

∫ ∫ ∫ ∫
p (Yt = Yt|St,Zt−1,Σt−1, Et; γ)

p
(
St,Zt−1,Σt−1, Et|Yt−1; γ

)
dStdZt−1dΣt−1dEt (9)

for all t ∈ {2, ..., T} and

p
(
Y1 = Y1|Yt−1; γ

)
=

∫ ∫ ∫ ∫
p (Y1 = Y1|S1,Z0,Σ0, E1; γ)

p (S1,Z0,Σ0, E1|γ) dS1dZ0dΣ0dE1. (10)

Since there is not an analytical solution to the likelihood, a particle filter is used in order to

evaluate the likelihood.

Fernández-Villaverde et al. (2015) show that the difference between the observed variables

and the approximated observation equation can be written as

At

(
Yt, s

i
t, z

i
t−1, σ

i
t−1, ε

i
t

)
=

Yt − Y −


Ψ̃1
Y 1

˜̂Sit
...

Ψ̃1
Y k

˜̂Sit

+
1

2


˜̂Si′t Ψ̃2,1

Y,1
˜̂Sit

...

˜̂Si′t Ψ̃2,1
Y,k

˜̂Sit

+
1

2


ΨΛ
Y,1
...

ΨΛ
Y,k

+


εi
′
t Ψ̃2,2
Y,1

...

εi
′
t Ψ̃2,2
Y,k

σit−1

where S̃it =
(
si
′
t , z

i′
t−1, σ

i′
t−1, ε

i′
t

)′
represents the simulated states without the stochastic volatility

components and
˜̂Sit represents these states in deviation from the mean form. Also, Ψ̃1

Y j repre-

sents the first-order components of the approximation to the observation equation that relates

to
˜̂Sit, while Ψ̃2,1

Y,j represents the second order components relating to
˜̂Sit , ΨΛ

Y,j represents the

10



linear terms of the approximation, and Ψ̃2,2
Y,j represents the second order components related to

the innovations to the shocks and stochastic volatility shocks for j = 1, ..., k. It is important to

also define

B (εt) =


εi
′
t Ψ̃2,2
Y,1

...

εi
′
t Ψ̃2,2
Y,k

 . (11)

These equations are used to calculate the measurement density as

p
(
Yt = Yt|sit, zit−1, σ

i
t−1; γ

)
=

∣∣∣det
(
B−1

(
εi
′

t ; γ
))∣∣∣ p((Ut) = B−1

(
εi
′

t ; γ
)
At

(
sit, z

i
t−1, σ

i
t−1, ε

i′

t ; γ
))

. (12)

This can be evaluated since the distribution of Ut is known. The measurement density can be

applied to the particle filter in order to approximate the likelihood.

4.1 Particle Filter

The particle filter follows Fernández-Villaverde et al. (2015), but adds a mutation resample-

move step and adaption for some periods. Since the model does not feature measurement error,

? show that sample impoverishment, where there is little diversity in the particle swarm after

resampling, is a concern. A resample-move step, which can be seen in steps 3-5 of the code

below, is used to reduce the amount of impoverishment. Another concern with the particle

filter is not having enough draws from the tails of the distribution of random shocks during

extreme events, like the global financial crisis and, to a lesser extend, the time following the

dot-com bubble bursting. Adaption is used during the time periods 1999:Q4-2001:Q1 and

2005:Q1-2011:Q4. The details of the particle filter are described in the following paragraphs.

• Initialization Set t 1. Sample N values {sit, zit−1, σ
i
t−1, ε

i
t}Ni=1 from

p (St,Zt−1,Σt−1, Et; γ) .

11



• Step 1 Compute

p
(
Yt = Yt|sit, zit−1, σ

i
t−1, ε

i
t; γ
)
'

1

N

N∑
i=1

∣∣∣det
(
B−1

(
εi
′

t ; γ
))∣∣∣ p((Ut) = B−1

(
εi
′

t ; γ
)
At

(
sit, z

i
t−1, σ

i
t−1, ε

i′

t ; γ
))

and define importance weights for each draw as

qit =

∣∣det
(
B−1

(
εi
′
t ; γ
))∣∣ p ((Ut) = B−1

(
εi
′
t ; γ
)
At

(
sit, z

i
t−1, σ

i
t−1, ε

i′
t ; γ
))∑N

i=1

∣∣det
(
B−1

(
εi
′
t ; γ
))∣∣ p ((Ut) = B−1

(
εi
′
t ; γ
)
At

(
sit, z

i
t−1, σ

i
t−1, ε

i′
t ; γ
)) .

• Step 2 Sample N times with replacement from {sit|t−1, z
i
t−1|t−1, σ

i
t−1|t−1, ε

i
t|t−1}Ni=1 using

weights given by {qit}Ni=1. Define the draws as {sit|t, zit−1|t, σ
i
t−1|t, ε̂

i
t|t}Ni=1.

• Step 3 Draw N vectors, εit, from the distribution N (0, 0.15I) and calculate ε̃it|t = ε̂it|t+ εit.

• Step 4 Compute

p
(
Yt|sit, zit−1, σ

i
t−1, ε̃

i
t ; γ

)
=∣∣∣det

(
B−1

(
ε̃i
′

t ; γ
))∣∣∣ p((Ut) = B−1

(
ε̃i
′

t ; γ
)
At

(
sit, z

i
t−1, σ

i
t−1, ε̃

i′

t ; γ
))

• Step 5 For i = 1 : N , set {sit|t, zit−1|t, σ
i
t−1|t, ε

i
t|t} to {sit|t, zit−1|t, σ

i
t−1|t, ε̃

i
t|t} with probability

α = min{1,
p
(
Yt|sit, zit−1, σ

i
t−1, ε̃

i
t ; γ

)
p (ε̃it)

p
(
Yt|sit, zit−1, σ

i
t−1, ε̂

i
t ; γ

)
p (ε̂it)

}

where p (ε̃it) and p (ε̂it) are calculated based on a N (0, I) distribution. Otherwise, set

{sit|t, zit−1|t, σ
i
t−1|t, ε

i
t|t} to {sit|t, zit−1|t, σ

i
t−1|t, ε̂

i
t|t}.

• Step 6 Simulate {sit+1, z
i
t, σ

i
t, ε

i
t+1}Ni=1 using {sit|t, zit−1|t, σ

i
t−1|t, ε

i
t|t}Ni=1 by making N draws

of εt from the distribution N (0, I) .

• Step 7 If t < T , set t t+ 1 and go to step 1. Otherwise stop.

The filter is implemented using 15,000 particles. As discussed by Fernández-Villaverde and

Rubio-Ramı́rez (2007), it is important to use the same random numbers used for innovations
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as new draws in the Metropolis Hastings algorithm. In order to avoid biasing the results based

on the random numbers drawn, the random numbers used for the resample step are different

across draws. Since this procedure creates some noise in the calculation of the likelihood, it

is calculated for both the current draw and the candidate draw of parameters each step of

the algorithm. This method avoids the possibility of obtaining an unusually high calculated

likelihood, and therefore an unusually high posterior, which would result in rejecting many

candidate draws from parameters that may have similar posteriors.

Adaption is only used during the time periods 1999:Q4-2001:Q1 and 2005:Q1-2011:Q4.1 The

particle filter would frequently degenerate without adaption during these periods, since there

were not enough draws from the tails of the distribution. To avoid degeneration, we adapt the

particle filter during these time periods as in Gust et al. (2017). The random draws of the

innovations to the traditional shocks, W1,t, are drawn from the distribution N (0,Σ), where

Σ = 1.5I, during these time periods instead of N (0, I) as in all other time periods.2 As shown

in Gust et al. (2017), this must be accounted for by re-weighting the likelihood and importance

weights by the factor

κ =
exp

(
−1

2
εi
′
t ε

i
t

)
|Σ|−

1
2 exp

(
εitΣ

−1εi
′
t

) . (13)

4.2 Implementation details

The particle filter described above is very time consuming, especially for a model of this size.

To save time, the derivatives of the model needed to measure the approximation are calculated

in MATLAB using the symbolic toolbox which are then saved as functions. The estimation

is run within MATLAB using C code and LAPACK to save time and be more efficient with

memory. The algorithm used in this paper does not use parallel code in the particle filter so

that prefetching can be used in the Metropolis Hastings algorithm. This strategy also allows

us to estimate more specifications of the model at one time. Performing 25,000 draws of the

Metropolis Hastings algorithm takes approximately 293 hours.

1We choose not to use a methodology that adapts for every time period, like Plante et al. (2017), because
computation of the likelihood is already very taxing and time consuming.

2The value of Σ = 1.5I was selected after extensive testing.
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5 Prior and Posterior Distribution Comparison

Figure 1: Prior Distributions (Solid Lines) vs. Kernel Density of the Posterior Draws (Blue,
Dashed Lines)
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Figure 2: Prior Distributions (Solid Lines) vs. Kernel Density of the Posterior Draws (Blue,
Dashed Lines)

6 Running Mean Plots

The figures below show plots of the running means from the Metropolis Hastings algorithm for

each parameter. These figures show that the estimates have converged.
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Figure 3: Running Mean Plots
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Figure 4: Running Mean Plots
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7 Underlying States: Confidence Bands

Figure 5: Underlying States: Level Shocks

Note: Smoothed underlying states of the traditional shocks in log deviation from the mean form. These
are calculated at the posterior mode. The solid, blue line represents the median, while the red, dashed line
represent the 20th and 80th percentiles.
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Figure 6: Underlying States: Stochastic Volatility

Note: Smoothed underlying states of the stochastic volatility shocks in log deviation from the mean form.
The solid, blue line represents the median, while the red, dashed line represent the 20th and 80th percentiles.

8 Robustness: Alternative Calibrations

In the model, we have a total of 46 parameters and we only calibrate 9 of them. Among these

nine parameters, capital depreciation, labor share of production, average loan to value ratio,

and the steady state gross inflation rate are based on U.S. data and are commonly used in the

literature as described in Section 4 of the main paper. The discount factors, the weight of labor

utility, and the monopoly power, are more model specific that we base our choice of values

on the previous research. This section explores the importance of fixing these parameters.
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To do this, we study three alternative calibrations. The first calibration sets the discount

factors of the entrepreneurs and unconstrained households to lower values than used in the

benchmark case, with βu = 0.985 and γ = 0.975 instead of 0.99 and 0.98, respectively. The

second calibration lowers the weight of labor in the utility function and the level of monopoly

power, setting ηc = ηu = 2 instead of 2.17 and ε = 11 instead of 21. The third calibration

lowers the discount factor of constrained households, setting βc = 0.93 instead of 0.95. After

adjusting the calibrated parameters, the remaining parameters are estimated using the same

data and method as in the benchmark case.3 The results of these alternative calibrations show

that changing the calibrated values in the model does not have any significant effect on the

results highlighted in the paper.

We study the effects of changing the calibration of these parameters in four ways. First, we

present information on the posterior distributions from each estimation, which can be seen in

Table 1. Second, we compare the impulse responses calculated from these estimates with the

benchmark case in Figures 7 to 9. Third, we present the underlying states of each calibration

alternative in Figures 10 to 15. Finally, we conduct the same counterfactual as in Section 6

of the main paper to analyze the importance of stochastic volatility shocks in explaining the

house price volatility during the Great Recession under each calibration alternative in Figures

16 to 18.

As the posterior estimates show in Table 1, the values are similar across alternative cal-

ibrations compared to the baseline case. Then we use these estimates from the alternative

calibrations to calculate impulse response functions. The GIRFs from the alternative calibra-

tions are plotted along with the baseline results in Figures 7 to 9. As the figures show, the

impulse responses are qualitatively similar to those of the baseline case. One noticeable differ-

ence is that the collateral constraint uncertainty shock has a smaller magnitude impact when

the discount rates for unconstrained households and entrepreneurs are lower, as can be seen in

Figure 7. The smaller magnitude is likely due to the steady state level of loans being 25% lower

3Due to the computational burden, 100,000 draws are done following the burn-in period instead of 170,000
as is done in the main paper.
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with the alternate calibration. In this alternative calibration with the lower discount factor

for the unconstrained households, they become less patient, and therefore, save less. Given

that lower available funding also decreases lending, tightening of credit conditions cannot affect

the economy as much. Therefore, the effects of the collateral constraint uncertainty decline.

Another difference we can observe between the alternative calibrations and the baseline model

is when the discount rate for constrained households is lower, as in calibration 3. In this cal-

ibration, the magnitude of impact of the intertemporal preference shock is somewhat larger

than the baseline case, however the results are qualitatively similar. Part of the difference

can be attributed to the lower level of housing held by the even more impatient constrained

household under this calibration. Since the constrained households cannot demand as much

housing, entrepreneurs end up with more housing, and therefore, borrowing a bigger share of

loans. Overall, the uncertainty results in a larger decline in investment due to increased housing

holdings of entrepreneurs.

The comparison of the underlying states from the alternative calibrations to the baseline case

in the main paper can be seen in Figures 10 to 15. The underlying states for each alternative

calibration look very similar to the baseline results from the main paper. The only noticeable

difference is with the collateral constraint shock, m, in Figure 10 which falls by more after 2010

in the first alternative calibration where we have more impatient unconstrained households and

entrepreneurs. The larger decline is, not surprisingly, combined with an increase in stochastic

volatility for the collateral constraint shock as can be seen in Figure 11. This difference is due

to the steady state level of lending being lower, as mentioned above, which means that changes

in the collateral constraint will have a smaller effect on borrowing and economic activity.

The final way to understand what role the calibrated parameters play in the estimation

results is to perform the counterfactual study completed in Section 6 of the main paper. In

these counterfactual exercises, our goal is to understand the role of stochastic volatility shocks

in house price volatility observed during the Great Recession for each alternative calibration.

As can be seen in Figures 16 to 18, the results are very similar to that of the baseline estimation

from Figure 7 from the main paper. In each case, the removal of stochastic volatility shocks
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greatly reduces the observed house price volatility during the 2007 to 2011 time period. In

other words, stochastic volatility shocks explain a large portion of the house price volatility

during the Great Recession, regardless of the calibration values used in the paper.
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Figure 10: Underlying States for Alternative Calibration 1: Level Shocks

Note: Smoothed underlying states of the level shocks in log deviation from the mean form. They are
calculated at the posterior mode. The median filtered states are shown. The black, dashed line is calculated
using the estimation results from the first alternative calibration where β = 0.985 and γ = 0.975.
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Figure 7: Responses of Macroeconomic Variables to Uncertainty Shocks: Alternative Calibra-
tion 1

(a) Housing Demand Uncertainty Shock (j)

(b) Collateral Constraint Uncertainty Shock (m)

(c) Intertemporal Preference Uncertainty Shock (%)

Note: The figure plots the generalized impulse responses of selected variables to a one standard deviation
increase in innovation of correspondent shocks. The black, dashed line is calculated using the estimation
results from the first alternative calibration where β = 0.985 and γ = 0.975. All coefficients are set to the
posterior mode. The responses are calculated at the unconditional mean of the states. All responses are
normalized so that the units of the vertical axis are percentage deviations from the steady-state.
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Figure 8: Responses of Macroeconomic Variables to Uncertainty Shocks: Alternative Calibra-
tion 2

(a) Housing Demand Uncertainty Shock (j)

(b) Collateral Constraint Uncertainty Shock (m)

(c) Intertemporal Preference Uncertainty Shock (%)

Note: The figure plots the generalized impulse responses of selected variables to a one standard deviation
increase in innovation of correspondent shocks. The black, dashed line is calculated using the estimation
results from the second alternative calibration where ε = 11 and ηc = ηu = 2. All coefficients are set to
the posterior mode. The responses are calculated at the unconditional mean of the states. All responses are
normalized so that the units of the vertical axis are percentage deviations from the steady-state.
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Figure 9: Responses of Macroeconomic Variables to Uncertainty Shocks: Alternative Calibra-
tion 3

(a) Housing Demand Uncertainty Shock (j)

(b) Collateral Constraint Uncertainty Shock (m)

(c) Intertemporal Preference Uncertainty Shock (%)

Note: The figure plots the generalized impulse responses of selected variables to a one standard deviation
increase in innovation of correspondent shocks. The black, dashed line is calculated using the estimation
results from the third alternative calibration where βc = 0.93. All coefficients are set to the posterior mode.
The responses are calculated at the unconditional mean of the states. All responses are normalized so that
the units of the vertical axis are percentage deviations from the steady-state.
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Figure 11: Underlying States for Alternative Calibration 1: Stochastic Volatility

Note: Smoothed underlying states of the stochastic volatility shocks in log deviation from the mean form.
They are calculated at the posterior mode. The median filtered states are shown. The black, dashed line is
calculated using the estimation results from the first alternative calibration where β = 0.985 and γ = 0.975.
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Figure 12: Underlying States for Alternative Calibration 2: Level Shocks

Note: Smoothed underlying states of the level shocks in log deviation from the mean form. They are
calculated at the posterior mode. The median filtered states are shown. The black, dashed line is calculated
using the estimation results from the second alternative calibration where ε = 11 and ηc = ηu = 2.
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Figure 13: Underlying States for Alternative Calibration 2: Stochastic Volatility

Note: Smoothed underlying states of the stochastic volatility shocks in log deviation from the mean form.
They are calculated at the posterior mode. The median filtered states are shown. The black, dashed line is
calculated using the estimation results from the second alternative calibration where ε = 11 and ηc = ηu = 2.
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Figure 14: Underlying States for Alternative Calibration 3: Level Shocks

Note: Smoothed underlying states of the level shocks in log deviation from the mean form. They are
calculated at the posterior mode. The median filtered states are shown. The black, dashed line is calculated
using the estimation results from the third alternative calibration where βc = 0.93.
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Figure 15: Underlying States for Alternative Calibration 3: Stochastic Volatility

Note: Smoothed underlying states of the stochastic volatility shocks in log deviation from the mean form.
They are calculated at the posterior mode. The median filtered states are shown. The black, dashed line is
calculated using the estimation results from the third alternative calibration where βc = 0.93.
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Figure 16: Counterfactual Study: Alternative calibration 1

Note: Rolling 6-year standard deviation of house price growth. The blue, solid line represents the actual
data. The red, dashed line is generated from the simulated model using the underlying filtered shocks, except
the stochastic volatility shocks, which are set to zero from 2007Q1 to 2010Q4. The estimation results from
the first alternative calibration where β = 0.985 and γ = 0.975 are used to calculate the filtered shocks.

Figure 17: Counterfactual Study: Alternative calibration 2

Note: Rolling 6-year standard deviation of house price growth. The blue, solid line represents the actual
data. The red, dashed line is generated from the simulated model using the underlying filtered shocks, except
the stochastic volatility shocks, which are set to zero from 2007Q1 to 2010Q4. The estimation results from
the second alternative calibration where ε = 11 and ηc = ηu = 2 are used to calculate the filtered shocks.
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Figure 18: Counterfactual Study: Alternative calibration 3

Note: Rolling 6-year standard deviation of house price growth. The blue, solid line represents the actual
data. The red, dashed line is generated from the simulated model using the underlying filtered shocks, except
the stochastic volatility shocks, which are set to zero from 2007Q1 to 2010Q4. The estimation results from
the third alternative calibration where βc = 0.93 is used to calculate the filtered shocks.
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