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A The model (Section 2)

A.1 The expressions for Vcc and VccVaa − (Vca)
2

The definition V (c, C, a,A) ≡ u(c, c/C, a/A) implies that

Vcc = ucc + 2C−1uc(c/C) + C−2u(c/C)(c/C), (A.1)

VccVaa − (Vca)
2 = A−2[ucc + 2C−1uc(c/C) + C−2u(c/C)(c/C)]u(a/A)(a/A)

−A−2[uc(a/A) + C−1u(c/C)(a/A)]
2. (A.2)

Proof : The validity of (A.1) and (A.2) is easily verified by using the following results:

Vc = uc + C−1uc/C ,

Vcc = ucc + 2C−1uc(c/C) + C−2u(c/C)(c/C),

Vca = A−1[uc(a/A) + C−1u(c/C)(a/A)],

Va = A−1u(a/A),

Vaa = A−2u(a/A)(a/A). �

A.2 The derivation of (8)

The use of the alternative representation of the instantaneous utility function V (c, C, a,A) ≡
u(c, c/C, a/A) implies that the current-value Hamiltonian is given by

H = V (c, C, a,A) + λ(ra+ wl − c).

The necessary optimality conditions for an interior equilibrium, Hc = 0 and λ̇ = ρλ−Ha, can

be written as

λ = Vc(c, C, a,A), (A.3)

λ̇ = −[λr + Va(c, C, a,A)− ρλ].

From these two first-order conditions, it follows that

λ̇/λ = −{r + [Va(c, C, a,A)/Vc(c, C, a,A)]− ρ}. (A.4)

Obviously, Equations (A.3) and (A.4) are identical to the two equations that are given in (8).
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A.3 The derivation of (12)

A simple transformation of the FOC (4),

λ = uc(c, c/C, a/A) + uc/C(c, c/C, a/A)C−1,

yields the following representation:

λ = uc(c, c/C, a/A){1 + [(c/C)/c]× [uc/C(c, c/C, a/A)/uc(c, c/C, a/A)]}.

Using the definition of mc/C that is given by (11),

mc/C(c, c/C, a/A) ≡ [(c/C)/c]× [uc/C(c, c/C, a/A)/uc(c, c/C, a/A)],

we obtain Equation (12):

λ = uc(c, c/C, a/A)[1 +mc/C(c, c/C, a/A)]. �

A.4 The derivation of the transversality condition (13)

Applying simple transformations, Equation (7),

λ̇/λ = −

[
r +

ua/A(c, c/C, a/A)A−1

uc(c, c/C, a/A) + uc/C(c, c/C, a/A)C−1
− ρ

]
,

can be rewritten as

λ̇/λ = −
[
r +

[(a/A)/c]× [ua/A(c, c/C, a/A)/uc(c, c/C, a/A)]

1 + [(c/C)/c]× [uc/C(c, c/C, a/A)/uc(c, c/C, a/A)]
× c

a
− ρ
]
.

Using the definition of mx for x = c/C and a/A, given by (11),

mx = mx(c, c/C, a/A) ≡ (x/c)× [ux(c, c/C, a/A)/uc(c, c/C, a/A)],

we obtain

λ̇/λ = −

[
r +

ma/A(c, c/C, a/A)

1 +mc/C(c, c/C, a/A)
× c

a
− ρ

]
. (A.5)

Integration of (A.5) yields

λ(t) = λ(0)eρt exp

{
−
∫ t

0

[
r(v) +

ma/A(v)

1 +mc/C(v)
× c(v)

a(v)

]
dv

}
, (A.6)

where mx(v) = mx(c(v), c(v)/C(v), a(v)/A(v)) for x = c/C and a/A. The assumptions made

in (2) that uc > 0 and uc/C ≥ 0 together with the first-order condition (4), λ = uc + uc/CC
−1,

imply that λ(t) > 0 for t ≥ 0. Since λ(0) > 0, it follows from (A.6) that the transversality

condition (6),

lim
t→∞

e−ρtλa = 0,
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is equivalent to the representation given by (13),

lim
t→∞

exp

{
−
∫ t

0

[
r(v) +

ma/A(v)

1 +mc/C(v)
× c(v)

a(v)

]
dv

}
a(t) = 0. �

A.5 Properties of the production function and the derivation of (14)

By assumption, each firm i ∈ [0, 1] employs the same technology so that yi = f(ki, Bli) for

i ∈ [0, 1]. Since, also by assumption, the common production function f exhibits constant

returns to scale, the following equations hold for i ∈ [0, 1] (all results are well-known from

intermediary microeconomics):

yi = f(ki, Bli) = kif(1, Bli/ki), (A.7)

fk(ki, Bli) = fk(1, Bli/ki), f(Bl)(ki, Bli) = f(Bl)(1, Bli/ki), (A.8)

f(ki, Bli) = fk(ki, Bli)ki + f(Bl)(ki, Bli)Bli. (A.9)

The equations given in (A.8) follow from the fact that the marginal products of capital fk and

effective labor f(Bl) are homogeneous of degree zero. Equation (A.9) results from the Euler

theorem.

Real profits of firm i ∈ [0, 1] denoted by πi are given by πi = f(ki, Bli) − rki − wli. It can

be verified at first glance that the necessary optimality conditions are given by

r = fk(ki, Bli), w = f(Bl)(ki, Bli)B, i ∈ [0, 1]. (A.10)

Taking into account that B = K holds by assumption, it is obvious from (A.10) that the

first-order conditions of the representative firm can be written in the form given by (14):

r = fk(k,Kl), w = f(Bl)(k,Kl)K. �

B The decentralized solution – Part I (Section 3)

B.1 Derivation of (15)

Using (A.8) and taking into account that B = K, the necessary optimality conditions (A.10),

r = fk(ki, Bli), w = f(Bl)(ki, Bli)B, i ∈ [0, 1],

can be rewritten as

r = fk(1,Kli/ki), w = f(Bl)(1,Kli/ki)K, i ∈ [0, 1]. (B.1)

The equations given in (B.1) imply that in a macroeconomic equilibrium each firm will choose

the same capital-labor ratio. It is easily verified that

ki/li = K/L, i ∈ [0, 1], (B.2)
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where K and L denote both the aggregate and the average values of capital and labor input,

respectively. Substituting (B.2) into (B.1) we obtain the two equations given in (15):

r = fk(1, L), w = f(Bl)(1, L)K. �

B.2 Derivation of the Euler equation for aggregate consumption as given by

(17)–(19)

Substituting fk(1, L) = r [see (15)] as well as c = C and a = A = K [see (16)] into (A.5),

λ̇/λ = −

[
r +

ma/A(c, c/C, a/A)

1 +mc/C(c, c/C, a/A)
× c

a
− ρ

]
,

we obtain

λ̇/λ = −

[
fk(1, L) +

ma/A(C, 1, 1)

1 +mc/C(C, 1, 1)
× C

K
− ρ

]
. (B.3)

Substitution of c = C and a = A [see (16)] into (12),

λ = uc(c, c/C, a/A)[1 +mc/C(c, c/C, a/A)],

yields

λ = uc(C, 1, 1)[1 +mc/C(C, 1, 1)]. (B.4)

Differentiating (B.4) with respect to time t, we obtain

λ̇ = {ucc(C, 1, 1)[1 +mc/C(C, 1, 1)] + uc(C, 1, 1)mc/C
c (C, 1, 1)}Ċ. (B.5)

Using (B.4) and (B.5), we obtain

λ̇/λ =

[
Cucc(C, 1, 1)

uc(C, 1, 1)
+

mc/C(C, 1, 1)

1 +mc/C(C, 1, 1)
× m

c/C
c (C, 1, 1)C

mc/C(C, 1, 1)

]
(Ċ/C). (B.6)

Using the elasticities of the marginal utility of absolute consumption uc and of the percentage

MRS mc/C with respect to absolute consumption c,

εuc,c(c, c/C, a/A) ≡ ucc(c, c/C, a/A)× [c/uc(c, c/C, a/A)],

εm
c/C ,c(c, c/C, a/A) ≡ mc/C

c (c, c/C, a/A)× [c/mc/C(c, c/C, a/A)],

(B.6) can be written as

λ̇/λ =

[
εuc,c(C, 1, 1) +

mc/C(C, 1, 1)

1 +mc/C(C, 1, 1)
εm

c/C ,c(C, 1, 1)

]
(Ċ/C). (B.7)
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Substituting (B.7) into (B.3) and solving the resulting equation for Ċ/C, we obtain the Euler

equation for aggregate consumption C:

Ċ/C = −

[
εuc,c(C, 1, 1) +

mc/C(C, 1, 1)

1 +mc/C(C, 1, 1)
εm

c/C ,c(C, 1, 1)

]−1

×

×

[
fk(1, L) +

ma/A(C, 1, 1)

1 +mc/C(C, 1, 1)
× C

K
− ρ

]
. (B.8)

Introducing the definitions of σD(C) and ηD(C) given by (18) and (19),

σD(C) ≡ −

[
εuc,c(C, 1, 1) +

mc/C(C, 1, 1)

1 +mc/C(C, 1, 1)
× εmc/C ,c(C, 1, 1)

]−1

, (B.9)

ηD(C) ≡ ma/A(C, 1, 1)/[1 +mc/C(C, 1, 1)],

the Euler equation (B.8) can be written in the form given by (17):

Ċ/C = σD(C)[fk(1, L) + ηD(C)× (C/K)− ρ].

Applying the following simple rules for the calculation of elasticities,

εz
1×z2,x = εz

1,x + εz
2,x, εz

1+z2,x = [z1/(z1 + z2)]εz
1,x + [z2/(z1 + z2)]εz

2,x,

it is easily verified that

ε{uc(C,1,1)×[1+mc/C(C,1,1)]},C = εuc(C,1,1),C + ε[1+mc/C(C,1,1)],C

= εuc,c(C, 1, 1) +

+
mc/C(C, 1, 1)

1 +mc/C(C, 1, 1)
× εmc/C ,c(C, 1, 1). (B.10)

From (B.9) and (B.10) it then follows that σD(C) is the the reciprocal of the magnitude of the

elasticity of the total marginal utility of own consumption,

σD(C) =
[
−ε{uc(C,1,1)×[1+mc/C(C,1,1)]},C

]−1
. �

B.3 Derivation of the Euler equation for individual consumption of the rep-

resentative household

From Equation (12),

λ = uc(c, c/C, a/A)[1 +mc/C(c, c/C, a/A)],
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that gives an alternative representation of the FOC for the optimal choice of own consumption

given by (4), λ = uc(c, c/C, a/A) + uc/C(c, c/C, a/A)C−1, it follows that

λ̇/λ = {εuc,c + [mc/C/(1 +mc/C)]× εmc/C ,c}(ċ/c)

+{εuc,c/C + [mc/C/(1 +mc/C)]× εmc/C ,c/C}[(ċ/c)− (Ċ/C)]

+{εuc,a/A + [mc/C/(1 +mc/C)]× εmc/C ,a/A}[(ȧ/a)− (Ȧ/A)], (B.11)

where

mc/C = mc/C(c, c/C, a/A),

εuc,x = εuc,x(c, c/C, a/A), εm
c/C ,x = εm

c/C ,x(c, c/C, a/A), x = c, c/C, a/A.

While the derivation of Equation (B.11) seems to be complicated at first glance, its validity is

easily verified by applying the following simple rules for the calculation of elasticities:

εz
1×z2,x = εz

1,x + εz
2,x, εz

1+z2,x = [z1/(z1 + z2)]εz
1,x + [z2/(z1 + z2)]εz

2,x.

Substituting the expression for λ̇/λ given by (B.11) into (A.5),

λ̇/λ = −{r + [ma/A/(1 +mc/C)]× (c/a)− ρ},

where mc/C = mc/C(c, c/C, a/A) and ma/A = ma/A(c, c/C, a/A), and solving for ċ/c we ob-

tain the following representation of the Euler equation for the individual consumption of the

representative household:

(ċ/c) = σh × {r + [ma/A/(1 +mc/C)]× (c/a)− ρ

−(εuc,c/C + [mc/C/(1 +mc/C)]× εmc/C ,c/C)(Ċ/C)

+(εuc,a/A + [mc/C/(1 +mc/C)]× εmc/C ,a/A)[(ȧ/a)− (Ȧ/A)]}, (B.12)

where

σh ≡ −{εuc,c + εuc,c/C + [mc/C/(1 +mc/C)]× (εm
c/C ,c + εm

c/C ,c/C)}−1 (B.13)

denotes the elasticity of intertemporal substitution at the level of the individual household.

Please note that σh = σh(c, c/C, a/A).

The Euler equation that governs the dynamic evolution of individual consumption at the

level of the individual household can be used to derive the Euler equation for aggregate con-

sumption in a symmetric macroeconomic equilibrium in which

c = C, a = A = K, r = fk(1, L) (B.14)
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holds. Substitution of (B.14) into (B.12) and (B.13) yields

(Ċ/C) = σh × {fk(1, L) + [ma/A/(1 +mc/C)]× (C/K)− ρ

−(εuc,c/C + [mc/C/(1 +mc/C)]× εmc/C ,c/C)(Ċ/C)},

where

mc/C = mc/C(C, 1, 1), ma/A = ma/A(C, 1, 1),

εuc,x = εuc,x(C, 1, 1), εm
c/C ,x = εm

c/C ,x(C, 1, 1), x = c, c/C, a/A,

so that also σh = σh(C, 1, 1). Solving for Ċ/C we obtain

Ċ/C = −{εuc,c + [mc/C/(1 +mc/C)]× εmc/C ,c}−1 ×

×{fk(1, L) + [ma/A/(1 +mc/C)]× (C/K)− ρ}.

Obviously, this representation is equivalent to that given by (17),

Ċ/C = σD(C)[fk(1, L) + ηD(C)× (C/K)− ρ],

where the definitions of σD(C) and ηD(C) are given by (18) and (19),

σD(C) ≡ −

[
εuc,c(C, 1, 1) +

mc/C(C, 1, 1)

1 +mc/C(C, 1, 1)
× εmc/C ,c(C, 1, 1)

]−1

,

ηD(C) ≡ ma/A(C, 1, 1)/[1 +mc/C(C, 1, 1)].

Please note that four elasticities that are present in the Euler equation for the individual con-

sumption of the representative household, namely εuc,c/C , εuc,a/A, εm
c/C ,c/C , and εm

c/C ,a/A,

disappear in the symmetric macroeconomic equilibrium.

B.4 Derivation of (20)

Substitution of B = K and (B.2), ki/li = K/L for i ∈ [0, 1], into yi = kif(1, Bli/ki) [see (A.7)]

yields yi = kif(1, L) for i ∈ [0, 1]. This, in turn, implies that aggregate output Y is given by

Y = f(1, L)K. (B.15)

Using the Euler theorem (A.9) and the necessary optimality conditions (A.10), we obtain yi =

rki +wli. Since the adding-up theorem holds at the level of the individual firm, it holds at the

aggregate level, too:

Y = rK + wL. (B.16)

Combining (B.15) and (B.16), we obtain

rK + wL = Y = f(1, L)K. (B.17)
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Substitution of (16), i.e., c = C, a = A = K, and l = L, into the flow budget constraint (1),

ȧ = ra+ wl − c, yields

K̇ = rK + wL− C. (B.18)

From (B.17) and (B.18) it then follows that

K̇ = Y − C = f(1, L)K − C. (B.19)

Dividing both sides of (B.19) by K, we obtain (20):

K̇/K = f(1, L)− C/K. �

B.5 Derivation of (22)

Using (A.7)–(A.9),

yi = f(ki, Bli) = kif(1, Bli/ki),

fk(ki, Bli) = fk(1, Bli/ki), f(Bl)(ki, Bli) = f(Bl)(1, Bli/ki),

f(ki, Bli) = fk(ki, Bli)ki + f(Bl)(ki, Bli)Bli,

the following equation is easily derived:

f(1, Bli/ki) = fk(1, Bli/ki) + f(Bl)(1, Bli/ki)(Bli/ki). (B.20)

Substitution of (B.2), ki/li = K/L for i ∈ [0, 1], and B = K into (B.20) yields

f(1, L) = fk(1, L) + f(Bl)(1, L)L.

Taking into account that f(Bl) > 0, we obtain (22):

f(1, L) > fk(1, L). �

B.6 Extended Proof of Proposition 1

In Part I we give a proof for all assertions made in proposition 1. In Part II we derive the con-

ditions for the occurrence of excessive wealth accumulation in the sense that the transversality

condition of the standard model is violated. In Part III we show that the decentralized solution

has no transitional dynamics.

Part I: Assumption (23),

σD(C) = σ̂, ηD(C) = η̂, ∀C > 0, (B.21)

where σ̂ > 0 and η̂ ≥ 0 are constants, implies that the Euler equation for aggregate consumption

(17) simplifies to

Ċ/C = σ̂[fk(1, L) + η̂ × (C/K)− ρ]. (B.22)

The differential equation for aggregate capital given by (20) is unaffected by the assumptions
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made in (23) [= (B.21)]. Consequently, we have

K̇/K = f(1, L)− (C/K). (B.23)

Taking into account that L is exogenously given and constant over time and that both σ̂ and η̂

are constants, it is obvious from (B.22) and (B.23) that a balanced growth path (BGP) exists in

which C and K grow at the same constant rate so that C/K remains unchanged over time. The

steady-state value of the common growth rate of aggregate consumption and aggregate physical

capital denoted by gD = (Ċ/C)D = (K̇/K)D and the steady value of the consumption-capital

ratio denoted by (C/K)D are determined by the two equations that are given in (27):

gD = σ̂[fk(1, L) + η̂ × (C/K)D − ρ] and (C/K)D = f(1, L)− gD. (B.24)

Solving the two equations given in (B.24) for gD, we obtain (25):

gD = [(1/σ̂) + η̂]−1[fk(1, L)− ρ+ η̂f(1, L)]. (B.25)

The first equation given in (26), (C/K)D = f(1, L) − gD, is identical to the second equation

given in (B.24). The second equation given in (26), (K̇/Y )D = gD/f(1, L), is easily obtained

by using the following three facts:

(K̇/Y ) = (K̇/K)/(Y/K), Y = f(1, L)K, (K̇/K)D = gD.

Substitution of the solution for gD given by (B.25) into (C/K)D = f(1, L)− gD yields

(C/K)D = [(1/σ̂) + η̂]−1{(1/σ̂)f(1, L)− [fk(1, L)− ρ]}. (B.26)

From (B.25) it is obvious that

gD > 0⇔ ρ < fk(1, L) + η̂f(1, L) ≡ ρg. (B.27)

From (B.26) it follows that

(C/K)D > 0⇔ ρ > fk(1, L)− (1/σ̂)f(1, L) ≡ ρC/K . (B.28)

Since, by assumption, ηD(C) = η̂ ≥ 0 holds for ∀C > 0, the transversality condition (21)

simplifies to

lim
t→∞

exp

(
−
∫ t

0
{fk(1, L) + η̂ × [C(v)/K(v)]}dv

)
K(t) = 0.

Along the BGP, we have C/K = (C/K)D and K̇/K = gD at any point in time. Hence, the

transversality condition requires that −[fk(1, L) + η̂ × (C/K)D] + gD < 0. Using the fact that

−[fk(1, L) + η̂ × (C/K)D] + gD = −[(1/σ̂) + η̂]−1{[(1/σ̂)− 1] [fk(1, L) + η̂f(1, L)] + (1 + η̂)ρ},
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we obtain
−[fk(1, L) + η̂ × (C/K)D] + gD < 0⇔
ρ > [1− (1/σ̂)](1 + η̂)−1[fk(1, L) + η̂f(1, L)] ≡ ρTC ,

(B.29)

where the superscript “TC” stands for “transversality condition”. Obviously,

ρTC = [1− (1/σ̂)](1 + η̂)−1ρg. (B.30)

From (B.27) it follows that ρg > 0. By contrast, both ρC/K and ρTC [see (B.28) and (B.29)

or (B.30)] may be of either sign. It is easily verified that

ρTC − ρC/K = (1 + η̂)−1[(1/σ̂) + η̂][f(1, L)− fk(1, L)].

Taking into account that f(1, L) > fk(1, L) [see (22)] it is clear that ρC/K < ρTC . Moreover,

we have

ρg − ρTC = (1 + η̂)−1[(1/σ̂) + η̂] [fk(1, L) + η̂f(1, L)] > 0.

These results imply that ρC/K < ρTC < ρg holds. Hence, if the condition

ρTC < ρ < ρg (B.31)

is satisfied (so that also ρC/K < ρ holds due to the fact that ρC/K < ρTC), then the solutions

given by (B.25) and (B.26) are economically meaningful in the sense that 1) the common growth

rate gD is strictly positive (due to ρ < ρg), 2) the consumption-capital ratio (C/K)D is strictly

positive (due to ρC/K < ρ), and 3) the transversality condition (21) is satisfied (due to ρTC < ρ).

Using (B.27) and (B.30) the condition (B.31) can be written in a form that is identical to the

condition (24):

[1− (1/σ̂)](1 + η̂)−1ρg < ρ < ρg, ρg ≡ fk(1, L) + η̂f(1, L). (B.32)

Please note that if σ̂ < 1 holds, then the lower bound for ρ given by [1 − (1/σ̂)](1 + η̂)−1ρg is

negative and, hence, redundant since ρ > 0 has to hold by assumption anyway. �

Part II: Next, we give the condition for the occurrence of excessive wealth accumulation

in the sense that the transversality condition of the standard model as given by

lim
t→∞

exp

(
−
∫ t

0
fk(1, L)dv

)
K(t) = 0

is violated. Along the BGP, we have K̇/K = gD at any point in time. Since L is exogenously

given and constant over time, the fulfillment of the standard transversality condition obviously

requires that −fk(1, L) + gD < 0. Using the solution for gD given by (B.25),

gD = [(1/σ̂) + η̂]−1[fk(1, L)− ρ+ η̂f(1, L)],

we obtain

−fk(1, L) + gD < 0⇔ ρ > [1− (1/σ̂)]fk(1, L) + η̂[f(1, L)− fk(1, L)] ≡ (ρTC)stan, (B.33)
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where the superscripts “TC” and “stan” stand for “transversality condition” and “standard”.

Please note that (ρTC)stan may be of either sign. Using (B.33) as well as (B.27), (B.29), and

(B.30),

ρg ≡ fk(1, L) + η̂f(1, L),

ρTC ≡ [1− (1/σ̂)](1 + η̂)−1[fk(1, L) + η̂f(1, L)]

= [1− (1/σ̂)](1 + η̂)−1ρg,

it is easily verified that

(ρTC)stan − ρTC = (1 + η̂)−1η̂[η̂ + (1/σ̂)][f(1, L)− fk(1, L)] ≥ 0,

ρg − (ρTC)stan = [(1/σ̂) + η̂]fk(1, L) > 0.

If η̂ > 0, then these results imply that

ρTC < (ρTC)stan < ρg.

Consequently, if

(ρTC)stan < ρ < ρg

holds (in addition to ρ > 0), then the decentralized solution is economically meaningful and,

in addition, satisfies the standard version of the transversality condition. By contrast, the

economically meaningful decentralized solution exhibits excessive wealth accumulation, if

0 < ρTC < ρ ≤ (ρTC)stan or ρTC < 0 < ρ ≤ (ρTC)stan

holds. On the one hand, ρ ≤ (ρTC)stan means that households are sufficiently patient so that

the standard transversality condition is violated. On the other hand, ρTC < ρ implies that

agents are sufficiently impatient so that the modified transversality condition holds. �

Part III: We show that if the condition (23) [= (B.21)] is satisfied so that σD(C) = σ̂ > 0

and ηD(C) = η̂ ≥ 0 hold for C > 0, then the model has no transitional dynamics. Let Z ≡ C/K.

Since K is a state variable and C is a control variable, Z = C/K is a control-like variable (this

notion is used by Barro and Sala-i-Martin (1995) on p. 162). In contrast to K, both C and

Z = C/K can jump at any point in time. Using (B.22), (B.23), and C/K = Z, we obtain

Ċ/C = σ̂[fk(1, L) + η̂ × Z − ρ], (B.34)

K̇/K = f(1, L)− Z, (B.35)

which, in turn implies that

Ż = [(Ċ/C)− (K̇/K)]Z = −{f(1, L)− σ̂[fk(1, L)− ρ]− (1 + σ̂η̂)Z}Z ≡ Φ(Z).

Solving Ż = Φ(Z) = 0 for Z, we obtain {Z = 0} and
{
Z = ZD

}
, where

ZD = [(1/σ̂) + η̂]−1{(1/σ̂)f(1, L)− [fk(1, L)− ρ]}. (B.36)
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Obviously, ZD given by (B.36) is identical to (C/K)D given by (B.26). If the condition (B.32)

[= (24)] is satisfied, then ZD = (C/K)D > 0, so that ZD is the economically meaningful steady

state value of the consumption-capital ratio. From

Φ′(Z) = (1 + σ̂η̂)Z − {f(1, L)− σ̂[fk(1, L)− ρ]− (1 + σ̂η̂)Z}

and (B.36) it follows that

Φ′(ZD) = (1 + σ̂η̂)ZD > 0,

because the expression within curly brackets vanishes. Φ′(ZD) > 0 implies that the econom-

ically meaningful steady state of the differential equation Ż = Φ(Z) is unstable. Hence, the

equilibrium path of Z has no transitional dynamics, i.e., Z(t) = ZD for t ≥ 0. The initial value

of the jump variable Z has to be chosen in such a way that Z(0) = ZD. From Z = C/K and

ZD = (C/K)D it then follows that the initial value of the jump variable C has to be chosen

according to C(0) = (C/K)D ×K0, where (C/K)D is given by (B.26) and K0 is exogenously

given. Since Z(t) = ZD holds for t ≥ 0, it then follows from (B.34), (B.35), (B.36), and (B.25)

that

Ċ/C = σ̂[fk(1, L) + η̂ × ZD − ρ]

= [(1/σ̂) + η̂]−1[fk(1, L)− ρ+ η̂f(1, L)] = gD,

K̇/K = f(1, L)− ZD

= [(1/σ̂) + η̂]−1[fk(1, L)− ρ+ η̂f(1, L)] = gD

hold for t ≥ 0. The growth rates of C and K are constant over time, identical, and equal to

gD. Consequently, these growth rates have no transitional dynamics. �

B.7 Proof of Proposition 2

We restrict our attention to a proof of the mathematical results presented in (28)–(30). Taking

the partial derivatives of gD as given by (25) [= (B.25)],

gD = [(1/σ̂) + η̂]−1[fk(1, L)− ρ+ η̂f(1, L)] > 0,

with respect to σ̂ and η̂, we obtain

∂gD/∂σ̂ = σ̂−2[(1/σ̂) + η̂]−2[fk(1, L)− ρ+ η̂f(1, L)]

= σ̂−2[(1/σ̂) + η̂]−1gD > 0, (B.37)

∂gD/∂η̂ = [(1/σ̂) + η̂]−2{(1/σ̂)f(1, L)− [fk(1, L)− ρ]}

= [(1/σ̂) + η̂]−1(C/K)D > 0. (B.38)

Using (B.37)–(B.38) and taking into account that

(C/K)D = f(1, L)− gD and (K̇/Y )D = gD/f(1, L)

42



hold according to (26), we obtain

∂(K̇/Y )D/∂σ̂ = [f(1, L)]−1(∂gD/∂σ̂) > 0, (B.39)

∂(K̇/Y )D/∂η̂ = [f(1, L)]−1(∂gD/∂η̂) > 0, (B.40)

∂(C/K)D/∂σ̂ = −∂gD/∂σ̂ < 0, (B.41)

∂(C/K)D/∂η̂ = −∂gD/∂η̂ < 0. (B.42)

Substituting the expression for gD given by (25) [= (B.25)] into (C/K)D = f(1, L)− gD yields

the representation of the solution for (C/K)D as given by (B.26):

(C/K)D = [(1/σ̂) + η̂]−1{(1/σ̂)f(1, L)− [fk(1, L)− ρ]} > 0.

The resulting solution for the CIER,

η̂ × (C/K)D = [(1/σ̂) + η̂]−1η̂{(1/σ̂)f(1, L)− [fk(1, L)− ρ]} ≥ 0,

has the following properties:

∂[η̂ × (C/K)D]/∂η̂ = σ̂−1[(1/σ̂) + η̂]−2{(1/σ̂)f(1, L)− [fk(1, L)− ρ]}

= σ̂−1[(1/σ̂) + η̂]−1(C/K)D > 0, (B.43)

∂[η̂ × (C/K)D]/∂σ̂ = −σ̂−2[(1/σ̂) + η̂]−2η̂[fk(1, L)− ρ+ η̂f(1, L)]

= −σ̂−2[(1/σ̂) + η̂]−1η̂gD.

From the last result and gD > 0 it follows that

sgn(∂[η̂ × (C/K)D]/∂σ̂) = −sgn(η̂). (B.44)

The validity of the assertions made in (28),

∂gD/∂σ̂ > 0, ∂(K̇/Y )D/∂σ̂ > 0, ∂(C/K)D/∂σ̂ < 0,

follows from (B.37), (B.39), and (B.41). Analogously, the validity of the assertions made in

(29),

∂gD/∂η̂ > 0, ∂(K̇/Y )D/∂η̂ > 0, ∂(C/K)D/∂η̂ < 0,

is obvious from (B.38), (B.40), and (B.42). Finally, (30),

∂[η̂ × (C/K)D]/∂η̂ > 0, sgn(∂[η̂ × (C/K)D]/∂σ̂) = −sgn(η̂),

is obtained by using (B.43) and (B.44). �

B.8 Proof of Proposition 3

Proof of (32)

43



In (31) we make the following assumptions:

mc/C(C, 1, 1) = m̂c/C , ma/A(C, 1, 1) = m̂a/A, εuc,c(C, 1, 1) = ε̂uc,c, ∀C > 0,

where m̂c/C ≥ 0, m̂a/A ≥ 0 (with m̂c/C > 0 ∨ m̂a/A > 0), and ε̂uc,c < 0 are constants. From

mc/C(C, 1, 1) = m̂c/C , ∀C > 0, it then follows that m
c/C
c (C, 1, 1) = 0, ∀C > 0. Taking into

account that εm
c/C ,c ≡ mc/C

c ×(c/mc/C), we also have εm
c/C ,c(C, 1, 1) = 0, ∀C > 0. Substituting

the latter result and the assumptions made in (31) into the definitions of σD(C) and ηD(C)

given by (18) and (19),

σD(C) ≡ −

[
εuc,c(C, 1, 1) +

mc/C(C, 1, 1)

1 +mc/C(C, 1, 1)
× εmc/C ,c(C, 1, 1)

]−1

,

ηD(C) ≡ ma/A(C, 1, 1)/[1 +mc/C(C, 1, 1)],

we obtain (32),

σD(C) = 1/|ε̂uc,c| ≡ σ̂ > 0, ηD(C) = m̂a/A/(1 + m̂c/C) ≡ η̂ ≥ 0, ∀C > 0. �

Proof of (33)

From Proposition 1 we know that if these results for σ̂ and η̂ satisfy condition (24),

[1− (1/σ̂)](1 + η̂)−1ρg < ρ < ρg, ρg ≡ fk(1, L) + η̂f(1, L),

where ρ > 0 holds by assumption, then an economically meaningful decentralized BGP exists.

To calculate the corresponding BGP growth, we substitute the expressions for σ̂ and η̂ into

Equation (25) given in Proposition 1,

gD = [(1/σ̂) + η̂]−1[fk(1, L)− ρ+ η̂f(1, L)].

In doing so, we finally obtain (33):

gD =
fk(1, L)− ρ+ [m̂a/A/(1 + m̂c/C)]× f(1, L)

|ε̂uc,c|+ [m̂a/A/(1 + m̂c/C)]
. �

B.9 An extended version of Proposition 5

Recall that we use εz,xi ≡ (∂z/∂xi) × (xi/z) to denote the elasticity of z with respect to xi,

where z = z(x1, . . . , xn) is an arbitrary function of arbitrary variables xi, i = 1, . . . , n.

Proposition 8. (Extended version of Proposition 5)

Let the instantaneous utility function u result from the transformation T of a multiplicatively

separable function v,

u(c, c/C, a/A) = T [v(c, c/C, a/A)], v(c, c/C, a/A) = P (c)Q(c/C, a/A), (B.45)

where the functions T (v), P (c), and Q(c/C, a/A) satisfy the following assumptions over their
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corresponding domains:

T ′ > 0, T ′′ < 0; P > 0, P ′ > 0, εT
′,vεP,c + εP

′,c < 0, (B.46)

Q > 0, Qc/C ≥ 0, Qa/A ≥ 0, Qc/C > 0 ∨Qa/A > 0;

if Qc/C > 0, then εT
′,vεQ,c/C + εQc/C ,c/C < 0;

if Qa/A > 0, then εT
′,vεQ,a/A + εQa/A,a/A < 0.

(B.47)

A) The assumptions made in (B.46) and (B.47) are sufficient for the well-behavedness of the

utility function (B.45) in the sense that it satisfies all assumptions made in (2).

B) The representation V (c, C, a,A) ≡ u(c, c/C, a/A) is well-behaved in the sense that all

assumptions made in (3) are satisfied, if, in addition to (B.46) and (B.47), the conditions

0 > εP,c × (εT
′,vεP,c + εP

′,c) + 2εP,cεQ,c/C × (εT
′,v + 1) +

+εQ,c/C × (εT
′,vεQ,c/C + εQc/C ,c/C), (B.48)

0 < εQ,a/A × (εT
′,vεQ,a/A + εQa/A,a/A)×

×{εP,c × (εT
′,vεP,c + εP

′,c) + 2× εP,cεQ,c/C × (εT
′,v + 1) +

+εQ,c/C × (εT
′,vεQ,c/C + εQc/C ,c/C)}

−[εP,cεQ,a/A × (εT
′,v + 1) + εQ,c/C × (εT

′,vεQ,a/A + εQc/C ,a/A)]2 (B.49)

are satisfied, where (B.49) is only relevant in case that relative wealth matters for utility

so that Qa/A > 0.

C) The instantaneous utility function given by (B.45) has the property that

mc/C(C, 1, 1) = m̂c/C , ma/A(C, 1, 1) = m̂a/A, ηD(C) = η̂, ∀C > 0, (B.50)

where m̂c/C , m̂a/A, and η̂ are constants, if and only if the function P (c) has the form

P (c) = ξ0c
ξ1 , for c > 0. (B.51)

The assumptions P > 0 and P ′ > 0 listed in (B.46) require that

ξ0 > 0, ξ1 > 0. (B.52)

D) Let the instantaneous utility function have the form

u(c, c/C, a/A) = T (ξ0c
ξ1Q(c/C, a/A)), ξ0 > 0, ξ1 > 0, (B.53)

that is obtained by substituting (B.51) into (B.45) and taking into account (B.52). The

specification of u = u(c, c/C, a/A) given by (B.53) has the property that

εuc,c(C, 1, 1) = ε̂uc,c, σD(C) = σ̂, ∀C > 0, (B.54)
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where ε̂uc,c and σ̂ are constants, if and only if the function T (v) has the form

T (v) = κ0 + κ1(1− θ)−1(v1−θ − 1), for v > 0. (B.55)

The assumptions T ′ > 0, T ′′ < 0, and εT
′,vεP,c + εP

′,c < 0 made in (B.46) require that

κ1 > 0, θ > 0, 1 + (θ − 1)ξ1 > 0. (B.56)

E) Let the instantaneous utility function have the form

u(c, c/C, a/A) = κ0 + κ1(1− θ)−1{[ξ0c
ξ1Q(c/C, a/A)]1−θ − 1}, (B.57)

that results from the substitution of (B.51) and (B.55) into (B.45). Let the parameters

satisfy the conditions given in (B.52) and (B.56),

κ1 > 0, θ > 0, ξ0 > 0, ξ1 > 0, 1 + (θ − 1)ξ1 > 0, (B.58)

and the function Q(c/C, a/A) have the property that

Q > 0, Qc/C ≥ 0, Qa/A ≥ 0, Qc/C > 0 ∨Qa/A > 0,

if Qc/C > 0, then εQc/C ,c/C − θεQ,c/C < 0,

if Qa/A > 0, then εQa/A,a/A − θεQ,a/A < 0,

(B.59)

where the second and the third line are obtained by substituting εT
′,v = −θ into the corre-

sponding lines of (B.47).

i) The instantaneous utility function u = u(c, c/C, a/A) given by (B.57) is well-behaved

in the sense that all assumptions made in (2) are satisfied.

ii) The representation V (c, C, a,A) ≡ u(c, c/C, a/A) is well-behaved in the sense that all

assumptions made in (3) are satisfied, if, in addition to (B.58) and (B.59), the conditions

0 < [1 + ξ1(θ − 1)]ξ1 + εQ,c/C [2(θ − 1)ξ1 + θεQ,c/C − εQc/C ,c/C ], (B.60)

0 < {[1 + ξ1(θ − 1)]ξ1 + εQ,c/C [2(θ − 1)ξ1 + θεQ,c/C − εQc/C ,c/C ]} ×

×εQ,a/A(θεQ,a/A − εQa/A,a/A)

−{[(1− θ)ξ1 − θεQ,c/C ]εQ,a/A + εQ,c/CεQc/C ,a/A}2 (B.61)

are satisfied, where (B.61) is only relevant in case that relative wealth matters for utility

so that Qa/A > 0.

iii) The conditions given by (31) in Proposition 3 are satisfied, since mc/C(C, 1, 1) = m̂c/C ,

ma/A(C, 1, 1) = m̂a/A, and εuc,c(C, 1, 1) = ε̂uc,c hold for C > 0, where

m̂c/C ≡ ε̂Q,c/C/ξ1 ≥ 0, m̂a/A ≡ ε̂Q,a/A/ξ1 ≥ 0, ε̂uc,c ≡ −[1 + (θ − 1)ξ1] < 0, (B.62)
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with

ε̂Q,c/C ≡ εQ,c/C(1, 1), ε̂Q,a/A ≡ εQ,a/A(1, 1). (B.63)

iv) The conditions given in (23) in Proposition 1 are satisfied, because σD(C) = σ̂ and

ηD(C) = η̂ hold for C > 0, where

σ̂ = 1/[1 + (θ − 1)ξ1] > 0, η̂ = (ε̂Q,a/A/ξ1)/[1 + (ε̂Q,c/C/ξ1)] ≥ 0. (B.64)

If these constants σ̂ and η̂ satisfy the condition (24),

[1− (1/σ̂)](1 + η̂)−1ρg < ρ < ρg, ρg ≡ fk(1, L) + η̂f(1, L),

where ρ > 0 holds by assumption, then an economically meaningful decentralized BGP

exists. The corresponding constant common growth rate is given by

gD =
fk(1, L)− ρ+ (ε̂Q,a/A/ξ1)[1 + (ε̂Q,c/C/ξ1)]−1 × f(1, L)

1 + (θ − 1)ξ1 + (ε̂Q,a/A/ξ1)[1 + (ε̂Q,c/C/ξ1)]−1
> 0. (B.65)

v) In the instantaneous utility function given by (B.57), we can set, without loss of gen-

erality, κ0 = 0, κ1 = 1, and ξ0 = 1 so that

u(c, c/C, a/A) = (1− θ)−1{[cξ1Q(c/C, a/A)]1−θ − 1}. (B.66)

Please note that the representation of the instantaneous utility function given by (B.66)

is identical to the specification that is used in Proposition 5 [see (37)]. Moreover, it is easily

verified that all assumptions and assertions made in Proposition 5 are elements of item E).

Proof

Preliminaries

The specification of the instantaneous utility function u = u(c, c/C, a/A) given by (B.45),

u(c, c/C, a/A) = T [v(c, c/C, a/A)], v(c, c/C, a/A) = P (c)Q(c/C, a/A),

implies that

uc = T ′ × P ′ ×Q, (B.67)

uc/C = T ′ × P ×Qc/C , (B.68)

ua/A = T ′ × P ×Qa/A, (B.69)

ucc = T ′′ × (P ′ ×Q)2 + T ′ × P ′′ ×Q, (B.70)

uc(c/C) = T ′′ × P ×Qc/C × P ′ ×Q+ T ′ × P ′ ×Qc/C , (B.71)

uc(a/A) = T ′′ × P ×Qa/A × P ′ ×Q+ T ′ × P ′ ×Qa/A, (B.72)

u(c/C)(c/C) = T ′′ × (P ×Qc/C)2 + T ′ × P ×Q(c/C)(c/C), (B.73)

u(c/C)(a/A) = T ′′ × P ×Qa/A × P ×Qc/C + T ′ × P ×Q(c/C)(a/A), (B.74)

u(a/A)(a/A) = T ′′ × (P ×Qa/A)2 + T ′ × P ×Q(a/A)(a/A), (B.75)
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where i) P and P ′ are functions of c, ii) Q, Qc/C , Qa/A, Q(c/C)(c/C), Q(c/C)(a/A), and Q(a/A)(a/A)

are functions of (c/C, a/A), and iii) T ′ and T ′′ are functions of v = v(c, c/C, a/A).

Using the elasticities

εP,c ≡ P ′ × (c/P ), εP
′,c ≡ P ′′ × (c/P ′), (B.76)

εT
′,v ≡ T ′′ × (v/T ′), (B.77)

εQ,c/C ≡ Qc/C × [(c/C)/Q], εQ,a/A ≡ Qa/A × [(a/A)/Q], (B.78)

εQc/C ,c/C ≡ Q(c/C)(c/C) × [(c/C)/Qc/C ], (B.79)

εQc/C ,a/A ≡ Q(c/C)(a/A) × [(a/A)/Qc/C ], (B.80)

εQa/A,a/A ≡ Q(a/A)(a/A) × [(a/A)/Qa/A], (B.81)

where i) εP,c and εP
′,c are functions of c, ii) εQ,c/C , εQ,a/A, εQc/C ,c/C , εQc/C ,a/A and εQa/A,a/A

are functions of (c/C, a/A), and iii) εT
′,v is a function of v = v(c, c/C, a/A) = P (c)Q(c/C, a/A),

Equations (B.67)–(B.75) can be rewritten as follows:

uc = c−1 × T ′ × P ×Q× εP,c, (B.82)

uc/C = (c/C)−1 × T ′ × P ×Q× εQ,c/C , (B.83)

ua/A = (a/A)−1 × T ′ × P ×Q× εQ,a/A, (B.84)

ucc = c−2 × T ′ × P ×Q× εP,c × (εT
′,v × εP,c + εP

′,c), (B.85)

uc(c/C) = c−1(c/C)−1 × T ′ × P ×Q× εP,c × εQ,c/C × (εT
′,v + 1), (B.86)

uc(a/A) = c−1(a/A)−1 × T ′ × P ×Q× εP,c × εQ,a/A × (εT
′,v + 1), (B.87)

u(c/C)(c/C) = (c/C)−2 × T ′ × P ×Q× εQ,c/C ×

×(εT
′,v × εQ,c/C + εQc/C ,c/C), (B.88)

u(c/C)(a/A) = (c/C)−1 × (a/A)−1 × T ′ × P ×Q× εQ,c/C ×

×(εT
′,v × εQ,a/A + εQc/C ,a/A), (B.89)

u(a/A)(a/A) = (a/A)−2 × T ′ × P ×Q× εQ,a/A ×

×(εT
′,v × εQ,a/A + εQa/A,a/A). (B.90)

Moreover, using (A.1), (A.2), and (B.82)–(B.90) it can be shown by tedious calculations

that

Vcc = c−2 × T ′ × P ×Q×Ψ, (B.91)

VccVaa − (Vca)
2 = (c−1a−1 × T ′ × P ×Q)2 × Φ, (B.92)
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where

Ψ ≡ εP,c × (εT
′,vεP,c + εP

′,c) + 2εP,cεQ,c/C × (εT
′,v + 1) +

+εQ,c/C × (εT
′,vεQ,c/C + εQc/C ,c/C)}, (B.93)

Φ ≡ εQ,a/A × (εT
′,vεQ,a/A + εQa/A,a/A)×

×{εP,c × (εT
′,vεP,c + εP

′,c) + 2× εP,cεQ,c/C × (εT
′,v + 1) +

+εQ,c/C × (εT
′,vεQ,c/C + εQc/C ,c/C)} −

−[εP,cεQ,a/A × (εT
′,v + 1) + εQ,c/C × (εT

′,vεQ,a/A + εQc/C ,a/A)]2. (B.94)

Proof of A)

Using (B.67)–(B.69), (B.70), (B.73), (B.75), and (B.76)–(B.81) it can be shown that

uc > 0⇔ T ′ × P ′ ×Q > 0,

uc/C ≥ 0⇔ T ′ × P ×Qc/C ≥ 0,

ua/A ≥ 0⇔ T ′ × P ×Qa/A ≥ 0,

ucc < 0⇔ P ′ ×Q× T ′ × (εT
′,v × εP,c + εP

′,c) < 0,

u(c/C)(c/C) < 0⇔ P ×Qc/C × T ′ × (εT
′,v × εQ,c/C + εQc/C ,c/C) < 0,

u(a/A)(a/A) < 0⇔ P ×Qa/A × T ′ × (εT
′,v × εQ,a/A + εQa/A,a/A) < 0.

Using these results and the assumptions made in (B.46) and (B.47),

T ′ > 0, T ′′ < 0; P > 0, P ′ > 0, εT
′,vεP,c + εP

′,c < 0,

Q > 0, Qc/C ≥ 0, Qa/A ≥ 0, Qc/C > 0 ∨Qa/A > 0,

if Qc/C > 0, then εT
′,vεQ,c/C + εQc/C ,c/C < 0,

if Qa/A > 0, then εT
′,vεQ,a/A + εQa/A,a/A < 0,

we obtain uc > 0, ucc < 0, uc/C ≥ 0, ua/A ≥ 0, uc/C > 0 ∨ ua/A > 0, and

uc/C > 0⇒ Qc/C > 0 ∧ εT ′,vεQ,c/C + εQc/C ,c/C < 0⇒ u(c/C)(c/C) < 0,

ua/A > 0⇒ Qa/A > 0 ∧ εT ′,vεQ,a/A + εQa/A,a/A < 0⇒ u(a/A)(a/A) < 0.

Consequently, the instantaneous utility function (B.45) is well-behaved in the sense that it

satisfies all assumptions made in (2),

uc > 0, ucc < 0; uc/C ≥ 0, ua/A ≥ 0, uc/C > 0 ∨ ua/A > 0;

if uc/C > 0, then u(c/C)(c/C) < 0; if ua/A > 0, then u(a/A)(a/A) < 0. �

Proof of B)

Since T ′ > 0, P > 0, and Q > 0 holds due to the assumptions made in (B.46) and (B.47),
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it follows from (B.91) and (B.93) that Vcc < 0 holds if and only if Ψ < 0, i.e.,

0 > εP,c × (εT
′,vεP,c + εP

′,c) + 2εP,cεQ,c/C × (εT
′,v + 1) +

+εQ,c/C × (εT
′,vεQ,c/C + εQc/C ,c/C).

This condition is identical to the condition given by (B.48).

Relative wealth matters for utility if and only if Qa/A > 0. Since T ′ > 0, P > 0, and Q > 0

holds due to the assumptions made in (B.46) and (B.47), it follows from (B.92) and (B.94) that

if Qa/A > 0, then VccVaa − (Vca)
2 > 0 holds if and only if Φ > 0, i.e.,

0 < εQ,a/A × (εT
′,vεQ,a/A + εQa/A,a/A)×

×{εP,c × (εT
′,vεP,c + εP

′,c) + 2× εP,cεQ,c/C × (εT
′,v + 1) +

+εQ,c/C × (εT
′,vεQ,c/C + εQc/C ,c/C)}

−[εP,cεQ,a/A × (εT
′,v + 1) + εQ,c/C × (εT

′,vεQ,a/A + εQc/C ,a/A)]2.

This condition is identical to the condition given by (B.49). �

Proof of C)

Substituting (B.82)–(B.84) into the definitions of mc/C and ma/A given in (11), we obtain

mc/C(c, c/C, a/A) ≡ c/C

c
×
uc/C(c, c/C, a/A)

uc(c, c/C, a/A)
=
εQ,c/C(c/C, a/A)

εP,c(c)
,

ma/A(c, c/C, a/A) ≡ a/A

c
×
ua/A(c, c/C, a/A)

uc(c, c/C, a/A)
=
εQ,a/A(c/C, a/A)

εP,c(c)
.

Consequently, in symmetric situations, in which c = C and a = A hold, we have

mc/C(C, 1, 1) = ε̂Q,c/C/εP,c(C), (B.95)

ma/A(C, 1, 1) = ε̂Q,a/A/εP,c(C), (B.96)

where the constants ε̂Q,c/C and ε̂Q,a/A give the values that the elasticities εQ,c/C and εQ,a/A take

at (c/C, a/A) = (1, 1):

ε̂Q,c/C ≡ εQ,c/C(1, 1), ε̂Q,a/A ≡ εQ,a/A(1, 1). (B.97)

The assumptions Q > 0, Qc/C ≥ 0, Qa/A ≥ 0, and Qc/C > 0∨Qa/A > 0, made in (B.47), imply

that

ε̂Q,c/C ≥ 0, ε̂Q,a/A ≥ 0, ε̂Q,c/C > 0 ∨ ε̂Q,a/A > 0. (B.98)

Substituting (B.95) and (B.96) into the definition of the CIER factor given by (19), we obtain

ηD(C) ≡ ma/A(C, 1, 1)

1 +mc/C(C, 1, 1)
=

ε̂Q,a/A/εP,c(C)

1 + [ε̂Q,c/C/εP,c(C)]
=

ε̂Q,a/A

εP,c(C) + ε̂Q,c/C
. (B.99)

From (B.95), (B.96), and (B.99) it is obvious that mc/C(C, 1, 1), ma/A(C, 1, 1), and ηD(C) are

constant functions of C if and only if the elasticity of the function P (c) with respect to c, εP,c(c),
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is a constant function of c. It is easily verified that εP,c(c) is a constant function of c if and only

if the function P (c) has the form given by (B.51),

P (c) = ξ0c
ξ1 , c > 0, (B.100)

where ξ0 and ξ1 are constants. These considerations prove the validity of the first assertion

made in item B): The functions mc/C , ma/A, and ηD that result from the specification of the

instantaneous utility function u = u(c, c/C, a/A) given by (B.45) have the properties described

in (B.50),

mc/C(C, 1, 1) = m̂c/C , ma/A(C, 1, 1) = m̂a/A, ηD(C) = η̂, ∀C > 0,

if and only if the function P (c) has the form given by (B.100) [= (B.51)].

Next, we derive the parameter restrictions given in (B.52). In (B.46) it is assumed that both

P (c) > 0 and P ′(c) > 0 hold for c > 0. From P (c) = ξ0c
ξ1 and P ′(c) = ξ0ξ1c

ξ1−1 it is obvious

that we have to introduce the following two assumptions with respect to its parameters:

ξ0 > 0, ξ1 > 0. (B.101)

Obviously, the assumptions made in (B.101) coincide with those made in (B.52).

From (B.100) and (B.101) it follows that

εP,c(c) = ξ1 > 0, ∀c > 0. (B.102)

Using (B.102), (B.95), (B.96), (B.98), and (B.99), it is easily verified that

mc/C(C, 1, 1) = ε̂Q,c/C/ξ1 ≡ m̂c/C ≥ 0, ∀C > 0, (B.103)

ma/A(C, 1, 1) = ε̂Q,a/A/ξ1 ≡ m̂a/A ≥ 0, ∀C > 0, (B.104)

ηD(C) = (ε̂Q,a/A/ξ1)/[1 + (ε̂Q,c/C/ξ1)] ≡ η̂ ≥ 0, ∀C > 0, (B.105)

and m̂c/C > 0 ∨ m̂a/A > 0, where the definitions of ε̂Q,c/C and ε̂Q,a/A are given by (B.97). The

last three results play an essential role in the proofs of D) and E). �

Proof of D)

Substituting (B.100) [= (B.51)] into (B.45) and taking into account (B.101) [= (B.52)], we

obtain the instantaneous utility function (B.53)

u(c, c/C, a/A) = T (ξ0c
ξ1Q(c/C, a/A)), ξ0 > 0, ξ1 > 0. (B.106)

Since, according to (B.103), mc/C(C, 1, 1) is a constant function of C, we havem
c/C
c (C, 1, 1) =

0, ∀C > 0. Hence, we also have

εm
c/C ,c(C, 1, 1) = mc/C

c (C, 1, 1)× [C/mc/C(C, 1, 1)] = 0, ∀C > 0.

Substituting the last result into the definition of the effective elasticity of intertemporal substi-
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tution given by (18),

σD(C) ≡ −

[
εuc,c(C, 1, 1) +

mc/C(C, 1, 1)

1 +mc/C(C, 1, 1)
× εmc/C ,c(C, 1, 1)

]−1

,

we obtain

σD(C) = −1/εuc,c(C, 1, 1). (B.107)

From (B.107) it follows that σD(C) is a constant function of C if and only if εuc,c(C, 1, 1) is a

constant function of C. From (B.82) and (B.85) it follows that the elasticity of the marginal

utility of absolute consumption uc with respect to c can be expressed in the following form:

εuc,c(c, c/C, a/A) ≡ ucc(c, c/C, a/A)× [c/uc(c, c/C, a/A)]

= εP,c(c)εT
′,v(P (c)Q(c/C, a/A)) + εP

′,c(c).

The elasticities εP,c(c), εP
′,c(c), and εT

′,v(v) are defined in (B.76) and (B.77). Obviously, the

elasticity εT
′,v(v) is evaluated at v = P (c)Q(c/C, a/A). The specification of P (c) given by

(B.100) [= (B.51)], P (c) = ξ0c
ξ1 , implies that εP,c(c) = ξ1 and εP

′,c(c) = ξ1 − 1 hold for c > 0.

Using these results, we obtain

εuc,c(c, c/C, a/A) = ξ1ε
T ′,v(ξ0c

ξ1Q(c/C, a/A)) + ξ1 − 1.

In symmetric situations, in which (c, c/C, a/A) = (C, 1, 1) holds, we thus have

εuc,c(C, 1, 1) = ξ1ε
T ′,v(ξ0C

ξ1Q(1, 1)) + ξ1 − 1. (B.108)

Obviously, εuc,c(C, 1, 1) and σD(C) = −[εuc,c(C, 1, 1)]−1 [see (B.107)] are constant functions of

C if and only if εT
′,v(ξ0C

ξ1Q(1, 1)) is a constant function of C. Since ξ0 > 0 and ξ1 > 0 [see

(B.101)] and Q(c/C, a/A) > 0 holds over the domain of Q [see (B.47)], εT
′,v(ξ0C

ξ1Q(1, 1)) is a

constant function of C for C > 0 if and only if εT
′,v(v) is a constant function of v for v > 0. The

assumptions made in (B.46) require that T ′ > 0 and T ′′ < 0. Hence, admissible transformations

T have the property that εT
′,v(v) ≡ T ′′(v)× [v/T ′(v)] < 0 holds for v > 0.

We can summarize these considerations as follows: If the transformation T (v) is admissible

in the sense that T ′(v) > 0 and T ′′(v) < 0 hold for v > 0, then the instantaneous utility

function (B.106), u(c, c/C, a/A) = T (ξ0c
ξ1Q(c/C, a/A)), has the property that εuc,c(C, 1, 1) and

σD(C) = −[εuc,c(C, 1, 1)]−1 are constant functions of C for C > 0 if and only if the function T

satisfies the condition

εT
′,v(v) = −θ, v > 0, (B.109)

where θ is an arbitrary strictly positive constant, θ > 0. It is well-known that εT
′,v(v) = −θ < 0

holds for v > 0 if and only if the function T (v) is of the CRRA type, i.e.,

T (v) = κ0 + κ1(1− θ)−1(v1−θ − 1), v > 0, (B.110)

where κ0 and κ1 are constants. These considerations prove the validity of the first assertion
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made in item D): The functions εuc,c(C, 1, 1) and σD(C) that result from the specification of the

instantaneous utility function u(c, c/C, a/A) = T (ξ0c
ξ1Q(c/C, a/A)) given by (B.53) [= (B.106)]

have the properties described in (B.54),

εuc,c(C, 1, 1) = ε̂uc,c, σD(C) = σ̂, ∀C > 0,

if and only if the function T (v) has the form given by (B.110) [= (B.55)].

Next, we derive the parameter restrictions given in (B.56). The assumptions made in (B.52),

ξ0 > 0 and ξ1 > 0, imply that P > 0 and P ′ > 0. To ensure that the remaining three assumptions

given in (B.46), T ′ > 0, T ′′ < 0, and εT
′,vεP,c + εP

′,c < 0, where

T ′(v) = κ1v
−θ, T ′′(v) = −κ1θv

−1−θ, εT
′,vεP,c + εP

′,c = −θξ1 + ξ1 − 1,

are also satisfied, we assume that

κ1 > 0, θ > 0, 1 + (θ − 1)ξ1 > 0 (B.111)

holds in addition to (B.52). Obviously, the assumptions made in (B.111) are identical to those

given in (B.56).

Using (B.108), (B.109), (B.111), and (B.107), we obtain

εuc,c(C, 1, 1) = −[1 + (θ − 1)ξ1] ≡ ε̂uc,c < 0, ∀C > 0, (B.112)

σD(C) = −1/εuc,c(C, 1, 1) = 1/[1 + (θ − 1)ξ1] ≡ σ̂ > 0, ∀C > 0. (B.113)

The last two results play an important role in the following proof of E). �

Proof of E-i)

As shown above, the assumptions made in (B.58),

κ1 > 0, ξ0 > 0, ξ1 > 0, θ > 0, 1 + (θ − 1)ξ1 > 0,

ensure that all assumptions made in (B.46) are satisfied. Moreover, since εT
′,v = −θ, the as-

sumptions made in (B.59),

Q > 0, Qc/C ≥ 0, Qa/A ≥ 0, Qc/C > 0 ∨Qa/A > 0,

if Qc/C > 0, then εQc/C ,c/C − θεQ,c/C < 0,

if Qa/A > 0, then εQa/A,a/A − θεQ,a/A < 0,

imply that all conditions given in (B.47) are satisfied. Hence, it follows directly from item A)

of the proposition that the instantaneous utility function (B.57),

u(c, c/C, a/A) = κ0 + κ1(1− θ)−1{[ξ0c
ξ1Q(c/C, a/A)]1−θ − 1},

is well-behaved in the sense that all assumptions made in (2) are satisfied.

Proof of E-ii)
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Substitution of

εP,c = ξ1, εP
′,c = ξ1 − 1, εT

′,v = −θ

into (B.48) and (B.49),

0 > εP,c × (εT
′,vεP,c + εP

′,c) + 2εP,cεQ,c/C × (εT
′,v + 1)

+εQ,c/C × (εT
′,vεQ,c/C + εQc/C ,c/C),

0 < εQ,a/A × (εT
′,vεQ,a/A + εQa/A,a/A)×

×{εP,c × (εT
′,vεP,c + εP

′,c) + 2× εP,cεQ,c/C × (εT
′,v + 1) +

+εQ,c/C × (εT
′,vεQ,c/C + εQc/C ,c/C)}

−[εP,cεQ,a/A × (εT
′,v + 1) + εQ,c/C × (εT

′,vεQ,a/A + εQc/C ,a/A)]2,

yields (B.60) and (B.61):

0 < [1 + ξ1(θ − 1)]ξ1 + εQ,c/C [2(θ − 1)ξ1 + θεQ,c/C − εQc/C ,c/C ],

0 < {[1 + ξ1(θ − 1)]ξ1 + εQ,c/C [2(θ − 1)ξ1 + θεQ,c/C − εQc/C ,c/C ]} ×

×εQ,a/A(θεQ,a/A − εQa/A,a/A)

−{[(1− θ)ξ1 − θεQ,c/C ]εQ,a/A + εQ,c/CεQc/C ,a/A}2,

where the second condition is only relevant in case that relative wealth matters for utility so

that Qa/A > 0. Hence, if the last two conditions hold in addition to (B.58) and (B.59), then

V (c, C, a,A) ≡ u(c, c/C, a/A) is well-behaved since all assumptions made in (3) are satisfied.

Proof of E-iii)

From (B.103), (B.104), (B.97), and (B.112) it follows that the conditions given by (31) in

Proposition 3 are satisfied, sincemc/C(C, 1, 1) = m̂c/C , ma/A(C, 1, 1) = m̂a/A, and εuc,c(C, 1, 1) =

ε̂uc,c hold for C > 0, where

m̂c/C ≡ ε̂Q,c/C/ξ1 ≥ 0, m̂a/A ≡ ε̂Q,a/A/ξ1 ≥ 0, ε̂uc,c ≡ −[1 + (θ − 1)ξ1] < 0. (B.114)

The constants ε̂Q,c/C and ε̂Q,a/A denote the values that the elasticities of the functionQ(c/C, a/A)

with respect to c/C and a/A, εQ,c/C(c/C, a/A) and εQ,a/A(c/C, a/A), take in symmetric situa-

tions, i.e., at (c/C, a/A) = (1, 1):

ε̂Q,c/C ≡ εQ,c/C(1, 1), ε̂Q,a/A ≡ εQ,a/A(1, 1). (B.115)

These results given in (B.114) and (B.115) prove the validity of (B.62) and (B.63).

Proof of E-iv)

From (B.105), (B.97), and (B.113) it follows that the conditions given in (23) in Proposition
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1 are satisfied, because σD(C) = σ̂ and ηD(C) = η̂ hold for C > 0, where

σ̂ = 1/[1 + (θ − 1)ξ1] > 0, η̂ = (ε̂Q,a/A/ξ1)/[1 + (ε̂Q,c/C/ξ1)] ≥ 0. (B.116)

These results given in (B.116) prove the validity of (B.64).

We know from Proposition 1 that if these constants σ̂ and η̂ satisfy the condition (24),

[1− (1/σ̂)](1 + η̂)−1ρg < ρ < ρg, ρg ≡ fk(1, L) + η̂f(1, L),

where ρ > 0 holds by assumption, then an economically meaningful decentralized BGP exists.

Substituting the results for σ̂ and η̂ given by (B.116) into equation (25) [see Proposition 1],

gD = [(1/σ̂) + η̂]−1[fk(1, L)− ρ+ η̂f(1, L)],

we obtain Equation (B.65):

gD =
fk(1, L)− ρ+ (ε̂Q,a/A/ξ1)[1 + (ε̂Q,c/C/ξ1)]−1 × f(1, L)

1 + (θ − 1)ξ1 + (ε̂Q,a/A/ξ1)[1 + (ε̂Q,c/C/ξ1)]−1
> 0. (B.117)

Proof of E-v)

The results for m̂c/C , m̂a/A, ε̂uc,c, σ̂, η̂, and gD given in (B.62), (B.64), and (B.65) are

independent of the parameters κ0, κ1, and ξ0. The well-behavedness of the instantaneous utility

function u = u(c, c/C, a/A) given by (B.57) and its alternative representation V (c, C, a,A) ≡
u(c, c/C, a/A) depends on the signs of ξ0 and κ1 [i.e., ξ0 > 0 and κ1 > 0 has to hold according

to (B.52) and (B.56)], but not on the magnitudes of these two parameters. Hence, we can set,

without loss of generality, κ0 = 0, κ1 = 1, and ξ0 = 1, and employ the simplified representation

of the utility function given by (B.66):

u(c, c/C, a/A) = (1− θ)−1{[cξ1Q(c/C, a/A)]1−θ − 1}.

B.10 Proof of item A) of Corollary 1

Let the instantaneous utility function take the form given by (43),

u(c, c/C, a/A) = (1− θ)−1{[cξ1(c/C)ξ2(a/A)ξ3 ]1−θ − 1},

where the assumptions with respect to the parameters are given by (44):

θ > 0, ξ1 > 0, ξ2 ≥ 0, ξ3 ≥ 0, ξ2 > 0 ∨ ξ3 > 0, (1− θ)(ξ1 + ξ2 + ξ3) < 1.

Obviously, the alternative representation of the utility function given by V (c, C, a,A) ≡ u(c, c/C, a/A)

takes the following form:

V (c, C, a,A) = (1− θ)−1[(cξ1+ξ2C−ξ2aξ3A−ξ3)1−θ − 1].
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The following properties of u and V are easily verified:

uc = ξ1c
−1[cξ1(c/C)ξ2(a/A)ξ3 ]1−θ,

ucc = −ξ1[1 + ξ1(θ − 1)]c−2[cξ1(c/C)ξ2(a/A)ξ3 ]1−θ,

uc/C = ξ2(c/C)−1[cξ1(c/C)ξ2(a/A)ξ3 ]1−θ,

u(c/C)(c/C) = −ξ2(c/C)−2[1 + ξ2(θ − 1)][cξ1(c/C)ξ2(a/A)ξ3 ]1−θ,

ua/A = ξ3(a/A)−1[cξ1(c/C)ξ2(a/A)ξ3 ]1−θ,

u(a/A)(a/A) = −ξ3(a/A)−2[1 + ξ3(θ − 1)][cξ1(c/C)ξ2(a/A)ξ3 ]1−θ,

Vc = (ξ1 + ξ2)c−1(cξ1+ξ2C−ξ2aξ3A−ξ3)1−θ,

Vcc = −(ξ1 + ξ2)[1 + (ξ1 + ξ2)(θ − 1)]c−2(cξ1+ξ2C−ξ2aξ3A−ξ3)1−θ,

Va = ξ3a
−1(cξ1+ξ2C−ξ2aξ3A−ξ3)1−θ,

Vaa = −ξ3[1 + ξ3(θ − 1)]a−2(cξ1+ξ2C−ξ2aξ3A−ξ3)1−θ,

Vca = (ξ1 + ξ2)ξ3(1− θ)(ca)−1(cξ1+ξ2C−ξ2aξ3A−ξ3)1−θ,

VccVaa − (Vca)
2 = (ξ1 + ξ2)ξ3[1 + (θ − 1)(ξ1 + ξ2 + ξ3)]×

×(ca)−2(cξ1+ξ2aξ3C−ξ2A−ξ3)2(1−θ).

First, we prove that all assumptions made in (2) are satisfied. From the results given above

it is obvious that

uc > 0⇔ ξ1 > 0, ucc < 0⇔ ξ1[1 + ξ1(θ − 1)] > 0,

uc/C ≥ 0⇔ ξ2 ≥ 0, u(c/C)(c/C) < 0⇔ ξ2[1 + ξ2(θ − 1)] > 0,

ua/A ≥ 0⇔ ξ3 ≥ 0, u(a/A)(a/A) < 0⇔ ξ3[1 + ξ3(θ − 1)] > 0.

(B.118)

Since by assumption ξ1 > 0, ξ2 ≥ 0, ξ3 ≥ 0, and ξ2 > 0 ∨ ξ3 > 0 hold, we obtain uc > 0,

uc/C ≥ 0, ua/A ≥ 0, and uc/C > 0 ∨ ua/A > 0.

Next, we show that

1 + (θ − 1)ξi > 0, i = 1, 2, 3 (B.119)

holds for θ > 0. The proof is simple: Obviously, θ ≥ 1 is sufficient (but not necessary) for the

validity of (B.119). In the opposite case in which 0 < θ < 1 holds, we make use of the fact that

according to (44) both ξ2 > 0 ∨ ξ3 > 0 and (1 − θ)(ξ1 + ξ2 + ξ3) < 1 hold by assumption and

thus obtain

(1− θ)ξi < (1− θ)(ξ1 + ξ2 + ξ3) < 1⇒ 1 + (θ − 1)ξi > 0, i = 1, 2, 3.

Employing (B.118) and (B.119) we obtain the following: i) From ξ1 > 0 and 1 + ξ1(θ − 1) > 0

it follows that ucc < 0. ii) If uc/C > 0, then ξ2 > 0 and ξ2[1 + ξ2(θ − 1)] > 0, which, in turn,

implies that u(c/C)(c/C) < 0. iii) If ua/A > 0, then ξ3 > 0 and ξ3[1 + ξ3(θ − 1)] > 0, so that

u(a/A)(a/A) < 0.
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The following summary of these results shows that all assumptions made in (2) are satisfied:

uc > 0, ucc < 0; uc/C ≥ 0, ua/A ≥ 0, uc/C > 0 ∨ ua/A > 0;

if uc/C > 0, then u(c/C)(c/C) < 0; if ua/A > 0, then u(a/A)(a/A) < 0.

Second, we prove that all assumptions made in (3) are satisfied. Since ξ1 > 0 and ξ2 ≥ 0

hold by assumption, it follows from the expression for Vcc given above that

Vcc < 0⇔ 1 + (θ − 1)(ξ1 + ξ2) > 0.

It is easily verified that

1 + (θ − 1)(ξ1 + ξ2) > 0 (B.120)

holds for θ > 0, so that Vcc < 0 holds for θ > 0. The proof is simple: Obviously, θ ≥ 1 is sufficient

(but not necessary) for the validity of (B.120). In the opposite case in which 0 < θ < 1 holds,

we make use of the fact that according to (44) ξ3 ≥ 0 and (1 − θ)(ξ1 + ξ2 + ξ3) < 1 hold by

assumption and thus obtain

(1− θ)(ξ1 + ξ2) ≤ (1− θ)(ξ1 + ξ2 + ξ3) < 1⇒ 1 + (θ − 1)(ξ1 + ξ2) > 0.

Finally, we have to show that if ua/A > 0 holds, then VccVaa − (Vca)
2 > 0. Recall that

ua/A > 0 ⇔ ξ3 > 0. It is obvious from the expression for VccVaa − (Vca)
2 given above that if

ξ3 > 0 holds in addition to ξ1 > 0 and ξ2 ≥ 0, then

VccVaa − (Vca)
2 > 0⇔ (1− θ)(ξ1 + ξ2 + ξ3) < 1.

Since the condition given on the right-hand side is one of the assumptions listed in (44), we

obtain that if ua/A > 0 holds, then VccVaa − (Vca)
2 > 0. �

C The decentralized solution – Part II (Section 4)

C.1 The well-behavedness of specification #4

In specification #4, the function V = V (c, C) takes the form

V (c, C) =
1

1− θ


[(

cϕ − κCϕ

1− κ

)1/ϕ
]1−θ

− 1

 , 0 < κ < 1, 0 < 1− ϕ < θ,

where the domain of V is given by ΘV ≡ {(c, C)|c > 0, C > 0, cϕ − κCϕ > 0}. From

Vc =

(
cϕ − κCϕ

1− κ

)(1−θ−ϕ)/ϕ cϕ−1

1− κ
,

Vcc = − [θ − (1− ϕ)]

(
cϕ − κCϕ

1− κ

)(1−θ−2ϕ)/ϕ( cϕ−1

1− κ

)2

− (1− ϕ)

(
cϕ − κCϕ

1− κ

)(1−θ−ϕ)/ϕ cϕ−2

1− κ
,
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it follows that the assumptions 0 < κ < 1 and 0 < 1 − ϕ < θ are sufficient for Vc > 0 and

Vcc < 0 so that all assumptions made in (3) are satisfied.

The corresponding representation of the function u = u(c, c/C) is given by (58),

u(c, c/C) =
1

1− θ


[
c×

(
1− κ(c/C)−ϕ

1− κ

)1/ϕ
]1−θ

− 1

 .

From

uc = c−θ
(

1− κ(c/C)−ϕ

1− κ

)(1−θ)/ϕ
,

ucc = −θc−θ−1

(
1− κ(c/C)−ϕ

1− κ

)(1−θ)/ϕ
,

uc/C =
κ

1− κ
c1−θ

(
1− κ(c/C)−ϕ

1− κ

)(1−θ−ϕ)/ϕ

(c/C)−ϕ−1,

u(c/C)(c/C) = − κ

1− κ
c1−θ(c/C)−(ϕ+2)

(
1− κ(c/C)−ϕ

1− κ

)(1−θ−2ϕ)/ϕ

×

×
[
[θ − (1− ϕ)]

κ(c/C)−ϕ

1− κ
+ (ϕ+ 1)

(
1− κ(c/C)−ϕ

1− κ

)]
it follows that the assumptions 0 < κ < 1 and 0 < 1 − ϕ < θ are also sufficient for uc > 0,

ucc < 0, uc/C > 0, and u(c/C)(c/C) < 0, so that all assumptions made in (2) are satisfied.

C.2 Specification #7

Specification #7 has the property that the presence of relative consumption and relative wealth

in the instantaneous utility function u results from the explicit consideration of status prefer-

ences. More precisely, we assume that u can be written as u(c, c/C, a/A) ≡ ũ(c, s(c/C, a/A)),

where s stands for status. To ensure that u(c, c/C, a/A) is of the simple form given by (43) and

that ξ1 + ξ2 + ξ3 = 1 holds, we employ the following specifications of ũ(c, s) and s(c/C, a/A):

ũ(c, s) = (1− θ)−1[(c1−βsβ)1−θ − 1], s(c/C, a/A) = (c/C)γ(a/A)1−γ , (C.1)

where θ > 0, 0 < β < 1, 1 + (θ − 1)(1 − β) > 0, and 0 < γ < 1. It is easily verified that

ξ1 = 1−β, ξ2 = βγ, and ξ3 = (1−γ)β. A natural extension of our fundamental factor approach

implies that the percentage-MRS of status s for absolute consumption c, defined by ms(c, s) ≡
(s/c) × [ũs(c, s)/ũc(c, s)], represents the appropriate measure of the intensity of the quest for

overall status as determined by both relative consumption and relative wealth. The simplicity

of the specification (C.1) entails two significant drawbacks with respect to the application of

the standard analysis: i) Since changes in the parameter γ affect both m̂c/C = γβ/(1− β) and

m̂a/A = (1 − γ)β/(1 − β), the partial derivative ∂gD/∂γ is unsuited to analyze the effects of

ceteris paribus changes in the intensity of the relative consumption motive or the relative wealth

motive. ii) The partial derivative ∂gD/∂β is inappropriate to analyze the effects of a change in

the intensity of the quest for overall status. This is due to the following fact: If θ 6= 1, then

a change in β affects not only the willingness to substitute status for absolute consumption
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as measured by m̂s = β/(1 − β), but also the willingness to substitute absolute consumption

intertemporally as determined by 1/|ε̂ũc,c| = 1/[1 + (θ − 1)(1− β)].

All these problems can be easily avoided by i) eliminating the dependence between the

exponents of absolute consumption and status and ii) employing separate parameters for the

exponents of relative consumption and relative wealth so that

ũ(c, s) = (1− θ)−1[(csβ)1−θ − 1], s(c/C, a/A) = (c/C)γ1(a/A)γ2 .

D The socially planned solution and the inefficiency of the de-

centralized solution (Section 5)

D.1 The Euler equation (63) and the transversality condition (64)

First, we derive the Euler equation for consumption. The current-value Hamiltonian of the

social planner’s optimization problem is given by H = u(C, 1, 1) + µ[f(1, L)K − C], where the

costate variable µ denotes the shadow price of capital. The necessary optimality conditions for

an interior equilibrium, HC = 0 and µ̇ = ρµ−HK , can be written as

µ = uc(C, 1, 1), (D.1)

µ̇ = −[f(1, L)− ρ]µ. (D.2)

If, in addition, the transversality condition given by

lim
t→∞

e−ρtµK = 0 (D.3)

holds, then the necessary optimality conditions are also sufficient, where this property follows

from the fact that ucc < 0 holds by assumption. Substituting the FOC (D.1) and its derivative

with respect to time t,

µ̇ = ucc(C, 1, 1)Ċ,

into (D.2), we obtain

ucc(C, 1, 1)Ċ = −[f(1, L)− ρ]uc(C, 1, 1).

Simple transformations yield the Euler equation for consumption:

Ċ/C = −{uc(C, 1, 1)/[Cucc(C, 1, 1)]}[f(1, L)− ρ].

Using the definition of the elasticity of the marginal utility of absolute consumption uc with

respect to c,

εuc,c(c, c/C, a/A) ≡ ucc(c, c/C, a/A)× [c/uc(c, c/C, a/A)],

the Euler equation can be written in the form given by (63),

Ċ/C = σP (C)[f(1, L)− ρ], σP (C) ≡ −1/εuc,c(C, 1, 1).

Second, we derive the transversality condition. Since the exogenously given aggregate labor
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input L is constant over time, integration of (D.2) yields

µ(t) = µ(0)eρte−f(1,L)t. (D.4)

The assumption that uc > 0 together with the FOC (D.1) implies that µ(t) > 0 for t ≥ 0. Since

µ(0) > 0, it follows from (D.4) that the transversality condition (D.3), limt→∞ e
−ρtµK = 0, is

equivalent to the representation given by (64),

lim
t→∞

e−f(1,L)tK(t) = 0.

D.2 Proof of Proposition 6

Proof of A) Let the instantaneous utility function u satisfy the conditions (31) that were

introduced in the context of the decentralized economy in Proposition 3, i.e.,

mc/C(C, 1, 1) = m̂c/C , ma/A(C, 1, 1) = m̂a/A, εuc,c(C, 1, 1) = ε̂uc,c, ∀C > 0, (D.5)

where m̂c/C ≥ 0, m̂a/A ≥ 0 (with m̂c/C > 0 ∨ m̂a/A > 0), and ε̂uc,c < 0.

First, we prove the validity of (65). According to Proposition 3, the conditions given in (31)

[= (D.5)] imply that

σD(C) = 1/|ε̂uc,c|, ∀C > 0. (D.6)

Using the definition of σP (C) given in (63),

σP (C) ≡ −1/εuc,c(C, 1, 1),

and the assumption that

εuc,c(C, 1, 1) = ε̂uc,c < 0, ∀C > 0,

made in (31) [= (D.5)], we obtain

σP (C) = 1/|ε̂uc,c|, ∀C > 0. (D.7)

Combining (D.6) and (D.7), we obtain (65):

σP (C) = σD(C) = 1/|ε̂uc,c| ≡ σ̂, ∀C > 0.

Second, we derive the solutions for gP , (C/K)P , and (K̇/Y )P . Substitution of σP (C) = σ̂,

∀C > 0, into the Euler equation of aggregate consumption in the socially planned economy that

is given by (63), we obtain

Ċ/C = σ̂[f(1, L)− ρ]. (D.8)

From the economy’s resource constraint K̇ = f(1, L)K − C it follows that

K̇/K = f(1, L)− (C/K). (D.9)

Taking into account that, by assumption, L is exogenously given and constant over time and
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that σ̂ is a constant, it is obvious from the last two differential equations that a BGP exists in

the socially planned economy along which C and K grow at the same constant rate so that C/K

remains unchanged over time. The steady-state value of the common growth rate of aggregate

consumption and aggregate physical capital denoted by gP = (Ċ/C)P = (K̇/K)P and the

steady-state value of the consumption-capital ratio denoted by (C/K)P are determined by the

following system of equations:

gP = σ̂[f(1, L)− ρ], gP = f(1, L)− (C/K)P .

Solving this system of two equations for gP and (C/K)P , we obtain

gP = σ̂[f(1, L)− ρ], (D.10)

(C/K)P = f(1, L)− gP (D.11)

= (1− σ̂)f(1, L) + σ̂ρ. (D.12)

The solutions for gP and (C/K)P given by (D.10) and (D.11) are identical to those given in

Proposition 6. The validity of (K̇/Y )P = gP /f(1, L) is obtained by using the following facts:

(K̇/Y ) = (K̇/K)/(Y/K), Y = f(1, L)K, (K̇/K)P = gP .

Third, we derive condition (66). Using (D.10), we obtain

gP > 0⇔ ρ < f(1, L). (D.13)

From (D.12) it follows that

(C/K)P > 0⇔ ρ > (σ̂ − 1)(σ̂)−1f(1, L). (D.14)

In case that σ̂ < 1, condition (D.14) is redundant because ρ > 0 holds by assumption.

Along the BGP, we have K̇/K = gP at any point in time. Hence, the transversality condition

(64),

lim
t→∞

e−f(1,L)tK(t) = 0,

requires that

−f(1, L) + gP = −[(1− σ̂)f(1, L) + σ̂ρ] = −(C/K)P < 0. (D.15)

Obviously, the condition that ρ > (σ̂ − 1)(σ̂)−1f(1, L) given in (D.14) implies not only that

(C/K)P > 0, but also ensures that the transversality condition is satisfied.

The results given by (D.13), (D.14), and (D.15) can be summarized as follows: If the

condition

(σ̂ − 1)σ̂−1f(1, L) < ρ < f(1, L) (D.16)

is satisfied (where ρ > 0 holds by assumption), then the BGP is economically meaningful in

the sense that the growth rate and the consumption-capital ratio are strictly positive, gP > 0,

(C/K)P > 0, and, in addition, the transversality condition is fulfilled. Obviously, condition
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(D.16) is identical to condition (66). �

Proof of B)

The validity of all assertions made in B) is verified at first glance. Hence, we skip a detailed

proof.

Extra Proof – The socially planned solution has no transitional dynamics

Finally, we show that if the condition (31) [= (D.5)] is satisfied, then the model has no

transitional dynamics. Let Z ≡ C/K. Since K is a state variable and C is a control variable,

Z = C/K is a control-like variable (this notion is used by Barro and Sala-i-Martin (1995) on

p. 162). In contrast to K, both C and Z = C/K can jump at any point in time. Using (D.8),

(D.9), and C/K = Z, we obtain the following differential equation:

Ż = [(Ċ/C)− (K̇/K)]Z

= {σ̂[f(1, L)− ρ]− [f(1, L)− Z]}Z

= {Z − [(1− σ̂)f(1, L) + σ̂ρ]}Z ≡ Φ(Z).

Solving Ż = Φ(Z) = 0 for Z, we obtain {Z = 0} and {Z = ZP }, where

ZP = (1− σ̂)f(1, L) + σ̂ρ. (D.17)

Obviously, ZP given by (D.17) is identical to (C/K)P given by (D.12). If (66) [= (D.16)] holds,

then ZP = (C/K)P > 0, so that ZP is the economically meaningful steady-state value of the

consumption-capital ratio. Rewriting Φ(Z) as Φ(Z) = (Z − ZP )Z, it is easily verified that

Φ′(Z) = Z + (Z − ZP ), Φ′(ZP ) = ZP > 0.

Φ′(ZP ) > 0 implies that the economically meaningful steady state of the differential equation

Ż = Φ(Z) is unstable. Hence, the perfect-foresight equilibrium path of Z has no transitional

dynamics, i.e., Z(t) = ZP for t ≥ 0. The initial value of the jump variable Z has to be chosen

in such a way that Z(0) = ZP . From Z = C/K and ZP = (C/K)P it then follows that the

initial value of the jump variable C has to be chosen according to C(0) = (C/K)P ×K0, where

(C/K)P = ZP is given by (D.12) or (D.17) and K0 is exogenously given.

From Z(t) = ZP for t ≥ 0, (D.8), (D.9), Z = C/K, (D.10), and (D.17) it then follows that

Ċ/C = σ̂[f(1, L)− ρ] = gP > 0,

K̇/K = f(1, L)− ZP = σ̂[f(1, L)− ρ] = gP > 0,

hold for t ≥ 0. The growth rates of consumption and capital are constant over time, identical,

and equal to gP . Consequently, the growth rates of C and K have no transitional dynamics. �

D.3 Proof of Proposition 7

Proof of i) and iii)

The validity of i) and iii) is easily verified by 1) taking into account that, according to

Proposition 6, gP is independent of both m̂c/C and m̂a/A, and 2) recalling that ∂gD/∂m̂a/A > 0
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and sgn(∂gD/∂m̂c/C) = −sgn(m̂a/A) hold according to Proposition 4. Consequently, we have

∂(gP − gD)/∂m̂a/A < 0 and sgn[∂(gP − gD)/∂m̂c/C ] =sgn(m̂a/A).

Proof of ii) We assume that the conditions given by (24) and (66),

[1− (1/σ̂)](1 + η̂)−1ρg < ρ < ρg, ρg ≡ fk(1, L) + η̂f(1, L),

(σ̂ − 1)σ̂−1f(1, L) < ρ < f(1, L), (D.18)

are satisfied so that in both the decentralized economy and the socially planned economy an

economically meaningful BGP exists. The corresponding solutions for gP and gD are given by

[see (65) and (67) as well as (25) and (33)]:

gP = σ̂[f(1, L)− ρ]

= [f(1, L)− ρ]/|ε̂uc,c| > 0, (D.19)

gD = [(1/σ̂) + η̂]−1[fk(1, L)− ρ+ η̂f(1, L)]

=
fk(1, L)− ρ+ [m̂a/A/(1 + m̂c/C)]× f(1, L)

|ε̂uc,c|+ [m̂a/A/(1 + m̂c/C)]
> 0. (D.20)

Using (D.19) and (D.20), the growth rate gap gP − gD can be expressed as a function of the

fundamental factors:

gP − gD =
f(1, L)− ρ
|ε̂uc,c|

− fk(1, L)− ρ+ [m̂a/A/(1 + m̂c/C)]× f(1, L)

|ε̂uc,c|+ [m̂a/A/(1 + m̂c/C)]
. (D.21)

Using (D.21) it is easily verified that gP − gD = 0 if and only if

m̂a/A = (m̂a/A)crit ≡ [f(1, L)− fk(1, L)](1 + m̂c/C)

[1− (1/|ε̂uc,c|)]f(1, L) + (1/|ε̂uc,c|)ρ
> 0.

The positive sign of (m̂a/A)crit can be verified as follows: The numerator is strictly positive

because f(1, L) > fk(1, L) [see (22)] and m̂c/C ≥ 0. The denominator is positive for the following

reasons: The conditions for the existence of an economically meaningful BGP in the socially

planned economy given in (66) [= (D.18)] require that both ρ < f(1, L) and (σ̂−1)σ̂−1f(1, L) <

ρ hold, where the latter inequality can be rewritten as

(1− σ̂)f(1, L) + σ̂ρ > 0.

Substituting σ̂ = 1/|ε̂uc,c|, this condition can be expressed as

[1− (1/|ε̂uc,c|)]f(1, L) + (1/|ε̂uc,c|)ρ > 0,

where the left-hand side is identical to the denominator of (m̂a/A)crit.

From (D.21) it follows that

gP − gD
∣∣
m̂a/A=0

= [f(1, L)− fk(1, L)]/|ε̂uc,c| > 0.
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Taking into account that

gP − gD
∣∣
m̂a/A=(m̂a/A)crit

= 0

and that, according to item i) of the proposition, ∂(gP − gD)/∂m̂a/A < 0 holds for m̂a/A ≥ 0,

we obtain the following properties of gP − gD: 1) If 0 ≤ m̂a/A < (m̂a/A)crit, then gD < gP . 2)

If m̂a/A = (m̂a/A)crit, then gD = gP . 3) If m̂a/A > (m̂a/A)crit, then gD > gP . These properties

can be summarized in the following compact way:

sgn(gP − gD) = sgn[(m̂a/A)crit − m̂a/A]. �

D.4 Illustration: Erroneous conclusions of the standard analysis with respect

to the growth rate gap

In the absence of the relative wealth motive, we have

gP − gD = σ̂[f(1, L)− fk(1, L)] > 0, σ̂ = 1/|ε̂uc,c| = 1/[1 + (θ − 1)ξ1], (D.22)

irrespective of whether the instantaneous utility function is of the general type (37) or the

simple type (43). Consequently, the variation in a parameter pi leads to a change in the strictly

positive growth rate gap gP − gD if and only if it affects the willingness to substitute absolute

consumption intertemporally as measured by σ̂ = 1/|ε̂uc,c|. The standard approach is unaware

of (D.22) and might therefore question the assertion made in item iii) of Proposition 7 that –

in the absence of relative wealth preferences – the strength of the relative consumption motive

does not affect the growth gap gP − gD. For instance, it might employ the geometric weighted

average specification #1 in which ξ2 = β, ξ1 = 1− β, and ξ3 = 0 holds and point out that

gP − gD =
f(1, L)− fk(1, L)

1 + (θ − 1)(1− β)
⇒ sgn[∂(gP − gD)/∂β] = sgn(θ − 1).

If θ > 1, then a rise in β causes both gD and gP to increase, where the rise in gP exceeds that of

gD so that gP − gD increases. Analogously, if θ < 1, then a rise in β causes both gD and gP to

decrease, where the fall in gP exceeds that of gD so that the gap gP − gD decreases but remains

strictly positive. Our analysis makes it clear that the (ambiguous) dependence of gP − gD on β

that exists for θ 6= 1 cannot be used to reject our results. From (55) it is obvious that changes in

β affect the two fundamental factors m̂c/C = β/(1−β) and |ε̂uc,c| = 1+(θ−1)(1−β). However,

only the change in |ε̂uc,c| exerts an effect on gP − gD, namely via the (ambiguous) reaction of

the effective elasticity of intertemporal substitution σ̂ = 1/|ε̂uc,c|. By contrast, the change in

the strength of the relative consumption motive as measured by m̂c/C affects neither gP nor gD,

and, hence, is irrelevant for gP −gD. Consequently, the variation in the willingness to substitute

absolute consumption intertemporally that results from the change in the exponent of absolute

consumption ξ1 = 1− β explains 100 percent of the reaction of gP − gD.
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